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The stability of γ2 travelling waves at the surface of a film flow down an inclined
plane is considered experimentally and numerically. These waves are fast, one-humped
and quasi-solitary. They undergo a three-dimensional secondary instability if the flow
rate (or Reynolds number) is sufficiently high. Rugged or scallop wave patterns are
generated by the interplay between a short-wave and a long-wave instability mode.
The short-wave mode arises in the capillary region of the wave, with a mechanism
of capillary origin which is similar to the Rayleigh–Plateau instability, whereas the
long-wave mode deforms the entire wave and is triggered by a Rayleigh–Taylor
instability. Rugged waves are observed at relatively small inclination angles. At larger
angles, the long-wave mode predominates and scallop waves are observed. For a
water film the transition between rugged and scallop waves occurs for an inclination
angle around 12◦.

Key words: interfacial flows (free surface), solitary waves, thin films

1. Introduction
Falling film flows are encountered in many industrial applications and still form

the state-of-the-art technology in several chemical engineering processes because
of their reduced resistance to heat and mass transfer (Alekseenko, Nakoryakov &
Pokusaev 1994). For instance, absorbers and generators are currently designed using
falling liquid films on vertical plates whenever pressure drop in the gas phase is
critical (Fujita 1993; Bo et al. 2010). Optimization of such apparatuses requires
the knowledge and control of the wavy regime of falling liquid films as waves are
well known to intensify the heat and mass transfer both at the wall and at the free
surface (Frisk & Davis 1972; Bakopoulos 1980; Yoshimura, Nosoko & Nagata 1996;
Rastaturin, Demekhin & Kalaidin 2006). Such a regime is characterized by the onset
of a weakly disordered state organized around large-amplitude solitary waves in
interaction. These waves have a tear-drop shape preceded by capillary waves and
are sometimes christened ‘capillary roll waves’ in reference to the large recirculation
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regions that can be found in the main humps of those waves (Balmforth & Liu
2004). The onset of capillary roll waves is pointed out as a possible reason for the
intensification of transfers. Indeed, the recirculation of the fluid in the hump generates
an efficient mixing (Fujita 1993; Yoshimura et al. 1996) which enhances transfers
at the free surface, whereas backflows, induced by adverse gradients of capillary
pressure, occur at the front of the waves and promote the wall-to-fluid transfers
through back and forth sweeping (Dietze, Leefken & Kneer 2008; Dietze, Al-Sibai
& Kneer 2009).

In most cases of interest, solitary waves are three-dimensional (3D) and form either
oblique solitary waves or horseshoe-like structures (Scheid, Ruyer-Quil & Manneville
2006). The transition from the Nusselt uniform film to the wavy 3D irregular state
results from a series of symmetry-breaking and supercritical bifurcations that are
triggered by the inlet noise through convective instabilities (Kalliadasis et al. 2012).
As a consequence, the sequence of instabilities can be monitored by controlling the
inlet signal. Liu & Gollub (1994) and Liu, Schneider & Gollub (1995), followed later
on by Park & Nosoko (2003), have thus analysed the onset of secondary instabilities
of the two-dimensional (2D) primary wave train leading to 3D waves. Depending on
the frequency of the applied forcing at inlet, two families of waves are identified. At
frequencies close to the linear cut-off frequency, slow and roughly sinusoidal waves
are selected. They are nicknamed γ1 waves following the terminology introduced by
Chang, Demekhin & Kopelevitch (1993) and clarified by Scheid et al. (2006). At
lower frequencies, fast solitary waves, or capillary roll waves are found. They are
nicknamed γ2 waves.

Waves that belong to the γ1 family always undergo a secondary instability as
reported in the experiments by Liu et al. (1995) and shown by Scheid et al. (2006)
by means of a thorough Floquet stability analysis. Depending on the values of the
Reynolds number and forcing frequency, the secondary instability is either 2D or
3D. Close to the threshold of primary instability, 2D subharmonic and sideband
instabilities trigger the formation of 2D solitary waves (Cheng & Chang 1995).
Further from the instability threshold, 3D secondary instability modes are followed
by a reorganization into 3D horseshoe-shaped solitary waves. Experimentally, 3D
synchronous patterns are generally observed whereas the stability analysis seems
rather to point to a subharmonic mode. However, the growth rates associated with
these two modes are actually close and the observation of a synchronous instability
may result from the fact that experimental noise contains a larger part of in-phase
modulations than out-of-phase ones.

The stability of γ2 large-amplitude solitary waves have been considered by Liu
et al. (1995) who performed experiments at low inclination angle (β < 7◦) using
water–glycerin mixtures. They observed 2D solitary wavefronts with weak transverse
modulations of spanwise wavelengths much smaller than the periodicity of the primary
waves. Instead, Park & Nosoko (2003) studied the transverse evolution of solitary
waves in a vertically falling water film. The wavelength of the transverse perturbations
was controlled by means of needles in contact with the film free surface. Park and
Nosoko found that solitary waves may be unstable to perturbations of wavelengths
around 2 cm. For Reynolds number Re>40, these modulations distort the whole wave
and evolve into 3D Λ-shaped solitons (Demekhin et al. 2007; Demekhin, Kalaidin &
Selin 2010) in addition to a capillary instability of wavelength of approximately 3 mm
appearing on the 2D deep valleys. These observations were confirmed numerically
by Demekhin & Kalaidin (2007) within the frame of the integral Kapitza–Shkadov
model (Shkadov 1967).
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FIGURE 1. Shadowgraph pictures showing the onset of transverse 3D instabilities of a
2D quasi-solitary wave train in a water film generated by a low-frequency forcing at inlet.
(a) The onset of rugged waves generated by a short-wave instability mode (β= 8.3◦, Re=
60, f = 3.5 Hz, Γ = 5975). (b) Scallop waves promoted by a long-wave instability mode
(β = 17.9◦, Re = 50, f = 4.2 Hz, Γ = 4644). Distances are given with reference to the
inlet.

In this paper, we report an experimental and numerical stability analysis of the
γ2 solitary waves focusing on the effect of the inclination angle on the secondary
instability and the selection of the 3D patterns thus completing the observations by
Park and Nosoko and by Liu et al. The starting point of our study is the discrepancy
between the experimental observations at small and large inclinations which seems
to point out to several different mechanisms for the secondary instability of the 2D
γ2 waves. Figure 1 illustrates two different experiments showing the onset of two
different wave patterns on a water falling film. At small inclination angle (figure 1a),
the wave crests are nearly undeformed and a weak transverse modulation is observed
with a wavelength close to the length of the capillary ripples and is reminiscent
of Liu and Gollub’s observations. These rugged waves exhibit a rough or rugged
capillary region. At large inclination angle (figure 1b), similarly to Park and Nosoko’s
observations, the transverse wavelength is much larger than the typical length of the
capillary bow waves. The 3D modulated waves have a festooned or scalloped shape
and are hereinafter referred to as scallop waves. This calls for a distinction between
a ‘long-wave’ and a ‘short-wave’ instability mode and the study of the transition
between the two.

The paper is organized as follows. Section 2 introduces dimensionless parameters
and recalls the low-dimensional models derived by Ruyer-Quil & Manneville (2000)
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and Scheid et al. (2006), as well as the Floquet analysis of 2D waves that is detailed
in Scheid et al. (2006). Then, an energy budget of the perturbations is introduced with
the aim of identifying the physical mechanisms at work in both long- and short-wave
instability modes. The experimental set-up and the measuring techniques are described
in § 3 and results are presented in § 4. A discussion follows in § 5. Section 6 concludes
the present work.

2. Numerical tools
2.1. Formulation

We consider a liquid film falling down an inclined plane making an angle β with the
horizontal plane. The surrounding gas is assumed to be passive, that is at rest with
a constant and uniform pressure and exerting no shear stresses on the free surface.
Physical properties of the liquid are assumed to be constant. Quantities ρ, µ, ν =
µ/ρ and σ refer to the density, dynamic and kinematic viscosities and surface tension,
respectively. Coordinate x is oriented in the streamwise direction, while y refers to
the cross-stream coordinate, i.e. perpendicular to the plane, and z is the transverse
direction. Accordingly, ex, ey and ez stand for the unit vectors, so that the gravitational
acceleration reads g = g sin βex − g cos βey. Finally, the velocity field is denoted by
u= uex + vey +wez.

Flow conditions are parametrized by three characteristic lengths, the inlet film
thickness h̄N , a viscous-gravity length lν = ν2/3(g sin β)−1/3 and a capillary length
lc = √σ/(ρg sin β), from which the Reynolds Re and Kapitza numbers Γ are
defined as

Re= g sin βh̄3
N

3ν2
= 1

3

(
h̄N

lν

)3

and Γ = σ

ρν4/3(g sin β)1/3
=
(

lc

lν

)2

. (2.1a,b)

The set of dimensionless groups is completed by the inverse slope cotβ which defines
the geometry of the flow. The inlet film thickness is related to the inlet flow rate per
unit span q̄N by the Nusselt flat-film solution

u(y)= g sin β
ν

(
yh̄N − 1

2
y2

)
, (2.2)

which corresponds to the balance of gravity and viscosity. Therefore, the
aforementioned Reynolds number is proportional to the inlet flow rate as Re= q̄N/ν.
Lastly, note that the Kapitza number depends only on the liquid properties and the
inclination of the plane. As a consequence, once the working liquid and geometry
are set, free parameters are reduced to the sole Reynolds number Re.

