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A proof of the linear Arithmetic
Fundamental Lemma for GL4

Qirui Li
Abstract. Let K/F be an unramified quadratic extension of a non-Archimedean local field. In a
previous work [1], we proved a formula for the intersection number on Lubin–Tate spaces. The main
result of this article is an algorithm for computation of this formula in certain special cases. As an
application, we prove the linear Arithmetic Fundamental Lemma for GL4 with the unit element in
the spherical Hecke Algebra.

1 Introduction

1.1 Motivation

In this paper, we give an algorithm to compute intersection numbers of CM cycles in
Lubin–Tate spaces in some special cases by following an explicit formula in [1]. Our
goal is to identify these intersection numbers with the values of the first derivative of
certain orbital integrals. This identity is known as the linear Arithmetic Fundamental
Lemma (linear AFL) conjecture, and an application of our algorithm is to prove the
conjecture for GL4. As we noted in the introduction part of [1], the global motivation
for the linear AFL arises from a generalization of the arithmetic Gan–Gross–Prasad
conjectures proposed by Zhang [2].

1.2 The linear AFL

We call the two sides of the linear AFL identity the arithmetic-geometric side and the
analytic side, respectively. We briefly describe the objects appearing on the two sides.
Let F be a non-Archimedean local field with ring of integersOF . Let π be a uniformizer
of OF and denote the residue field by Fq ≅ OF/π. On the arithmetic-geometric side,
we consider a one-dimensional formal OF -module GF of height 2h over Fq . Let K/F
be an unramified quadratic extension. Choose two embeddings

φ1 ∶ OK �→ End(GF),
φ2 ∶ OK �→ End(GF).(1.1)
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382 Q. Li

Each embedding φ i gives rise to a special cycle Z(φ i) on the Lubin–Tate space MGF

of GF . The quantity of the arithmetic-geometric side is the intersection number

Int(Z(φ1), Z(φ2))

of these two cycles.
On the analytic side, we consider two embeddings of OF -algebras

τ1 ∶ OF ×OF �→Mat2h(OF),
τ2 ∶ OF ×OF �→Mat2h(OF).

Abbreviate the symbol GL2h by G2h . Let C(τ i) ⊂ G2h(F) be the centralizer of the
image of τ i for each i = 1, 2. We fix an element g ∈ G2h(F) such that

τ2(x) = g−1τ1(x)g for any x ∈ OF ×OF .(1.2)

Using an isomorphism C(τ i) ≅ Gh(F) ×Gh(F), we can write any x ∈ C(τ i) as x =
(x1 , x2) for x1 , x2 ∈ Gh(F). Moreover, define

∣x∣ ∶= ∣det(x−1
1 x2)∣F ηK/F(x) ∶= ηK/F(det(x1x2))

where ηK/F is the quadratic character of K/F. Let f ∶ G2h(F) �→ R be an arbitrary
smooth test function with compact support. We associate τ1 , τ2 with the following
relative orbital integral defined by

Orbτ1 ,τ2( f , s) ∶= ∫
C(τ1)∩C(τ2)/C(τ1)×C(τ1)

f (u−1
1 gu2)ηE/L(u2)∣u1u2∣sdu1du2(1.3)

where we view C(τ1) ∩C(τ2) as a subgroup of C(τ1) ×C(τ1) via the diagonal embed-
ding. The linear AFL conjecture states that

±(2 ln q)−1 d
ds
∣
s=0

Orbτ1 ,τ2(1G2h(OF), s) = Int(Z(φ1), Z(φ2))(1.4)

is a valid equation when (φ1 , φ2) matches with (τ1 , τ2) and the sign ± is chosen so
that the quantity is positive. By definition, (φ1 , φ2) matches with (τ1 , τ2), if there
is an isomorphism End(GF) ⊗OF C �→Mat2h(F) ⊗F C between C-algebras for the
algebraic closure C of F that makes the following diagram commute for i = 1, 2.

(F × F) ⊗F C ≅ ��

τ i⊗idC

��

K ⊗F C

φ i⊗idC

��
Mat2h(F) ⊗F C �� End(GF) ⊗OF C

The identity (1.4) is conjectured to hold in more general settings if we replace f in the
analytic side by an arbitrary spherical Hecke function on G2h(F) and correspondingly
replace Z(φ2) in the arithmetic-geometric side by h f∗Z(φ2) via the Hecke correspon-
dence h f ∶MGF ← �→MGF defined by f. In this article, we only study the case when
the test function is 1G2h(OF).
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1.3 Classification of double structures

In the linear AFL, our parameter is a pair of embeddings from a quadratic etale algebra
K to a central simple algebra D = End(GF) ⊗OF F over F. We call it a double K-
structure onGF because this pair givesGF two K-actions through self-quasi-isogenies.
We call (φ1 , φ2) an integral double K-structure if φ i(OK) ⊂ OD for i = 1, 2. Two double
K-structures (φ1 , φ2) and (φ′1 , φ′2) on GF are called isogenous if there is a self-quasi-
isogeny γ ∶ GF �→ GF carrying one double structure to another

γ ○ φ i(x) = φ′i(x) ○ γ for any x ∈ K and i = 1, 2.

In other words, this means that the pairs (φ1 , φ2) and (φ′1 , φ′2) are conjugate in D.
Note that both sides of the linear AFL depend only on the isogeny class of the

corresponding double structures. For any quadratic etale algebra K, let ζ ∈ K such that
ζ ∉ F. Let ζσ be its conjugate. Using the element ζ , we define the invariant polynomial
for a double structure φ i ∶ K �→ D(i = 1, 2) to be the characteristic polynomial of

(φ1(ζ) − φ2(ζσ))2

(ζ − ζσ)2 ∈ C(φ1) ∩C(φ2)

as an element of C(φ1), which is a central simple algebra over K. Clearly, this element
does not depend on the choice of ζ .

1.4 Main results of the paper

Our formula in [1] simplifies the arithmetic-geometric side and reduces the conjec-
tural linear AFL to the following identity.

Conjecture 1 Let f ∶ G2h(F) �→ R be a spherical Hecke function, and γ = (τ1 , τ2)
is a double F × F-structure on G2h(F). Suppose that (τ1 , τ2) matches to a double K-
structure on a division algebra D of invariant 1

2h . Let Pγ be the invariant polynomial of
(τ1 , τ2). Let α ∶ K �→ G2h(F) be a map of F-algebras, Pg the invariant polynomial of
the double K-structure (α, g−1 ○ α ○ g) on G2h(F) for any g ∈ G2h(F). Then we have

±(2 ln q)−1 d
ds
∣
s=0

Orbτ1 ,τ2( f , s) = εF ,2h

ε2
K ,h

∫
G2h(F)

f (g)∣Res(Pγ , Pg)∣−1
F dg(1.5)

where constants εF ,2h and εK ,h are densities of invertible matrices in Mat2h(OF) and
Math(OK). The symbol Res represents the resultant of two polynomials.

Our main result is a computational method for calculating the arithmetic-
geometric side for f = 1G2h(OF). As an application, we proved the identity (1.5) for
h = 2.

Theorem 1.1 The equation (1.5) holds for h = 2, f (g) = 1G2h(OF)(g).
For higher h, both sides of (1.5) are computable when we impose the following

condition:
• (*) The valuation vF(Pγ(1)) is odd and coprime to h.
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In this paper, our algorithm allows us to compute all intersection numbers for higher
h in the case of (*). There is also an inductive formula for orbital integrals, but it
seems too complicated to be practically useful. In particular, we have not succeeded
identifying the inductive formulas for the two sides, except for some lower rank cases.

Now we give more details of our computational methods. The computation for
the arithmetic-geometric side is described as follows. We see that the integrand in
(1.5) is invariant under the action of Gh(K). Then we only need to compute the
intersection number by integrating certain function over the homogeneous space
Sh(F) = G2h(F)/Gh(K). Then, we divide Sh(F) into a disjoint union of subsets
with two properties. Firstly, each subset is invariant under the action of Gh(OK).
Secondly, when we have condition (*), our integrand is a constant on each subset. This
method gives us an inductive formula for computing the intersection number. Finally,
we prove the h = 2 case of the linear AFL by comparing the result of computation at
the end of Sections 7 and 6. Our method for the analytic side in Section 7 is counting
lattices, which is approachable when h = 2, since there is an easy classification of OF -
subalgebras of a quadratic field extension K over F.

This paper starts with Section 2 to discuss double structures, which are parameters
in the linear AFL identity. The constructions and lemmas in Section 2 will be used
repeatedly in our computation in the analytic side (Section 7) and the arithmetic-
geometric side (Sections 3–6). Section 5 gives a complete list of inductive formulae to
compute the arithmetic-geometric side with condition (*). The calculation for h = 2
case is done in Section 6. Sections 3 and 4 are preparations for Section 5. The reader
may skip those two sections if they are willing to accept the formula (4.1).

2 Double structures

In this paper, a double structure on an object means two different actions of a quadratic
extension of F.

Definition 2.1 Let K be a quadratic etale algebra, OD = End(GF) and D =
End(GF) ⊗OF F, a central simple algebra over F. A double K-structure on GF is a pair
of embeddings of F-algebras

α1 ∶ K �→ D,
α2 ∶ K �→ D.(2.1)

Two double structures (α1 , α2) and (α′1 , α′2) are called isogenous if there is an inner
automorphism cg ∶ D �→ D induced by an element g ∈ D such that the following
diagrams commute

K
α1

����
��
��
� α′1

���
��

��
��

D
cg �� D

K
α2

����
��
��
� α′2

���
��

��
��

D
cg �� D

where cg(x) = g−1x g. The double structure is called integral if furthermore α i(OK) ⊂
OD for i = 1, 2. Two integral double structures are called isomorphic if one can take
g ∈ O×D for cg in the above diagram.
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We call this a double K-structure on GF because this pair gives GF two K-actions
through quasi-isogenies. From now on, we will fix an element ζ ∈ K with

ζ ∉ F .

It is clear that the image α i(K) ⊂ D is determined by α i(ζ). In the rest of this paper,
we denote the image of α i by K i ⊂ D. Moreover, let

DK i ⊂ D, D×K i
⊂ D× , ODKi

⊂ OD , O×DKi
⊂ O×D

be centralizers of α i(ζ), respectively, for i = 1, 2.
The goal for this section is to establish a general theory, where we allow GF to be

an arbitrary π-divisible group and we do not impose further conditions on D and K.
When we apply our general construction in this Section to Sections 4, 5, and 7, we all
specialize to the case where K/F is an unramified extension, GF = (F/OF)2h and

D = Mat2h(F) D× = G2h(F) OD =Mat2h(OF) O×D = G2h(OF);
DK i =Math(K i) D×K i

= Gh(K i) ODKi
= Math(OK i ) O×DKi

= Gh(OK i )

for i = 1, 2.
Two double K-structures (φ1 , φ2) and (φ′1 , φ′2) onGF are called isogenous if there is

a self-quasi-isogeny ϕ ∶ GF �→ GF carrying one double structure to another, in other
words

ϕ ○ φ i(x) = φ′i(x) ○ ϕ for any x ∈ K and i = 1, 2.

This implies (φ1 , φ2) and (φ′1 , φ′2) are conjugate in D.
In this section, we will construct the homogeneous space Sh(F) in (2.4), then

attach an invariant polynomial to every point on Sh(F) and to every isogeny class
of double structures.

Definition 2.2 Let (α1 , α2) be a double structure, its interior angle bisector is defined
by

iα1 ,α2 ∶=
α2(ζ) − α1(ζσ)

ζ − ζσ .

and its exterior angle bisector is defined by

eα1 ,α2 ∶=
α2(ζ) − α1(ζ)

ζ − ζσ .

Remark 2.3 The above definition does not depend on the choice of ζ ∈ K. The names
interior and exterior angle bisector come from the case of double structures of the
Hamilton quaternion algebra, where S2(R) is isomorphic to a sphere S2. Then, α1
and α2 correspond to two points on it. Joining those two points with the center of the
sphere, we get an angle, and eα1 ,α2 and iα1 ,α2 are exactly located at the exterior and
interior angle bisector, respectively. Their conjugate action is given by reflections by
those bisectors.
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Proposition 2.4 The exterior and interior bisectors satisfy the following identities. For
any x ∈ K,

iα1 ,α2 ○ α1(x) = α2(x) ○ iα1 ,α2 , iα1 ,α2 ○ α2(x) = α1(x) ○ iα1 ,α2 ,
eα1 ,α2 ○ α1(x) = α2(xσ) ○ eα1 ,α2 , eα1 ,α2 ○ α2(x) = α1(xσ) ○ eα1 ,α2

and

iα1 ,α2 ○ eα1 ,α2 = −eα1 ,α2 ○ iα1 ,α2 , (iα1 ,α2 ± eα1 ,α2)2 = 1.(2.2)

Furthermore, we have the Pythagorean theorem

i2
α1 ,α2

+ e2
α1 ,α2

= 1.(2.3)

Proof We have

(α1(x) − α2(xσ))α2(x) = α1(x)α2(x) − α2(xσ x).

Note xσ x ∈ F, so α2(xσ x) = α1(xσ x), this implies that the above equation turns into

α1(x)α2(x) − α1(xσ x) = α1(x)(α2(x) − α1(xσ))

Now since xσ + x ∈ F, so α2(x + xσ) = α1(x + xσ), we obtain

α1(x)(α1(x) − α2(xσ)).

Since iα1 ,α2 =
α1(x)−α2(x σ)

x−x σ , we proved iα1 ,α2 ○ α2(x) = α1(x) ○ iα1 ,α2 . The proof of the
other identities is similar. The equation (2.2) is followed by direct calculation, and it
is easy to verify iα1 ,α2 ○ eα1 ,α2 = −eα1 ,α2 ○ iα1 ,α2 . To prove (iα1 ,α2 − eα1 ,α2)2 = 1, simply
note that

(iα1 ,α2 − eα1 ,α2)2 =
⎛
⎝
− α2(ζ − ζσ)

ζ − ζσ
⎞
⎠

2

= 1.

By expanding the left expression, we also have

1 = (iα1 ,α2 − eα1 ,α2)2 = i2
α1 ,α2

+ e2
α1 ,α2

− iα1 ,α2 ○ eα1 ,α2 − eα1 ,α2 ○ iα1 ,α2 = i2
α1 ,α2

+ e2
α1 ,α2

.

So we also have 1 = i2
α1 ,α2

+ e2
α1 ,α2

= (iα1 ,α2 + eα1 ,α2)2. We proved this proposition. ∎
Definition 2.5 The normalized centralizer of a double structure (α1 , α2) is defined
by

i2
α1 ,α2

= (α1(ζ) − α2(ζσ))2

(ζ − ζσ)2 ∈ DK1 ∩DK2 .

