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PERFORMANCE OF RATIONAL AND
BOUNDEDLY RATIONAL AGENTS
IN A MODEL WITH PERSISTENT
EXCHANGE-RATE VOLATILITY

JASMINA ARIFOVIC
Simon Fraser University

The model is a two-country overlapping generations economy with boundedly rational
agents who update their decision rules using a version of the stochastic replicator dynamic.
The results show that stationary rational expectations equilibria of this model are unstable
under this type of evolutionary adaptation. The paper also derives a two-period-ahead
forecast of the values of average fractions of savings placed in each of the two currencies.
This forecast is used in decisionmaking of a rational agent who has a full knowledge of
the evolutionary economy. The performance of the rational agent is compared to the
performance of boundedly rational agents, based on the average utility received over time.
Results show that the difference between utilities earned by rational and boundedly
rational agents is small. In addition, the average utility of the best-performing boundedly
rational agents is higher than the average utility of the rational agents.
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1. INTRODUCTION

Persistent fluctuations of exchange rates have proven to be an empirical phe-
nomenon that is difficult to explain theoretically. The studies by Meese and Rogoff
(1983a, b), for instance, show that the structural models aimed at explaining the
behavior of the exchange rate in terms of the fundamentals fail to improve on the
random-walk out-of-sample forecasting accuracy. It seems that no model based on
fundamentals such as money supplies, real income, interest rates, inflation rates,
and current account balances has been able to explain or predict a high percentage
of variation in the exchange rate, at least at short- or medium-term frequencies.
Nonstructural models (univariate and vector autoregression) have not had much
more success in terms of outperforming the random walk’s forecasting accuracy.
[See Frankel and Rose (1995) for a survey of models with fundamentals and of
time-series models of the exchange-rate behavior.]
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Explicit modeling of the changes in agents’ expectations might be a possible
way to capture and explain the exchange-rate volatility. Arifovic (1996) studies a
two-country overlapping generations environment with boundedly rational agents.
Agents make savings and portfolio decisions and update their decision rules using
a genetic algorithm. The results show that stationary rational expectations equi-
libria of this model are unstable under genetic algorithm adaptation, resulting in
persistent fluctuations of the nominal exchange rate. The observed instability and
fluctuations of the exchange rate are due to the interaction between the evolution-
ary algorithm and the underlying structure of the model, which is characterized by
the indeterminacy of rational expectations equilibria.1

This paper studies the same two-country overlapping generations environment.
Agents are boundedly rational and use a version of the stochastic replicator dy-
namic to update their decision rules. The model displays the same type of instability
of the stationary rational expectations equilibria and persistence in the behavior of
the nominal exchange rate as the one presented by Arifovic (1996). This is not sur-
prising because both the genetic algorithm and the stochastic replicator dynamic
share a set of common principles that govern the evolution of decision rules. How-
ever, they do differ in the specific implementation of these principles, such as in
the representation of beliefs and the types of operators that are used for updating.
The paper shows that, despite these differences, the main qualitative features of the
observed behavior are the same for the two algorithms. We are not aware of any
other study that examines the robustness of results of evolutionary adaptation in
economic environments under different rules’ representation and different updat-
ing schemes. This result is important because it shows that the observed dynamics
are robust to changes in specific algorithmic details or fine-tuning of the parameter
values.2

Generally, applications of evolutionary algorithms in macroeconomic models
are simulation-based because the environment is usually too complex to be char-
acterized analytically. Making these algorithms more tractable represents a step
toward a more formal characterization of their behavior and possibly toward the
analysis of their convergence properties. The stochastic replicator dynamic used
in this paper allows a degree of analytical tractability that could not be obtained
with a genetic algorithm model. We derive one-period- and two-period-ahead fore-
casts of the model’s endogenous variables and we add to a model a rational agent
who uses this forecast to make portfolio decisions.3 We compare the performance
of generations of rational agents to the performance of generations of boundedly
rational agents in terms of their average utilities.

A number of recent papers that examine the statistical learning models have
compared the performance of rational and boundedly rational agents in terms of
their forecasting errors [Marcet and Nicollini (1999), Bullard and Duffy (2001),
and Hommes and Sorger (1998)]. The objective is to make a tighter link between
models of bounded rationality and rational expectations models, and to provide
restrictions on the type of boundedly rational models that can be useful in economic
modeling.
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This paper follows the same line of research in an attempt to assess the per-
formance of a model of bounded rationality. However, given that this is a model
of bounded rationality with heterogeneous beliefs, in which agents do not make
forecasts of the next period’s prices, the same methodology that is based on the
comparison of the forecasting errors cannot be used in this setup. Instead, the
comparison is based on the utilities that the two types of agents receive. The re-
sults show that the best within-a-generation boundedly rational agent performs
better than the rational agent. In addition, although the rational agent performs
better than the average and the median boundedly rational agent, the differences
in performance are relatively small.

The paper proceeds as follows: A description of the economic model is given
in Section 2. Updating of agents’ rules is described in Section 3. Dynamics of
adaptation are examined in Section 4. Derivation of one-period- and two-period-
ahead forecasts is provided in Section 5. That section also contains the comparison
of the performance of the two types of agents. Finally, concluding remarks are
presented in Section 6.

2. DESCRIPTION OF THE MODEL

The model is a version of the Karaken and Wallace (1981) two-country, overlap-
ping generations economy. It is a pure endowment economy with fiat money. At
each datet, t ≥ 1, there are bornN young people, in each country, said to be of
generationt . They are young at periodt and old at periodt + 1. Each agent of
generationt is endowed withw1 units of a single consumption good at timet , and
w2 of the good at timet + 1 and consumesct (t) of the consumption good when
young andct (t + 1) of the good when old. Agents in both countries have common
preferences given by

ut [ct (t), ct (t + 1)] = ln ct (t)+ ln ct (t + 1).