Governing equations consist of the Navier–Stokes equations augmented with the
free-surface kinematic and shear-free boundary conditions, and the Laplace law (see,
for instance, Heining, Pollak & Aksel 2012). Hereinafter, experimental results are
discussed with respect to the results from a reduced set of equations, or a model, that
has been obtained using the long-wave nature of the instability and after elimination of
the cross-stream coordinate y. Two main reasons support this choice. (i) Reduced sets
of equations enable a comprehensive stability analysis at an affordable computational
cost. (ii) Models give access to the ‘pith and marrow’ of the flow dynamics. In
particular, they offer a convenient framework to identify the origins and physical
mechanisms of the instability modes.
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2.2. WRIBL model and Shkadov’s notation
The starting point of the reduction of the governing set of equations is the introduction
of a film parameter ε, which compares the typical length of the waves to the thickness
of the film. Slow time and space modulations are assumed in the in-plane directions,
which reads ∂t, ∂x, ∂z ∼ ε � 1. Truncation at O(ε2) of the governing equations thus
enables us to eliminate the y-projection of the momentum equation and to eliminate
the pressure field. The resulting equations are analogous to the Prandtl equations in
boundary-layer theory (Schlichting, Gersten & Krause 2004; Kalliadasis et al. 2012),
and the former are usually referred to as the boundary-layer approximation. Assuming
O(ε) deviations from the parabolic velocity profile (2.2) of the flat-film solution, and
averaging the continuity equation and the momentum balance across the film layer
with an appropriately chosen weight thus yields (Ruyer-Quil & Manneville 2000;
Scheid et al. 2006, 2008):

∂th=−∇ · q, (2.3a)

δ∂tq = δ

[
9
7

(
q · ∇h

h2
− q

h
· ∇

)
q− 8

7
∇ · q

h
q
]
+ 5

6
h
(

ex − ζ∇h+∇∇2h− 3
q
h3

)

+ η
[

7
2

h∇ ·
(
∇qT

h

)
+ h∇ ·

(
∇q
h

)
+ 13

4
q · ∇h

h2
∇h+ 3

4
∇h · ∇h

h2
q

− 73
16

(q
h
· ∇

)
∇h− 23

16
∇2h

h
q+ 13

16

(
∇h
h
· ∇q− ∇ · q

h
∇h
)]

. (2.3b)

Equations (2.3) are a set of evolution equations for the film thickness h and the flow
rate q = qex + pez =

∫ h
0 uex + wez dy. The variables h and q can be identified with

the mass and momentum of a fluid column of infinitesimal cross-section. As such,
(2.3a) is the exact mass balance, and (2.3b) is the approximate momentum balance
that governs the evolution of the said liquid column. Throughout (2.3), the notation
of the in-plane Del operator has been unambiguously simplified to the symbol ∇ =
∂xex+ ∂zez. Using Einstein notation where e1,2= ex,z and x1= x and x2= z, the gradient,
divergence and material derivative read ∇q= ∂jqiei⊗ ej, ∇ · (∇q/h)= ∂j

(
∂jqi/h

)
ei and

q · ∇q= qj∂jqiei (Germain 1973).
Because of its analogy with the Kármán–Polhausen approximation in boundary-layer

theory, (2.3) is referred to as the two-equation weighted-residual integral boundary-
layer (WRIBL) model (Oron, Gottlieb & Novbari 2007). Equations (2.3) have been
written using Shkadov’s notation (Shkadov 1977; Scheid et al. 2006), which makes
apparent the separation of scales between the ‘fast’ cross-stream variable y and the
slow ones x and z by introducing a ‘compression factor’ κ = (lc/h̄N)

2/3, which is
adjusted by balancing the body force that sets the fluid into motion, i.e. ρg sinβ, with
the capillary pressure gradient ∝ σ∂xxxh. The length scales in the x and z directions
are thus taken as κ × h̄N , where the inlet film thickness h̄N stands for the length scale
in the cross-stream y direction; accordingly, the timescale is taken as νκ/(gh̄N sin β).

Shkadov’s scales introduce three dimensionless groups. Namely, a reduced Reynolds
number, δ, a reduced slope, ζ , and a ‘viscous dissipation number’, η:

δ ≡ 3Re
κ
, ζ ≡ cot β

κ
and η≡ 1

κ2
=
(

h̄N

lc

)4/3

. (2.4a–c)

The reduced Reynolds number δ combines inertia, viscosity and surface tension into a
single parameter. It measures inertia versus viscous effects at the scale κ h̄N defined by
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the balance of gravity and surface tension. The viscous diffusion parameter has been
recast in (2.4) in terms of the length ratio h̄N/lc and thus compares surface tension
to the streamwise viscous effects, or Trouton viscosity (Ribe 2001). It measures
the efficiency of the damping of short waves by viscous diffusion as compared to
the damping by surface tension. In most cases η is small as the capillary length is
generally much larger than the film thickness, which is a prerequisite to the long-wave
assumption. As a consequence, Trouton viscous effects are often dropped out (η→ 0)
and the set of parameters is reduced to δ and ζ only. Finally, Shkadov’s scales
have the advantage to unfold the physical origin of the different terms appearing in
the averaged momentum balance (2.3b). Thus, inertia effects and viscous-dispersion
effects are associated with δ and η, respectively.

The WRIBL model (2.3) is consistent up to O(ε) for inertial terms and up to O(ε2)
for viscous terms. This inconsistency can be eliminated but at the cost of a more
complex formulation. However, the WRIBL model has been validated through direct
comparisons with the experiments by Alekseenko, Nakoryakov & Pokusaev (1985),
Liu & Gollub (1994) and Liu et al. (1995) in the 2D and 3D flow regimes. To the
best of the authors’ knowledge, this model is the simplest one which satisfactorily
reproduces the wavy dynamics of falling films, capturing the instability onset, the
nonlinear 2D dynamics and its evolution to the fast γ2 waves, as well as the 3D
instability of the slow γ1 waves (Ruyer-Quil & Manneville 2000; Scheid et al. 2006).

2.3. Two-dimensional solitary wave
Fast 2D γ2 travelling-wave solutions to (2.3) are looked after. Such waves are periodic,
spanwise independent (∂z = 0, p = 0) and move at a constant speed and shape. The
system of partial differential equations (2.3) reduces to ordinary differential equations
(o.d.e.s) in the moving frame of reference, ξ = x − c t, where c refers to the phase
speed of the waves. Integration of the mass balance yields q = c h + qmov where
qmov =

∫ h
0 (u− c)dy is the conserved flow rate in the moving frame. After elimination

of the mass flux, one is led to a single o.d.e. which is next recast as an autonomous
dynamical system in a 3D phase space spanned by h, dh/dξ and d2h/dξ 2. The
constant qmov is determined by maintaining the averaged flow rate to its value for the
Nusselt flat-film solution, which reads 〈q〉 = 1/3 where 〈·〉 = L−1

x

∫ Lx

0 (·) dξ and Lx is
the period. This condition enables to relate our computations to the travelling waves
observed in experiments as a response to the periodic excitation at inlet (Scheid et al.
2005).

In practice, we have extensively used the software AUTO-07P (Doedel 2008) and
constructed travelling-wave branches of solutions by continuation starting from Hopf
bifurcations and increasing the period Λ. Period-doubling bifurcations were detected
by duplicating the initial solution and doubling the period. The procedure is detailed
in Scheid et al. (2006) and Kalliadasis et al. (2012). In the case of multiplicity of
solutions for a given frequency c/Λ, we have selected the fastest one, or ‘dominant
wave’, as they systematically supersede slower waves when integration in time is
considered (Shkadov & Sisoev 2004).

