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Information Spillovers: Another Look at Experimental
Estimates of Legislator Responsiveness
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Abstract

A field experiment carried out by Butler and Nickerson (Butler, D. M., and Nickerson, D. W.
(2011). Can learning constituency opinion affect how legislators vote? Results from a field
experiment. Quarterly Journal of Political Science 6, 55–83) shows that New Mexico legislators
changed their voting decisions upon receiving reports of their constituents’ preferences. The
analysis of the experiment did not account for the possibility that legislators may share
information, potentially resulting in spillover effects. Working within the analytic framework
proposed by Bowers et al. (2013), I find evidence of spillovers, and present estimates of direct
and indirect treatment effects. The total causal effect of the experimental intervention appears
to be twice as large as reported originally.
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INTRODUCTION

Butler and Nickerson (2011) report the results of an innovative field experiment
testing the responsiveness of legislators to public opinion in New Mexico. Most
previous studies of responsiveness note a positive correlation between public
opinion and legislators’ choices, which may be due to electoral concerns, the
similarity of preferences, or public responsiveness to elite opinion, among many
other possible explanations. Butler and Nickerson isolate a single causal channel—
the effect of learning public opinion on legislators’ voting decisions—by randomly
providing some legislators with survey measures of their constituents’ preferences.
The headline finding from their study is that representatives change their voting
behavior upon acquiring novel public opinion information.

The estimates of responsiveness recovered by Butler and Nickerson (2011) rely
on an assumption of non-interference (Cox 1958; Rubin 1980): Legislators respond
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only to their own treatment status and not to the treatment status of others.
This assumption requires that legislators not share treatment information with
one another, which is at odds with the observation by Kingdon (1973, p. 6)
that legislatures are information-sharing networks. As such, a straightforward
comparison of treatment and control groups may not recover the estimand of
interest.

The standard estimand is the average effect of public opinion information
on an individual legislator’s voting behavior. Consider two possible treatment
assignments—one in which zero legislators are treated, and another in which exactly
one is treated. The difference in behavior for the treated legislator across the two
treatment assignments is her individual treatment effect. The average of all such
individual treatment effects is the standard average treatment effect (ATE). Now
consider two other possible treatment assignments—one in which all legislators
are treated, and another in which exactly one is untreated. Again, the difference
in behavior for the untreated legislator is an individual treatment effect. Under
the non-interference assumption, this individual treatment effect is the same as the
one described in the first scenario. If, however, information travels from the treated
legislators to the single untreated legislator, then this individual treatment effect and
the resulting ATE may be different.

Finally, consider the random assignment that did occur: 35 of 70 legislators
were sent information. The difference-in-means is an estimate of an ATE. Under
the non-interference assumption, it is an estimate of the ATE that would obtain
regardless of the total number of legislators treated. If this assumption does not hold,
however, it is unclear which ATE is being estimated.1 Strictly speaking, the original
analysis estimated the average effect of being treated versus untreated while half the
legislature is treated. Nevertheless, much can still be learned from the random
assignment of information to legislators. The social and political relationships
linking treated legislators to their colleagues dictate the extent to which information
sharing occurs. The random assignment therefore governs the level of information
to which each legislator is exposed, providing a basis for inference for both direct
and indirect effects.

EXPERIMENTAL CONTEXT

The experiment was carried out during a special session of the New Mexico state
legislature in 2008. The state had projected a budget surplus, and the Senate Bill
24 (SB24) proposed to return the surplus to taxpayers in the form of a rebate.
The bill was understandably popular among New Mexicans, but the source of the
surplus, oil revenues, had shrunk considerably due to dropping oil and gas prices.

1See Hudgens and Halloran (2008) and Sobel (2006) for fuller discussions of causal estimands under
interference.
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This circumstance put a wedge between constituents favoring a tax rebate and those
more concerned with the fiscal impacts of the decline in oil revenues. Butler and
Nickerson (2011) shared survey estimates of support for the rebate with 35 of the
70 state representatives using matched-pair randomization. Treated legislators were
mailed letters containing district-specific information: Some legislators found out
that their districts had high levels of support for the rebate, while others found out
that the districts had low levels of support.

Statewide, SB24 was a relatively popular measure, and in the absence of additional
information, legislators may have assumed that the bill was popular in their own
home districts as well. Butler and Nickerson suspected that legislators would expect
high levels of support for the rebate and would be surprised by low levels. Therefore,
there is a class of legislators for whom they expected to see no effect of the
information treatment on vote choice: those whose districts do in fact support
the popular bill. Legislators whose districts have low levels of support are the ones
whose voting behavior might change as a result of treatment. The average effect
of treatment among all legislators was negative but statistically insignificant. The
average effect of treatment among legislators from districts with low support for
spending was negative, statistically significant, and constitutes the major finding, as
it provides support for the idea that those legislators who gained “counterintuitive”
information from the public opinion data were the ones whose vote choice was
affected.

