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abstract

This paper reviews methods for hedging and valuation of insurance claims with an inherent
financial risk, with special emphasis on quadratic hedging approaches and indifference pricing
principles and their applications in insurance. It thus addresses aspects of the interplay between
finance and insurance, an area which has gained considerable attention during the past years, in
practice as well as in theory. Products combining insurance risk and financial risk have gained
considerable market shares. Special attention is paid to unit-linked life insurance contracts, and
it is demonstrated how these contracts can be valued and hedged by using traditional methods as
well as more recent methods from incomplete financial markets such as risk-minimisation,
mean-variance hedging, super-replication and indifference pricing with mean-variance utility
functions.
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". Introduction

During the past years, new insurance products that combine elements of
insurance risk and financial risk have appeared; examples are unit-linked
life insurance contracts, catastrophe insurance futures and bonds, and
integrated risk-management solutions. This paper describes some of these
new products in detail, and discusses how they can be valued and hedged.
This discussion includes a review of some recent theoretical results from the
interface of insurance and finance.

Focus will be on specific developments involving methods for hedging
and valuation of risk in incomplete financial markets, and the aim is not to
give a complete overview of the area. Our aim is to demonstrate how the
combined insurance and financial risk inherent in many insurance and
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reinsurance liabilities can be viewed and handled as general contingent
claims, which cannot be hedged perfectly by trading in traditional financial
assets. Therefore, these insurance liabilities cannot be priced by no-arbitrage
argument alone, and this leaves some intrinsic risk to the insurance company,
which must choose some subjective criterion for valuation (pricing) and
hedging (risk management) of its liabilities.

We review several possible approaches to hedging and valuation in
incomplete markets, including super-hedging, risk-minimisation, mean-
variance hedging and utility indifference pricing under mean-variance utility
functions. Each criterion can be viewed as one possible `approach to risk',
and leads to a description of how this risk may be measured and controlled.
We discuss the advantages and disadvantages of the various approaches in
general and for specific applications. As a continuing example, the paper
investigates how the risk in a portfolio of unit-linked life insurance contracts
may be analysed by applying each of the mentioned methods. With a unit-
linked life insurance contract, benefits are linked to the development of a
stock index or a specific fund. This analysis leads to new insights into the
nature of the combined risk of these contracts. The results obtained are
compared with what we could call an actuarial approach, proposed by
Brennan & Schwartz (1979a,b), that combines traditional law of large
number considerations and financial mathematics. Some of the approaches
from incomplete markets actually lead to prices that coincide with the ones
determined by the principle suggested by Brennan & Schwartz (1979a,b),
whereas other principles will lead to alternative prices. We give some
explanations of this phenomenon.

The notion of risk is used in several different contexts in both the
actuarial and the financial literature; often it is simply used vaguely,
describing the fact that there is some uncertainty, for example in mortality
risk known from insurance and credit risk known from finance. However, the
notion also appears in various more specific concepts. Examples are
insurance risk process, which is typically defined as the accumulated
premiums minus claims in an insurance portfolio, and risk-minimisation,
which is a theory from mathematical finance that can be used for
determining hedging strategies.

1.1 Insurance Background
The two fields of insurance and finance started as separate areas. At its

very origin, the theory of insurance was mainly concerned with the
computation of premiums for life insurance contracts. An overview of the
early history of life insurance can be found in Braun (1937), and, according
to this exposition, the first known social welfare programmes with elements
of life insurance are the Roman Collegia, which date back at least to AD 133.
The first primitive mortality tables were published in 1662 by John Graunt
(1620-1674), who worked with only seven different age groups. The first
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mortality table, where the expected number of survivors from year to year
is given, is due to the astronomer Edmund Halley (1656-1742). These tables
allowed for more precise predictions about portfolios of independent lives,
and were essential for the computation of premiums for various life insurance
contracts. In his book on the evaluation of annuities on life from 1725,
Abraham de Moivre (1667-1754) suggested methods for the evaluation of life
insurance contracts, combining interest and mortality under very simple
assumptions about the mortality.

In 1738, Daniel Bernoulli (1700-1782) argued that risks, i.e. uncertain
payoffs, should not be measured by their expectations, and hence laid the
foundation for modern utility theory. Using examples related to gambling, he
explained that the preferences of an individual may depend on his economic
situation, and, more specifically, that in some situations it could be
reasonable for a poorer individual to prefer one uncertain future payment to
another (more) uncertain payment with a larger expected value, whereas a
wealthier person would prefer the payment with the largest expected value.
This observation was also of importance for insurance in general, since it
explained, for example, why individuals may accept to buy insurance
contracts at a price which exceeds the expected value of the payment from
the contract.