2.4. Three-dimensional stability analysis
We consider here the stability of 2D solutions (h0(ξ), q0(ξ) = ch0(ξ) + qmov) with
respect to transverse perturbations. We have performed a standard Floquet analysis of
the wave against spanwise modulations. The procedure is similar to that followed by
Scheid et al. (2006) and is therefore simply sketched below.
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Denoting by X the vector formed by the three unknowns h, p and q, we superpose
to a 2D solution X0(ξ , z, t) a small perturbation εX1(ξ , z, t) where ε � 1. The
perturbation X1 is decomposed into a sum of planar waves

∑
ϕ,kz

Xp(ξ , z, t) with
Xp = (hp, qp, pp) = X̃(ξ) exp{iϕkxξ + ikzz + λ t}. Here X̃ is periodic in ξ with period
Lx, kx = 2π/Lx is the wavenumber of the 2D basic stationary wave, kz is the real
wavenumber of the transverse perturbation, and i refers to the imaginary unit. The
detuning parameter, ϕ, is the ratio of the streamwise wavenumber of the perturbation.
The analysis is therefore not limited to the stability of a single wave but encompasses
every perturbation to an infinite periodic wave train. Substitution into (2.3b) yields a
linear eigenvalue problem, formally written

λX̃=Lϕ,kz (X0; ϕ, kz) X̃, (2.5)

where Lϕ,kz stands for a linear differential operator parametrized by ϕ and kz.
Equation (2.5) is solved numerically with a pseudo-spectral algorithm (see
appendix A). Symmetries, i.e. reflexion in the spanwise direction and conjugation,
enable us to limit the parameter space to ϕ ∈ [0, 1/2] and kz ∈ [0,∞]. However, for
most of the γ2 waves that have been considered, the wavelength is sufficient to limit
the interaction between succeeding solitary-like waves and the most amplified mode
at a given transverse wavenumber kz is not affected by the value of ϕ. The results of
the stability analysis of a single solitary-like wave, that is of a wave confined to a
periodic domain matching its length (ϕ = 0), are close to those corresponding to the
stability of an infinite wave train (ϕ 6= 0), which reduces the range of parameters to
kz ∈ [0,∞[.

2.5. Energy budget
We adapt the energy budget introduced by Spaid & Homsy (1996) and Skotheim,
Thiele & Scheid (2003), who interpreted the growth rate λ as an energy production
rate and defined a quadratic form to compute the different contributions to this
production rate. The linear system (2.5) consists of a linearized kinematic balance

λh̃= ikxϕ(ch̃− q̃)+ ch̃′ − q̃′ − ikzq̃≡L Kin
ϕ,kz

X̃, (2.6)

where the primes refer to the derivatives with respect to ξ , and a linearized momentum
balance, written formally as

λq̃=L Mom
ϕ,kz

(X0; ϕ, kz) X̃, (2.7)

where q̃= (q̃, p̃).
Following Spaid & Homsy (1996), we define the energy of deformation Ed

associated with a planar wave as

Ed = 1
2 〈hp, hp〉 = 1

2 〈h̃, h̃〉e2λr t, (2.8)

where the inner product is defined as 〈X, Y〉 = L−1
x

∫ Lx

0 X Y?dξ , the star referring to
transpose conjugation. The variation of the energy of deformation is given by

dEd

dt
= λr〈hp, hp〉 = 2λrEd, (2.9)

where the growth rate λr is the real part of λ.
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The growth rate can be computed from the linearized kinematic balance (2.6) as

λr = Re
(
〈L Kin

ϕ,kz
X̃, h̃〉

)
/〈h̃, h̃〉. (2.10)

From (2.9), the growth rate λr can thus be identified with a production rate of the
energy of deformation induced by a planar wave, whose contributions would be either
the divergence of the perturbation flux in the direction of the flow, i.e. 〈ikxϕ(ch̃− q̃)+
ch̃′ − q̃′, h̃〉, or in the transverse direction, 〈−ikzq̃, h̃〉.

However, (2.10) provides little access to the origin of the instability and its
mechanisms. We thus rather focus on the linearized momentum balance (2.7) and
write instead

λr = Re
(
〈L Mom

ϕ,kz
X̃, q̃〉

)
/〈q̃, q̃〉 =

∑
λn, (2.11)

which can be identified with the rate of production of the kinetic energy associated
with the considered planar wave

Ek = 1
2
〈qp, qp〉, 2λr = 1

Ek

dEk

dt
, with qp = (qp, pp). (2.12a,b)

Equation (2.11) can thus be interpreted as a kinetic energy budget, whose contributions
λn are listed in appendix B and grouped with respect to their physical origin (inertia,
drag, ‘Trouton’ viscosity, surface tension, hydrostatic pressure) and whether they
emanate from the projections of the linearized momentum balance in the x or z
directions.

3. Experimental set-up
3.1. Description of the set-up

The experimental apparatus is shown in figure 2. It consists in an inclined glass plate
(150 cm× 37 cm) placed on a massive framework mounted on rubber feet to reduce
the influence of environmental vibrations. The inclination angle can be changed in
the range 0–20◦. A gear pump brings the liquid from a collection tank located at
the exit of the plane to an upstream tank from which it emerges and flows down
the plane. This upstream tank is filled with several glass sphere layers in order to
homogenize the entering flow. A temporal forcing of the film is introduced at the
inlet to trigger 2D reproducible solitary waves. An aluminum plate is fixed to the
membrane of two loudspeakers and generates harmonic vibrations above the liquid
surface on the whole width of the upstream tank. Water, water–glycerin and butanol
solutions are used as working fluid. The mass flow rate is measured by weighting
at the exit and the temperature and density of the liquid are controlled during the
experiments. Experimental parameters and their range of variation are specified in
table 1. The wave patterns are visualized by illuminating the liquid film with oblique
white light and by observing from above with a 2D camera to provide shadow images.
The Schlieren method developed by Moisy, Rabaud & Salsac (2009), described in
detail in the next subsection, is used to measure the film thickness.

3.2. Schlieren method
Three-dimensional wavy patterns are characterized by instantaneous measurement
of the film thickness over an area of typical 10 cm × 10 cm extension using a
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150 cm

37 cm

1

2

3

4

5

x

y

z

FIGURE 2. (Colour online) Sketch of the experimental set-up: 1, pump; 2, loudspeakers;
3, aluminium plate; 4, glass plate; 5, collection tank.

Physical parameter Notation Domain of variation

Density ρ 998–1082 kg m−3

Kinematic viscosity ν 1–2.8× 10−6 m2 s−1

Surface tension σ 49–72 mN m−1

Temperature T 18–23 ◦C
Kapitza number Γ 1971–7213
Inclination angle β 5–18◦

Volumetric flow rate Q 0–130 l h−1

Reynolds number R 0–60
Frequency f 3–9 Hz

TABLE 1. Experimental parameters (water, water–glycerine and butanol mixtures).

Schlieren Synthetic method. This method is based on the analysis of a refracted
image of a dot pattern visualized through a liquid/air interface and is applicable
if the surface curvature is weak in order to prevent ray crossings. Under restrictive
conditions (weak slope approximation and weak amplitude approximation), the surface
gradient is proportional to the apparent displacement field seen by a camera located
far from the dot-pattern. A numerical integration based on a least-squares inversion
of the gradient operator is employed for the reconstruction of the surface height
(Moisy et al. 2009). While Moisy et al. (2009) were always in the situation where
a reference state corresponding to a flat interface is easily available, in the falling
film problem we do not have access to the unstable reference state with the same
mean height h0 than the deformed state. Additional measurements are thus required to
obtain absolute values of the thickness. We used a needle mounted on a microscopic
translation stage to measure the absolute maximum amplitude of the waves. The
reconstructed height field is rescaled a posteriori by adjusting the mean thickness h0
such that the maximum calculated by the Schlieren method corresponds to the needle
measurement.

In practice, the dot pattern is located just behind the glass plate. The camera is
placed at a distance H∼ 140 cm from the dot pattern and the typical visualized field
length is L ∼ 10 cm. The maximum paraxial angle is given by θmax = L/(

√
2H) ∼

0.05 ∼ 3◦ which is sufficiently low to assure a negligible paraxial distortion. Within
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the weak slope approximation, the surface gradient ∇h is directly proportional to the
displacement field δr of the dots:

∇h=−
(

1
(1− 1/nl) hp

− 1
H

)
δr, (3.1)

where nl is the refractive index of the liquid and hp is the effective pattern-surface
distance which is related to the film thickness h by the formula:

hp = h+ nl

ng
hg. (3.2)

Here, ng and hg stand for the refractive index and the thickness of the glass plate,
respectively. Under the weak amplitude approximation, h ∼ h0, and (3.1) is simply
linear.

In our experiments, h0 ∼ 0.5 mm and the surface height lies in the range
0.2–0.8 mm. The weak amplitude approximation is not well verified. However,
consequences on the slope calculation remain acceptable since the second term of
(3.2) is much greater than h (nl = 1.33, ng = 1.52 and hg = 5.9 mm). The maximum
slope magnitude calculated from (3.1) is approximately 0.3 providing an error less
than 1 % compared with the nonlinearized case. The weak slope approximation is thus
valid in our configuration. The accuracy of the method applied to our configuration
can be estimated to yield an error of 20 µm. The spatial resolution depends on the
camera resolution, the field size and the dot-pattern characteristics and is estimated
to be around 0.5 mm. The temporal resolution is directly related to the acquisition
rate of the camera, which varies from 100 to 500 Hz.