In order to reanalyze the experimental results in a framework that allows for
spillovers, we must have a sense of how the legislature is organized. Squire (2007)
notes the low level of professionalization in the New Mexico state legislature: If any
sharing of treatment information did occur, it probably took place via the personal
relationships between individual legislators. Below, I will assume the closeness of
those relationships determines the level of information shared.

METHOD

In this section, I describe the measures used to estimate the strength of the personal
connections between legislators and the hypothesis-testing framework for assessing
treatment effects.

Modeling Information Spillovers

The random assignment of public opinion information to legislators introduced 35
treatments into the information sharing network of the New Mexico legislature.
In order to estimate their impact, we need a function that maps each random
assignment onto a set of potential outcomes. The most flexible mapping would
associate each of the 235 = 3.4 × 1010 possible random assignments with a unique
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potential outcome for each legislator. 2 The most parsimonious function (that still
serves a scientific purpose) would map each of the 30 trillion random assignments
onto just two potential outcomes for each unit—a treated and an untreated potential
outcome, ignoring the assignment of the other units entirely.3 The approach taken
here is a middle ground between these extremes. The potential outcome revealed
by legislator i is a function of his or her own treatment assignment zi as well
as a weighted average of all the other legislators’ treatment assignments. The
weights given to the other legislators’ treatment assignments are determined by
an information network model, the choice of which must be theoretically driven.

This model of potential outcomes has intuitive appeal: Legislators are indirectly
exposed to more or less information, depending on which other legislators are
assigned to direct treatment. As more of a legislator’s close colleagues are treated,
the legislator will receive “more” spillovers. The problem is now computationally
tractable because the high-dimensional potential outcome space has been reduced
to just two dimensions — direct and indirect exposure to treatment.4

The investigation of indirect effects requires a model of the pathways along which
spillovers can occur. The model developed here5 is based on the ideological similarity
of legislators. Estimates of legislator ideology are drawn from an analysis of roll call
votes using the nominate package in R (Poole et al., 2011). The voting data are
based on 17 key votes (as chosen by Vote Smart (2008)) from the regular legislative
session directly preceding the 2008 special session. Focusing only on the first
dimension, each legislator is assigned a W-NOMINATE ideology score between –1
and 1. In order to then calculate the similarity between any two legislators i and j,
the following formula was employed:

Similarityi,j = 2 − |Ideoi − Ideoj|
2

(1)

For ideology values between −1 and 1, Equation (1) varies between 0 and 1.
The n × n matrix of similarity scores is denoted �. Legislators are “exposed” to
treatment via every treated colleague in the chamber, but exposure is higher if the
treated colleagues are more similar. The formula for the raw level of exposure is
given in Equation (2), where zj is the treatment assignment of legislator j,

Raw Exposurei =
n∑

j=1

Similarityi,j × zj, j �= i (2)

Legislator i’s Raw Exposure is the weighted average of the other legislators’ treat-
ment assignments, where the weights are the similarity scores between legislator i

2Recall that Butler and Nickerson (2011) employed matched-pair random assignment in order to reduce
the variability of their estimates.
3See Manski (2013) for a discussion of mapping random assignments to potential outcomes.
4For a discussion of reducing spillovers to a scalar quantity, see Hong and Raudenbush (2006, p. 902).
5Please consult the online appendix for an analysis based on the geographic adjacency of legislative
districts as well as alternative parameterizations of ideological closeness.
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and colleagues. However, two complications are introduced by this specification
of spillovers. First, legislators have different probabilities of experiencing a given
level of exposure. Legislators whose set of similarity scores are higher than
average are more likely to experience spillovers. Left uncorrected, this would
mean that the exposure variable would be correlated with ideology and associated
unobservable characteristics. Second, Raw Exposure is mechanically correlated with
direct treatment: when legislator i is treated, only 34 of the remaining 69 legislators
can be treated, resulting in a lower level of raw exposure.