Proof This element should be in D, we prove it is in the subset DK1 ∩DK2 . Since the
expression is symmetric for α1 and α2, we only need to show this element commutes
with α1(ζ). By the property of the interior angle bisector reflector,

iα1 ,α2 ○ iα1 ,α2 ○ α1(ζ) = iα1 ,α2 ○ α2(ζ) ○ iα1 ,α2 = α1(ζ) ○ iα1 ,α2 ○ iα1 ,α2

We have proved i2
α1 ,α2

∈ DK1 ∩DK2 . ∎

https://doi.org/10.4153/S0008414X20000814 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000814


A proof of the linear Arithmetic Fundamental Lemma for GL4 387

Definition 2.6 The invariant polynomial of a double structure (α1 , α2) is the char-
acteristic polynomial of its normalized centralizer i2

α1 ,α2
, as an element of the central

simple algebra DK1 over K.

2.1 Parameter space of double structures

In this section, we define the homogeneous space Sh(F) and study the isogeny
class of double structures. Given any two double structures (α1 , α2) and (α′1 , α′2), we
may find an element φ ∈ D× such that α1 = φα′1φ−1 because all embeddings K �→ D
are conjugate. Without changing its isogeny class, we may replace the pair (α′1 , α′2)
by (α1 , φ1α′2φ−1). This implies that every isogeny class of double structures has a
representative (α1 ,−) with the first structure given by α1. Then without loss of
generality, we can fix an embedding α1 and vary the second embedding α2. Since the
embedding α2 ∶ K �→ D is uniquely determined by the value of α2(ζ), the moduli
space of the embeddings α2 ∶ K �→ D can be represented by

Sh(F) ∶= {x ∈ D× ∶ x is conjugate to α1(ζ)}.(2.4)

In other words,Sh(F) is the set of F-points for the conjugacy class of the matrix

(ζIh
ζσ Ih

)

over the algebraic closure.
Our fixed α1 determines a distinguished point

x0 ∶= α1(ζ) ∈ Sh(F).

In the rest of this paper, we will keep the notation x0. We consider the action of D× on
Sh(F) via the conjugation and write

g ⋅ x ∶= gx g−1

for any g ∈ D× and x ∈ Sh(F). The stabilizer of α1(ζ) is D×K1
. Moreover, any two points

on Sh(F) are conjugate to each other by an element of D×. This implies Sh(F) as a
homogeneous space can be represented by

Sh(F) ≅ D×/D×K1
.

Points on Sh(F) parametrize F-embeddings α ∶ K �→ D. Then combining with α1,
it goes through all possible isogeny class of double structures (α1 , α). Furthermore,
(α1 , α) and (α1 , α′) are isogenous if and only if α and α′ are conjugate by an element
of D×K1

. Therefore, the space of isogeny class of double structures can be described by

D×K1
/Sh(F) ≅ D×K1

/D×/D×K1
.

Definition 2.7 For any x ∈ Sh(F), by the double structure induced by x, we mean
a double structure (α1 , α2) with α2(ζ) = x. We also abbreviate iα1 ,α2 and eα1 ,α2 as ix
and ex . In particular,

ix =
x − xσ

0
ζ − ζσ , ex =

x − x0

ζ − ζσ .
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2.2 Polar stereographic coordinate

Suppose F = R, K = C, and D = H, a Hamilton’s quaternion algebra. Then the space
Sh(F) is a two-dimensional sphere. There is a well-known universal polar stereo-
graphic coordinate system on Sh(F)○ = Sh(F)/{xσ

0 } in this case. In this paper, we
call it the polar stereographic coordinate for short. This section is a generalization of
the polar stereographic coordinate forSh(F) in general settings.

Definition 2.8 Consider D as a left K-vector space via α1. Let D+ and D− be
eigenspaces of right multiplying x0 of eigenvalue ζ and −ζ , respectively. Suppose g
can be decomposed as

g = g+ + g− for g+ ∈ D+, g− ∈ D− .

The element

x# ∶= g−1
+ g−

is called the xσ
0 -polar stereographic coordinate of x = g ⋅ x0.

We need to show this definition is well defined. In other words, we need to show it
only depends on x.

Proposition 2.9 Suppose g = g+ + g−, then

x# = g−1
+ g− = ex ○ i−1

x = (x − x0)(x − xσ
0 )−1 .

Proof Remember x = α2(ζ), x0 = α1(ζ) and g is choosen so that gx = x0 g. So we
have

(g+ + g−) ○ α2(ζ) = α1(ζ) ○ (g+ + g−)

Using x0 ○ g− = g− ○ ασ
1 (ζ), we have

g+(α1(ζ) − α2(ζ)) = g−(α2(ζ) − ασ
1 (ζ))

This implies

g+ ○ ex = g− ○ ix .

We proved this proposition. ∎
Remark 2.10 The xσ

0 -polar stereographic coordinate can not be defined for elements
x such that xσ

0 − x is not invertible.

2.3 Invariant polynomials

In [1], we defined the invariant polynomial by a different way than Definition 2.6. In
the next proposition, we show those definitions are equivalent.

Proposition 2.11 Let α2 = g−1α1 g and decompose g = g+ + g− according to the decom-
position D = D+ ⊕ D−. Then the normalized centralizer of (α1 , α2) is given by

i2
α1 ,α2

= (g+ + g−)−1 g+(g+ − g−)−1 g+.
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Proof It suffices to prove this proposition for a Zariski dense subset. Then, we may
assume g+ is invertible. Then x# = g−1

+ g− is well defined, and we have

(g+ + g−)−1 g+(g+ − g−)−1 g+ = (1 − x#)−1(1 + x#)−1 .

By Proposition 2.9, we have

(1 − x#)−1 = ix ○ (ix − ex)−1 , (1 + x#)−1 = ix ○ (ix + ex)−1 .

Therefore, using identities in (2.2),

(1 − x#)−1(1 + x#)−1 = ix ○ (ix − ex)−1 ○ ix ○ (ix + ex)−1 = ix ○ (ix + ex)−2 ○ ix = i2
x .

Therefore, the proposition follows. ∎

3 Integration in homogeneous spaces

We will compute our intersection number by an integral over Sh(F). In this section,
we make a preparation by introducing some general theory of integration over
homogeneous spaces. This section has three parts. The first two parts consists of some
basic definitions. The Section 3.3 is an outline of our main strategy of integration in
this paper. The Theorem 3.1 will be used to prove Theorem 4.2 and Proposition 5.11.

3.1 Invariant measure on homogeneous spaces

Let G be an algebraic group over a local field F. We assume that the Lie algebra of
G is a finite-dimensional vector space over F. Let S be a G-homogeneous space with
a fixed base point x0 ∈ S. Let H = Stab x0 ⊂ G be the stabilizer of x0. Then, we have
a canonical isomorphism S ≅ G/H. In general, S may not have a G-invariant Haar-
measure. For example, the projective space P1

R
is a GL2(R)-homogeneous space with

no GL2(R)-invariant Haar-measure. It is well-known that the G-invariant measure
exists for S = G/H if and only if their modular characters δG and δH satisfies δG(h) =
δH(h) for any h ∈ H. For the rest of the paper, we only consider the case where H is a
compact subgroup. Then, any character from H to R

×
>0 is trivial. This fact implies that

we have a G-invariant measure on S ≅ G/H.
Once we have chosen a left Haar-measure dg on G and a Haar-measure dh on H,

the Haar-measure ds on S is defined so that for any function f ∶ G �→ R, we have

∫
G

f (g)dg = ∫
S

f̃ (s)ds

where f̃ (s) = ∫H f (gs h)dh with gs x0 = s.

3.2 Standard Haar-measure

For an algebraic group G over OF and a smooth G-homogeneous space S, we may
choose a Haar-measure on S such that the total volume of S(OF) is given by

Vol(S(OF)) =
#S(Fq)
qdim(S) .

The standard Haar-measure on G is defined in the same way.
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3.3 Integration by fibration

In this section, we introduce the main computational strategy in our paper. Theorem
3.1 in this section can be used in situations where the following three conditions are
satisfied.

Condition 1 (Fibration) There is a subgroup C ⊂ G, a C-invariant subset S○ ⊂ S, a
C-homogeneous space T, and a C-equivariant surjective map

p ∶ S○ �→ T .(3.1)

Condition 2 (Fiber Translation) For any t ∈ T , there exists a subgroup Pt ⊂ G such
that each fiber p−1{t} is a subset of a Pt-homogeneous space Rt = Pt ⋅ t ⊂ S. We denote
R○t = p−1{t}.

Condition 3 We have dim(Rt) + dim(T) = dim(S). In other words, we require the
fiber p−1{t} and Rt have the same dimension.

We give an example of a fibration with those three conditions. If we want to project
a sphere S2 to its equator along longitude lines, we can not do so because of the north
and south poles. Therefore, we must choose a subset S○ = S2/{poles} and apply the
projection. Let t be a point on the equator. Each fiber p−1{t} of the projection is a semi-
circle, which is a subset of a full circle Rt ⊂ S2 passing through two poles and t. The full
circle is a homogeneous space for a subgroup O2(R) ≅ Pt ⊂ Aut(S2) ≅ O3(R). We see
the dimension of the fiber p−1{t} and Rt are the same.

When we have the above conditions, we may write the integral over S○ into the
following form

∫
S○

f (s)ds = ∫
T
∫

R○t
f (r)∣Jt(r)∣F drdt.(3.2)

Here dr, dt, and ds are standard G,C,P-invariant measures. The main obstacle is
computing the Jacobian determinant Jt(r).

We need to introduce more notation before Theorem 3.1. For any vector space V, by
⋀V , we mean the highest wedge product of V. It is an one-dimensional vector space.
Note that whenever we have an exact sequence

0 �� U �� V �� W �� 0 ,

we have ⋀V = ⋀U ⊗⋀W . For any λv ∈ ⋀V and 0 ≠ λu ∈ ⋀U , by λv
λu

, we mean the
unique element λw ∈ ⋀W such that λv = λw ⊗ λu .

Theorem 3.1 Let r ∈ S and t = p(r) be as in (3.1) and (3.2). Moreover, let H = Stab r
be the stabilizer of r ∈ S ≅ G/H. Let C , Pt ⊂ G be subgroups as we defined above. Let g,
c, p, h be Lie algebras of G,C, Pt ,H, respectively. Let

u = g
p
uc =

c

c ∩ p uh =
h

h ∩ p
be their quotient spaces. Let

dg ∈ ⋀ g∨ dh ∈ ⋀ h∨ dp ∈ ⋀p∨ dq ∈ ⋀(p ∩ h)∨ dt ∈ ⋀u∨c
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be volume forms corresponding to left Haar-measures on G, H, P, P ∩H, and C/C ∩ P,
respectively. Furthermore, let

du = dg
dp
∈ ⋀u∨ duh =

dh
dq
∈ ⋀u∨h .

Suppose dim(S) = dim(T) + dim(Pt ⋅ r). Then we have u = uc ⊕ uh and

du = J(r)duhdt.

Proof Let Ptr ⊂ S be the orbit of r under the action of Pt . Then, we have Ptr ≅ Pt/Pt ∩
H. The tangent spaces of the point r ∈ S○ in Pr and in S are naturally isomorphic to
g

h
and p

p∩h , respectively. Note that the natural inclusion Pt/H ∩ Pt ⊂ S gives rise to an
inclusion of tangent spaces p

p∩h ⊂
g

h
. Since p ∶ S○ �→ T is an open map, the quotient

of g
h

by p

p∩h is naturally isomorphic to the tangent space of t in T. Let Tt be the tangent
space of t ∈ T . The map c�→ Tt factors through uc . Since p ∶ S○ �→ T is surjective,
the induced map

pt ,∗ ∶ uc �→ Tt

is naturally surjective. Given that dim(uc) ≤ dim(S) − dim(Pt ⋅ r) = dim(T) =
dim(Tt), we know that pt ,∗ is an isomorphism. Therefore, we have the following exact
sequence

0 �� p

p ∩ h
�� g

h
�� uc �� 0.(3.3)

To prove u = uc ⊕ uh , we complete the above sequence into the following exact
diagram.

0

��

0

��
0 �� p ∩ h ��

��

h ��

��

uh �� 0

0 �� p ��

��

g ��

��

u �� 0

0 �� p

p ∩ h
��

��

g

h
��

��

uc �� 0

0 0

By the Snake Lemma, we have the following exact sequence

0 �� uh �� u �� uc �� 0.

The natural inclusion c ⊂ g induces an inclusion uc ⊂ u. This implies that the above
exact sequence splits. Then, u = uc ⊕ uh . To compute the Jacobian determinant, we
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note that J(r) is defined in the following equation

Jt(r)drdt = ds.

Since we have ds = dg
dh , dr = dp

dq . We may write

Jt(r)
dp
dq
⋅ dt = dg

dh
∈ ⋀(g

h
)
∨

.

By multiplying dh
dp , this equation can be written to

Jt(r)
dh
dq
⋅ dt = dg

dp
∈ ⋀u∨.

This implies

Jt(r)duh ⋅ dt = du.

This completes the proof. ∎

4 Parabolic reduction formula

This section provides an integration formula that will be used in Section 5. Let
Sh(OF) = Sh(F) ∩G2h(OF), and a, a non-negative integer. For any t, let Pt denote
the corresponding invariant polynomial. Denote

S
>r
h ,a(OF) = {t ∈ Sh(OF) ∶ Pt(X) has exactly a factors (X − λ) with vF (1 − 1

λ
) > r} .

Furthermore, we put S>r
a (OF) ∶= S>r

a ,a(OF) and S≤r
a (OF) ∶= S>r

a ,0(OF). Let f ∶
Ph(F) �→ R be a function on the set Ph(F) of degree h monic F-polynomials.

We will show that
1

εKh
∫
S>r

h ,a(OF)
f (Pt)dt

= 1
εKh−a

1
εKa

∫
S>r

a (OF)
∫
S≤r

h−a(OF)
f (Pt1 Pt2)∣Res(Pt1 , Pt2)∣F dt1dt2 .

(4.1)

This formula is the key for our induction algorithm. The whole section is a proof
for this. The reader willing to accept this formula may skip this section.

This section will follow the strategy of integration-by-fibration as we mentioned in
Section 3. In Section 4.1, we introduce our basic construction of fibration and check
that it satisfies the three conditions in Section 3.3. Then in Section 4.2, we use our
constructions in Section 2 to compute the corresponding Jacobian determinant.

4.1 Fibration over Grassmannian

Now we construct a fibration that satiesfies the Condition 1. Consider V = F2h as a
free K1-module of rank h by the K1-structure induced by α1. Let Grh ,a(K) be the
Grassmannian variety parametrizing n-dimensional K1-subspaces in V. For any x ∈
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S
>r
h ,a(OF), we may decompose the invariant polynomial of x into

Px = P>r
x P≤r

x(4.2)

where P>r
x is the maximal factor of Px such that all roots λ of P>r

x satisfies vF (1 − 1
λ ) >

r. Let Ux be the image of the operator P>r
x (i2

x). Then Ux is the maximal invariant
subspace of i2

x such that all its eigenvectors in Ux have its eigenvalue λ satisfying
vF (1 − 1

λ ) > r. We define a map by

p ∶ S>r
h ,a(OF) �→ Grh ,a(K)

x *→ Ux
.(4.3)

ClearS>r
h ,a(OF) is a Gh(OK1)-invariant subset. This map is Gh(OK1)-equivariant.