In addition, a one-point temporal measurement based on a CCI (confocal chromatic
imaging) technique has been performed. The principle of the CCI technique is to focus
a polychromatic point light using a biconvex lens which provides a continuum of
monochromatic images of the point source due to its chromatic aberration. A pinhole
collects the light originating from a reflecting interface placed in the continuum, which
is then analysed by a spectrometer. The location of the interface is then deduced
from a calibration curve. The sensor model used in our experiments (Micro-Epsilon
IFS2403-10) allows for the detection of the air–water interface location with a
precision of 1 µm and a temporal resolution in the range 0.1–10 kHz but does not
directly measure the thickness of the film as the probe cannot detect the water–glass
interface.

4. Results
4.1. Validation of the Schlieren method

Figure 3 displays the wave profiles of 2D travelling waves generated by a periodic
forcing at inlet. After an initial linear growth, the wave amplitude rapidly saturates
and periodic 2D waves emerge with a frequency corresponding to the applied inlet
forcing. Time records shown in figure 3(a) and (b) and obtained using the Schlieren
and CCI techniques are typical of the γ1 and γ2 slow and fast waves that had been
also observed by Liu & Gollub (1994). The γ1 waves are nearly sinusoidal for their
rounded crests and sharp troughs. The γ2 waves displayed in figure 3(b) exhibit a
large-amplitude tear-drop hump preceded by capillary ripples. This separation into
two regions, a hump region and a capillary region, which characterizes γ2 waves, is
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FIGURE 3. (Colour online) (a,b) Validation of the Schlieren method by comparison with
CCI measurements; the distance from inlet is x= 35 cm: (a) γ1 waves, β = 5.2◦, Re= 37,
f = 5.7 Hz, ν = 1.03 × 10−6 m2 s−1, Γ = 7213; (b) γ2 waves, β = 10.2◦, Re = 42, f =
4.1 Hz, ν = 1.00× 10−6 m2 s−1, Γ = 6018. (c) View from above showing the curvature
of solitary wavefronts for a water–glycerine mixture (β = 7.9◦, Re= 35, f = 3.2 Hz, 34 %,
ν = 2.8.10−6 m2 s−1, Γ = 1448).

made possible by the large ratio between the spatial extension of the hump and the
typical length of the capillary ripples. In experiments conducted with water–glycerin
mixtures, well-separated waves, i.e. waves separated by a flat film are generally
observed as shown in figure 3(c) or from Liu and Gollub’s results (Liu & Gollub
1994), because capillary waves are efficiently damped by elongational viscosity. As
the current experiments are mainly performed with water as working fluid, the film
is never flat between two waves and 2D γ2 waves are not strictly solitary as capillary
ripples tend to accumulate between successive humps. Yet, as a convenience, we refer
to them hereinafter as quasi-solitary waves.

Due to the regularity of the 2D travelling-wave trains, the accuracy of the Schlieren
method is estimated by comparisons with respect to the local temporal CCI technique.
The two techniques provide close results when γ1 waves are encountered. Agreement
is somewhat less satisfactory in the case of γ2 waves. However, the minimum and
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FIGURE 4. (Colour online) Comparison between a Schlieren measurement and the 2D
stationary solution obtained by continuation. The experimental parameters are: β = 10.2◦,
Re= 42, f = 4.1 Hz, ν = 1.00× 10−6 m2 s−1, Γ = 6018.

maximum heights as well as the amplitude, spatial distribution and lengths of the
capillary ripples are well captured by the Schlieren method, which gives us confidence
in its accuracy. The observed discrepancy is mainly due to the technical impossibility
of recording temporal signals of the free-surface elevation simultaneously at exactly
the same distance from the side edge of the plane. Indeed, the two signals displayed
in figure 3(b) have been recorded at two different locations spaced 3 cm apart in
the transverse direction. This small shift in the measuring locations can however
be significant as 2D waves have a tendency to present a non-negligible curvature
(Leontidis et al. 2010), as illustrated in figure 3(c). As a result, the capillary region
of γ2 waves is slightly modulated in the transverse direction, which may be sufficient
to explain the slight disagreement between the records shown in figure 3(b). It
should be mentioned, however, that the sidewall effects on the onset of the primary
instability are weak in the range of inclination angles under study (Vlachogiannis
et al. 2010). Furthermore, according to Leontidis et al. (2010), the wave curvature
decreases drastically as the forcing frequency, f , is raised, and to a lesser extent
as the Reynolds number, Re, increases. In the current paper f > 3 Hz and Re > 35
leading to relatively small final curvatures. In all of the experiments the 2D basic
state consists in a fully developed 2D solitary waves moving with a constant phase
speed and 3D patterns are triggered in the centre part of the channel where the fronts
are slightly curved as shown in figure 1.

We next question the reliability of the two-equation model (2.3) to capture
the characteristics of γ2 waves satisfactorily. Figure 4 compares experimental
profiles obtained with the Schlieren method to travelling-wave solutions given
by the model. The comparison is satisfactory as both the wave peak height
(710 µm for the experiments and 670 µm for the simulation) and the wave
velocity (26.2 and 24.2 cm s−1) are well reproduced by the simulation. The shape of
the capillary waves region is also very similar even though the model predicts one
more capillary wave in this case.
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FIGURE 5. (Colour online) Three-dimensional instability of γ2 solitary waves. Fluid is
water (ν = 1.08× 10−6 m2 s−1). (a) Threshold of the 3D secondary instability in the β–f
plane. The gap between the thresholds of the primary 2D and secondary 3D instabilities,
1Rec = Re3D

c − Re2D
c , is represented as a colour map. The dashed lines delimit regions

where a short-wave instability mode (small inclination angle β) or a long-wave instability
mode (large β) is observed. Associated shadowgraphs of rugged waves and scallop waves
are shown in subfigures (b,c), respectively. Parameters are β = 8.3◦, f = 3.5 Hz and
β = 17◦, f = 5.1 Hz, respectively, corresponding to the two crosses depicted in (a).

4.2. Stability diagram of solitary waves
The stability of 2D γ2 solitary waves with respect to transverse perturbations depends
on the Reynolds number, or perhaps more precisely, on the distance from the
instability threshold 1Re= Re− Re2D

c , where Re2D
c = 5

6 cot β is the critical Reynolds
number for the onset of the primary instability (Benjamin 1957). In line with the
findings by Liu et al. (1995) and Leontidis et al. (2010), 2D γ2 waves remain stable
to transverse secondary perturbations below a certain critical Reynolds number Re3D

c ,
which is a function of the geometry (inclination angle β) and the shape of the 2D
wave train (forcing frequency f ). Figure 5(a) presents an estimate of Re3D

c based on
our experimental findings in the plane f versus β. The experimental procedure used
to find Re3D

c is as follows: first, at a given inclination angle, the flow rate is adjusted
such that Re=Re2D

c +1Re with a moderate value of 1Re. The frequency range over
which 2D solitary waves are triggered is then identified. In fact, this range is rather
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FIGURE 6. (Colour online) Time records of the film height from CCI measurements
at different forcing frequencies f ((a) f = 3.6 Hz; (b) f = 4.2 Hz; (c) f = 4.7 Hz;
(d) f = 5.0 Hz). Here Re= 34 and β = 10◦. Fluid is water (ν = 1.08× 10−6 m2 s−1).

limited. Indeed, at low frequencies, the long-wave nature of the primary instability
weakens the response of the flow to the inlet forcing, as the spatial growth rate
goes to zero along with the forcing frequency. As a result, synchronization of the
flow requires levels of the inlet excitation amplitude that are not achievable using
the forcing device adopted in the experimental set-up. At high frequencies, either
the flow does not respond to the applied periodic forcing and the natural disordered
evolution of the film is observed, or γ1 slow wave trains are selected (already studied
by Scheid et al. (2006) and not considered here). By gradually raising the frequency
of the inlet forcing starting from a low value, the minimum frequency at which the
flow synchronizes to the applied forcing defines the lower bound in frequency for
2D γ2 waves. As the frequency is further increased, the waves become less and
less isolated, the hump and capillary regions are less discernible as the ratio of the
spatial extension of the hump and the length of capillary waves decreases. This
behaviour is illustrated in figure 6, which presents time records of the film height
at different forcing frequencies for β = 10◦ and Re = 34. At f = 3.6 Hz, the waves
are quasi-solitary with an extended capillary region. Increasing the frequency reduces
the number of ripples and lowers the difference between the extension of the hump
and the typical length of the capillary ripples. At higher frequencies, the primary
wave train undergoes spatial modulations which generates a 2D sideband instability.
Similar spatial modulations of multi-trough γ1 wave trains have been reported by Liu
& Gollub (1994). The onset of spatial modulations of the wave train determines the
upper bound of the frequency.
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The above procedure used to determine the domain of occurrence of 2D γ2
waves has been repeated for β in the range 5–18◦ with a step of 1◦. We have then
considered their domain of stability with respect to 3D perturbations. For a given
couple of parameters f and β, the Reynolds number is gradually raised until 3D wave
trains are observed, which determines Re3D

c .
The two types of 3D patterns, either rugged waves (figure 5b) or scallop waves

(figure 5c), have been detected depending on the inclination angle. At small inclination
angles, a short-wave mode is observed in the region of the capillary waves. At higher
inclination angles, a long-wave mode is triggered and coexists on scallop waves with
the short-wave mode (see figure 5c). For the two regions, 1Rec lies in the range 28–
53 and increases with f .