Accounting for expected exposure addresses both complications. Expected
exposure is calculated by simulating what exposure would have been under a large
set possible randomizations,6 indexed by k for randomizations in which legislator i
is in treatment and by l when i is in control:

Expected Exposurei,zi=1 =
∑K

k=1

∑n
j=1 Similarityi,j × zj,k

K
, j �= i, zi,k = 0 (3)

Expected Exposurei,zi=0 =
∑L

l=1

∑n
j=1 Similarityi,j × zj,l

L
, j �= i, zi,l = 1 (4)

The variable of interest, then, is not the raw level of exposure, but the difference
between the raw level and the expected level, which we will call Net Exposure. This
variable is no longer related to network position or direct treatment assignment,

Net Exposurei =
{

Raw Exposurei − Expected Exposurei,Zi=1, if Zi = 1

Raw Exposurei − Expected Exposurei,Zi=0, if Zi = 0
(5)

Finally, in order to ease the interpretation of the Net Exposure variable, it
is standardized by the z-score transformation. The coefficients on the indirect
treatment variable can be interpreted as the change in probability of voting yea
due to a 1 standard deviation increase in net exposure.

To summarize the model of spillovers introduced here: Beginning with a similarity
matrix � and a random assignment z, we calculate a set of raw exposures according
to Equation (2). We then subtract off the expected level of exposure for each unit,
by treatment condition, according to Equations (3) and (4). Finally, we standardize
the resulting variable. Collectively, these operations are denoted as g(�z).

Hypothesis Testing

Building on the work of Rosenbaum (2002, 2007), Hodges and Lehmann (1963),
and Fisher (1935), Bowers et al. (2013) offer a framework for evaluating hypotheses
given a causal model. Other analytic frameworks for spillovers such as the one
proposed by Aronow and Samii (2013) based on inverse probability weighting
could be used, although the estimation of assignment probabilities would be a

6All simulations followed the block-randomized procedure used to generate the actual randomization
that Butler and Nickerson (2011) carried out.
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computational challenge due to the assumed spillover structure. The approach
advocated by Bowers et al. (2013) has the intuitive appeal of associating a p-value
with sets of hypothesized parameter values. Confidence regions are constructed by
observing the parameter sets associated with p-values exceeding some α-level.

A causal model is a functionH(yi,z, w, θ ) = yi,w that translates outcomes observed
under treatment assignment vector z to outcomes that would be observed under
treatment assignment vector w. The parameter vector θ is the collection of causal
effects of treatment. By comparing observed data with the data that would be
generated by the model, we can calculate p-values associated with hypothesized
values of θ . The most common hypothesis, the sharp null hypothesis, is that the
values of θ are equal to zero for all legislators. Fisherian significance tests ask,
supposing the sharp null hypothesis of no effect were true, how frequently would
we observe a test statistic (such as the difference-in-means) as large or larger
in magnitude as observed in the experimental data among all possible random
assignments. The same logic can be extended to any sharp hypothesis in which a
constant effect is proposed to hold for all subjects.

In order to associate p-values with any hypothesized values for θ , we must
employ the notion of a “uniformity trial” (Rosenbaum 2007), which is the vector of
outcomes that would have occurred if no treatment had been administered to any
unit, written as y0. The uniformity trial for the spillover model investigated here is
given in Equation (6). Note that this equation is an algebraic manipulation of the
causal model of the form H(yi,z, w, θ ) = yi,w, where β1 and β2 are the parameters
in θ ,

yi,0 = yi,z − β1zi − β2g(�z) (6)

The uniformity trial is calculated by subtracting off the hypothetical direct
and indirect treatment effects, β1 and β2, from the observed outcomes under
treatment assignment z. The function g(·), defined in section “Modeling Information
Spillovers,” translates assignment z and the information network � into a scalar-
valued quantity that captures the amount of spillover received by each unit.

For each simulated random assignment w, treatment effects are added back to the
uniformity trial according to the causal model implicit in Equation (6). Following
advice given in Aronow (2013), I use the sum of squared residuals (SSR) from
an Ordinary Least Squares (OLS) regression of hypothesized outcomes on direct
and indirect treatment vectors as a test statistic. The simulated statistics will be
large relative to the observed statistic when the hypothesized values for β1 and
β2 are improbable. The p-value associated with each hypothesis is the fraction
of simulations in which the observed SSR statistic exceeds the simulated SSR
statistic. Bowers et al. (2013) suggest choosing the pair with the highest p-value as
an approximation to the Hodges–Lehmann point estimate (Hodges and Lehmann
1963), which is the approach taken here.
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RESULTS

This section will present results under two interference assumptions. The first
analysis makes the standard non-interference assumption, i.e., � is a matrix of zeros
and units’ potential outcomes respond only to their own treatment assignments. The
second set of results will assume that information can travel over the ideological
similarity network. A summary table of all results presented below is available in
the online appendix.