Next we check Condition 2, that for any U ∈ Grh ,a(K), each fiber p−1(U) of the
map p in (4.3) is a subset of certain homogeneous space of a certain subgroup. In our
scenario here, this subgroup is PF ,U(OF) ⊂ G2h(OF), which is the stabilizer of U. The
corresponding homogeneous space is a subset ofSh(OF) defined by

PU(OF) ∶= PF ,U(OF) ⋅ x0

= {x ∈ Sh(OF) ∶ x = gx0 g−1 for some g ∈ PF ,U(OF)}.

To check the Condition 2, we need to check the fiber is a subset of this homogeneous
space.

Lemma 4.1 For any U ∈ Grh ,a(K), we have p−1(U) ⊂ PU(OF).
Proof Let x ∈ p−1(U), we have i2

x U = U . Since any x ∈ Sh(F) commutes with the
element i2

x , the subspace xU is also an invariant subspace for i2
x . Furthermore, the

restriction of i2
x on U and xU gives the same eigenvalues. Since U is the maximal

invariant subspace with eigenvalue λ of i2
x that satisfies vF (1 − 1

λ ) > r, then we must
have

xU ⊂ U .

This implies xU = U . Similarly, we have x0U = U . This implies

(ζ − ζσ)ix = x − xσ
0 ∈ PF ,U(OF).

Now

x = ix x0 i−1
x ∈ PU(OF)

and we are done. ∎
Now we check the Condition 3. As varieties overOF , we have dim(Sh(OF)) = 2h2,

dim(PU(OF)) = 2a2 + 2(h − a)2 + 2a(h − a), dim(Grh ,a(K)) = 2a(h − a). Then
we have dim(Sh(OF)) = dim(PU(OF)) + dim(Grh ,a(K)).

4.2 Computation of the Jacobian determinant

From now on, we denote the fiber p−1(U) of U by P>r
U (OF). Let dU(resp. dt′, dt)

be the Gh(OK1)(resp. PK ,U(OK1), G2h(OF))-invariant standard Haar-measure on
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Grh ,a(K) (resp.PU(OF),Sh(F)). We can write

∫
S>r

h ,a(OF)
f (Pt)dt = ∫

Grh ,a(K)
∫
P>r

U (OF)
f (Pt′)∣J(t)∣F dt′dU .(4.4)

The Jacobian determinant J(t) is defined by

dt = J(t)dt′dU .

We determine the value of J(t) via the following theorem.

Theorem 4.2 Let x ∈ S>r
h ,a(OF) be an element whose invariant polynomial Px decom-

poses as

Px = P>r
x P≤r

x

as in (4.2). Then we have

∣J(x)∣F = ∣Res(P>r
x , P≤r

x )∣F .

Proof Let α2 ∶ K �→ F2h be the map with α2(ζ) = x. Denote the stabilizer of x ∈
Sh(OF) by Gh(OK2). Let g2h , gh ,1, gh ,2, pF , pK , i be Lie algebras for groups G2h(OF),
Gh(OK1), Gh(OK2), PF ,U(OF), and PK ,U(OK i ), respectively for i = 1, 2. Denote the
standard Haar-measure for them as dg, dk1, dk2, dpF , and dp i , respectively. For i =
1, 2, we denote

uK , i ∶=
gh , i

pK , i
uF ∶=

g2h
pK

.

Let du1 = dk1
dp1

, du2 = dk2
dp2

duF = dg
dpF

. Applying Theorem 3.1, we have

duF = J(x)du1 ⋅ du2 ∈ ⋀(g2h
pF
)
∨

.(4.5)

Note that uK , i are tangent spaces of Grassmannian manifolds at the point of Ux . Let

V = F2h .

Recall that

Ux ≅ F2a .

We have natural isomorphisms

uK , i ≅ HomK i (Ux , V/Ux) uF ≅ HomF(Ux , V/Ux) i = 1, 2.

Before we calculate J(t), let α′i and α′′i be the induced K i -structures on Ux and V/Ux .
Let α′′i be the Galois conjugate of α′′i . Then (α′1 , α′2) and (α′′1 , α′′2 ) are double structures
on Ux and V/Ux , respectively. Let

Eα i
+ = Homα′i ,α′′i (Ux , V/Ux) Eα i

− = Homα′i ,α′′i
(Ux , V/Ux)
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be subsets of K-linear homomorphisms with K-structure induced by (α′i , α′′i ) and
(α′i , α′′i ), respectively, for i = 1, 2. For any i = 1, 2, the following sequence is exact

0 �� Eα i
+

�� HomF(Ux , V/Ux)
Ti ∶= f↦ f ○α′i(ζ)−α′′i (ζ)○ f �� Eα i

−
�� 0

(4.6)

The last map is a surjective map because its right inverse is given by

T ′i ∶ Eα i
− �→ HomF(Ux , V/Ux)
f *→ f ○ α i(ζ − ζσ)−1 ○ (1 − σ).

This implies

HomF(Ux , V/Ux) = Eα i
+ ⊕ Eα i

− .

Let duF , du i , and du i be the standard Haar-measures on HomF(Ux , V/Ux), Eα i
+ , Eα i

− ,
respectively. By the exact sequence (4.6) and the fact that T ∣Eαi

−
( f ) = f ○ α′i(ζ − ζσ),

we have

duF = det(Ti ∣Eαi
−
)du i du i = Disca(h−a)

K/F du i du i .

Now we start our calculation of J(x). On one hand, we consider the following exact
sequence

0 �� Eα2
+

��

��

Eα1
+ ⊕ Eα2

+
��

��

Eα1
+

��

��

0

0 �� Eα2
+

�� HomF(Ux , V/Ux)
T2 �� Eα2

−
�� 0.

Then we have

du2du2 = duF = J(x)du1du2 ,⇒ J(x) = du2

du1

This implies J(x) is the relative determinant

J(x) = det (Eα1
+ �→ HomF(Ux , V/Ux) �→ Eα2

− ) = det(T ∣Eα1
+
).

Here, the map T2 in the exact sequence is given by the following map

T2 ∶ HomF(Ux , V/Ux) �→ Eα2
−

f *→ f ○ α′2(ζ) − α′′2 (ζ) ○ f .

For any symbol a, we denote La for the left composing map La ∶ f ↦ a ○ f and
Ra for right composing map Ra ∶ f ↦ f ○ a. Please note that for any symbol a, b, La ,
and Rb always commute (because composition of maps is associative). Consider the
following linear operators

Θ− ∶ HomF(Ux , V/Ux) �→ HomF(Ux , V/Ux)
f *→ f ○ (α′1(ζ) − α′2(ζ)) − (α′′1 (ζ) − α′′2 (ζ)) ○ f ,(4.7)
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Θ+ ∶ HomF(Ux , V/Ux) �→ HomF(Ux , V/Ux)
f *→ f ○ (α′1(ζ) − α′2(ζ)) + (α′′1 (ζ) − α′′2 (ζ)) ○ f ,(4.8)

L′′i ○ R′e ∶ HomF(Ux , V/Ux) �→ HomF(Ux , V/Ux)
f *→ iα′′1 ,α′′2 ○ f ○ eα′1 ,α′2 ,(4.9)

L′′i ○ L′′e ∶ HomF(Ux , V/Ux) �→ HomF(Ux , V/Ux)
f *→ iα′′1 ,α′′2 ○ eα′′1 ,α′′2 ○ f .(4.10)

Then we know Θ−∣Eα1
+
= T2∣Eα1

+
and our goal is to compute

det (Eα1
+

Θ−�→ Eα1
− ).

Since Ux ≅ Ka , we have
Eα i
+ ≅ (V/Ux)a , Eα i

− ≅ (V/Ux)a .

Therefore

det ( Eα i
+

L′′i ○L′′e �� Eα i
− ) = det ( (V/Ux)a L′′i ○L′′e �� (V/Ux)a )

= det(i′′x ○ e′′x )a .

So we proved

det ( Eα1
+

L′′i ○L′′e �� Eα1
− ) = det ( Eα2

+
L′′i ○L′′e �� Eα2

− ).

Use this identity and the following commutative diagram

Eα1
+

L′′i ○L′′e ��

L′′i ○R′e
��

Eα1
−

L′′i ○R′e
��

Eα2
−

L′′i ○L′′e �� Eα2
+ ,

we know that

det ( Eα1
+

L′′i ○R′e �� Eα2
− ) = det ( Eα1

−
L′′i ○R′e �� Eα2

+ ).

Again using the exact sequence (4.6), we have the following commutative diagram

0 �� Eα1
+

��

L′′i ○R′e
��

HomF(Ux , V/Ux) ��

L′′i ○R′e
��

Eα1
−

��

L′′i ○R′e
��

0

0 �� Eα2
+

�� HomF(Ux , V/Ux) �� Eα2
−

�� 0.

This implies det ( HomF(Ux , V/Ux)
L′′i ○R′e �� HomF(Ux , V/Ux) ) equals to

det ( Eα1
+

L′′i ○R′e �� Eα2
− ) ⋅ det ( Eα1

−
L′′i ○R′e �� Eα2

+ )

= det ( Eα1
+

L′′i ○R′e �� Eα2
− )

2
.
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Since the map HomF(Ux , V/Ux)
L′′i ○R′e �� HomF(Ux , V/Ux) does not change

when changing indices from 1 to 2, we conclude that

det ( Eα1
+

L′′i ○R′e �� Eα2
− ) = det ( Eα2

−
L′′i ○R′e �� Eα1

+ ).

This identity and the following commutative diagram

Eα1
+

L′′i ○R′e
��

Θ− �� Eα2
−

L′′i ○R′e
��

Eα2
−

Θ+ �� Eα1
+

imply that

det ( Eα1
+

Θ− �� Eα2
− ) = det ( Eα2

−
Θ+ �� Eα1

+ ).

Since

Θ+ ○Θ− = (Lα′′1 (ζ)−α′′2 (ζ) + Rα′1(ζ)−α′2(ζ)) ○ (Lα′′1 (ζ)−α′′2 (ζ) − Rα′1(ζ)−α′2(ζ)),
we have

Θ+ ○Θ− = L2
α′′1 (ζ)−α′′2 (ζ)

− R2
α′1(ζ)−α′2(ζ)

.

Since the characteristic polynomial of (α
′′
1 (x)−α′′2 (x))

2

(x−x σ)2 and (α′1(x)−α′2(x))
2

(x−x σ)2 are P>r
x and

P≤r
x respectively, we have

detK(Θ+ ○Θ−∣Eα1
+
) = Res(P>r

x , P≤r
x )Disca(h−a)

K/F .

Therefore, ∣det( Eα1
+

Θ− �� Eα2
− )∣F equals

√
∣detK(Θ+ ○Θ−∣Eα1

+
)∣K =

√
∣Res(P>r

x , P≤r
x )∣K = ∣Res(P>r

x , P≤r
x )∣F ∣Disca(h−a)

K/F ∣F .

This completes the proof. ∎
By Theorem 4.2, we can write (4.4) as

∫
S>r

h ,a(OF)
f (Pt)dt = ∫

Grh ,a(K)
∫
P>r

U (OF)
f (Pt)∣Res(P>r

t , P≤r
t )∣F dtdU

= Vol(Grh ,a(K))∫
P>r

U (OF)
f (Pt)∣Res(P>r

t , P≤r
t )∣F dt.(4.11)

Since

Vol(Grh ,a(K)) =
εKh

εKm εKn

,

we have
1

εKh
∫
S>r

h ,a(OF)
f (Pt)dt = 1

εKm εKn
∫
P>r

U (OF)
f (Pt)∣Res(P>r

t , P≤r
t )∣F dt.(4.12)
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Let 1P>r
U (OF) be the characteristic function of the subsetP>r

U (OF) ⊂ PU(OF). We can
write

∫
P>r

U (OF)
f (Pt)∣Res(P>r

t , P≤r
t )∣F dt = ∫

PU(OF)
1P>r

U (OF)(t) f (Pt)∣Res(P>r
t , P≤r

t )∣F dt.

Consider a fibration

PU(OF) �→ Sa(OF) ×Sh−a(OF)
(α1 , α2) *→ ((α′1 , α′2), (α′′1 , α′′2 )) .

This is an PF ,U(OF)-equivariant map and both spaces are PF ,U(OF)-homogeneous
spaces. Each fiber is a homogeneous space of its unipotent subgroup

U2m ,2n(OF) = {g ∈ PF ,U(OF) ∶ g∣U = idU , g∣V/U = idV/U}.

Let dt1 , dt2, and du be standard Haar-measures on Sa(OF), Sh−a(OF) and
U2m ,2n(OF) respectively. We may write the integral

∫
PU(OF)

1P>r
U (OF)(t) f (Pt)∣Res(P>r

t , P≤r
t )∣F dt

= ∫
Sa(OF)

∫
Sh−a(OF)

∫
U2m ,2n(OF)

1P>r
U (OF)(t) f (Pt)∣Res(P>r

t , P≤r
t )∣Fdudt1dt2

= ∫
U2m ,2n(OF)

du∫
S>r

a (OF)
∫
S≤r

h−a(OF)
f (Pt1 Pt2)∣Res(Pt1 , Pt2)∣F dt1dt2 .

Since Vol(U2m ,2n(OF)) = 1, we have

1
εKh

∫
S>r

h ,a(F)
f (Pt)dt = 1

εKh−a

1
εKa

∫
S>r

a (OF)
∫
S≤r

h−a(OF)
f (Pt1 Pt2)∣Res(Pt1 , Pt2)∣F dt1dt2 .

(4.13)

5 Inductive formulae for the intersection number

In this section, we introduce the inductive formulae for the intersection number
Int(γ), where the input double structure γ = (φ1 , φ2) satisfies the following condi-
tion.
• (*) The valuation vF(Pγ(1)) for the invariant polynomial at 1 is odd and coprime

to h.
Then, let r = −vF(Pγ(1))

h , which also equals to vF(γ2
#)where γ# is the polar stereographic

coordinate of (φ1 , φ2). This section is divided into three parts.
In the first part, we simplify the intersection formula by defining the following

integrals.

Ar[a, k] = 1
εK ,a

∫
S>r

a (OF)
∣Px(1)∣−k

F dx ,(5.1)

B0[c] =
1

εK ,c
∫
S≤0

c (OF)
dx ,(5.2)
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Cr[b, c] = 1
εK ,b

∫
S≤r

b (OF)∩S>0
b (OF)

∣Px(1)∣−b−c
F dx .(5.3)

We prove that under the condition (*), the number Int(γ) can be written into the
following form

Int(γ) = ∑
a+b+c=h

∣Pγ(1)∣−a
F Ar[a, 0]Cr[b, c]B0[c].(5.4)

In particular, in the situation of (*), the intersection number only depends on r. To
simplify our notation in the rest of the paper, we will denote it by N(r) ∶= Int(γ).

The second part will introduce the inductive formulae for computing Ar[a, 0],
Cr[b, c], B0[c]. Specifically, we will show

Cr[n, m] = A0[n, n −m] −
n−1
∑
i=0

Cr[i , m]Ar[n − i , n −m] for m ≥ n,(5.5)

B0[a] =
a
∏
i=1

1 − q1−2i

1 − q−2i −
a
∑
i=1

A0[i , 0]B0[a − i].(5.6)

The formulae (5.2), (5.3), and (5.4) imply that the computation of Int(γ) can be
reduced to Ar[a, 0].