4.3. Capillary modes
In this section, we focus on the short-wave instability mode of the 2D γ2 waves.
Figure 7(a) presents a typical topography of rugged waves obtained from the Schlieren
acquisition technique. Parameters are β = 8.3◦, Re = 60, f = 3.5 Hz, ν = 1.05 ×
10−6 m2 s−1, Γ = 6013 (depicted by a cross on figure 5a corresponding to Re3D

c =
49.7 ± 0.9). Three-dimensional modulations are restricted to the capillary region of
the waves. The maximal deformation in the transverse direction z is observed on the
first capillary ripple, whose amplitude is also maximal. Instead, the front of the main
wave is almost not affected by the presence of the 3D patterns, which implies that
the wave speed in the 3D regime is very close to the 2D one. Noteworthy is the fact
that successive modulations of the peaks (or troughs) of the capillary ripples exhibit
a π phase shift (see figure 7b).

We next question the ability of the linear stability analysis presented in § 2.4 to
reproduce the experimental observations. Figure 7(c) displays a snapshot of the free-
surface deformation obtained by superimposing the 2D γ2 solution to the WRIBL
model (2.3) with the eigenfunction corresponding to the maximum growth rate. The
amplitude of the eigenmode has been adjusted so as to facilitate comparisons with
the experimental results displayed in figure 7(b). Agreement between experimental and
numerical snapshots prove to be very satisfactory. The short-wave mode characteristics
are well captured by the most amplified eigenmode. In particular, the pronounced
deformation of the capillary ripples, the observed checkerboard pattern (which results
from the π phase-shift between successive crests), the undeformed hump region, are
qualitatively and quantitatively reproduced by the 3D linear stability analysis. Indeed,
the experimental spanwise wavelength is 10 mm which is in good agreement with the
result of the stability analysis (9.1 mm). This result indicates that the sidewall effects
on the development of the capillary mode are negligible.

Finally, the energy budget of the linear perturbations offers an opportunity to
identify the mechanism responsible for the destabilization of the capillary region.
Following the procedure outlined in § 2.5, the most important contributions λn to
the kinetic energy budget (2.11) are presented in figure 8, along with the maximum
growth rate (thick solid line), as functions of the transverse wavenumber kz. Let us
first note that kz= 0 is at least a marginal mode thanks to the phase invariance of the
2D waves (Skotheim et al. 2003). In fact, for the set of parameters corresponding to
figure 7, the maximum growth rate λ at kz = 0 is found to be positive, the γ2 wave
being unstable with respect to 2D perturbations. The 3D nature of the secondary
instability results from the departure of the different contributions λn of the kinetic
energy budget from their values at the reference kz = 0. In the name of convenience,
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FIGURE 7. (Colour online) (a) 3D Schlieren topography for the case (β = 8.3◦, Re= 60,
f = 3.5 Hz, ν = 1.05 × 10−6 m2 s−1, Γ = 6013) corresponding to the leftmost cross
depicted in figure 5(a). 3D patterns of short wavelength are observed in the capillary
region of a γ2 solitary wave. (b) Experimental isothickness contours. (c) Superposition
of the 3D numerical eigenfunction to the 2D base state.

contributions λn are thus said to be stabilizing, that is to damp 3D perturbations, if
their departure form the reference state kz = 0 is negative. Conversely, contributions
are said to be destabilizing if they promote 3D perturbations as compared with 2D
ones, i.e. when their departure from the reference state kz = 0 is positive. In what
follows, without impediment to the clarity of the exposure, departures of λn from
their values at kz = 0 are substituted to λn themselves.

Our results presented in figure 8 indicate that surface tension contributions to the
energy budget are all but one destabilizing. In addition, the most destabilizing one
corresponds to the streamwise gradient of surface tension, i.e. (5/6δ)[h0h̃′′′ ¯̃q+ h′′′0 h̃ ¯̃q],
referred to as ‘q-surface-tension x’ terms. Noteworthy is the significant augmentation
of this contribution for the most amplified perturbation at kz≈ 7 cm−1. Therefore, the
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FIGURE 8. Energy budget issued from the stability analysis of the 2D γ2 wave for
the parameter set corresponding to figure 7. Contributions λn are listed in table 2 in
appendix B. For each contribution λn as well as for the total, i.e. the growth rate λr, the
reference value at kz = 0 has been subtracted (λr(kz = 0) = 2.85 s−1). The contributions
which do not contribute to the 3D instability are not reported. The range of unstable
wavenumber (λr > 0) extends from zero to kz ≈ 10.1 cm−1 (indicated by a solid circle).

short-wave 3D secondary instability of γ2 waves emanates from the surface tension
gradients in the capillary region of γ2 waves. Because of its origin, this short-wave
mode will be referred to as a capillary mode. Besides, the onset of this capillary mode
being triggered by streamwise curvature of the ripples suggests a Rayleigh–Plateau
mechanism. Each capillary ripple can be viewed as a succession of half cylinders with
axes that are aligned with the z axis, in which case the (stabilizing) axial curvature
is ∝ ∂zzh and the azimuthal (destabilizing) curvature is ∝ ∂xxh. The 3D short-wave
instability offers a mechanism to reduce the free-surface area which tends to increase
with the accumulation of capillary ripples at the front of solitary waves.

However, the analysis is more complex. As can be seen from figure 8, the
contributions λn are discontinuous functions of kz. Each discontinuity signals the
substitution of the most amplified eigenmode by another mode. Five successive
changes of dominant eigenmodes are observed, which considerably complicates the
analysis. Instead of a single capillary mode, two are found to be in competition.
The transition between the most amplified modes strongly depends on the inclination
angle. Figure 9(a) presents the growth rate of 3D perturbations as a function of kz

for four different inclination angles, the other parameters being kept constant. For
β < 12◦, the most amplified eigenmode is the capillary mode identified in figure 8 and
illustrated in figure 7. This mode is stationary. Instead, if β exceeds 12◦, the most
amplified capillary mode is oscillatory, characterized by two conjugate eigenvalues
with eigenvectors corresponding to oblique waves propagating toward z> 0 and z< 0.
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FIGURE 9. (Colour online) Competition between capillary modes as β is varied.
(a) Three-dimensional instability growth rate λ as a function of the spanwise wavenumber
kz for four values of β (Re = 50, λx = c/f = 45.7 (non-dimensional), ν = 10−6 m2 s−1,
σ = 72 mN m−1). The inset is a close-up showing the two most unstable eigenvalues for
β = 8◦. (b,c) The free-surface pattern corresponding to the superposition of the 2D wave
with the oscillatory mode.

The corresponding free-surface patterns are shown in figure 9(b,c). However, this
oscillatory mode has not been observed in the experiments. Its occurrence coincides
with the onset of the long-wave mode which is the subject of the next subsection.
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In addition, sidewall effects break the invariance of the 2D wave in the transverse
direction and therefore preclude the propagation of oblique waves (figure 3c).

4.4. Inertial mode
In this section, we consider the long-wave instability mode occurring when the
plane is sufficiently inclined. Figure 10 presents experimental observations of scallop
waves resulting from the long-wave instability. Parameters are β = 17◦, Re = 53,
f = 5.1 Hz, ν = 1.01× 10−6 m2 s−1, Γ = 5024 corresponding to the rightmost cross
in figure 5(a) for which Re3D

c = 42.6 ± 0.9. Contrary to rugged waves promoted
by the purely capillary mode (illustrated in figure 7), the whole wave, that is both
the main hump and the capillary region, is modulated in the transverse direction.
Modulations of different wavelengths, around 6 and 80 mm approximately, are
discernible in the experimental wave pattern (figure 10b). The short-wave modulations
are more pronounced in the capillary region, which supports the idea that the
observed pattern originates from the combination of the capillary mode reported
in the previous subsection, and of another long-wave mode. Floquet analysis based
on the two-equation model (2.3) points to this conclusion. The growth rate of
the most amplified transverse perturbations is drawn in figure 11 as a function of
the transverse wavenumber kz (solid thick line). Two local maxima are observable
corresponding to wavelengths of 5.8 and 67 mm, respectively, in good agreement
with the experimental snapshots. Figure 10(c) presents a numerical reconstruction
of the free surface pattern obtained from the combination of the 2D γ2 solution to
(2.3) and the two eigenmodes corresponding to the local maxima of the growth rate.
This numerical reconstruction agrees well with the experimental snapshot (figure 10b)
which provides further evidence for the involvement of the short-wave capillary mode
with another long-wave mode. The energy budget (2.11) shed some light on the
origin of the long-wave mode, which is found to be stationary (the imaginary part of
the growth rate is zero). Indeed, the most destabilizing term in the long-wavelength
region is the streamwise inertia in the streamwise momentum balance, whose rise and
decline match with the location of a local maximum (see figure 11 and its insert).
We thus conclude to the inertial nature of the long-wave 3D instability mode, and
refer to it as the inertial mode.