This is a free-trade, flexible-exchange-rate-regime environment in which agents
in the two countries are permitted to freely borrow from and lend to each other
and to hold each other’s currencies. An agent of generationt solves the following
maximization problem at timet :

max lnct (t)+ ln ct (t + 1)

so that

ct (t) ≤ w1− m1(t)

p1(t)
− m2(t)

p2(t)
,

ct (t + 1) ≤ w2+ m1(t)

p1(t + 1)
+ m2(t)

p2(t + 1)
,

wherem1(t) are the agent’s nominal holdings of currency 1,m2(t) are the agent’s
nominal holdings of currency 2 acquired at timet, p1(t) is the nominal price of
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the good in terms of currency 1 at timet , and p2(t) is the nominal price of the
good in terms of currency 2 at timet . The agent’s savings,s(t), in the first period
of life, are equal to the sum of real holdings of currency 1,m1(t)/p1(t), and real
holdings of currency 2,m2(t)/p2(t).4

The exchange ratee(t)between the two currencies is given bye(t)= p1(t)/p2(t).
Because there is no uncertainty in the model, an equilibrium condition requires
equal rates of return on all assets. Thus, the rates of return on currency 1 and
currency 2,R1(t + 1) andR2(t + 1), respectively, have to be equal to

R(t + 1) = p1(t)

p1(t + 1)
= p2(t)

p2(t + 1)
, t ≥ 1, (1)

whereR(t) is the gross real rate of return betweent andt + 1. Rearranging (1),
we obtain

p1(t + 1)

p2(t + 1)
= p1(t)

p2(t)
, t ≥ 1. (2)

From equation (2), it follows that the exchange rate is constant over time:

e(t + 1) = e(t) = e, t ≥ 1. (3)

An individual’s savingss(t) that are derived from the agent’s maximization
problem are given by

s(t) = m1(t)

p1(t)
+ m2(t)

p2(t)
= 1

2

[
w1− w2 1

R(t)

]
. (4)

The equilibrium condition in the loan market requires that aggregate savings equal
real-world money supply; that is,

S(t) = N

[
w1− w2 p1(t + 1)

p1(t)

]
= H1(t)

p1(t)
+ H2(t)e

p1(t)
, (5)

whereH1(t) is the nominal supply of currency 1 at timet , andH2(t) is the nominal
supply of currency 2 at timet . The supply of each currency is kept constant and
thus the amount of currency 1 is given byH1(t)= H1(0)= H1 for all t , and the
amount of currency 2 is given byH2(t)= H2(0)= H2 for all t .

The exchange-rate indeterminacy proposition [Kareken and Wallace (1981)]
states that if there exists a monetary equilibrium in which both currencies are valued
at some exchange ratee, then there exists a monetary equilibrium at any exchange
ratee∈ (0,∞). Consider an exchange rateê, ê 6= e, and the price sequences{ p̂1(t)}
and{ p̂2(t)}, p̂1(t) 6= p1(t), and p̂2(t) 6= p2(t) for t ≥ 1 such that

p̂1(t) =
(H1+ êH2)p1(t)

H1+ eH2
(6)

and
p̂2(t) = p̂1(t)/ê. (7)
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The price sequences defined in equations (5) and (6) result in the same sequence
of real rates of return as the price sequences{p1(t)} and{p2(t)} and, in turn, in
the same values of individual and aggregate savings. Solving (5) forp̂1(t) and
substituting into (4) gives the following equilibrium condition:

S(t) = H1+ êH2

p̂1(t)
. (8)

Price levelsp̂1(t) and p̂2(t) adjust enough to achieve identical values of savings
in a monetary equilibrium with the exchange rateeand in a monetary equilibrium
with the exchange ratêe. Except for the initially old, who experience different
consumption allocations for different initial nominal price levels, all other genera-
tions face the same consumption allocations in the equilibrium with the exchange
ratee as they do in the equilibrium with the exchange rateê.

The indeterminacy of the exchange rate in this model results from the fact that
there is only one equation for the real-world money demand [equation (5)]. The
equations for the individual real demands for each currency are therefore not well
defined. Note that if there were a restriction that residents of each country could use
only their country’s currencies, real money demands for currency 1 and currency
2 would be well defined and equal to the respective real money supplies of the two
currencies.

For a given exchange ratee, e∈ (0,∞), there is a stationary equilibrium with
constant price levels, constant rates of return on two currencies, and Pareto-optimal,
constant consumption allocations such thatct (t)= c1,∗ = ct (t + 1)= c2,∗.

3. BOUNDEDLY RATIONAL AGENTS

There are two classes of boundedly rational agents in the economy. One class
makes decisions in every odd period, and the other class makes decisions in every
even period. Each class of agents is represented by a population of decision rules.
Thus, at eacht , there are two populations of rules, one that represents young
agents of generationt , and the other that repesents old agents of generationt − 1.
A decision rule of agenti of generationt is given by a string that consists of two real
numbers. The first number is used to determine agenti ’s savings,si (t)∈ [0, w1].
The second number is used to determine agenti ’s portfolio fraction,λi (t)∈ [0, 1].
The portfolio fraction defines the fraction of an individual’s savingssi (t) that are
placed in currency 1. Thus agenti of generationt places the amount ofλi (t)si (t)
into currency 1, and the remaining part given by (1− λi (t))si (t) in currency 2.