In the third part of this section, we will use polar stereographic coordinates to prove
the following formula. Define

a0[n, n −m] ∶= q−2m
n−1
∏
i=0
i≠m

1
1 − q−2(m−i) ,(5.7)

and define recursively

ar[n, n −m] ∶= a0[n, n −m] −
m
∑
i=1

Cr[i , m]ar[n − i , n −m] for 0 ≤ m < n.(5.8)

Then, we claim

Ar[n, n −m] =
n−1
∑
i=0

ar[n, n − i]q2(i−m)⌈ nr
2 ⌉

1 − q2(i−m) for m ≥ n.(5.9)

All the above formulae are sufficient for calculating the intersection number
N(r) = Int(γ) in the case of (*). The application for h = 2 case is introduced in Section
6. The reader willing to accept these formulae may skip the rest of the section.

5.1 Simplification of the intersection formula

In this section, our goal is to prove the formula (5.4). For any integer h, let εK ,h and
εF ,2h be the volume of Gh(OK) and G2h(OF) respectively with the standard Haar-
measure(see Section §3). It is well-known that

εF ,2h =
2h
∏
i=1
(1 − q−i) εK ,h =

h
∏
i=1
(1 − q−2i).
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Suppose dg is the normalized Haar-measure on G2h(OF), then the standard Haar-
measure is εF ,2hdg. From now on, we will use standard Haar-measures for the rest of
our discussion. The intersection formula is written with the standard Haar-measure
dg by

Int(γ) = 1
ε2

K ,h
∫

G2h(OF)
∣Res(Pγ , Pg)∣

−1

F
dg .(5.10)

The integrand only depends on Pg . Let Sh(OF) = Sh(F) ∩G2h(OF). There is an
isomorphism

Sh(OF) ≅ G2h(OF)/Gh(OK1).

We notice that for any k1 , k2 ∈ Gh(K1), we have

Pk1 gk2 = Pg .

To simplify notation, we fix the following function throughout the whole section

f (Pt) = ∣Res(Pt , Pγ)∣F .

Then, we can write Int(γ) as

1
ε2

K ,h
∫

G2h(OF)
f (Pg)dg = 1

ε2
K ,h
∫
Sh(OF)

∫
Gh(OK1 )

f (Pkt)dkdt

= 1
ε2

K ,h
∫
Sh(OF)

f (Pt)dt ⋅ ∫
Gh(OK1 )

dk

= 1
εK ,h

∫
Sh(OF)

f (Pt)dt.

(5.11)

Since we have

Sh(OF) =
h
∐
a=0
S
>r
h ,a(OF) =

h
∐
a=0

a
∐
c=0
S
>r
h ,a(OF) ∩S≤0

h ,c(OF),

we can write the integral (5.11) as

Int(γ) = 1
εK ,h

∫
Sh(OF)

f (Pt)dt = ∑
a+b+c=h

I(a, b, c)

where I(a, b, c) equals to

I(a, b, c) = 1
εK ,h

∫
S>r

h ,a(OF)∩S≤0
h ,c(OF)

f (Pt)dt.

For any three polynomials P1 , P2 , andP3, by Res(P1 , P2 , P3), we mean the product
Res(P1 , P2P3)Res(P2 , P3). Using the reduction formula in (4.13), we can simplify
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I(a, b, c) to

1
εK ,h

∫
S>r

h ,a(OF)∩S≤0
h ,c(OF)

f (Pt)dt

= 1
εK ,a+b εK ,c

∫
S≤0

c (OF)
∫
S>r

a+b ,a(OF)∩S>0
a+b(OF)

f (Pt1 Pt2)∣Res(Pt1 , Pt2)∣F dt1dt2dt3

= 1
εK ,a εK ,b εK ,c

∫
S≤0

c (OF)
∫
S≤r

b (OF)∩S>0
b (OF)

× ∫
S>r

a (OF)
f (Pt1 Pt2 Pt3)∣Res(Pt1 , Pt2 , Pt3)∣Fdt1dt2dt3

= 1
εK ,a εK ,b εK ,c

∫
S≤0

c (OF)
∫
S≤r

b (OF)∩Sb
>0(OF)

× ∫
S>r

a (OF)

∣Res(Pt1 , Pt2 , Pt3)∣F
∣Res(Pγ , Pt1 Pt2 Pt3)∣F

dt1dt2dt3 .

(5.12)

Then the equation (5.4) is obvious if we can prove the following proposition.

Proposition 5.1 Suppose γ satisfies the condition (*) and t1 ∈ S>r
a (OF), t2 ∈

S
≤r
b (OF) ∩S>0

b (OF), t3 ∈ S≤0
c (OF), then

∣Res(Pt1 , Pt2 , Pt3)∣F
∣Res(Pγ , Pt1 Pt2 Pt3)∣F

= ∣P−a
γ (1)P−b−c

t2
(1)∣F .

The rest of this section is devoted to proving this proposition.

Definition 5.2 (In this section only) we say that an F-coefficient polynomial Py
dominates another F-coefficient polynomial Px if any root λ of Px and μ of Py have
the property

vF(1 − λ−1) > vF(1 − μ−1).

Our proof will use the following lemma.

Lemma 5.3 Suppose Px , Py are two F-coefficient polynomials. Let a = deg(Px) and
b = deg(Py). If Py dominates Px , then we have

∣Res(Px , Py)∣F = ∣Pa
y (1)Pb

x (0)∣F .

Proof Let λ1 , . . . , λa be roots of Px , and μ1 , . . . , μb roots of Py . Then by definition,

∣Res(Px , Py)∣F =
a
∏
i=1

b
∏
j=1
∣λ i − μ j∣F .

Since Px(0) = ∏a
i=1 λ i and Py(0) = ∏b

j=1 μ j , we can write

∣Res(Px , Py)∣F = ∣Px(0)b Py(0)a ∣F
a
∏
i=1

b
∏
j=1
∣ 1

λ i
− 1

μ j
∣
F

.

https://doi.org/10.4153/S0008414X20000814 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000814


402 Q. Li

The assumption vF(1 − λ−1) > vF(1 − μ−1) implies

∣ 1
λ i
− 1

μ j
∣
F
= ∣(1 − 1

λ i
) − (1 − 1

μ j
)∣

F
= ∣1 − 1

μ j
∣
F

.

Therefore, we have

∣Res(Px , Py)∣F = ∣Px(0)b Py(0)a ∣F ∣1 −
1

μ j
∣

a

F
= ∣Px(0)b Py(0)a ∣F ∣

Py(1)
Py(0)

∣
a

F
.

This lemma follows. ∎
Lemma 5.4 For any t ∈ Sh(OF), let λ and μ be roots of Pt and Pγ , respectively. If Pγ
satisfies (*), then 1 − λ−1 and 1 − μ−1 have different valuation. In other words, either Pt
dominates Pγ or Pγ dominates Pt .

Proof For any t ∈ Sh(OF), we only need to show that any λ with vF(1 − λ−1) = d
h is

not a root of Pt for any odd integer d coprime to h. Indeed, if Pt has such a root and
d is coprime to h, then all roots λ of Pt have vF(1 − λ−1) = d

h . On the other hand, Pt is
the characteristic polynomial of i2

t as an element of Gh(K). Let λ1 , . . . , λh be the roots
of Pt . Then,

h
∏
i=1
(1 − λ−1

i ) = detK(1 − i−2
t ).

Using (2.3) and (2.2) we know

1 − i−2
t = (i2

t − 1) ○ i−2
t = −e2

t ○ i−2
t = (et ○ i−1

t )2 = t2
# .

Then vF(detK(t2
#)) = d is an odd integer. However, we have t#x0 = xσ

0 t#. Let σ ∈
G2h(OF) be the linear transformation of Galois conjugation on Kh

1 . Then σx0 =
xσ

0 σ . So t#σ commutes with x0. Therefore, t#σ ∈ Gh(K1) and vK(det(t#)2) =
vK(det(t#σ)2) = 2vK(det(t#σ)) is an even number. This is a contradiction. ∎
Lemma 5.5 Let Px be an invariant polynomial for an integral double structure. If all
roots λ of Px satisfy vF(1 − λ−1) > 0, we have ∣Px(0)∣F = 1. If all roots λ of Px satisfy
vF(1 − λ−1) ≤ 0, we have ∣Px(1)∣F = 1.

Proof Let λ be any root of Px . If we have vF(1 − 1
λ ) > 0, then we must have ∣λ∣F = 1.

Therefore, Px(0) is the product of all eigenvalues. So ∣Px(0)∣F = 1.
If vF(1 − 1

λ ) ≤ 0, so vF(λ − 1) ≤ vF(λ), then by the triangle inequality, we have

vF(1 − λ) ≤ 1

for any eigenvalue λ of Px . This implies

∣Px(1)∣F ≥ 1.

Since Px is the characteristic polynomial of i2
x ∈ ODK , the value Px(1) is the determi-

nant of

1 − i2
x = e2

x ∈ ODK1

by using (2.3). So ∣Px(1)∣F ≤ 1. This completes the proof. ∎
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Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1 Since we have

t1 ∈ S>r
a (OF), t2 ∈ S≤r

b (OF) ∩S>0
b (OF), t3 ∈ S≤0

c (OF),

Pt3 dominates Pt2 . By Lemma 5.4, we have Pt2 dominates Pγ . Moreover, Pγ dominates
Pt1 . By Lemma 5.3, this implies

∣Res(Pt1 , Pt2 , Pt3)∣F = ∣Pt1(0)b+c Pt2(0)c Pt2(1)a Pt3(1)a+b ∣F .

Similarly,

∣Res(Pγ , Pt1 Pt2 Pt3)∣F = ∣Pγ(0)b+c Pγ(1)a Pt1(0)h Pt2(1)h Pt3(1)h ∣F .

By Lemma 5.5, we have ∣Pt1(0)∣F = ∣Pt2(0)∣F = ∣Pγ(0)∣F = ∣Pt3(1)∣F = 1. Therefore

∣Res(Pt1 , Pt2 , Pt3)∣F
∣Res(Pγ , Pt1 Pt2 Pt3)∣F

= ∣P−a
γ (1)P−b−c

t2
(1)∣F

as desired. ∎
Combining these lemmas, we have obtained a proof of Proposition 5.1.

5.2 Recursion formula

Our next goal is to calculate the integrals defined in (5.1), (5.2), and (5.3). We establish
the equation (5.6) in Proposition 5.6 and equation (5.5) in Corollary 5.8.

Proposition 5.6 We have
a
∑
i=0

A0[i , 0]B0[a − i] = εF

ε2
K ,a

=
a
∏
i=1

1 − q1−2i

1 − q−2i .(5.13)

Proof On one hand, by applying our formula (4.13), we have

1
εK ,a

∫
Sa(OF)

dt =
a
∑
i=0

1
εK ,a εK ,h−a

∫
S≤0

a−i(OF)
∫
S>0

i (OF)
∣Res(Pt′ , Pt′′)∣F dt′dt′′

=
a
∑
i=0

1
εK ,a εK ,h−a

∫
S≤0

a−i(OF)
∫
S>0

i (OF)
∣Pt′(0)a−i Pt′′(1)i ∣F dt′dt′′ .

By Lemma 5.5, we have ∣Pt′(0)a−i Pt′′(1)i ∣F = 1 for t′ ∈ S>0
i (OF) and t′′ ∈ S≤0

a−i(OF).
Then, the above integral can be simplified as

a
∑
i=0

1
εK ,a εK ,h−a

∫
S≤0

a−i(OF)
∫
S>0

i (OF)
dt′dt′′ =

a
∑
i=0

A0[i , 0]B0[a − i].

On the other hand, Vol(Sa(OF)) = Vol(G2a(OF))
Vol(Ga(OK))

= εF
εK ,a

. Then,

1
εK ,a

∫
Sa(OF)

dt = εF

ε2
K ,a

as desired. ∎
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To compute Ar[a, k], we consider a more general integral

Ar(a, X) ∶= 1
εK ,a

∫
S>r

a (OF)
X

vF (Px (1))
2 dx .

Besides, we define

Cr(b, X) ∶= 1
εK ,b

∫
S≤r

b (OF)∩S>0
b (OF)

∣Px(1)∣−b
F X

vF (Px (1))
2 dx .

Then, we can write

Ar[a, i] = Ar(a, X)∣X=q2i Cr[a, i] = Cr(a, X)∣X=q2i .

Lemma 5.7 We have

A0(a, X) =
a
∑
i=0

Ar(i , X)Cr(a − i , q−2a X).(5.14)

Proof Clearly,

A0(a, X) = ∫
S>0

a (OF)
X

vF (Px (1))
2 dx =

a
∑
i=0
∫
S>0

a−i(OF)∩S≤r
a−i(OF)

× ∫
S>r

i (OF)
X

vF(Px′ (1))
2 +

vF(Px′′ (1))
2 ∣Res(Px′ , Px′′)∣Fdx′dx′′

=
a
∑
i=0
∫
S>0

a−i(OF)∩S≤r
a−i(OF)

× ∫
S>r

i (OF)
X

vF(Px′ (1))
2 +

vF(Px′′ (1))
2 ∣Px′(0)a−i Px′′(1)i ∣F dx′dx′′

=
a
∑
i=0
∫
S>0

a−i(OF)∩S≤r
a−i(OF)

∣Px′′(1)∣i−a
F ∣Px′′(1)∣aF X

vF(Px′′ (1))
2 dx′′

× ∫
S>r

i (OF)
X

vF(Px′ (1))
2 dx′

=
a
∑
i=0
∫
S>0

a−i(OF)∩S≤r
a−i(OF)

∣Px′′(1)∣i−a
F (q−2a X)

vF(Px′′ (1))
2 dx′′

× ∫
S>r

i (OF)
X

vF(Px′ (1))
2 dx′

=
a
∑
i=0

Cr(a − i , q−2a X)Ar(i , X).

This completes the proof. ∎
Corollary 5.8 For all m ≥ n, we have

A0[n, n −m] =
n
∑
i=0

Cr[i , m]Ar[n − i , n −m]

Proof By Lemma 5.7, we have A0(n, X) = ∑n
i=0 Ar(n − i , X)Cr(i , q−2n X). The

proof follows by setting X = q2n−2m . ∎
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Therefore, we proved equations (5.5) and (5.6).

5.3 Computation for Ar[n, m]

In previous steps, we have essentially reduced everything to the computation of
Ar(i , X). In this section, we will consider the core Ar(i , X). We will use the polar
stereographic coordinate for our computation. This section is divided into three parts.
In the first section, we introduce the integration overSh(F) using polar stereographic
coordinate. In the second section, we use the polar stereographic coordinate to
compute A0(i , X). We will see A0(i , X) is a rational function. In the last section, we
give the formula for Ar(i , X).

5.3.1 Polar Stereographic Coordinates

The polar stereographic coordinate is given by a map

●# ∶ S○h(F) �→Hh(F)
x *→ x# ∶= ex ○ i−1

x = (x − x0)(x − xσ
0 )−1

whereS○h(F) is the Zariski dense open subset given by

S
○
h(F) = {x ∈ Sh(F) ∶ x − xσ

0 is invertible}

and Hh(F) is the subspace of Mat2h(F) given by

Hh(F) = {x# ∈ Mat2h(F) ∶ x#x0 − xσ
0 x# = 0}.