5. Discussion
5.1. Instability threshold

Delineation of the experimental results has been made possible in terms of the
competition between a capillary and an inertial instability mode. We now pay
attention to the prevalence domains of these two instability modes in order to explain
the change of regime observed in the stability chart presented in figure 5.

The reported short-wave instability mode has a capillary origin. However, the
physical ingredient responsible for the existence of an instability threshold and thus
the stabilization of the flow at low Reynolds number remains unclear. The localization
of the instability eigenmode in the capillary region of the wave suggests that the onset
of the instability is related to the amplitude of the capillary ripples, or perhaps more
relevantly, to the amplitude of the curvature in this region of the wave. A simple
argument based on the balance of the gradient of surface tension ∼ h∂xxxh and inertial
terms ∼ δ(q/h)∂xq gives x= O(δ−1/2) with h= O(1) and q= O(1) (Kalliadasis et al.
2012). The amplitude of the curvature in the capillary region of the solitary wave is
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FIGURE 10. (Colour online) (a) Three-dimensional Schlieren topography (β = 17◦,
Re = 53, f = 5.1 Hz, ν = 1.01 × 10−6 m2 s−1, Γ = 5024) corresponding to the
rightmost cross depicted in figure 5(a). Competition between a short-wave and a long-wave
instability mode. (b) Experimental isothickness contours. (c) Superposition of the 3D
numerical eigenfunctions to the 2D base state.
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FIGURE 11. Energy budget issued from the stability analysis of the 2D γ2 wave for
the parameter set corresponding to figure 10(a). Contributions λn are listed in table 2 in
appendix B. For each contribution λn as well as for the total, i.e. the growth rate λr, the
reference value at kz= 0 has been subtracted (λr(kz= 0)= 0.76 s−1). The range of unstable
wavenumbers extends from zero to kz ≈ 17 cm−1 (indicated by a solid circle).

thus proportional to δ. This suggests that the onset of the short-wave capillary mode
corresponds to a certain threshold for the reduced Reynolds number, δc say. From
(2.1) and (2.4), δ = δc gives

Re3D
c = 1

3δ
9/11
c Γ 3/11 ∝ (sin β)−1/11, (5.1)

since Γ ∝ (sin β)−1/3.
Turning to the long-wave mode, its inertial origin suggests an instability mechanism

related to the local acceleration of the liquid–gas interface. Since Lord Rayleigh’s
pioneering work (Rayleigh 1883), a dense liquid overhanging a lighter one in a gravity
field is known to be an unstable situation. More generally, an interface separating two
fluids of different densities is unstable if the acceleration in the frame of reference
moving with the interface is pointing towards the lighter fluid (Taylor 1950). As a
consequence, a dense liquid underlying a lighter one can be unstable if the interface
is accelerating downwards (in which case the relative acceleration in the frame of the
interface is oriented upwards). This instability mechanism is involved, for instance,
in the fingering instability of the liquid crown ejected by a drop splashing (Allen
1975), or in the azimuthal secondary instability of a sheared liquid jet (Marmottant
& Villermaux 2004), and is proposed below as a possible premise for the long-wave
inertial instability of γ2 waves.

Let us consider a wave crest, sketched in figure 12, and focus on a point at the
free interface in its local frame of reference (X, Y). This point undergoes a relative
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FIGURE 12. Sketch of a wave crest.

acceleration whose projection ar in the normal direction to the interface, written in
dimensional form, is

ar =
(

g− ∂
2h
∂t2

ey

)
· n, (5.2)

where n refers to the normal vector directed from the liquid to the gas. Considering
a travelling wave moving at the speed c and within the long-wave approximation,
equation (5.2) reads

ar =



g sin β

−g cos β − c2 d2h
dξ 2


 ·


 −

dh
dξ
1


 , (5.3)

where ξ = x− c t is the moving frame coordinate.
The interface remains stable if the relative acceleration points downwards (ar < 0),

which reads

c2 d2h
dξ 2
+ g cos β + g sin β

dh
dξ
> 0. (5.4)

For the solitary-like γ2 waves considered in this study, the inertial long-wave mode
is observed to develop at the crests of the waves. Therefore, the stability criterion
(5.4) is expected to be first violated in regions surrounding the local maximum height
(d2h/dξ 2 < 0 and dh/dξ ≈ 0), materialized by the A to B segment in the sketch
12. As a consequence, g sin βdh/dξ is expected to be negligible as compared with
the other two terms in (5.4) at the onset of the long-wave inertial mode. Balancing
c2(d2h/dξ 2)∼U2/L and g cos β, where U and L stand for velocity and length scales,
gives U2/(gL cos β)=O(1). SelectingU= g sin βh̄2

N/(3ν) and L= h̄N corresponding to
the Nusselt solution defines a critical Froude number Frc above which the instability
sets in, or equivalently

Re3D
c = 1

3 Fr2
c cot β ∝ cot β. (5.5)

Equation (5.5) must be contrasted with (5.1). A priori, the thresholds δc and Frc
are not constants but depend on the shape of the γ2 wave and are functions of
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FIGURE 13. Three-dimensional instability threshold Re3D
c as function of the inclination

angle β for different values of f . Lines correspond to the predictions (5.5) and (5.1) (ν=
1.08 × 10−6 m2 s−1). Numerical thresholds from the criterion (5.4) and Floquet stability
analysis are indicated.

the forcing frequency f . Yet, this dependence on f is expected to be weak if the
waves are sufficiently isolated at sufficiently low frequencies. Formulae (5.5) and
(5.1) are put to the test against experimental evidence in figure 13. Critical Reynolds
number Re3D

c is plotted versus the inclination angle β for forcing frequencies in the
range [3.5, 4.6] Hz. This choice enables us to cover a reasonably large interval of
inclination angle, which otherwise is quite limited for a single frequency due to the
limitations of the experimental procedure outlined in § 4.2, and warrants that the
waves are sufficiently isolated. Experimental data are observed to form two clusters
of points that are satisfactorily fitted by (5.5) and (5.1) with δc≈ 26 and Fr2

c ≈ 6. The
intersection between the two curves occurs at β ≈ 13◦ which roughly corresponds to
the transition between rugged and scallop waves observed in our experiments.

The Floquet stability analysis based on the two-equation model (2.3) provides
another tool to validate the predictions (5.5) and (5.1). Figure 13 has been completed
with the numerical results from the Floquet theory for the γ2-wave solutions to (2.3)
at a frequency f = 4.2 Hz. Agreement with (5.5) is convincing, although the threshold
Frc differs from the experimental data, as numerical thresholds are significantly lower
than the experimental ones. This discrepancy may have several origins. One possible
explanation is the fixed location of the recorded experimental data, x ∼ 30 cm.
Perturbations that are not sufficiently amplified may remain undetected at that
location, which suggests that experimental thresholds must be higher than numerical
ones in agreement with our findings. Another reason for this discrepancy lies in the
simplifications leading to the simplified model (2.3) with respect to the basic set of
equations.
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Finally, the onset of a Rayleigh–Taylor instability has been looked after by
monitoring the stability criterion (5.4) for the solutions to (2.3). A remarkable
agreement is achieved with the Floquet stability analysis although the Rayleigh–
Taylor criterion (5.4) slightly underestimates the instability threshold. However, the
wavelength and spatial growth rate values calculated by this method are higher than
expected which may be due, as was pointed by Krechetnikov (2009), to the surface
curvature. As a whole, we can however conclude that the proposed Rayleigh–Taylor
mechanism for the onset of the long-wave instability mode is supported by numerical
and experimental evidence.

5.2. Influence of the liquid viscosity and surface tension on the 3D instability
We end this section by considering the influence of the liquid properties on the
secondary 3D instability of the quasi-solitary γ2 waves. The analysis presented here
is principally based on the numerical results from the Floquet theory.

We first consider the influence of the viscosity. Figure 14 presents the growth
rate of the most amplified perturbation as function of the transverse wavenumber
kz as obtained from our Floquet analysis. Inclination angle and Reynolds number
are set to β = 20◦ and Re = 50 so that both capillary and inertial modes are
excited. The dimensionless longitudinal wavelength λx = 45 is kept constant, which
guarantees that the γ2 wave remains quasi-solitary. Kinematic viscosity is varied in
the range ν ∈ [1, 6] × 10−6 m2 s−1, corresponding to typical water–glycerine mixture
(Γ ∈ [390,4806]). A significant damping of the capillary mode is observed as viscosity
is raised. The local maximum of the growth rate corresponding to the capillary mode
decreases with viscosity and is reached at larger values of the dimensionless transverse
wavenumber kz (figure 14a). These effects on the capillary mode are consequences
of the attenuation of the capillary ripples by the Trouton elongational viscosity. The
viscous dispersion parameter η being augmented from 0.033 to 0.16, the profile of the
wave is considerably modified as can be observed from the two insets in figure 14(a).
Number and amplitude of the capillary ripples dwindle as η increases. Ripples also
present a shorter dimensionless wavelength. These alterations of the wave profile are
consistent with the reported effects on the capillary mode of secondary instability.
Instead, the inertial mode is almost unaffected by the variations of the viscosity, as
a small decrease of the local maximum of the growth rate at kz ≈ 0.3 is noticeable.
Indeed, the amplitude and shape of the hump region of the waves are only weakly
altered, which explains that the Rayleigh–Taylor instability mechanism remains strong.