Aggregate savings in terms of currency 1 and 2 are used to determine the nominal
price levels,p1(t) and p2(t):

p1(t) = H1

/
N∑
i

λi (t)si (t), (9)

p2(t) = H2

/
N∑
i

(1− λi (t))si (t). (10)
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Given the market-clearing prices,p1(t) and p2(t), and the fractionλi (t), the
nominal holdings of currency 1 and currency 2,m1,t andm2,t , of agenti, i ∈ [1, N],
of generationt are determined:

mi,1(t) = λi (t)si (t)p1(t) (11)

mi,2(t) = (1− λi (t))si (t)p2(t). (12)

In periodt + 1, agents of generationt use all of their money balances to purchase
the consumption good at prices that clear the markets att + 1. Second-period
consumption of agenti is then given by

ci,t (t + 1) = w2+ mi,1(t)

p1(t + 1)
+ mi,2(t)

p2(t + 1)
. (13)

At the end of periodt + 1, agents’ utilities are computed on the basis of their
first- and second-period consumption values. These utilities are used to determine
fitness values of rules that were used by the members of generationt . Thefitness,
µi,t , of a rulei is given by the ex-post value of the utility function of agenti of
generationt :

µi,t = ln ci,t (t)+ ln ci,t (t + 1). (14)

3.1. Updating

At the end of a cycle of two periodst and t + 1, agents update their rules by
imitating rules that have proven to be relatively successful and by occasionally
experimenting with new rules. Prior to adoption of new rules, their performance is
tested using data from periodst andt + 1. If the experimentation takes place, an
agent tests the performance of a new rule using the election operator [Arifovic
(1994)]. Imitation, experimentation, and election are applied in the following
way.

3.1.1. Imitation. Agents of generationt + 2 inherit rules from members of
generationt . Rules that were more successful at the end of periodt + 1 are more
likely to be inherited. Each young agent of generationt + 2 is assigned a copy of
one of the rules of generationt . The probability that a rulei of generationt is
assigned is equal to its relative fitness and is given by

Pri (t + 2) = µi,t

N∑
i=1

µi,t

. (15)

Each rule occupies an interval of a measure equal to its relative fitness in the
interval [0, 1]. A copy of a rule is assigned in the following way: For each new
agent j of generationt + 2, j ∈ [1, N], a random number between 0 and 1,r j , is
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drawn from a uniform distribution. A rulei, i ∈ [1, N], that occupies the range of
values wherer j belongs is determined. Then, a copy of that rule is assigned to
agent j . This copy is denotedCj (t + 2).

These steps are repeatedN times to generate a population ofN copies of the
rules of generationt . The process promotes rules with high fitness values that are,
on average, imitated more frequently.

3.1.2. Experimentation. Next, every agent is given an opportunity to experi-
ment with new rules. An agent experiments with only one of the two parts of the
rule, either savings or portfolio decision. The part of the rule that undergoes ex-
perimentation is randomly determined. Both parts have equal probability of being
selected for experimentation. Once one of the two parts is selected, experimenta-
tion takes place with probabilityπex. In case that experimentation takes place on
a savings part of the rule, a new rule is determined by drawing a random number
from the uniform distribution in the interval [0, w1], and in case that experimenta-
tion takes place on a portfolio fraction part, a new rule is determined by drawing
a random number from the uniform distribution in the interval [0, 1]. Denote a
resulting rule that belongs to agentj, j ∈ [1, N], by Ej (t + 2).

3.1.3. Election operator. Prior to final determination of the population of rules
of generationt + 2, each new ruleEj (t + 2) 6= Cj (t + 2) that was generated via
experimentation is evaluated using the previous period’s rates of return on the
two currencies. Thus apotential fitnessof a new rule is calculated. The value of
potential fitness of a new ruleEj (t + 2) is compared to the fitness value of a copy
Cj (t + 2) that was assigned to agentj . If it is higher than the fitness value of the
copy Cj (t + 2), the new ruleEj (t + 2) replaces the copy of the old rule and is
accepted into the population of rules of generationt + 2. However, if its fitness
value is lower than the fitness of the old ruleCj (t + 2), an agentj keeps the copy
of the old rule and the new ruleEj (t + 2) is discarded.

At t = 1, two populations of rules that will represent two classes of agents are
randomly generated. These populations begin as populations of rules of agents
of generation 0 (initially old) and generation 1 (initially young). The economy is
simulated forTmax periods.

4. DYNAMICS OF ADAPTATION

The dynamics of exchange-rate behavior exhibit persistent volatility with no sign
of settling to a constant value (Figure 1). At the same time, average values of the
first-period consumption and savings remain close to the stationary equilibrium
values (Figure 2). The exhibited dynamics are robust in regard to the changes in the
parameter values. The observed persistence in the simulated data is due to the joint
effects related to the indeterminacy of equilibria and the evolutionary dynamics.
Arifovic (1996) demonstrates that a stationary equilibrium of this model in which
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FIGURE 1. Exchange-rate behavior.

FIGURE 2. Average savings.

both currencies are valued is unstable under the genetic algorithm adaptation. The
same argument can be used for the stochastic replicator dynamic to show the
instability of a stationary equilibrium.

Suppose that the economy has been in a stationary equilibrium int − 1 andt .
All agents make the same savings and portfolio fraction decisions. The nominal
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price levels in terms of the two currencies are constant, and the rates of return on
the two currencies are equal.