We call this map the polar stereographic projection from the pole xσ
0 . Note that the set

Hh(F) is the set of all semi-K1-linear endomorphisms of F2h with the K1-structure
induced by α1.

Our goal for this section is to prove the following formula.

Proposition 5.9 Let dx# be the standard additive Haar-measure for Hh(F) and dx,
the standard Haar-measure for Sh(OF). For any function f ∶Hh(F) �→ R, we have

∫
Sh(F)

f (x#)dx = ∫
Hh(F)

f (x#)∣Px(0)∣2h
F dx# .

Proof We consider both Sh(F) and Hh(F) as subvarieties of the ambient variety
Mat2h(F). For any x ∈ Sh(OF), let TMat2h(OF),x , TSh(F),x be tangent spaces at x for
Mat2h(F) andSh(F). Let TMat2h(F),x# , THh(F),x# be tangent spaces at x# for Mat2h(F)
and Hh(F).

Note that dix = dex = dx
ζ−ζσ , from the following one-form calculation:

dx# = d (ex ○ i−1
x )

= ex ○ i−1
x (dix)i−1

x + (dex)i−1
x

= (ex ○ i−1
x + 1)(dix)i−1

x

= (ex + ix) ○ i−2
x ○ ix(dix)i−1

x ,

(5.15)
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we deduce that the induced map at the tangent space is given by the following map
(we also draw the ambient space in the picture).

TSh(F),x
��

� �

��

THh(F),x#� �

��
TMat2h(OF),x

�� TMat2h(F),x#

X � �� (ex + ix) ○ i−2
x ○ ix Xi−1

x .

Note that we can factorize this map into the following form

TSh(F),x
��

� �

��

TSh(F),x0
��

� �

��

THh(F),x#� �

��
TMat2h(OF),x

�� TMat2h(OF),x0
�� TMat2h(F),x#

X � �� ix Xi−1
x

� �� (ex + ix) ○ i−2
x ○ ix Xi−1

x

Y � �� (ex + ix) ○ i−2
x Y

.

Here the first map is induced by the following action of ix

ix ⋅ ∶ Sh(F) �→ Sh(F)
y *→ ix yi−1

x

Since ix ∈ G2h(F) and the Haar measure on Sh(F) is G2h(F)-invariant, the relative
determinant of the first map X ↦ ix Xi−1

x is 1. This implies the relative determinant for
TSh(F),x �→ THh(F),x# is equal to the relative determinant of TSh(F),x0 �→ THh(F),x#

with the map Y ↦ (ex + ix) ○ i−2
x Y . Note that if we identify TMat2h(OF),x0 with

TMat2h(F),x# by additive translation, TSh(F),x0 and THh(F),x# are the same subspaces
(intuitively, the projection plane for the polar-stereographic-projection and the tan-
gent space of the opposite point of the pole are parallel to each other). Since TSh(F),x0

is isomorphic to Math(K1), the relative determinant for TSh(F),x �→ THh(F),x# equals

detK1((ex + ix) ○ i−2
x )h .

Note that (ex + ix)2 = 1 implies ∣detK(ex + ix)∣K = 1, so

∣detK1((ex + ix) ○ i−2
x )h ∣K = ∣detK1 (i2

x)∣
−h
K1
= ∣Px(0)∣−h

K1
= ∣Px(0)∣−2h

F .

Now let dx and dx# be standard Haar-measures forSh(F) and Hh(F), we have

∣Px(0)∣−2h
F dx = dx# .
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This yields the formula that for any function f ∶Hh(F) �→ R,

∫
Sh(F)

f (x#)dx = ∫
Hh(F)

f (x#)∣Px(0)∣2h
F dx# .

This completes the proof. ∎

5.3.2 Computation of A0(i , X)

In this section, we will prove the following formula.

Theorem 5.10 We have

A0(a, X) = q−2a X
a
∏
i=1

1
1 − q−2i X

.

We briefly introduce our method. Firstly, we split Hh(F) into a disjoint union

Hh(F) =
h
∐
a=0

H>0
h ,a(OF)

of the following subsets

H>0
h ,a(OF) ∶= {x# ∈Hh(F) ∶ there is exactly a many eigenvalues of x#

with the positive valuation}.

Then, we will prove the following proposition.

Proposition 5.11 For any h, a, we have

∫
H>0

h ,a(OF)
XvK(x#)dx# = A0(a, X).

Suppose this proposition has been proved, then we know

∫
Hh(F)

XvK(x#)dx# =
h
∑
i=0
∫
H>0

h , i(OF)
XvK(x#)dx# =

h
∑
i=0

A0(i , X).

This implies

A0(a, X) = ∫
Ha(OF)

XvK(x#)dx# − ∫
Ha−1(OF)

XvK(x#)dx# .

Suppose, we know the following formula.

Proposition 5.12 We have

1
εK ,a

∫
H(OF)

XvK(x#)dx# =
a
∏
i=1

1
1 − q−2i X

.

Then, we just finish the proof for Theorem 5.10 by direct computation

A0(a, X) =
a
∏
i=1

1
1 − q−2i X

−
a−1
∏
i=1

1
1 − q−2i X

= q−2a X
a
∏
i=1

1
1 − q−2i X

.

We will prove Proposition 5.12 first, then prove Proposition 5.11.
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Proof of Proposition 5.12 Consider the Galois conjugation map (F-linear)

σ ∶ Kh
1 �→ Kh

1
x *→ x .

Clearly, we have σ ∈Hh(F) and det(σ) = (−1)h . Then we consider an isomorphism

l(σ) ∶H(OF) �→Mata(OK)
x *→ σ ○ x .

This implies
1

εK ,h
∫
Ha(OF)

XvK(x)dx = 1
εK ,h

∫
Mata(OK)

XvK(x)dx .

Denote the above integral by F(a, X). Let dg be the standard Haar-measure on
Ga(K). Then, we have dx = ∣g∣aKdg. We may write F(a, X) into

F(a, X) = 1
εK ,h

∫
Ga(K)∩Mata(OK)

XvK(g)∣g∣aKdg .

Let � ⊂ Ga(K) be the subgroup of upper triangular matrices. By Iwasawa decom-
position, we can write Ga(K) = �Ga(OK). Then, we can view Ga(K) as a homoge-
neous space with the left � ×Ga(OK)-action given by

(� ×Ga(OK)) ⋅Ga(K) �→ Ga(K)
(γ, k) ⋅ g *→ γgk−1 .

The stabilizer of each point is isomorphic to a compact subgroup Ga(OK) ∩ �. Then,
Ga(K) has an � ×Ga(OK)-invariant Haar-measure. Since this measure has to be
unique, this measure coincide with the Haar-measure of Ga(K). We choose the
identity matrix Ih ∈ Ga(K) as our base point of Ga(K). Then, for any g ∈ Ga(K), we
can write g = pIh t for some p ∈ � and t ∈ Ga(OK). Therefore, we have

∫
Ga(K)

1Mata(OK)(g)XvK(g)∣g∣aKdg = ∫�×Ga(OK) 1Mata(OK)(pt)XvK(pt)∣pt∣aKdpdt

∫�∩Ga(OK) 1Mata(OK)(g)XvK(g)∣g∣aKdg
.

Note that the integrand 1Mata(OK)(g)XvK(g)∣g∣aK is equal to 1 for g ∈ Ga(OK), we have

∫
Ga(K)

1Mata(OK)(g)XvK(g)∣g∣aKdg

= Vol(Ga(OK))
Vol(Ga(OK) ∩ �) ∫�

1Mata(OK)(p)XvK(p)∣p∣aKdp

Since Vol(Ga(OK) ∩ �) = εa
K ,1 and Vol(Ga(OK)) = εK ,a , we can write

F(a, X) = 1
εa

K ,1
∫
�
1Mata(OK)(p)XvK(p)∣p∣aKdp.

We remind the reader that dp is the standard left-Haar-measure of P. Let Λ ⊂ � be the
subgroup of diagonal matrices, U ⊂ � the subgroup of unipotent matrices. We take the
decomposition p = δu such that δ ∈ Λ and u ∈ U . Note that det(u) = 1 for all u ∈ U .
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We can write

F(a, X) = 1
εa

K ,1
∫

Λ
∫

U
1[δu ∈ Mata(OK)]∣δu∣a XvK(δu)dudδ

= 1
εa

K ,1
∫

Λ
f (δ)∣δ∣a XvK(δ)dδ

where

f (δ) = ∫
U
1[δu ∈Mata(OK)]du.

Here 1[●] ∶ {True, False} �→ {0, 1} is the map such that 1[True] = 1 and 1[False] =
0. Let δ11 ,⋯, δaa ∈ K be diagonal entries of δ and u i j the entry of u in ith row and jth
column. Then, δu ∈ Mata(OK) is equivalent to that u i j ∈ δ−1

i i OK . We thus have

f (δ) =
a
∏
i=1

a
∏

j=i+1
∫

K
1[u i j ∈ δ−1

i i OK]du i j =
a
∏
i=1

a
∏

j=i+1
∣δ i i ∣−1

K =
a
∏
i=1
∣δ i i ∣i−a

K .

Therefore,

F(a, X) = 1
εa

K ,1
∫

Λ∩Mata(OK)

a
∏
i=1
∣δ i i ∣i−a

K ∣δ i i ∣aK XvK(δ i i)dδ.

This equals

F(a, X) =
a
∏
i=1

1
εK ,1

∫
OK

(q−2i X)vK(δ i i)dδ i i =
a
∏
i=1

1
1 − q−2i X

as desired. ∎
Our next goal is to prove Proposition 5.11. We will use the method in Section 3 for

our calculation.

Proof of Proposition 5.11 This proof follows the strategy in Section 3.3. We will adapt
the conditions to our situation.

Condition 1 We choose a subgroup C and set up the C-equivariant fibration: For
any t ∈H>0

h ,a(OF), we can decompose the characteristic polynomial P(X) of t as
P(X) = P0(X)P>0(X) such that P0(0) ∈ O×F and P>0(X) ≡ Xa modulo π. Then, let
Ut = ker(P>0(t)), which is the maximal invariant subspace such that all eigenvectors
of t on Ut have eigenvalue λ with vF(λ) > 0. Using this way, we have defined a map

p ∶H>0
h ,a(OF) �→ Grh ,a(K)

x *→ Ux .(5.16)

Let H○h(F) ⊂Hh(F) be the subset of invertible matrices. Then, H○h(F) is a left-
homogeneous space for the group Ga(K) ×Ga(K) with the action given by

(Ga(K) ×Ga(K)) ⋅H○h(F) �→H○h(F)
(k1 , k2) ⋅ x *→ k1xk−1

2 .

Furthermore, we choose our subgroup C as the following

GΔ
a (OK) ∶= {(x , x) ∶ x ∈ Ga(OK)}.

https://doi.org/10.4153/S0008414X20000814 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000814


410 Q. Li

Then the surjective map in (5.16) is a GΔ
a (OK)-equivariant map when we consider

Grh ,a(K) as a GΔ
a (OK)-homogeneous space.

Condition 2 We choose a subgroup P such that each fiber is a subset of a P-
homogeneous space: We denote each fiber p−1(U) by P>0

U (OF). Then, P>0
U (OF) is

a subset of

PU(OF) = {x ∈Hh(F) ∶ xU ⊂ U}.

Clearly, PU(OF) is a homogeneous space of

P = PK ,U(OK2) × PK ,U(OK2)

where, PK ,U(OK2) is the stabilizer of Ut .

Condition 3 Clearly, we have

dim(H○h(F)) = dim(P>0
U (OF)) + dim(Grh ,a(K)).

Notation Denote the stabilizer of t ∈H(OF) by Gt
a(OK). We have

Gt
a(OK) ∶= {(x , t−1xt) ∶ x ∈ Ga(OK)}.

Let ga and pU ,K be the Lie-algebra of Ga(OK) and PK ,U(OK2) respectively.
Let gΔ

a , gt
a(OK) ⊂ ga × ga be sub-Lie-algebras corresponding to GΔ

a (OK), Gt
a(OK) ⊂

Ga(OK) ×Ga(OK). Let pΔ
U ,K = gΔ

a ∩ pU ,K × pU ,K and pt
U ,K = gt

a(OK) ∩ pU ,K × pU ,K .
Let uK = ga/pU ,K , uΔ

K = gΔ
a /pΔ

U ,K and ut
K = gt

a(OK)/pt
U ,K . Let du, duΔ , and dut be

corresponding Haar-measures for uK × uK , uΔ
K , and ut

K respectively.
By Theorem 3.1, we have

uK × uK = uΔ
K ⊕ ut

K .

Let J(t) ∈ F be the element such that

du = J(t)duΔdut .

Theorem 3.1 then implies that we have

∫
Hh(F)

1H>0
h ,a(OF)(g)XvK(g)dg = ∫

Grh ,a(K)
∫
PU(OF)

1P>0
U (OF)(t)XvK(t)∣J(g)∣F dtdx .

Now, we will calculate ∣J(t)∣F . Let t′ , t′′ be induced linear operators of t on W and
V/W . We have a natural isomorphism

uK ≅ Hom(W , V/W).

Then, the isomorphism uΔ
K ⊕ ut

K �→ uK × uK is given by

s ∶ Hom(W , V/W) ×Hom(W , V/W) �→ Hom(W , V/W) ×Hom(W , V/W)
(x , y) *→ (x + y, x + t′′−1 yt′).

Then, we use J(t) for the determinant of this map. Note that the valuation of all
eigenvalues of t′ is larger than 0. And the valuation of all eigenvalues of t′′ is zero.
This implies that all valuations of eigenvalues of s is 0. This implies that ∣J(t)∣F = 1.
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Therefore, we have

∫
Hh(F)

1H>0
h ,a(OF)(g)XvK(g)dg = ∫

Grh ,a(K)
∫
PU(OF)

1P>0
U (OF)(t)XvK(t)dtdx .

Since the volume of Grh ,a(K) is εK ,h
εK ,a εK ,h−a

, we have

1
εK ,h

∫
Hh(F)

1H>0
h ,a(OF)(g)XvK(g)dg = 1

εK ,a εK ,h−a
∫
PU(OF)

1P>0
U (OF)(t)XvK(t)dt.

Furthermore, let UU(OF) = {t ∈ Gh(OK) ∶ t∣V = id, tW/V = id}. After we choose a
lifting l ∶ W/U �→ W , we can write every element t ∈ P>0

U (OF) by t1 t2u where u ∈
UU(OF) and W and l(W/U) are invariant subspaces of t1 and t2, such that t1 acts
trivially on l(W/U) and t2 acts trivially on W. This implies that t1 ∈H>0

h ,a(OF) and
t2 ∈H=0

h ,h−a(OF). Therefore, we have a decomposition

P>0
U (OF) =H>0

h ,a(OF) ×H=0
h ,h−a(OF) ×UU(OF).