Replication of Original Analysis

Panel A in Figure 1 replicates the original analysis (i.e., supposing the indirect
effects are exactly zero) in the hypothesis-testing framework discussed above.
Proposed values for the direct effect of treatment are displayed on the x-axis
and simulated p-values on the y-axis. The points are colored according to their
p-values in order to keep the visual display similar to the 2-parameter plots to come.
The p-value is maximized at –0.16, identical to the difference-in-means estimate.
As the hypothetical values for ATEs diverge from –0.16, the p-values decrease.
A hypothesis of interest is the hypothesis that the true parameter is equal to
zero—the corresponding p is slightly higher than 0.05, indicating that this result
is not statistically significant at conventional levels. The 95% confidence region
extends from −0.34 to 0.02.

Panel B in Figure 1 shows the heterogeneous effects of treatment. Treatment effect
hypotheses in high-support districts are plotted on the x-axis, and hypotheses for
low-support districts are plotted on the y-axis. The p-value associated with each pair
of hypotheses is indicated by the color scale: darker shaded squares indicate higher
p-values. For this and all future plots, the 95% confidence region is the area with
any shading at all. The p-value is maximized at (0.05, −0.37), the treatment effects
in high-support and low-support districts, respectively. As in the original analysis,
the confidence region is bounded away from zero for the low-support districts only.

Ideological Similarity Spillover Model

The results presented in Figure 2 relax the assumption of no indirect effects. Direct
effect (β1) hypotheses are presented on the x-axis and indirect effect (β2) hypotheses
are presented on the y-axis. The highest p-value point is (−0.300, −0.225),
constituting the point estimates of direct and indirect effects. Legislators who
received treatment letters were 30 percentage points less likely to vote for the bill.
Legislators who were exposed to a 1 standard deviation increase in second-hand
exposure were 22.5 percentage points less likely to vote yea. The 95% confidence
region does not cross zero for either the direct or indirect effect, indicating that these
results are statistically significant. These results provide evidence that legislators
whose close colleagues received treatment were less likely to vote for the bill.
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(a) Constant effects
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(b) Heterogeneous effects
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Figure 1
p-Value Maps for Models Assuming No Spillover

Figure 3 displays the results of a model analogous to the heterogeneous effects
model presented above, but allowing for spillovers over the ideological similarity
network.7 Panel A presents a p-value map in the low-support districts. The highest
p-value point is (−0.550, −0.125). The direct effect estimate in low-support districts
is, as above, highly statistically significant: no hypotheses in which the proposed
value for the direct effect is above zero receive positive probability. The indirect
effect appears to be statistically significant as well—the 95% confidence region
extends up to, but not across, the zero line. In Panel B, the highest p-value point
is (−0.175, −0.300). As in the no spillovers model, the direct effect of treatment
cannot be distinguished from zero in the high-support districts. The indirect effect,
however, is strongly negative and the 95% confidence region is bounded away from
zero. Allowing for the possibility of spillover effects does not alter the finding that
direct treatment effects appear to be stronger among legislators from low-support
districts than from high-support districts.

CONCLUSION

This paper has explored ways in which interference between units could have
occurred in the Butler and Nickerson (2011) experiment. The information network is
not observed directly, so modeling assumptions have to be made. Strongly suggestive

7The causal model in Equation (6) is investigated for high- and low-support districts separately. See the
online appendix for a discussion of generalization of the model that allows for the joint estimation of all
four parameters.
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Hypothesized direct effect
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Figure 2
p-Value Map of Ideological Similarity Spillover Model

evidence of spillover was uncovered using a measure of ideological similarity of
legislators. Exposure to the policy preferences of constituents—either one’s own or
those of colleagues—decreased legislators’ probability of voting for SB24. Using
the difference-in-means estimate, the treatment letters appear to have changed five
and a half votes (35 × −0.16 = −5.6). The similarity network model estimates that
in the absence of treatment, 61 legislators would have voted for the bill, whereas 51
actually did. The estimated total causal effect is therefore 10 votes.

Experimental studies of information treatments are especially prone to non-
interference violations. Within political science, many areas of study are concerned
with the impact of information, including investigations of corruption, persuasion,
and identity. Interference can pose a major challenge for estimation; however, the
specification of theoretically driven spillover models may provide at least a partial
solution. The bottom line for the substantive results of the Butler and Nickerson
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(a) Among low-support districts.
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(b) Among high-support districts.
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Figure 3
p-Value Maps by Level of Support

(2011) experiment has not changed—if anything, the magnitude of the total causal
effect has nearly doubled. Legislators respond to public opinion information,
whether that information comes in the form of letters sent to their offices or in
the form of a colleague sharing news.

SUPPLEMENTARY MATERIAL

To view the supplementary material for this paper, please visit http://dx.doi.org/10.
1017/XPS.2014.9.
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