At the beginning oft + 1, the updating of decision rules takes place. Imitation
has no effect as all the rules are identical. Experimentation brings in new rules,
different from the equilibrium ones, but whether they become members of the
actual population of rules oft + 1 depends on the election operator. This operator
will admit all those rules whose portfolio fractions decode to numbers different
from the stationary equilibrium ones, but that still have stationary equilibrium
values of savings. They pass the election operator test because their fitness is
evaluated at the previous-period rates of return on two currencies. Because the
economy was in a stationary equilibrium in the previous two periods, the two rates
of return are equal. This is the reason why the new rules with stationary values
of the savings and portfolio fractions different from the stationary ones will have
potential fitness value equal to the fitness value of the old equilibrium rules. From
the standpoint of the election operator, actual fractions placed in each currency do
not matter because the rates of return are equal.

Once the diversity is brought into the populations, the rates of return on the two
currencies will no longer be equal. Further adaptation will favor those decision
rules that place higher fractions of savings into the currency with a higher rate
of return. Consequently, even if the economy reaches a stationary equilibrium by
chance or if it is initialized at a stationary equilibrium, the evolutionary dynamics
will take it away from that stationary equilibrium.

Thus, a stationary equilibrium of this model is evolutionarily stable with respect
to invading new rulesEj (t + 1) whose savings decisionssj (t + 1) 6= s∗, wheres∗

is a stationary value of savings, andλi (t + 1) 6= λ∗, whereλ∗ is a stationary value
of the portfolio fraction. However, it is not evolutionarily stable with respect to
invading rulesEj (t + 1) with sj (t + 1)= s∗ andλ j (t + 1) 6= λ∗.

In general, the out-of-equilibrium heterogeneity of the portfolio fraction values
results in the inequality of the rates of return on two currencies. Agents seek to
exploit this arbitrage opportunity by placing larger fractions of their savings into
the currency that had a higher rate of return in the previous period. If the aggregate
change of the portfolio fraction is large enough, the direction of the inequality is
preserved and the value of the currency with the higher rate of return increases.
On the other hand, if the aggregate change is not large enough, the reversal of
the inequality of the rates of return occurs. The reversal will prompt the agents
to place more savings into the currency whose value was decreasing prior to the
reversal. As a result, the exchange rate changes the direction of movement. These
dynamics bring about the fluctuations in the portfolio fraction and the exchange
rate that persist over time. Intermediate values of the average portfolio fraction
are more likely to be observed than the values closer to 1 or 0. Table 1 reports the
frequency distributions of the average portfolio fraction for three values of the rate
of experimentation. For eachπex, five simulations initialized with different random
seed numbers were conducted. Each simulation lasted for 10,000 periods. The
table shows that the values tend to be more concentrated around the intermediate
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TABLE 1. Frequency distribution of portfolio fraction values

πex

λ values 0.0033 0.033 0.33

0.1 0.0284 0.00 0.00
0.2 0.1067 0.00 0.00
0.3 0.1442 0.03 0.0001
0.4 0.2066 0.11 0.46
0.5 0.1566 0.31 0.4954
0.6 0.2772 0.37 0.0215
0.7 0.0695 0.15 0.00
0.8 0.0078 0.03 0.00
0.9 0.003 0.00 0.00
1.0 0.00 0.00 0.00

values for higher rates of mutation and more dispersed for lower rates of mutation.
Nevertheless, regardless of the rate of experimentation, the most frequent are the
intermediate values in the range between 0.4 and 0.6.

It is worthwhile to point out that, in experiments with human subjects [Arifovic
(1996)] in which the same model was simulated, most of the portfolio fraction
values were concentrated in the interval [0.4, 0.6): 47% in the interval [0.4, 0.5)
and 43% in the interval [0.5, 0.6). In general, the evolutionary dynamics capture
the features of the behavior observed in the experiments with human subjects. This
behavior was characterized by the fluctuations of the exchange rates that did not
settle down over time and by the levels of savings that converged and stayed at the
values close to the stationary equilibrium values.

In general, the qualitative features of the dynamics of the evolutionary algorithm
presented in this paper and of the genetic algorithm are very similar. In the genetic
algorithm application, rules are represented by binary strings that are decoded and
normalized to give real-number values of savings and portfolio fractions. They are
updated using reproduction, crossover, mutation, and election. Reproduction plays
the same role as imitation, while mutation has the same role as experimentation.
However, crossover, the operator that performs recombination of the parts of exist-
ing binary strings has no counterpart in the current setup. Crossover, which plays
an important role in the genetic algorithm adaptation, could be implemented in this
framework as well.5 Thus, the results show that the main dynamics are preserved
under different types of rules’ representation and application of different operators.

5. MODEL WITH A RATIONAL AGENT

Consider now a model in which, in addition to boundedly rational agents, arational
agent is born at eacht . Each rational agent lives for two periods. When young,
a rational agent makes savings and portfolio decisions, and at the end of the old
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age, her utility is evaluated. Thus, in everyt , there are two rational agents, one of
generationt − 1 and the other of generationt . Rational agents’ decisions do not
affect the outcomes of the economy. Their utilities are calculated using their own
decisions and the relevant rates of return realized in the evolutionary economy as
a result of decisions made by boundedly rational agents.

The performance of a rational agent is compared to the performance of the
boundedly rational agents of the same generation. Utilities of threeclassesof
boundedly rational agents are used for comparison. One is theaverageagent whose
utility is computed as the average of all utilities of agents of a given generation.
The second is themedianagent whose utility is equal to the median in a given
generation. Finally, the third is thebest within-generationagent that received the
highest utility in a given generation.

This analysis is done to define benchmarks that can be used to evaluate the
performance of the evolutionary model. If an average boundedly rational agent
does not do much worse (in terms of the received utility) than the rational agent,
then it can be argued that the model can be used as a reasonable model of agents’
adaptation. In addition, in a model with heterogeneous decision rules, there can
be agents who perform better than rational agents.