1.2 Financial Background
Bachelier (1900) proposed to describe fluctuations in the price of a stock

by a Brownian motion, by assuming that the change in the value of the stock
in a time interval of length h was normally distributed with mean ah
and variance s2h and that changes in non-overlapping intervals were
stochastically independent. Samuelson (1965) advocated a framework where
the stock price was modelled by a geometric Brownian motion, i.e. the
exponential function of a Brownian motion, which had the advantage that it
did not generate negative prices. Within this framework, and assuming in
addition that money could be deposited in a savings account, Black &
Scholes (1973) and Merton (1973) introduced the idea that options on stocks
should really be priced such that no sure profits could arise from composing
portfolios of long and short positions in the underlying stock and in the
option itself. Assuming that the option price was a function of time and the
current value of the stock, they obtained the celebrated Black-Scholes
formula for European call options. This pricing formula has the (at first
glance) surprising feature that it does not involve the expected return of the
underlying stock. Cox, Ross & Rubinstein (1979) investigated a simple
discrete time model, where the change in the value of the stock between two
trading times can attain two different values only. In that setting, they
derived option prices and obtained the pricing formulae of Black, Scholes and
Merton as limiting cases, by letting the length of the time intervals between
trading times tend to 0. Building on concepts and ideas in Harrison & Kreps
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(1979) for discrete time models, Harrison & Pliska (1981) gave a
mathematical theory for the pricing of options under continuous trading, and
clarified the role of martingale theory in the pricing of options and its
connection to key concepts such as absence of arbitrage and completeness.

1.3 Interplay between Insurance and Finance
The emergence of products combining financial and insurance risk (e.g.

so-called unit-linked insurance contracts, various catastrophe futures and
options and financial stop-loss reinsurance contracts) has forced the two
fields of insurance and finance to search for combinations and unification
of methodologies and basic principles. A survey of aspects of the growing
interplay between the two fields is given in Embrechts (2000), who
mentions institutional issues such as the increasing collaboration between
insurance companies and banks (e.g. the construction of so-called `financial
supermarkets') and the deregulation of insurance markets, as two further
important aspects.

The present paper is organised as follows. Section 2 gives an overview of
valuation techniques in life and non-life insurance, and Section 3 introduces
the main concepts related to financial valuation principles. In Section 4 some
specific examples of interplay between the two fields of finance and
insurance are mentioned. Section 5.1 studies applications in insurance of
various hedging criteria, including risk-minimisation, mean-variance hedging
and super-replication. Section 5.2 reviews results on indifference pricing
with mean-variance utility functions of insurance contracts, and presents
some new results on actuarial premium calculation principles adapted
to financial models. Finally, Section 5.3 gives indifference prices for a
portfolio of unit-linked life insurance contracts, and compares these results
analytically and numerically with the prices obtained using other methods.

á. Classical Valuation of Insurance Contracts

Traditionally, actuarial theory is divided into life insurance mathematics
and non-life insurance mathematics. In addition to historical aspects, there
are fundamental differences between the two areas, for example in respect of
the time horizon of the individual contract (for life insurance extending up
to 50 years, whereas for non-life insurance typically limited to one year).
These are reflected e.g. in the principles that are applied for the calculation of
premiums. In this section, we review some notions and key concepts of life
and non-life insurance, placing focus on the valuation techniques used there.

2.1 Life Insurance
We recall some classical and basic concepts from life insurance; some recent

introductory expositions to the area are Gerber (1986) andNorberg (2000).
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Consider a portfolio of n lives aged y, say, to be insured at time 0 with
i.i.d. remaining life times T1; . . . ; Tn, and assume that there exists a continuous
function (called the hazard rate function) my�t such that the survival
probability is of the form tpy � P�T1 > t� � exp�ÿ R t

0 my�u du�. A pure
endowment contract with sum insured K and term T stipulates that the amount
K (the insurance benefit) is payable at time T contingent on survival of the
policyholder. Assume that the contract is paid by a single premium k, say, at
time 0. Assume, furthermore, that the seller of the contract (the insurance
company) invests the premium k in some asset which pays a rate of return
r � �rt�0�t�T during �0; T �. For the ith policyholder, the obligation of the
insurance company is now given by the present value:

Hi � 1fTi>T gKe
ÿ
R T

0
rt dt �2:1�

which is obtained by discounting the amount payable at T , 1fTi>T gK, using
the rate of return r. Note that (2.1) is a random variable. The fundamental
principle of equivalence now states that the premiums should be chosen such
that the present values of premiums and benefits balance, on average. If we
assume, in addition, that r is stochastically independent of the remaining life
times, the principle of equivalence states that:

k � E�Hi� � T pyKE�eÿ
R T

0
rt dt� �2:2�

for the single premium case. Since life insurance portfolios are often very
large, this principle can be partly justified by using the law of large numbers.
Indeed, as the size n of the portfolio is increased, the relative number of
survivors 1

n

Pn

i�1 1fTi>T g converges a.s. towards the probability T py of survival to
T by the strong law of large numbers, since the lifetimes T1; . . . ; Tn are
stochastically independent. Thus, for n sufficiently large, the actual number
of survivors

Pn

i�1 1fTi>T g will be `approximately' equal to the expected number
n T py. Accumulating the premiums nk with interest now leads to:

nke

R T

0
rt dt � n T pyKE

�
e
ÿ
R T

0
rt dt

�
e

R T

0
rt dt �

Xn

i�1
1fTi>T gKE

�
e
ÿ
R T

0
rt dt

�
e

R T

0
rt dt
: �2:3�

In particular, when r is non-random, the expression on the right is equal to
the amount to be paid to the policyholders. So, in the case of a deterministic
rate of return, the principle of equivalence is justified directly by use of the
law of large numbers, which essentially guarantees that the actual number of
survivors is `close' to the expected number.

The problem becomes much more delicate in the more realistic situation
where r is a stochastic process, and it follows immediately from (2.3) that the
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simple accumulation of the premium k will not, in general, generate the

amount to be paid, since e
ÿ
R T

0
rt dt may differ considerably from its expected

value. One way of dealing with this problem is to replace the `true' rate of
return process r in (2.2) with some deterministic rate of return process r0,
which is such that the single premium nk accumulated by the true rate of
return r is larger than K times the expected number of survivors with a large
probability. The excess (if any) should then be added to the amount paid to
the policyholder and is known as the bonus; see e.g. Ramlau-Hansen (1991)
and Norberg (1999) and references therein. However, this approach really
raises the problem of whether it is reasonable to assume the existence of any
deterministic and strictly positive r0 which, over a very long time horizon, has
the property that it will be larger than the actual return on investments with
a very large probability. In particular, this is an extremely relevant discussion
when one thinks of the historically low interest rates observed in the late
1990s. An alternative to this approach is therefore to replace r by the so-
called short rate of interest, and then to replace the last term in (2.2) by the
price on the financial market of a financial asset which pays one unit at time
T , a so-called zero coupon bond; see Persson (1998).

2.2 Non-Life Insurance
In comparison to the valuation principles in life insurance, discounting

plays a much less prominent role in the classical non-life insurance premium
calculation principles; see e.g. Bu« hlmann (1970) and Gerber (1979) for
standard textbooks on the mathematics of these principles. This difference
can be partly explained by the relatively short time horizons of most non-life
insurance contracts, which typically change from year to year.

Let H denote some claim payable at a fixed time T , say. A premium
calculation principle is a mapping which assigns to each claim a number,
called the premium. One class of classical actuarial valuation principles
applied in non-life insurance can be directly and somewhat pragmatically
motivated from the law of large numbers. These principles prescribe charging
a premium ~u�H� which is equal to the expected value E�H� of the claim
augmented by some amount A�H�, the so-called safety-loading, i.e.:

~u�H� � E�H� � A�H�: �2:4�

The most important examples of such premium calculation principles are:
A�H� � 0 (the net premium principle or the principle of equivalence),
A�H� � aE�H� (the expected value principle), A�H� � a�Var�H��1=2 (the
standard deviation principle), A�H� � aVar�H� (the variance principle) and
A�H� � aE���Hÿ E�H����2� (the semi-variance principle). Of these, the
standard deviation principle seems to be the most widely used principle in
practice. Bu« hlmann (1970) mentions the fact that it is linear up to scaling as
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one possible explanation for its popularity, but judges its theoretical
properties to be inferior to those of the variance principle.