When recast using original dimensional quantities (see figure 14b), the growth
rate of the most amplified perturbations presents however a local maximum for
the capillary mode at a wavenumber kz which actually decreases with the viscosity.
This is a consequence of the variation of the length scale κ h̄N of the wave from
2 mm at ν = 10−6 m2 s−1 to 2.9 mm at ν = 6 × 10−6 m2 s−1, the Nusselt film
thickness h̄N ∝ ν2/3 being an increasing function of the viscosity at constant Reynolds
number (κ ∝ ν−4/9 which gives κ h̄N ∝ ν2/9). For the same reason, the wavenumber
corresponding to the local maximum of the growth rate for the inertial mode is also
a decreasing function of viscosity.

The influence of the surface tension is discussed in figure 15. Here σ is decreased
from 72 to 15 mN m−1. The Kapitza number Γ thus decreases from 4806 to 962.
The evolutions of the local maxima of the dimensionless growth rate corresponding
to the capillary and inertial modes are similar to what is observed when the viscosity
is raised. The inertial mode remains unaffected. Attenuation of the capillary mode
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FIGURE 14. Influence of the liquid viscosity on the 3D linear stability of γ2 quasi-solitary
waves. The maximum growth rate λ is shown versus the transverse wavenumber kz.
Parameters are: β = 20◦, λx = 45 (in non-dimensional units), Re = 50, σ = 72 mN m−1.
(a,b) Non-dimensional and dimensional quantities respectively. The streamwise wavelength
and celerity for the wave profiles shown in insets are λx = 8.9 cm, c = 40.9 cm s−1,
Γ = 4806 (ν = 10−6 m2 s−1) and λx = 13.2 cm, c = 62.6 cm s−1, Γ = 390 (ν = 6 ×
10−6 m2 s−1).
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FIGURE 15. Influence of the liquid surface tension on the 3D linear stability results. Here
ν = 10−6 m2 s−1. See the caption of figure 14 for the other parameters. The streamwise
wavelength and celerity for the wave profiles shown in insets are λx = 8.9 cm, c =
40.9 cm s−1, Γ = 4806 (σ = 72 mN m−1) and λx = 5.3 cm, c = 36.6 cm s−1, Γ = 962
(σ = 15 mN m−1).

results from the enhancement of Trouton elongational viscosity which follows from
the reduction of the Kapitza number (and thus the augmentation of the dispersion
parameter η). Comparison of figures 14(a) and 15(a) suggests that the stability of the
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waves is less affected by the variation of the surface tension than by the variation
of the viscosity. Indeed, the Kapitza number varies in a range that is larger in
figure 14(a) than in figure 15(a) since Γ ∝ σ/ν4/3 and physically relevant viscosities
cover a wider interval than surface tensions. However, when recast using dimensional
quantities, the influence of the surface tension on the stability analysis is significantly
different from what is observed with viscosity (compare figures 15b and 14b). This
difference is a direct consequence of the decrease of the length and time scales, κ h̄N

and κν/(gh̄N sin β), as the capillary length lc reduces along with the surface tension.
We have next investigated the influence of Trouton elongational viscosity on the

stability of γ2 waves by varying η = 1/κ2, while maintaining constant the two other
reduced parameters, δ, and ζ (results not shown). The amplitude and the speed of
solitary waves depend mainly on the reduced Reynolds number δ whereas η affects
the amplitude of the capillary ripples. Raising η by a factor five has been found to
suppress the capillary mode while affecting the inertial mode only weakly, which is
consistent with the previous discussions.

A thorough experimental study of the influence of viscosity and surface tension
on the 3D stability is beyond the scope of the present paper. However, we end
this section by presenting some experimental observations which support the above
conclusions. Figure 16 presents three snapshots of modulated quasi-solitary waves
at conditions that are close to those discussed in figures 14 and 15 (β = 17.9◦ and
Re= 70), for water, a 22 % per weight water–glycerin mixture and a 1.3 % per weight
water–butanol solution. The water–glycerin mixture is twice as viscous as water with
a surface tension that remains close to the value for water, whereas the water–butanol
solution has a significantly lower surface tension than water but keeps a roughly
equal viscosity. Figure 16(a) is typical of modulated scallop waves on water films
arising from the interplay of the capillary and inertial 3D instability modes. Short-
and long-wave modes have wavelengths that can be estimated to be around 0.5 and
3.9 cm, respectively (kz = 12.6 cm−1 and 1.6 cm−1) in good agreement with the
predictions from the Floquet analysis presented in figures 14(b) and 15(b). Turning
to the water–glycerin mixture (cf. figure 16b), the capillary region of the 2D waves
is significantly damped and the capillary short-wave instability is not visible as
an effect of the increment of viscosity. The long-wave inertial modulations of the
crests remain unaffected however. Lowering surface tension instead (figure 16c) has
a different effect. Although the capillary regions of the waves are not significantly
damped, the Kapitza number remaining quite high, short-wave transverse modulations
are not detected. Instead, the long-wave modulations are efficiently enhanced and the
inertial mode supersedes the short-wave ones, which explains the disappearance of
the corresponding modulations. We note that the latter amplification of the scallop
waves cannot be anticipated from the above Floquet analysis, which is restricted to
small-amplitude perturbations.

6. Summary–conclusion

In this paper, we have considered the stability of γ2 travelling waves at the surface
of a film flow down an inclined plane. These waves are fast, one-humped and
quasi-solitary. They present a typical shape which can easily be decomposed into a
hump region and a capillary region. Slow γ1 waves, multi-humped waves, or waves
whose shape cannot be decomposed into capillary and hump regions have been the
subject of earlier studies (Liu et al. 1995; Scheid et al. 2006) and therefore have
not been investigated here. The investigation is experimental and numerical using the
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(a)

(b)

(c)

FIGURE 16. Experimental snapshots illustrating the influence of liquid viscosity and
surface tension on the 3D patterns. Parameters are: β = 17.9◦, Re = 70. (a) Water:
f = 4.5 Hz, ν = 10−6 m2 s−1, σ = 72 mN m−1, Γ = 4806. λx = 9.4 cm (λx = 44 in
dimensionless units). (b) Water–glycerin mixture, 22 % per weight: f = 4.9 Hz, ν = 1.9×
10−6 m2 s−1, σ = 70.6 mN m−1, Γ = 1971. λx = 11.7 cm (λx = 48.4 in dimensionless
units). (c) Water–butanol solution, 1.3 % per weight: f = 4.5 Hz, ν = 1.1× 10−6 m2 s−1,
σ = 49 mN m−1, Γ = 3000. Here λx = 9.1 cm (λx = 46.8 in dimensionless units).
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tools of Floquet stability analysis based on the solutions to a two-equation model (2.3)
which has been abundantly validated with respect to experiments and direct numerical
simulations elsewhere (Ruyer-Quil & Manneville 2000; Scheid et al. 2006).

A Schlieren technique, recently proposed by Moisy et al. (2009), has been
implemented successfully providing accurate snapshots of the free surface on
an extended area. This acquisition technique has been validated by means of
comparisons with CCI measurements. High temporal (>100 Hz) and spatial (0.5 mm)
resolutions are achieved providing 3D snapshots of the free surface over large domains
(20 cm × 25 cm) with a precision of approximately 20 µm. Two-dimensional wave
trains have been generated as the response of the flow to a periodic forcing at inlet.
They undergo a 3D secondary instability if the flow rate (or Reynolds number) is
sufficiently high. Two different wave patterns are then reported, either rugged waves or
scallop waves. The prevalence of either pattern is influenced by the forcing frequency
at inlet and the inclination angle. Rugged waves have been shown to be promoted
by a short-wave transverse instability of capillary origin, whereas scallop waves
emerge from a long-wave transverse instability prompted by inertial effects. Capillary
short-wave instability predominates at small inclination angle, whereas the long-wave
inertial instability is observed at larger inclination. The two instability modes are well
captured by a secondary stability analysis based on (2.3). An energy budget of the
perturbations has proved instrumental for the identification of the physical origin of
the instabilities. The short-wave mode arises in the capillary region of the wave, with
a mechanism of capillary origin which is similar to the Rayleigh–Plateau instability,
the onset of 3D patterns enabling to reduce the contact area of the gas–liquid
interface. Such a mechanism has been postulated by Demekhin & Kalaidin (2007),
and erroneously associated with the long-wave instability mode. The latter mode
is triggered by a Rayleigh–Taylor instability of a decelerated liquid interface. The
threshold of the short-wave mode obeys Re3D

c ∝Γ 3/11∝ (sinβ)−1/11, whereas the onset
of the long-wave mode rather verifies Re3D

c ∝ cot β. Rugged waves are thus observed
at relatively small inclination angles, the short-wave mode being excited before the
long-wave one sets in. At larger angles, the long-wave mode predominates and scallop
waves are observed. For water film and at sufficiently low forcing frequencies f , the
transition between rugged and scallop waves is only weakly affected by f and occurs
around β = 13◦ which corresponds to the intersection of the instability thresholds
for the two inertial and capillary modes (cf. figure 13). This value of β is certainly
not universal. The occurrence and prevalence of rugged and scallop waves as surface
tension and viscosity are varied require a thorough study that is beyond the scope of
the present work and will be presented elsewhere. Transition from rugged to scallop
waves coincides with a change of nature of the short-wave capillary mode from
stationary to oscillatory. However, short-wave capillary modulations of scallop waves
seem frozen and remain in-phase with the long-wave deformations of the fronts.
We note that both the sidewall effects and the long-wave inertial mode break the
translational invariance in the transverse z direction that is necessary for the growth
of an oscillatory mode.