Consider a rational agent born at the beginning of periodt + 1. She has to
make optimal savings and portfolio fraction decisions,sr (t + 1) andλr (t + 1). The
agent consumescr

t+1(t + 1) andcr
t+1(t + 2), and receives utilityur

t+1 at the end of
periodt + 2.6 To simplify the analysis, we assume the endowment patternw1> 0
andw2= 0. For this endowment pattern (and previously defined preferences), the
optimal savings decision,̂s(t), is always equal tow1/2 regardless of the rate of
return. With this simplification, we only need to derive the rational agent’s optimal
portfolio decision. This decision is based on one-period-ahead forecast of the rates
of return on two currencies and two-period-ahead forecast of the average portfolio
fraction.

5.1. Derivation of Forecasts

5.1.1. Forecast of average savings at t+ 1 . We first derive an expression for
se(t + 1), the expected value of savings att + 1. Savings att + 1 are determined
by applying imitation, experimentation, and election on the population of rules
of generationt − 1. Consider first the impact of imitation. Denote bysm,e(t + 1)
the expected value of the outcome of imitation att + 1. It is given as a weighted
average of the individual values of savings att − 1, where weights are given as
relative fitness values:

sm,e(t + 1) =
N∑

i=1

Pri (t + 1)si (t − 1) (16)

where Pri (t + 1) is relative fitness of a rulei given byµi,t−1/
∑N

i=1µi,t−1. As noted
in the description of the algorithm, the savings part of a decision rule is selected for
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experimentation with probability 0.5. Thus, on average, for half of the population
of savings decision rules, the updating is completed with the application of the
imitation operator. The expected value of this fraction of savings decisions is thus
equal tosm,e(t + 1).

The other half of savings decision rules are selected for further modification
using experimentation and election.7 Denote bysp,e(t + 1) the expected value of
savings decisions that result from the application of these two operators. This
expected value consists of three parts.

The first part,
∏s

1(t + 1),8 refers to those savings decisions that do not undergo
experimentation. Their expected value is equal tosm,e(t + 1). And their contri-
bution to the value ofsp,e(t + 1) is weighed by (1−πex), the probability that
experimentation does not take place. Thus,

∏s
1(t + 1) is given by∏s

1(t + 1) = (1− πex)sm,e(t + 1). (17)

Experimentation takes place with probabilityπex and is implemented by drawing
a random number in the interval [0, w1] from the uniform distribution. However,
not all newly generated values pass the election operator test. The second part,∏s

2(t + 1), is related to the expected value of those newly generated savings deci-
sions that pass the election operator test.

Let us define therange of admissible values of savings, that is, those values that
pass the election operator test. This range is defined by the value ofsm,e(t + 1)
and optimal savings,̂s(t). Let1ŝm(t + 1) denote the absolute value of a difference
between̂s andsm,e(t + 1):

1ŝm(t + 1) = |ŝ− sm,e(t + 1)|.

Then, the range of admissible values is given by [ŝ−1ŝm(t + 1), ŝ+1ŝm(t + 1)].
Any value of savings in this range will result in a higher fitness value than the
savings decisions with the expected value ofsm,e(t + 1). The expected value of
this admissible range is equal to

ŝ+1ŝm(t + 1)+ ŝ−1ŝm(t + 1)

2
= ŝ. (18)

Since these values are drawn from the uniform distribution, in the interval [0, w1],
the probability that a value is in this admissible range is equal to

21ŝm(t + 1)

w1
. (19)

Overall, the expected value of
∏s

2(t + 1) is equal to

∏s
2 = πex

21ŝm(t + 1)

w1
ŝ= πex1ŝm(t + 1). (20)
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Finally,
∏s

3(t + 1) defines the contribution of unsuccessful experimentations.
Savings decisions that will not pass the election operator are those that fall out-
side the range of admissible values. Thus, these are the values in the range
[w1− (ŝ+1ŝm(t + 1)], and in the range [0+ (ŝ−1ŝm(t + 1))]. The probabil-
ity that these values with lower fitness values are drawn via experimentation is

w1− (ŝ+1ŝm(t + 1))

w1
+ 0+ (ŝ−1ŝm(t + 1))

w1
= 1− 21ŝm(t + 1)

w1
. (21)

Thus, the value of
∏s

3(t + 1) is given by multiplying this probability by the prob-
ability of experimentation,πex, and the valuesm,e(t + 1) since the old value of
savings is kept in case of an unsuccessful experimentation:∏s

3(t + 1) = πex

[
1− 21ŝm(t + 1)

w1

]
sm,e(t + 1). (22)

The value ofsp,e(t + 1) is the sum of
∏s

1(t + 1),
∏s

2(t + 1), and
∏s

3(t + 1) and
is equal to

sp,e(t + 1) = (1− πex)s
m,e(t + 1)+ πex

21ŝm(t + 1)

w1
ŝ

+πex

[
1− 2

w1
1ŝm(t + 1)

]
sm,e(t + 1). (23)

Finally, since a savings decision is selected for experimentation (and election) with
probability 1/2, the expected value of savingsse(t + 1) is the weighted average of
sm,e(t + 1) andsp,e(t + 1):

se(t + 1) = 1

2
sm,e(t + 1)+ 1

2
sp,e(t + 1). (24)

5.1.2. Forecast of average portfolio fraction at t+1 . Next, we derive the ex-
pected value of the portfolio fraction att + 1, λe(t + 1). Steps used in this deriva-
tion are similar to those used for derivingse(t + 1). We have to consider the impact
of imitation, experimentation, and election on the portfolio fraction decisions of
the rules of generation (t − 1).