Then, we can write
1

εK ,a εK ,h−a
∫
PU(OF)

1P>0
U (OF)(t)XvK(t)dt

= 1
εK ,a εK ,h−a

∫
H>0

h ,a(OF)
∫
H=0

h ,h−a(OF)
∫
UU(OF)

XvK(t1 t2 u)dt1dt2du

= 1
εK ,h−a

∫
H=0

h ,h−a(OF)
dt2 ⋅

1
εK ,a

∫
H>0

h ,a(OF)
XvK(t1)dt1 .

By Proposition 5.12, we have

1
εK ,h−a

∫
H=0

h ,h−a(OF)
dt2 =

a
∏
i=1

1
1 − q−2i X

∣
X=0

= 1.

Therefore,
1

εK ,h
∫
H>0

h ,a(OF)
XvK(g)dg = 1

εK ,a
∫
H>0

a (OF)
XvK(t)dt.

Our final goal is to prove this quantity equals to A0(a, X). Indeed, since

x2
# = ex ○ i−1

x ○ ex ○ i−1
x = −e2

x ○ i−2
x = 1 − i−2

x ,

1 − 1
λ is an eigenvalue of x2

# for any root λ of Px . This implies x# ∈H>0
a (OF) if and only

if x ∈ S>0
a (OF). Furthermore, by Lemma 5.5, ∣Px(0)∣F = 1. Then,

1
εK ,a

∫
H>0

a (OF)
XvK(t)dt = 1

εK ,a
∫
H>0

a (OF)
XvK(t)∣Px(0)∣2h

F dt

= 1
εK ,a

∫
S>0

a (OF)
XvK(t)dt

= A0(a, X)

as desired. ∎
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5.3.3 Computation of Ar(i , X)

Now we are able to compute Ar(i , X) by using complex analysis strategies.

Lemma 5.13 For any n, r, the function Ar(n, X) is a rational function with poles at
X = q2 , q4 , . . . , q2n . Let ar[n, m] be the residue of −q−2m Ar(n, X) at X = q2m . Then,
we have

Ar(n, X) =
n
∑
i=1

ar[n, i](q−2i X)⌈ nr
2 ⌉

1 − q−2i X
.(5.17)

Here ⌈r⌉means the smallest integer larger than r. In other words, ⌈r⌉ = n ⇐⇒ r ∈ [n −
1, n).
Proof Remember that the degree of a rational function is the order of its pole at
the infinity (for example, let P(x), Q(x) be two polynomials. The degree of P(x)

Q(x) is
deg(P(x)) − deg(Q(x))). By Lemma 5.7, we have

Ar(n, X) = A0(n, X) −
n−1
∑
i=0

Ar(i , X)Cr(n − i , q−2n X).

Firstly, we claim that the degree of A(a, r, X) is at most ⌈ nr
2 ⌉ − 1. We prove it by

induction. When n = 0, the degree of Ar(n, X) = 1 is indeed 0 = ⌈0⌉ − 1. Now we
assume the induction hypothesis that the degree of A(i , r, X) is at most ⌈ ir

2 ⌉ − 1 for
all i < n. By Lemma 5.10, the degree of A0(n, X) is at most 0. For each summand
Ar(i , X)Cr(n − i , q−2n X), the degree of Cr(n − i , q−2n X) is at most ⌊ (n−i)r

2 ⌋, where
the symbol ⌊r⌋ means the largest integer no larger than r. By induction hypothesis,
the degree of Ar(i , X) is at most ⌈ ir

2 ⌉ − 1. Therefore, the degree of each summand
Ar(i , X)Cr(n − i , q−2n X) is at most

⌊(n − i)r
2

⌋ + ⌈ ir
2
⌉ − 1 ≤ ⌈nr

2
⌉ − 1.

This proves our claim. Now let P(X) be a rational function such that

Ar(n, X) =
n
∑
i=1

a(n, r, q2i)(q−2i X)⌈ nr
2 ⌉

1 − q−2i X
+ P(X).

Then, P(X) has no poles except the infinity. This implies P(X) is a polynomial.
Our claim implies that the degree of P(X) is at most ⌈ nr

2 ⌉ − 1. Since by definition of
Ar(n, X), the coefficient for X j must be 0 for any j < nr

2 , this proves P(X) = 0, which
proves this lemma. ∎
Corollary 5.14 We have

q2m−2n
n
∏
i=1

i≠m

1
1 − q2m−2i =

n
∑
i=m

ar[i , m]Cr[n − i , 2m − 2n].(5.18)
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Proof Using Lemma 5.13 and Theorem 5.10, we can write (5.14) as

q−2n X
n
∏
i=1

1
1 − q−2i X

=
n
∑
i=0

i
∑
j=1

ar[i , j](q−2 j X)⌈ nr
2 ⌉

1 − q−2 j X
Cr(n − i , q−2n X).

Multiplying the above equation by 1 − q−2m X, we can write this equation into

q−2n X
n
∏

i=1, i≠m

1
1 − q−2i X

=
n
∑
i=0

ar[i , m](q−2m X)⌈ nr
2 ⌉Cr(n − i , q−2n X)

+ (1 − q−2m X)o(X)

where o(X) refers to a function without poles at X = q2m . This Corollary follows by
evaluating this equation at X = q2m . ∎

6 Computation of the intersection number for h = 2

In this section, we use our algorithm developed in Section 5 to compute the arithmetic
geometric side of the linear AFL for the case of h = 2. Our result is listed at the end
of this section. Those results are written in a form comparable with the analytic side
computed in Section 7.

By Theorem 5.10, we have

a0[n, n −m] = q−2m
n−1
∏
i=0
i≠m

1
1 − q−2(m−i) .(6.1)

Furthermore, by (5.8), we have a0[n, n] = ar[n, n] for any n. Firstly, we have

ar[1, 1] = a0[1, 1] = 1.

Therefore, by the equation (5.9), we have

Ar[1, 1 −m] = q−2m⌈ r
2 ⌉

1 − q−2m .

Plugging in m = −1 and m = 1, we have

Ar[1, 2] = −q−2+2⌈ r
2 ⌉

1 − q−2 Ar[1, 0] = q−2⌈ r
2 ⌉

1 − q−2 A0[1, 0] = q−2

1 − q−2 .(6.2)

Note that Cr[0, m] = 1 for any m. Using (5.5), we have

Cr[1, m] = A0[1, 1 −m] − Ar[1, 1 −m] = q−2m

1 − q−2m −
q−2m⌈ r

2 ⌉

1 − q−2m .

Evaluating this expression at m = 0 and m = 1, we have

Cr[1, 1] = q−2 − q−2⌈ r
2 ⌉

1 − q−2 , Cr[1, 0] = ⌈ r
2
⌉ − 1, Cr[1,−1] = q2⌈ r

2 ⌉−2 − 1
1 − q−2 .(6.3)
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Continue the same process. By (5.8) we have

ar[2, 2] = a0[2, 2] = −q−2

1 − q−2 .

Using (6.1), we see

a0[2, 1] = q−2

1 − q−2 .

By (5.8), we have

ar[2, 1] = a0[2, 1] − Cr[1, 1]ar[1, 1] = q−2⌈ r
2 ⌉

1 − q−2 .

Again by applying (5.9), we have

Ar[2, 2 −m] = −q−2−2m⌈r⌉

(1 − q−2)(1 − q−2m) +
q−2⌈ r

2 ⌉+2(1−m)⌈r⌉

(1 − q−2)(1 − q−2(m−1)) .(6.4)

Let m = 2, we have

Ar[2, 0] = −q−2−4⌈r⌉

(1 − q−2)(1 − q−4) +
q−2⌈ r

2 ⌉−2⌈r⌉

(1 − q−2)2 .(6.5)

By Formula (5.5), we obtain

Cr[2, m] = A0[2, 2 −m] − Ar[2, 2 −m] − Cr[1, m]Ar[1, 2 −m].(6.6)

From (6.3) and (6.2), we know Cr[1, 0]A[1, 2] = (1 − ⌈ r
2 ⌉)

q−2+2⌈ r
2 ⌉

1−q−2 , therefore, moving
this term to the left and evaluating (6.6) at m = 0, we have

Cr[2, 0] + (1 − ⌈ r
2
⌉) q−2+2⌈ r

2 ⌉

1 − q−2 = q−2−2m⌈r⌉ − q−2−2m

(1 − q−2)(1 − q−2m) ∣m=0
+ q−2−2⌈ r

2 ⌉+2⌈r⌉ − q−2

(1 − q−2)2 .

(6.7)

Applying L’Hospital rule, we have

Cr[2, 0] = q−2−2⌈ r
2 ⌉+2⌈r⌉ − q−4

(1 − q−2)2 +
(⌈ r

2 ⌉ − 1) q2⌈ r
2 ⌉−2 − ⌈r⌉ q−2

1 − q−2 .

Now we calculate B0[1] and B0[2]. By formula (5.6),

B0[1] =
1 − q−1

1 − q−2 − A0[1, 0] = 1 − q−1 − q−2

1 − q−2 .

By formula (5.13), we have

B0[2] =
(1 − q−1)(1 − q−3)
(1 − q−2)(1 − q−4) − B0[1]A0[1, 0] − A0[2, 0]
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and

B0[2] =
q−3 − q−2

(1 − q−2)2 +
q−6 − q−3 + 1 − q−1 + q−4

(1 − q−2)(1 − q−4) .

Since Cr[1, 0] = ⌈ r
2 ⌉ − 1, we have

B0[1] + Cr[1, 0] = −q−1

1 − q−2 + ⌈
r
2
⌉

whence

B0[2] + Cr[1,−1]B0[1] + Cr[2, 0]

equals

q−2−2⌈ r
2 ⌉+2⌈r⌉

(1 − q−2)2 + ⌈ r
2
⌉ q2⌈ r

2 ⌉−2

1 − q−2 −
q2⌈ r

2 ⌉−2

1 − q−2 − ⌈r⌉
q−2

1 − q−2 −
q−6

(1 − q−2)(1 − q−4)

+ (q2⌈ r
2 ⌉−2 − q−2)(1 − q−1 − q−2)

(1 − q−2)2 .

By our formula (5.4), the intersection number equals

N(r) = q4r A0[2, 0] + q2r A0[1, 0](B0[1] + Cr[1, 0]) + (B0[2]
+ Cr[1,−1]B0[1] + Cr[2, 0]).

This equals

q−2−2⌈ r
2 ⌉+2⌈r⌉

(1 − q−2)2 + (⌈ r
2
⌉ − 1) q2⌈ r

2 ⌉−2

1 − q−2 − ⌈r⌉
q−2

1 − q−2 −
q−6

(1 − q−2)(1 − q−4)

+ (q2⌈ r
2 ⌉−2 − q−2)(1 − q−1 − q−2)

(1 − q−2)2 +
⌈ r

2 ⌉ q−2⌈ r
2 ⌉+2r

1 − q−2 − q−1−2⌈ r
2 ⌉+2r

(1 − q−2)2

+ −q−2−4⌈r⌉+4r

(1 − q−2)(1 − q−4) +
q−2⌈ r

2 ⌉−2⌈r⌉+4r

(1 − q−2)2 .

Since we have 2r − 2 ⌈r⌉ = −1, the intersection formula is simplified to

N(r) = q−2−2⌈ r
2 ⌉+2⌈r⌉ − q−4

(1 − q−2)2 + (⌈ r
2
⌉ − 1) q2⌈ r

2 ⌉−2

1 − q−2 − ⌈r⌉
q−2

1 − q−2

+ (q2⌈ r
2 ⌉−2 − q−2)(1 − q−1 − q−2)

(1 − q−2)2 +
⌈ r

2 ⌉ q−2⌈ r
2 ⌉+2r

1 − q−2 .
(6.8)

We found N( 1
2 ) = 1 and N( 3

2 ) = q + 2. Furthermore, we compute

N(r + 2) − N(r) = q−2⌈ r
2 ⌉+2⌈r⌉

(1 − q−2) + (⌈
r
2
⌉ − 1) q2⌈ r

2 ⌉ + q2⌈ r
2 ⌉

1 − q−2 − 2 q−2

1 − q−2

+ q2⌈ r
2 ⌉
(1 − q−1 − q−2)

1 − q−2 + ⌈ r
2
⌉ q−2⌈ r

2 ⌉+2r+2 + q−2⌈ r
2 ⌉+2r+2

1 − q−2 .
(6.9)
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Note that 2 ⌈r⌉ = 2r + 1. By simplifying this equation, we may write N(r + 2) − N(r)
as

q−2⌈ r
2 ⌉+2⌈r⌉+1 ( 1

1 − q−1 + ⌈
r
2
⌉) + q2⌈ r

2 ⌉ (⌈ r
2
⌉ − 1

1 − q−1 ) +
2(1 − q2⌈ r

2 ⌉+2)
1 − q2 .(6.10)

In order to compare this result with orbital integrals, we will rewrite this expression
to another form in the rest of the section. Please note that our goal here is preparing
a result for comparison with the analytic side rather than simplifying the expression.
We do this part of computation only after we know the result of the analytic side. For
a = 0 or a = 1, we have an identity

(q−a+1 + qa)a + q−a − qa

1 − q−1 = 0.(6.11)

For any r ∈ 1
2Z, we have

2 ⌈ r
2
⌉ − ⌈r⌉ = 1 or 0.

Then, let a = 2 ⌈ r
2 ⌉ − ⌈r⌉ in the equation (6.11), we could write

q⌈r⌉ (q−2⌈ r
2 ⌉+⌈r⌉+1 + q2⌈ r

2 ⌉−⌈r⌉)(2 ⌈ r
2
⌉ − ⌈r⌉) + q⌈r⌉ q−2⌈ r

2 ⌉+⌈r⌉ − q2⌈ r
2 ⌉−⌈r⌉

1 − q−1 = 0.

In other words,

q−2⌈ r
2 ⌉+2⌈r⌉+1 (2 ⌈ r

2
⌉ − ⌈r⌉) + q2⌈ r

2 ⌉ (2 ⌈ r
2
⌉ − ⌈r⌉) + q⌈r⌉ q−2⌈ r

2 ⌉+⌈r⌉ − q2⌈ r
2 ⌉−⌈r⌉

1 − q−1 = 0.

(6.12)

Now by computing the difference of the equation (6.10) and the equation (6.12), we
can write N(r + 2) − N(r) into

q−2⌈ r
2 ⌉+2⌈r⌉+1 ( 1

1 − q−1 − ⌈
r
2
⌉ + ⌈r⌉) + q2⌈ r

2 ⌉ (⌈r⌉ − ⌈ r
2
⌉ − 1

1 − q−1 )

+ 2(1 − q2⌈ r
2 ⌉+2)

1 − q2 − q⌈r⌉ q−2⌈ r
2 ⌉+⌈r⌉ − q2⌈ r

2 ⌉−⌈r⌉

1 − q−1 .

Simplifying this expression, we obtain

N(r + 2) − N(r) = 2 1 − q2⌈ r
2 ⌉

1 − q2 + (⌈r⌉ + 2 − ⌈ r
2
⌉) q2⌈ r

2 ⌉ + (⌈r⌉ − ⌈ r
2
⌉ + 1) q2⌈r⌉−2⌈ r

2 ⌉+1 .