To the best of the authors’ knowledge, the onset of rugged waves related to a
short-wave instability mode has not been reported previously, earlier studies being
devoted either to the vertical geometry (Park & Nosoko 2003) or to more viscous
fluids (Liu et al. 1995). Promoting rugged waves could be of interest in applications
as 2D solitary waves travel faster and with a larger amplitude than 3D solutions
(Demekhin et al. 2007). Similarly, an enhancement of backflow phenomena and flow
separation in these waves might be expected, with interesting consequences on heat
and mass transfer (Dietze et al. 2009).
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n Origin Expression

1 q-inertia x cq̃′ ¯̃q− 17
7

[
q0

h0
q̃′ ¯̃q+ q′0

h0
|q̃|2 − q0q′0

h2
0

h̃ ¯̃q
]

+ 9
7

[
q2

0

h2
0

h̃′ ¯̃q− 2h′0q2
0

h3
0

h̃ ¯̃q+ 2q0h′0
h2

0
|q̃|2
]

2 q-inertia z −8
7

q0

h0
ikzp̃ ¯̃q

3 q-viscous drag − 5
2δ

[ |q̃|2
h2

0
− 2q0

h3
0

h̃ ¯̃q
]

4 q-‘Trouton’ viscosity
4η
δ

[
(h′0)

2

h2
0
|q̃|2 − 2q0(h′0)

2

h3
0

h̃ ¯̃q+ 2q0h′0
h2

0
h̃′ ¯̃q
]

− 9η
2δ

[
h′0
h0

q̃′ ¯̃q+ q′0
h0

h̃′ ¯̃q− q′0h′0
h2

0
h̃ ¯̃q
]

− 6η
δ

[
h′′0
h0
|q̃|2 + q0

h0
h̃′′ ¯̃q− q0h′′0

h2
0

h̃ ¯̃q
]

+ η

δ

[
9
2

q̃′′ ¯̃q− 13
16

h′0kz

h0
ip̃ ¯̃q+ 23

16
q0k2

z

h0
h̃ ¯̃q
]

+ η

δ

[
−k2

z |q̃|2 +
7
2

kzip̃′ ¯̃q
]

5 q-gravity
5
6δ

h̃ ¯̃q

6 q-hydrostatic pressure −5
6
ζ

δ

[
h0h̃′ ¯̃q+ h′0h̃ ¯̃q

]

7 q-surface tension x
5
6δ

[
h0h̃′′′ ¯̃q+ h′′′0 h̃ ¯̃q

]

8 q-surface tension z −5
6

k2
z

δ
h0h̃′ ¯̃q

9 p-inertia z cp̃′ ¯̃p− 8
7

q′0
h0
|p̃|2 − 9

7

[
q0

h0
p̃′ ¯̃p− q0h′0

h2
0
|p̃|2
]

10 p-viscous drag − 5
2δ
|p̃|2
h2

0

11 p-‘Trouton’ viscosity
η

δ

[
−9

2
k2

z |p̃|2 +
13
4

q0h′0
h2

0
kzih̃ ¯̃p− h′0

h0
p̃′ ¯̃p
]

+ η

δ

[
−43

16
h′0
h0

kziq̃ ¯̃p− 13
16

q′0
h0

kzih̃ ¯̃p+ 3
4
(h′0)

2

h2
0
|p̃|2
]

+ η

δ

[
−23

16
h′′0
h0
|p̃|2 − 73

16
q0

h0
kzih̃′ ¯̃p+ p̃′′ ¯̃p+ 7

2
kziq̃′ ¯̃p

]

12 p-hydrostatic pressure −5
6
ζkz

δ
h0ih̃ ¯̃p

13 p-surface tension x
5
6δ

h0kzih̃′′ ¯̃p

14 p-surface tension z − 5
6δ

h0k3
z ih̃ ¯̃p

TABLE 2. List of the λn terms involved in the right-hand side of (2.11) before integration
on a wavelength and division by 〈q̃, q̃〉.
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FIGURE 17. Maximum growth rate λmax as a function of the transverse wavenumber
kz for different values of the detuning parameter ϕ (β = 20◦, Re = 50, f = 4.6 Hz,
ν = 10−6 m2 s−1, σ/ρ = 7.21 × 10−5). Dots refer to the results obtained on a finer grid
(N = 2048 nodes instead of N = 1024).
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Appendix A. Floquet analysis: numerical procedure and influence of the detuning
parameter

In this appendix we briefly discuss the numerical procedure that has been
implemented to solve the linear differential eigenvalue problem (2.5). Details can
be found in Ruyer-Quil (1999) and Kalliadasis et al. (2012). The base state X0 and
perturbation amplitude X̃ are discretized on a regular mesh of N nodes. Their discrete
representations XN

0 and X̃
N

are vectors of dimension 3N that are converted in Fourier

series of coefficients X̂
N

0 and X̂
N

by fast Fourier transforms. The linear eigenvalue
problem (2.5) is thus approximated by

λX̂
N = L̂

N
X̂

N
. (A 1)

Here, L̂
N

is a square matrix of dimension 3N whose coefficients are given by the
formula

L̂
N
i,j =

{
FFTN

[
Lϕ,kz

(
XN

0 ; ϕ, kz
)

FFT−1
N EN

j

]}
i
, (A 2)

where EN
j are the vectors of the canonical basis of C3N , and where FFTN and

FFT−1
N refer to the direct and inverse discrete Fourier transforms. A pseudo-spectral
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FIGURE 18. Same as figure 17 except for β = 10.1◦, Re= 41, f = 5.3 Hz.

algorithm is next invoked, convolutions being easily computed in the physical space
and derivatives in the Fourier space. A drawback of this procedure is the aliasing
problem. To take care of it, we actually apply (A 2) on a four times finer grid:

L̂
N
i,j ≈

{
FFT4N

[
Lϕ,kz

(
X4N

0 ; ϕ, kz
)

FFT−1
4N E4N

j

]}
i
. (A 3)

The 2D base solution is approximated on the finer grid by taking the inverse Fourier
transform of X̂

4N

0 where the coefficients corresponding to the highest frequencies, that
is three-quarters of the total number, are set to zero.

Figure 17 compares the growth rate of the most dangerous mode for ϕ=0 computed
on a fine grid (N = 2048) and a coarser one (N = 1024). Parameters correspond to
a typical γ2 solitary-like wave-train running on a water film. Convergence is already
reached on a N = 1024-node regular grid and most of the results presented in this
paper have been obtained with N = 1024.

The influence of the detuning parameter ϕ on the results has been tested for six
different values of ϕ in the range [0, 1/2] which is sufficient to cover all possible
perturbations for symmetry reasons. The results are shown in figure 17 for an isolated
quasi-solitary wave. No noticeable effects of the detuning parameter on the maximum
growth rate have been found, except for very long-wave perturbations kz� 1 where
small differences between the curves can be noted. However, these differences are
not significant. Yet, wherever the wave is non-isolated, the detuning parameter has
a significant effect on its stability. The most amplified 2D perturbation (kz = 0) is
sensitive on the detuning parameter, i.e. on the extension of the considered wave train
(see figure 18). However, the transverse stability (kz 6= 0) remains unaffected by the
detuning parameter. We may then conclude that the stability of a single γ2 wave and
the stability of an infinite train of these waves are equivalent.
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Appendix B. Kinetic energy budget
The different terms which compose the right-hand side of the kinetic energy budget

(2.11) are listed in table 2. They are grouped with respect to their physical origin:
inertia forces, hydrostatic pressure, viscous drag at the wall, ‘Trouton’ second-order
viscous dispersion terms, capillarity (surface tension). We first present the terms
emanating from the projection of the momentum balance in the streamwise direction,
referred below as ‘q-’ contributions. The contributions from the spanwise projection
of the momentum balance, or ‘p-’ terms come next.
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