First, we determine the expected value of a portfolio fraction that is the outcome
of the process of imitation,λm,e(t + 1). It is given by

λm,e(t + 1) =
N∑

i=1

Pri (t + 1)λi (t − 1). (25)

The weights, Pri (t + 1)’s, are again equal to relative fitness values. Portfolio de-
cision rules are selected for further modification with probability 0.5. Thus, on
average, half of the rules are selected for the application of experimenation and
election. For the other half, updating is completed with imitation, and their ex-
pected value is given byλm,e(t + 1).
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Again, the expected value of decision rules that are selected for experimentation
and election,λp,e(t + 1), consists of three parts. Since experimentation takes place
with probabilityπex, a fraction (1−πex) of agents keeps the portfolio decisions
that resulted from imitation. The expected value of these fractions isλm,e(t + 1).
The first part,

∏λ
1(t + 1),9 represents a contribution by these values of portfolio

decisions, and is given by∏λ
1(t + 1) = (1− πex)λ

m,e(t + 1). (26)

The second and the third parts capture the impact of implementation of experi-
mentation and election. Experimentation takes place with probabilityπex, and if it
takes place, a random number is drawn from the uniform distribution, in the inter-
val [0, 1]. Then, election is implemented and its impact depends on the direction
of inequality between the rates of return on two currencies.

(i) If R1(t)> R2(t), the values ofλ greater thanλm,e(t + 1)will pass the election
operator test because they will result in higher fitness values (more savings is placed
in the currency with higher rate of return). Thus, the admissible range of values is
[λm,e(t + 1), 1]. The probability that the values greater thanλm,e(t + 1) are drawn
is given by (1− λm,e(t + 1)), and the expected value of the admissible range is
equal to (1+ λm,e(t + 1))/2. The value of the second part,

∏λ,1
2 (t + 1),10 is given

by ∏λ,1
2 (t + 1) = πex(1− λ̄m,e

(t + 1))
(1+ λ̄m,e

(t + 1))

2
. (27)

The third part captures the contribution of decision rules that keep the old values
of λ’s because experimentation results in values that do not pass the election
operator test. The probability of drawing numbers less thanλm,e(t + 1) from the
uniform distribution is equal toλm,e(t + 1). The old value, the result of imitation,
is kept instead and this expected value is equal toλm,e(t + 1). Thus, the value of
the third part,

∏λ,1
3 (t + 1), is given as∏λ,1

3 (t + 1) = πex(λ
m,e(t + 1))2. (28)

Finally, λp,e(t + 1) is given by the sum of
∏λ,1

1 (t + 1),
∏λ,1

2 (t + 1), and∏λ,1
3 (t + 1):

λp,e(t + 1) = (1− πex)λ̄
m,e
(t + 1)+ πex

(1− (λm,e(t + 1))2)

2

+πex(λ̄
m,e
(t + 1))2. (29)

(ii) On the other hand, ifR1(t)< R2(t), the election operator will admit those
newly generated rules that are smaller, on average, thanλm,e(t + 1). The admissible
range of values is given by [0,λm,e(t + 1)]. The probability that the values from
the admissible range are drawn is equal toλm,e(t + 1), and the expected value of
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the numbers drawn from this interval is equal toλm,e(t + 1)/2. Thus, the expected
value of the second part,

∏λ,2
2 (t + 1),11 is given by

∏λ,2
3 (t + 1) = πexλ

m,e(t + 1)
λm,e(t + 1)

2
. (30)

The third part,
∏λ,2

3 (t + 1), represents the part of the expected value contributed
by those rules that do not pass the election operator test. The probability that these
values are drawn is equal to 1− λm,e(t + 1). The value of

∏λ,2
3 (t + 1) is given

by multiplying this probability by the probability of experimentationπex, and the
valueλm,e(t + 1) since the old portfolio values are kept in case of unsuccessful
experimentation:∏λ,2

3 (t + 1) = [(1− λm,e(t + 1))]πexλ
m,e(t + 1). (31)

Again, the value ofλp,e(t + 1) is given as the sum of
∏λ,2

1 (t + 1),
∏λ,2

2 (t + 1),
and

∏λ,2
3 (t + 1):

λp,e(t + 1) = (1− πex)λ
m,e(t + 1)+ πex

(λm,e(t + 1))2

2

+πex(1− λm,e(t + 1))λm,e(t + 1). (32)

The expected value of the portfolio fraction,λe(t + 1), is then given as the
weighted average ofλm,e(t + 1) andλp,e(t + 1):

λe(t + 1) = 1

2
λm,e(t + 1) + 1

2
λp,e(t + 1). (33)

5.1.3. Forecast of rates of return at t+1 . Based on these forecasts, the expec-
tations of rate of return on currency 1 and on currency 2,Re

1(t + 1) andRe
2(t + 1),

can be derived. The value ofRe
1(t + 1) depends on the average value of the amount

of savings placed in currency 1 at timet, s̄1(t), and the expected value of the
amount placed in currency 1 at timet + 1. The value of̄s1(t), which is known at
the beginning oft + 1, is given as

s̄1(t) = 1

N

N∑
i=1

λi (t)si (t).