(6.13)
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Note that if 2r is an odd number, then ⌈r⌉ = r + 1
2 . If 2r ≡ 1 mod 4, we have ⌈ r

2 ⌉ =
r
2 +

3
4 .

If 2r ≡ 3 mod 4, we have ⌈ r
2 ⌉ =

r
2 +

1
4 . This implies

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N(r + 2) − N(r) = 2 1 − qr+ 3
2

1 − q2 + ( r
2
+ 7

4
) qr+ 3

2 + ( r
2
+ 3

4
) qr+ 1

2 when 2r ≡ 1 mod 4

N(r + 2) − N(r) = 2 1 − qr+ 1
2

1 − q2 + ( r
2
+ 9

4
) qr+ 1

2 + ( r
2
+ 5

4
) qr+ 3

2 when 2r ≡ 3 mod 4

These expressions determine the value of N(r) completely with the initial condi-
tion

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N ( 1
2
) = 1,

N (3
2
) = q + 2.

7 Computation of orbital integrals for h = 2

In this section, we will finish our proof of the linear AFL in h = 2 case by computing the
Analytic side of the linear AFL conjecture. Our test function is the unit of the spherical
Hecke algebra. This section have five parts. In Sections 7.1–7.3, we briefly describe
the combinatorial method for general h. Along the way, we provide a combinatorial
picture of orbital integrals. Section 7.4 describes the orbits that occur in the linear AFL.
In Section 7.5, we specialize to the computation to the case h = 2.

7.1 Definition of orbital integrals

In this section, we will define the relative orbital integral in (7.1). We introduce two
important operators in (7.2) and (7.3). These two operators will play a central role in
our calculation.

Now we prepare materials to define the relative orbital integral with respect to two
OF -algebra embeddings

τ1 ∶ OF ×OF �→Mat2h(OF),
τ2 ∶ OF ×OF �→Mat2h(OF).

Let g ∈ G2h(OF) be an element such that τ2(x) = gτ1(x)g−1 for any x ∈ OF ×OF .
Let C(τ i) ⊂ G2h(F) be centralizers of τ i . It is clear that C(τ i) ≅ Gh(F) ×Gh(F) for
i = 1, 2. For x ∈ C(τ1), we write x = (x1 , x2) for x i ∈ Gh(F). Moreover, define

∣x∣ ∶= ∣det(x−1
1 x2)∣F ηK/F(x) ∶= ηK/F(det(x1x2))

where ηK/F is the quadratic character of K/F. Let 1G2h(OF) be the characteristic
function of G2h(OF). The relative orbital integral is defined by

Orbτ1 ,τ2(1G2h(OF) , s)

∶= ∫
C(τ1)∩C(τ2)/C(τ1)×C(τ1)

1G2h(OF)(u−1
1 gu2)ηE/L(u2) ∣u1u2∣s du1du2 .

(7.1)
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where the Haar-measure on C(τ1) and C(τ1) ∩C(τ2) is normalized by C(τ1) ∩
G2h(OF) and C(τ1) ∩C(τ2) ∩G2h(OF) respectively. In the case that the invariant
polynomial of (τ1 , τ2) has distinct roots, the F algebra

Lτ1 ,τ2 ∶= {l ∈ Mat2h(F) ∶ l τ i(x) = τ i(x)l for any i = 1, 2 and x ∈ OF ×OF}

is a commutative etale algebra over F and one has L ∩G2h(F) ≅ C(τ1) ∩C(τ2).
Now, we introduce two important operators. Let

ζ = (a, b) ∈ O×F ⊕O×F

be a generator. Recall Definition 2.2. Let wτ1 ,τ2 be an element in Lτ1 ,τ2 defined by

wτ1 ,τ2 ∶= i2
τ1 ,τ2

∈ Lτ1 ,τ2 .(7.2)

Let zτ1 ,τ2 be an element in G2h(F) defined by

zτ1 ,τ2 ∶= iτ1 ,τ2 ○ eτ1 ,τ2 ∈ G2h(F).(7.3)

The trace of zτ1 ,τ2 is zero because iτ1 ,τ2 ○ zτ1 ,τ2 ○ i−1
τ1 ,τ2

= −zτ1 ,τ2 . In this section, we
abbreviate those symbols by z and w.

7.2 Orbital integral and lattice counting

In this section, we give a combinatorial formula for orbital integrals in terms of lattices.
A lattice Λ ⊂ F2h is an OF -submodule such that Λ ⊗OF F ≅ F2h . Our orbital integral
(7.1) has a natural interpretation of counting lattices. From now, we fix the embedding
τ1 such that

τ1(ζ) = (
aIh

bIh
) .

We fix a lattice

Λ0 = O2h
F ⊂ F2h .

To translate the orbital integral into an object-counting problem, we study the
integrand of (7.2),

1G2h(OF)(u−1
1 gu2)ηE/L(u2) ∣u1u2∣s .

We will discuss 1G2h(OF)(u−1
1 gu2) first. Then, study ηE/L(u2) ∣u1u2∣s .

Note that the integrand of the orbital integral (7.1) does not vanish only if

1G2h(OF)(u−1
1 gu2) ≠ 0,

which is equivalent to gu2Λ0 = u1Λ0. Furthermore, it is straightforward to verify Λ =
gu2Λ0 = u1Λ0 if and only if Λ is closed under both actions of τ1(ζ) and τ2(ζ). Finally,
since the integrand is considered under the equivalence of C(τ1) ∩C(τ2) = L×, the
object-counting process is considering elements of the following subset

Lτ1 ,τ2 ∶= {Λ ⊂ F2h lattice, τ i(ζ)Λ = Λ for i = 1, 2} /L× .

Here, two lattices Λ1 , Λ2 are equivalent if and only if Λ1 = lΛ2 for some l ∈ L×.
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Now we explain the term ηE/L(u2) ∣u1u2∣s . Let Λ ⊂ F2h be a lattice with τ1(ζ)Λ =
Λ, there is a direct sum decomposition of Λ corresponding to eigenspaces of τ1(ζ) by

Λ = Λ+ ⊕ Λ−
where

Λ+ = Im (Λ
τ1(ζ)−a �� Λ ) = ker (Λ

τ1(ζ)−b �� Λ ),

Λ− = Im (Λ
τ1(ζ)−b �� Λ ) = ker (Λ

τ1(ζ)−a �� Λ ).

The action of w preserves components whence w(Λ+) = Λ+ and w(Λ−) = Λ−. We
denote their induced maps by w+ ∶ Λ+ �→ Λ+, w− ∶ Λ− �→ Λ+. The action of z inter-
changes components. In other words, z(Λ+) = Λ− and z(Λ−) = Λ+. We denote their
induced maps by z− ∶ Λ+ �→ Λ−, z+ ∶ Λ− �→ Λ+. Finally, for each representative Λ
of a lattice class in Lτ1 ,τ2 , we can associate to it an order RΛ ⊂ L defined by

RΛ = {l ∈ L ∶ lΛ ⊂ Λ}.

This definition does not depend on the choice of representatives.
With above constructions, we can write orbital integrals in a combinatorial way as

in the following theorem.

Theorem 7.1 Assume Λ0− = zΛ0+, we have

Orbτ1 ,τ2(1G2h(OF) , s) = ∑
[Λ]∈Lτ1 ,τ2

[O×L ∶ R×Λ](−qks)length(Λ+/zΛ−) .(7.4)

with k = 2 if iτ1 ,τ2 ∈ O×L or k = 0 if eτ1 ,τ2 ∈ O×L .

Proof Consider a subset Uτ1 ,τ2 ⊂ G2h(F)/G2h(OF) defined by

Uτ1 ,τ2 = {u ∈ G2h(F)/G2h(OF) ∶ τ i(ζ)uΛ0 = uΛ0 for i = 1, 2}.

Since τ1(ζ)u1Λ0 = u1Λ0, and τ2(ζ)gu2Λ0 = gu2Λ0 (because gτ1(ζ)g−1 = τ2(ζ)), we
have

1G2h(OF)(u−1
1 gu2) ≠ 0 ,⇒ gu2Λ0 = u1Λ0 ,⇒ u1 ∈ Uτ1 ,τ2 .

This implies that we can write the orbital integral into

∫ L×/Uτ1 ,τ2
u1 Λ0=gu2 Λ0

∣u1u2∣s ηK/F(u2)du1du2 = ∑
u1∈Uτ1 ,τ2

u1 Λ0=gu2 Λ0

[O×L ∶ StabL×(u)]∣u1u2∣s ηK/F(u2).

Note that here we can omit u1Λ0 = gu2 because x0u1Λ0 = u1Λ0 implies there is an
u2 ∈ Uτ1 ,τ2 with u1Λ0 = gu2Λ0. Furthermore, this u2 is unique. Then, we can write
the orbital integral directly into

∑
u1∈Lτ1 ,τ2

[O×L ∶ StabL×(u)]∣u1u2∣s ηK/F(u2) with gu2Λ0 = u1Λ0 .(7.5)

Let Λ = u1Λ0. Next we will prove

∣u1u2∣s ηK/F(u2) = (−qks)length(Λ+/zΛ−)(7.6)
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with k = 2 if iτ1 ,τ2 ∈ O×L or k = 0 if eτ1 ,τ2 ∈ O×L . For i = 1, 2, denote Λ i = u i Λ0. Decom-
pose Λ i = Λ i+ ⊕ Λ i− by eigenspaces of τ i(ζ). Note that

∣u i ∣ = ∣det(u−1
i+u i−)∣F =

[Λ i− ∶ Λ0−]
[Λ i+ ∶ Λ0+]

= [Λ i− ∶ zΛ0+]
[zΛ i+ ∶ zΛ0+]

= [Λ i− ∶ zΛ i+].(7.7)

Since τ2(ζ), τ1(ζ) ∈ Mat2h(OF), we have iτ1 ,τ2 , eτ1 ,τ2 ∈Mat2h(OF).
On one hand, If det(iτ1 ,τ2) ∈ O×F , we have iτ1 ,τ2 ∈ G2h(OF). Since

iτ1 ,τ2 τ1(ζ) = τ2(ζ)iτ1 ,τ2 ,

we have iτ1 ,τ2 Λ1+ = Λ2+ and iτ1 ,τ2 Λ2+ = Λ1+. Therefore,

[Λ2− ∶ zΛ2+] = [iτ1 ,τ2 Λ2− ∶ iτ1 ,τ2 zΛ2+] = [Λ1− ∶ zΛ1+].

By (7.7), this implies ∣u1∣ = ∣u2∣ = qlength(Λ−∶zΛ+). Furthermore, since

ηK/F(u2) = (−1)vF(det(u−1
2+u2−)) = (−1)length(Λ2−∶zΛ2+) ,(7.8)

we have ∣u1u2∣s ηK/F(u2) = (−q2s)length(Λ−∶zΛ+).
On the other hand, if det(eτ1 ,τ2) ∈ O×F , we have eτ1 ,τ2 ∈ G2h(OF). Since

eτ1 ,τ2 τ1(ζ) = τσ
2 (ζ)eτ1 ,τ2 ,

we have eτ1 ,τ2 Λ1+ = Λ2− and eτ1 ,τ2 Λ2− = Λ1+. This implies ∣u2∣−1 = ∣u1∣ =
qlength(Λ−∶zΛ+). Furthermore, by (7.8) again, we conclude that ∣u1u2∣s ηK/F(u2) =
(−1)length(Λ−∶zΛ+).

Now after (7.6) has been proved, we could write the orbital integral as

∑
u∈Lτ1 ,τ2

[O×L ∶ StabL×(u)](−qks)length(Λ+/zΛ−) .

Since StabL×(u) is the stabilizer of u as an element of Uτ1 ,τ2 under the action of L×, it
is identified with the stabilizer of Λ = uΛ0 under actions of L×. Then StabL×(u) = R×Λ .
This completes the proof of the theorem. ∎

7.3 Lattices and fractional ideals

In this section, we simplify the orbital integral in (7.4) by parametrizing elements of
the set Lτ1 ,τ2 in more details. For each class [Λ] ∈ Lτ1 ,τ2 , each representative Λ ⊂ F2h

is a lattice which is closed under actions of τ1(ζ) and τ2(ζ). Then, we can decompose
Λ = Λ+ ⊕ Λ− according to eigenspaces of τ1(ζ). Each of the component Λ+ , Λ− is a
lattice in F h . We denote their stabilizers in L as

RΛ+ = {l ∈ L ∶ lΛ+ ⊂ Λ+},
RΛ− = {l ∈ L ∶ lΛ− ⊂ Λ−}.

It is clear that the definition of RΛ+ and RΛ− only depends on the class [Λ]. We also
have RΛ = RΛ+ ∩ RΛ−.

Note that Λ+ ⊗OF F ≅ F2h . A vector v ∈ F h gives rise to an isomorphism F h ≅ L,
which identifies Λ+ as a RΛ+-submodule of L. This is also called a RΛ+-fractional ideal
in L in the literature. Two lattices Λ1+ and Λ2+ are related by Λ2+ = lΛ1+ for an l ∈ L
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if and only if RΛ1+ = RΛ2+ and they correspond to RΛ1+-fractional ideals in the same
ideal class. Let C be the set of all fractional-ideal-classes of L. Let C(R) ⊂ C be the set
of R-fractional-ideal-classes.

To describe elements in Lτ1 ,τ2 , we need more definitions. Let

S[Λ+],[Λ−] = {z− ∶ Λ+ �→ Λ−}/ ≅,

where two maps Λ1+ �→ Λ1− and Λ2+ �→ Λ2− are defining the same element in
S[Λ+],[Λ−] if and only if there are RΛ+ and RΛ−-isomorphisms l+ and l− such that
the following diagram commutes

Λ1+

l+
��

z1− �� Λ1−

l−
��

Λ2+
z2− �� Λ2− .

We have the following description of Lτ1 ,τ2 .

Lemma 7.2 We have an isomorphism

Lτ1 ,τ2 ≅ {([Λ+], [Λ−], z−) ∶ [Λ+], [Λ−] ∈ C, z− ∈ S[Λ+],[Λ−] , z2Λ− ⊂ z−Λ+}.

Proof For any [Λ] ∈ Lτ1 ,τ2 , we have z−(Λ+) ⊂ Λ−. Since we also have z+(Λ−) ⊂ Λ+,
we have z2Λ− = z−z+(Λ−) ⊂ z−Λ+. Therefore, we could have a map

Lτ1 ,τ2 �→ {([Λ+], [Λ−], z−) ∶ [Λ+], [Λ−] ∈ C, z− ∈ S[Λ+],[Λ−] , z2Λ− ⊂ z−Λ+}.

We need to show this map is well defined and that this map is an isomorphism.
Let Λ1, Λ2 be lattices with [Λ1] = [Λ2]. Then, there exists l ∈ L with Λ2 = lΛ1. This
implies Λ1+ = lΛ2+ and Λ1− = lΛ2−. Then we have [Λ1+] = [Λ2+] and [Λ1−] = [Λ2−].
Furthermore, since l commutes with z1−, and z2−, we see we defined the same element
in S[Λ+],[Λ−]. This map is well defined.