To derive the expected savings in currency 1, we need to take into account that,
once imitation takes place, one half of the savings decisions are not modified fur-
ther. However, for these same rules whose savings decisions are not changed, the
portfolio decisions undergo experimentation and election. The expected value of
savings in currency 1 of this fraction of rules is then given bysm,e(t + 1)λp,e(t + 1).
The other half of the rules get their savings decision modified by experimenta-
tion and election. These rules also keep the portfolio fractions that resulted from
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imitation. Putting these two together, the expected value of savings in currency
1 for this fraction of rules is then given bysp,e(t + 1)λm,e(t + 1). From this, it
follows that the expected value of savings in currency 1 att + 1, se

1(t + 1), is
given as

se
1(t + 1) = (1/2)[sm,e(t + 1)λp,e(t + 1)+ sp,e(t + 1)λm,e(t + 1)]. (34)

Thus, the value ofRe
1(t + 1) is given by

Re
1(t + 1) = se

1(t + 1)

s̄1(t)
. (35)

Similarly, the value ofRe
2(t + 1) depends on the average savings placed in

currency 2 at timet, s̄2(t), and on the expected value of savings in currency 2 at
time t + 1. The value of̄s2(t) is given by

s̄2(t) = 1

N

N∑
i=1

(1− λi (t)si (t)) (36)

The value ofse
2(t + 1), derived in the same manner as the expected savings in

currency 1, is given by

se
2(t + 1) = (1/2)[sm,e(t + 1)(1− λp,e(t + 1))+ sp,e(t + 1)(1− λm,e(t + 1))].

(37)

The value ofRe
2(t + 1) is then computed as the ratio of the two values:

Re
2(t + 1) = se

2(t + 1)

s̄2(t)
. (38)

5.1.4. Forecast of average portfolio fraction at t+ 2. With the expected values
of rates of return on two currencies, the first stage of the process, that is, derivation
of expected values of variables at the end oft + 1, is completed. However, a rational
agent also needs to compute the expected value of average portfolio fraction at
t + 2, λe(t + 2) because she will set her timet + 1 portfolio decision equal to this
value. Thus, the second stage involves derivation ofλe(t + 2). The steps are similar
to those implemented in derivation ofλe(t + 1). Using the expected values of the
rates of return att + 1, expected fitness values of members of generationt can be
computed. Based on these expected fitness values, the probabilities of imitation
are computed and used in calculation of the value ofλp,e(t + 2).

https://doi.org/10.1017/S1365100501019046 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501019046


220 JASMINA ARIFOVIC

Again, we first have to determine the expected value of a portfolio fraction that
results from imitation,λm,e(t + 1):

λm,e(t + 2) =
N∑

i=1

Pri (t + 2)λi (t). (39)

Next, we derive the value ofλp,e(t + 2) that is the expected value of an out-
come of experimentation and election. As before, the value consists of three parts,
explained earlier in detail. In addition, the outcome depends on the direction of
inequalities of the expected rates of return att + 1, Re

1(t + 1) andRe
2(t + 1).

(i) If Re
1(t + 1)> Re

2(t + 1) then the expectation of the average portfolio fraction
at t + 2 will be given by

λp,e(t + 2) = πex(1− λm,e(t + 2))
(1 + λm,e(t + 2))

2

+πexλ
m,e(t + 2)λm,e(t + 2) + (1− πex)λ

m,e(t + 2). (40)

(ii) On the other hand, ifRe
1(t + 1)< Re

2(t + 1), then the expectation of the
average portfolio fraction att + 1 will be given by

λp,e(t + 2) = πexλ
m,e(t + 2)

λm,e(t + 2)

2
+ πex(1− λ̄m,e

(t + 2))λm,e(t + 2)

+ (1− πex)λ
m,e(t + 2). (41)

Note that all of the equations for deriving the value ofλe(t + 2) are equivalent
to those used for deriving the values ofλe(t + 1) except that the time counter is
increased by one. So, finally, the value ofλe(t + 2) is given as:

λe(t + 2) = 1

2
λp,e(t + 2)+ 1

2
λm,e(t + 2). (42)

Givenλe(t + 2), the rational agent makes a decision at the beginning of time
t + 1 to save the amount̂s and to commit a fractionλe(t + 2) of the savings to
currency 1 and a fraction (1−λe(t + 2)) to currency 2. The utility of rational agent
of generationt + 1 is evaluated at the end of periodt + 2. This can be justified by
the atomistic assumption that rational agents do not make up a significant fraction
of the economy. In the current setup, decisions made by rational agents do not affect
market-clearing prices. If rational agents’ decisions had had an impact on prices,
forecasts would have had to have taken that into account. Since this complicates
the derivation of the forecasts further, we focus our attention to the simpler case.

5.2. Performance of Rational and Boundedly Rational Agents

The performance of rational and boundedly rational agents is measured in terms
of the utility earned at the end of every two-period cycle. The utility of the rational
agent is compared to the average utility of the population, to the median utility,
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and to the highest utility in the population of boundedly rational agents of the same
generation.

Letda
t = ur

t−ua
t denote the difference in the utility between the rational agent,ur

t ,
and an average utility,ua

t , of boundedly rational agents of generationt, received at
the end oft + 1. Thus, if the value of this variable is positive, the rational agent did
better than the average-performing boundedly rational agent. If it is less than zero,
the rational agent did worse than the average-performing boundedly rational agent.
Let d̄a be the average overTmax periods. Similarly, letdm

t denote the difference
between the utility of the rational agent and a median utility of boundedly rational
agents of generationt, received at the end oft + 1. The average overTmax periods
is denoted byd̄m.

Finally, letdb
t denote the difference in utility between the rational agent and the

best-performing boundedly rational agent of generationt. It is given bydb
t = ur

t −
ub

t , whereub
t is the utility received by the best-performing boundedly rational agent

at the end oft + 1, that is, the agent that received the highest utility in the entire
generation. Let̄db be the average overTmax periods.

Calculations of the previously described measures were performed for sim-
ulations with three different rates of experimentation, 0.0033, 0.033, and 0.33.
Reported results are based on five simulations for each rate of experimentation.
Each simulation was conducted for 10,000 periods. The results show that, overall,
the difference between utilities earned by rational and boundedly rational agents is
small. It is greater for larger rates of mutation, indicating that boundedly rational
agents do worse if they experiment more. At the same time, on average, the best-
performing boundedly rational agents always do better than the rational agents.
The difference is the same for the rates of experimentation of 0.033 and 0.33. It is
smaller for the really low rateof mutation of 0.003. These results are presented in
Table 2.

The overall percentile ranking of the rational agent for the same rates of ex-
perimentation are presented in Table 3. For the given rate of experimentation, the
frequencies are computed by ranking utilities of the rational andN boundedly ra-
tional agents from the lowest to the highest at the end of eacht for Tmax periods
in five simulations. Clearly, the ranking of the rational agent worsens with the in-
creases in the rate of experimentation. Thus, higher rates of experimentation hurt
both the rational agent and the average boundedly rational agent in terms of the

TABLE 2. Differences in utilities between rational
and boundedly rational agents

ln ct (t)+ ln ct (t + 1)

πex d̄a d̄m d̄b

0.0033 0.01 0.01 −0.004
0.033 0.028 0.01 −0.02
0.33 0.09 0.04 −0.024
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TABLE 3. Percentile ranking of rational agent

πex

Percentile 0.0033 0.033 0.33

10 0.01 0.00 0.00
20 0.01 0.00 0.00
30 0.02 0.02 0.00
40 0.03 0.05 0.00
50 0.02 0.09 0.01
60 0.03 0.12 0.01
70 0.05 0.14 0.09
80 0.04 0.14 0.33
90 0.06 0.13 0.36

100 0.75 0.26 0.20

utilities earned. However, for higher rates of experimenation, larger fractions of
boundedly rational agents perform better than the rational agent.

6. CONCLUDING REMARKS

This paper examined the behavior of the exchange rate in the model with boundedly
rational agents who update their savings and portfolio decisions using a version
of the stochastic replicator dynamic, an evolutionary algorithm based on imita-
tion and experimentation. While the savings decisions settle to the values in the
neighborhood of the steady state, the portfolio fraction values do not settle toward
the constant, steady-state values. The fluctuations of portfolio fraction values re-
sult in persistent exchange-rate fluctuations. This behavior is similar to the actual
exchange-rate time series. In addition, the evolutionary dynamics capture the fea-
tures of the behavior observed in the experiments with human subjects, mainly, per-
sistent fluctuations of the exchange rate and levels of savings that converge and stay
at the values close to the stationary equilibrium values. Moreover, there is similarity
in the frequency distributions of portfolio fraction values. Intermediate values have
the highest frequency in both simulated data and experiments with human subjects.

In the second part of the paper, a rational agent is added to the economy. The
comparison of the long-run performance of the rational and boundedly rational
agents shows little difference in terms of the average utilities earned over time.
Moreover, as populations of boundedly rational agents remain heterogeneous in
terms of their portfolio decisions, there are always boundedly rational agents who
receive utilities that are higher than those received by rational agents.

Thus, as the analysis shows, boundedly rational agents do not do much worse
than rational agents. In addition, the fact that best-performing boundedly rational
agents perform better than rational agents might give some incentive for agents to
follow the evolutionary rules in their decisionmaking. These results can be used
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to argue that the model of bounded rationality can be used as a reasonable model
of agents’ adaptation.

A critisicm of the models of bounded rationality has been that, because agents’
behavior depends on the specific way in which their beliefs are modeled, these
models can produce so many different outcomes that they become useless as in-
struments for generating predictions. Developing criteria for evaluating the models
of bounded rationality in macroeconomics addresses this criticism. Thus, it rep-
resents an important part of research in this area. Overall, the evolutionary model
of the exchange-rate behavior meets five criteria important for the evaluation of
models of bounded rationality. First, it captures the persistence in the exchange-
rate volatility observed in actual exchange-rate time series, but not explained by
rational expectations models of the exchange rate. Second, it does well when com-
pared to the evidence from the experiments with human subjects. Third, the model
is robust to changes in the representation of decision rules and the way in which
the evolutionary adaptation is implemented. Finally, given that performance of
boundedly rational agents is comparable to the performance of rational agents, it
does well when evaluated using this criterion as well.

NOTES

1. A number of recent papers have demonstrated that the introduction of learning behavior may
generate endogenous fluctuations: e.g., Bullard (1994), Timmerman (1996), Arthur et al. (1997), Brock
and Hommes (1998), and Hommes and Sorger (1998).

2. The argument that results of models with boundedly rational agents are highly sensitive to
changes in parameter values has often been used as a criticism of this type of research.

3. In each period, a rational agent who lives for two periods is born and her utility is evaluated at
the end of the second period of life.

4. This is an environment with perfect currency substitution. It is convenient for studies of the
issues related to international capital flows. The way to think about these agents is that they are traders
in the international capital markets. The model can be extended to include three types of agents, where
type 1 is restricted to using currency 1, type 2 is restricted to using currency 2, and type 3 can hold
either currency. It is these type-3 agents on which we concentrate.

5. See Michalewicz (1996) for details on how to use crossover with real numbers. The crossover
was not implemented for the reasons of analytical tractability; i.e., its implementation would have
prevented the derivation of the forecasts that are used by the rational agent.

6. At the begining oft + 1, the values of endogenous variables are not yet known.
7. This just implies that a random number that determines whether or not experimentation is

performed will be drawn. Thus, it does not guarantee that the experimentation will actually take place.
8. Superscripts denotes the parts of the expected value ofsp,e(t + 1).
9. Superscriptλ denotes the parts ofλp,e(t + 1).
10. Superscript 1 refers to case 1 ofR1(t)> R2(t).
11. Superscript 2 denotes case 2 ofR1(t)< R2(t).
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