On the other hand, we can construct the inverse map and prove the inverse map
is well defined. For any ([Λ+], [Λ−], z−), we define an element [Λ] ∈ Lτ1 ,τ2 by the
following steps. First, we embed Λ+, Λ− into F2h such that the homomorphism z− ∶
Λ+ �→ Λ− and z+ ∶ Λ− �→ Λ+ is induced by z. Then, we define Λ = Λ+ ⊕ Λ−.

To prove this map is well-defined, we need to show that after the embedding, if
Λ2+ = l+Λ1+, Λ2− = l−Λ1− and z ○ l+ = l− ○ z, then Λ2 = lΛ1 for some l ∈ L. Indeed,
let l = l+ ⊕ l−, we have l commutes with z. Since l preserves the eigenspaces of τ1(ζ),
then l commutes with τ1(ζ). Similarly l commutes with τ2(ζ). This implies l ∈ L. ∎

By this lemma and (7.4), we can write the orbital integral as

Orbτ1 ,τ2(1G2h(OF) , s) = ∑
R+∋w
R−∋w

∑
Λ+∈C(R+)
Λ−∈C(R−)

∑
z−∈S[Λ+],[Λ−]
z−Λ+⊃z2 Λ−

× [O×L ∶ (R+ ∩ R−)×](−qks)length(Λ−/z−Λ+).

(7.9)
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7.4 Double structures for division algebra

Before we calculate the orbital integral, we study the pair (τ1 , τ2) in more details. By
our assumption, it matches to a pair in the division algebra D over F given by

φ1 ∶ OK1 �→ OD
φ2 ∶ OK2 �→ OD .

By our construction,

zφ1 ,φ2 = eφ1 ,φ2 ○ iφ1 ,φ2

wφ1 ,φ2 = i2
φ1 ,φ2

.

In this section, we study the properties of those z = zφ1 ,φ2 and w = wφ1 ,φ2 that arises
from double structures of division algebras.

Lemma 7.3 Let D be a quaternion algebra over L and γ ∈ D. Let ζ ∈ O×D be a trace zero
element and ζγ = γζσ . Then vD(γ) is an odd integer.

Proof Let ϖ be the uniformizer of OD . Since OD/ϖ is a finite division algebra, it is a
field. Therefore, the reduction γ modulo ϖ must commute with all elements in OD/ϖ,
this implies

γζ − ζγ ∈ ϖOD

Since γζσ = ζγ, this implies γ ∉ O×D . Let π be an uniformizer in OL . Since D
is a quaternion algebra, we have vD(π) = 2. Suppose vD(γ) is even. Hence
vD(γ) = vD(πm) for some m. Then, we have π−mγ ∈ O×D and π−mγζ = ζσ π−mγ,
contradiction. ∎

From now to the rest of the paper, we use γ to represent the fixed double structure
(ϕ1 , ϕ2), and use γ# to represent eϕ1 ,ϕ2 ○ i−1

ϕ1 ,ϕ2
.

Corollary 7.4 Let γ# = eφ1 ,φ2 ○ i−1
φ1 ,φ2

= (φ1(ζ) − φ2(ζ))(φ1(ζ) + φ2(ζ))−1 be the
polar stereographic coordinate of the double structure arises in a division algebra. Then,
vL(γ2

#) is an odd integer.

Proof It is clear that γ# ∈ DL . Since DL is a quaterenion algebra over L, we have

vL(γ2
#) = vDL(γ#).

Since φ i(ζ) ∈ O×DL
and γ#φ i(ζ) = φσ

i (ζ)γ#, by Lemma 7.3, the number vDL(γ#)must
be an odd integer. ∎

This corollary implies that for any orbit considered in the linear AFL, the number
vF(Pγ(1)) is always an odd integer.

7.5 Calculation of orbital integral for h = 2

We call a lattice a principal lattice if it corresponds to a principal fractional ideal. In the
case of h = 2, all lattices Λ ⊂ F2h that are closed under τ2(ζ) and τ1(ζ) have principal
lattices Λ+ and Λ− as its components. For general h, given an OF -order R ⊂ L, the R-
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fractional ideal class group is not necessarily trivial. The following proposition is well
known.

Proposition 7.5 Let L/F be a quadratic extension of non-Archimedean fields. Then,
any OF-lattice Λ ⊂ L is a principal R-fractional ideal in L with R of the form

R = OF + πmOL

for some positive integer m. We denote such a ring as Rm .

In the case of h = 2, Proposition 7.5 implies both Λ+ and Λ− are principal lattices;
we may furthermore write the orbital integral as

Orbτ1 ,τ2(1G2h(OF) , s) = ∑
R+∋w
R−∋w

∑
z−∈S[R+],[R−]
z−R+⊃z2 R−

[O×L ∶ (R+ ∩ R−)×](−qks)length(R−/z−R+).
(7.10)

Here [R+] and [R−] are classes of principal R+ and R− lattices.

7.5.1 Calculation of orbital integral

Using the same notation as previous sections, we have r = vF(γ2
#). Then 2r = vL(γ2

#) =
vDL(γ#). If iφ1 ,φ2 ∉ G2h(OF), by Theorem 7.1, we know the orbital integral does not
depend on s. Then the derivative is zero. In this section, we only consider the non-
trivial case where iφ1 ,φ2 ∈ G2h(OF). Since, we have γ#φ i(ζ) = φσ

i (ζ)γ#, by Lemma
7.3, we know 2r is an odd integer. Since γ# = eφ1 ,φ2 ○ i−1

φ1 ,φ2
, vF(iφ1 ,φ2) = 0 and eφ1 ,φ2 ○

iφ1 ,φ2 = z, we have

vF(z2) = vF(γ2
#) = 2r.

This corresponds to k = 2 case in Theorem 7.1. To make our calculations clear we write
the orbital integral in the following way

Orbτ1 ,τ2(1G2h(OF) , s) = ∑
R+∋w
R−∋w

[O×L ∶ (R+ ∩ R−)×]Ir(R+, R− , s).(7.11)

with

Ir(R+ , R− , s) = ∑
z−∈S[R+],[R−]

Λ⊃z2 R−

(−q2s)length(R−/z−R+).(7.12)

Lemma 7.6 We have a canonical isomorphism

S[R+],[R−] ≅ R−/(R+ ∪ R−)×

Proof S[R+],[R−] is the set of maps f ∶ R+ �→ R−, where two such maps f1 , f2 are
equivalent if and only if g− ○ f1 ○ g+ = f2 for some R+ and R−-isomorphisms g+ and
g−. Since all maps are obtained by multiplying by an element, the map f is uniquely
determined by f (1). Suppose f1 and f2 are equivalent, we have g−(1) f1(1)g+(1) =
f2(1). Therefore, we have S[R+],[R−] ≅ R−/(R+ ∪ R−)×. ∎
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To study the structure of S[R+],[R−], we consider a valuation map

S[R+],[R−] ≅ R−/(R+ ∪ R−)× �→ OL/O×L ≅ Z≥0 .

Let Seven
R+ ,R− , Sodd

R+ ,R− be the preimage of even and odd integers under this map respec-
tively. In other words,

Seven
R+ ,R− = {[z−] ∈ S[R+],[R−] ∶ vL(z−(1)) is even},

Sodd
R+ ,R− = {[z−] ∈ S[R+],[R−] ∶ vL(z−(1)) is odd}.

This gives us a partition

S[R+],[R−] = Seven
R+ ,R−∐ Sodd

R+ ,R− .

Let

Ceven = {(R+ , R− , z−) ∶ z− ∈ Seven
R+ ,R−},

Codd = {(R+ , R− , z−) ∶ z− ∈ Sodd
R+ ,R−},

and

Ceven
z2 = {(R+ , R− , z−) ∈ Ceven ∶ z2R+ ⊂ z−R−},

Codd
z2 = {(R+ , R− , z−) ∈ Codd ∶ z2R+ ⊂ z−R−}.

Then, we can write

Orbτ1 ,τ2(1G2h(OF), s) = ∑
(R+ ,R− ,z−)∈Ceven

z2 ∐Codd
z2

[O×L ∶ (R+ ∩ R−)×](−q2s)length(R−/z−R+) .

Since vL(z2) is odd, and any (R+ , R− , z−) ∈ Ceven
z2 satisfies z2R+ ⊂ z−R−, there is an

isomorphism

Ceven
z2 �→ Codd

z2

z− *→ z+
where the map z+ ∶ R− �→ R+ is defined by the following commutative diagram

R−
z+

���
��

��
��

�

R+

z−
���������� z2

�� R+

Furthermore, we noticed that

length(R−/z−R+) + length(R+/z+R−) = length(R+/z2R+) = 2r.

Therefore, we have

∑
(R+ ,R− ,z+)∈Codd

z2

[O×L ∶ (R+ ∩ R−)×](−q2s)length(R+/z+R−)

= ∑
(R+ ,R− ,z−)∈Ceven

z2

[O×L ∶ (R+ ∩ R−)×](−q2s)2r−length(R−/z−R+).
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Using this expression, we can reduce the orbital integral to the following form

Orbτ1 ,τ2(1G2h(OF), s) = ∑
(R+ ,R− ,z−)∈Ceven

z2

[O×L ∶ (R+ ∩ R−)×]

× ((−q2s)2r−length(R−/z−R+) + (−q2s)length(R−/z−R+)) .

We can decompose the set Ceven by the following

Lemma 7.7 Let

C(c)a ,b = {(R+ , R− , z−) ∈ Ceven ∶ R+ = OF + πaOL , R−
= OF + πbOL , vL(z−(1)) = 2(b − c)}.

We have

Ceven
z2 = ∐

a≥c ;b≥c
a+b−c≤ 2r−1

2

C(c)a ,b .

Proof We have Ceven = ∐a ,b ,c∈Z≥0 C(c)a ,b . To prove the lemma, we only need to deter-
mine the value of a, b and c so that we have some x ∈ R− satisfies vL(x) = 2(b − c) and

OF + πbOL ⊃ x(OF + πaOL) ⊃ z2(OF + πbOL).(7.13)

Now, we will prove the lemma by considering the inclusion OF + πbOL ⊃ x(OF +
πaOL) and x(OF + πaOL) ⊃ z2(OF + πbOL) one by one.

Firstly, by considering all possible elements with odd valuations of each subset, it is
clear that 2b ≤ 2a + (2b − 2c) is equivalent to the existence of an element x ∈ R− with
vL(x) = 2(b − c) and

OF + πbOL ⊃ x(OF + πaOL).

Secondly, since vL(z2) = 2r is odd, we have x(OF + πaOL) ⊂ z2(OF + πbOL) if and
only if (2b − 2c) + 2a ≤ 2r − 1. This implies the relation (7.13) holds only for values
a, b, c ∈ Z≥0 with a ≥ c, b ≥ c, a + b − c ≤ 2r−1

2 . ∎
Lemma 7.8 We have

∑
(R+ ,R− ,z−)∈C(c)

a ,b

[O×L ∶ (R+ ∩ R−)×] = qa+b−max{0,c} .

Proof We have [O×L ∶ (R+ ∩ R−)×] = qmax{a ,b} for all element in C(c)a ,b . Futhermore,
we note that there is an isomorphism

C(c)a ,b �→ R×−/ (πa−cO×L ∩ R−) /R×+
([R+], [R−], z−) *→ z−(1)

where the representative map is z− ∶ R+ �→ R−. Since the action of R+ and R−
commute, we have either R+ ⊃ R− or R+ ⊂ R−. Hence,

C(c)a ,b ≅ (π
a−cO×L ∩ R−) /R+ ∪ R−
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The cardinality of C(c)a ,b is the volume of the above set. Then,

#C(c)a ,b =
[O×L ∶ (R+ ∪ R−)×]

[πa−cO×L ∶ πa−cO×L ∩ R−]
= qmin{a ,b}

qmin{b−(b−c),0} .

This completes the proof of the lemma. ∎

Besides, it is clear that for any (R+ , R− , z−) ∈ C(c)a ,b , we have length(R−/z−R+) = a +
b − 2c. Using Lemmas 7.8–7.6, we can write the orbital integral Orbτ1 ,τ2(1G2h(OF) , s)
into the following form

2r−1
2

∑
l=0

q l

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

−1
∑

c=− 2r−1
2 +l

∑
a+b=l
a ,b≥0

((−q2s)l−2c + (−q2s)2r−l+2c)

+
l
∑
c=0

∑
a+b=l+c

a ,b≥c

((−q2s)l−c + (−q2s)2r−l+c)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now by taking the derivative at s = 0, we can write
d
ds
∣
s=0

Orbτ1 ,τ2(1G2h(OF), s)

=
2r−1

2

∑
l=0

q l
⎛
⎜⎜
⎝

−1
∑

c=− 2r−1
2 +l

∑
a+b=l
a ,b≥0

(−1)l(2(l − 2c) − 2r) +
l
∑
c=0

∑
a+b=l+c

a ,b≥c

(−1)l−c(2(l − c) − 2r)
⎞
⎟⎟
⎠

=
2r−1

2

∑
l=0

q l
⎛
⎜
⎝

−1
∑

c=− 2r−1
2 +l

(−1)l(l + 1)(2(l − 2c) − 2r) +
l
∑
c=0
(−1)l−c(l − c + 1)(2(l − c) − 2r)

⎞
⎟
⎠

=
2r−1

2

∑
l=0

q l ((−1)l(l + 1) (2r − 1
2

− l) + ((−1)l (l 2 + 2l + 1
2
− rl − 3r

2
) − ( 1

2
+ r

2
)))

=
2r−1

2

∑
l=0
((−1)l ( l

2
− r

2
) − ( 1

2
+ r

2
)) q l .

Use N ′(r) to denote the value for the above expression. We have

N ′(r + 2) − N ′(r) = −
2r−1

2

∑
l=0
((−1)l + 1) q l + ((−1)r+ 1

2 (− 3
4
) − ( 1

2
+ r + 2

2
)) qr+ 1

2

+ ((−1)r+ 3
2 (− 1

4
) − ( 1

2
+ r + 2

2
)) qr+ 3

2 .

If 2r ≡ 1 mod 4, r + 1
2 odd, and we have

N ′(r + 2) − N ′(r) = −2
r
2−

1
4

∑
l=0

q2l − ( r
2
+ 3

4
) qr+ 1

2 − ( r
2
+ 7

4
) qr+ 3

2

= −(2 1 − qr+ 3
2

1 − q2 + ( r
2
+ 7

4
) qr+ 3

2 + ( r
2
+ 3

4
) qr+ 1

2 ) .
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And if 2r ≡ 3 mod 4, r + 1
2 even, we have

N ′(r + 2) − N ′(r) = −2
r
2−

3
4

∑
l=0

q2l − ( r
2
+ 9

4
) qr+ 1

2 − ( r
2
+ 5

4
) qr+ 3

2

= −(2 1 − qr+ 1
2

1 − q2 + ( r
2
+ 9

4
) qr+ 1

2 + ( r
2
+ 5

4
) qr+ 3

2 ) .

It also easy to verify N( 1
2 ) = 1 = −N ′( 1

2 ) and N( 3
2 ) = q + 2 = −N ′( 3

2 ). This proves

N(r) = N ′(r).
We finished the proof of the linear AFL of the case h = 2 for the identity test function.
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