Another interesting class of premium calculation principles consists of the
so-called zero increase expected utility principles, which are derived as follows.
Let u be a utility function, i.e. u0�x� � 0 and u00�x� � 0 for any x 2 R, and let V0
denote the insurer's initial capital at time 0 (possibly random, e.g. depending on
the result of other business). The zero (increase expected) utility premium of
H under u and initial capital V0 is the solution ~u�H� to the equation:

E�u�V0 � ~u�H� ÿH�� � E�u�V0�� �2:5�

which states that the expected utility of the final wealth V0 � ~u�H� ÿH from
selling the claim H at the premium ~u�H� should equal the expected utility of
V0; the latter may be interpreted as the wealth associated with not selling the
claim H. The zero utility premium defined by (2.5) is often also called the
fair premium, since selling the claim leaves the expected utility unaffected, i.e.
it leads neither to an increase nor a decrease in expected utility. The most
prominent example is probably the so-called exponential principle, which is
obtained for the exponential utility function u�x� � 1

a
�1ÿ eÿax�. In particular,

when V0 is constant, P-a.s., the solution to (2.5), does not depend on V0 and is
given by:

~u�H� � 1
a

log E�eaH�ÿ �
:

Another frequently used utility function is the quadratic utility function,
which is defined by u�x� � xÿ x2

2s, x � s, and u�x� � s

2 for x > s. For a more
complete survey of utility functions in insurance (and finance), see e.g.
Gerber & Pafumi (1998).

An alternative principle is the so-called Esscher principle, which states that:

~u�H� � E�HeaH�
E�eaH� : �2:6�

This principle basically amounts to an exponential scaling of the claim H.
Other premium calculation principles worth mentioning are

generalisations of the so-called maximal loss principle. For e 2 �0; 1� and
p 2 �0; 1�, the (generalised) �1ÿ e�-percentile principle states that the premium
should be computed as:

~u�H� � pE�H� � �1ÿ p�Fÿ1�1ÿ e�

where F is the distribution function of H and Fÿ1 is its generalised inverse,
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i.e. Fÿ1�y� � inffxjF�x� � yg. Thus, the premium is a weighted average of the
expected value of H and the �1ÿ e�-percentile of the distribution of H. In
particular, the maximal loss principle is obtained for e � 0 and p � 0.

For a detailed investigation of the above mentioned principles and several
other premium calculation principles, see e.g. Goovaerts, De Vylder &
Haezendonck (1984) and Heilmann (1987).

â. Financial Valuation Principles

We recall some basic notation and concepts from financial mathematics.
Standard textbooks are Duffie (1996) and Lamberton & Lapeyre (1996); see
also Hull (1997) for an exposition including some more institutional aspects.
Let T denote a fixed finite time horizon and consider a financial market
consisting of two traded assets, a stock and a savings account with price
processes S � �St�0�t�T and B � �Bt�0�t�T , respectively, which are defined on
some probability space �O;F ;P�, and introduce the discounted price
processes X � S=B and X0 � B=B � 1. In this setting, a trading strategy (or
dynamical portfolio strategy) is a two-dimensional process j � �Wt; Zt�0�t�T

satisfying certain integrability conditions (which will be indicated later), and
where W is predictable and Z is adapted with respect to some filtration
F � �F t�0�t�T which describes the evolution of available information. The pair
jt � �Wt; Zt� is the portfolio held at time t, that is, Wt is the number of shares
of the stock held at t and Zt is the discounted amount invested in the savings
account. Thus, the discounted value at time t of jt is given by
Vt�j� � WtXt � Zt: A strategy j is said to be self-financing if:

Vt�j� � V0�j� �
Z t

0
Ws dXs: �3:1�

Here, V0�j� can be interpreted as the amount invested at time 0 andR t

0 Ws dXs as the accumulated trading gains generated by j up to and including
time t. Thus, for a self-financing strategy j, the current value of the
portfolio jt at time t is exactly the initially invested amount plus trading
gains, so that no inflow or outflow of capital has taken place during �0; t�. A
contract (or claim) specifying the discounted (F T -measurable) payoff H at
time T is said to be attainable if there exists a self-financing strategy j such
that VT �j� � H a.s., that is, if H coincides with the terminal value of a self-
financing strategy. Thus, a claim is attainable if and only if it can be
represented as a constant H0 plus a stochastic integral with respect to the
discounted stock price process:

H � H0 �
Z T

0
WH

s dXs: �3:2�

794 On Valuation and Risk Management at the

https://doi.org/10.1017/S1357321700003913 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003913


The initial investment V0�j� � H0 needed for this perfect replication of H is
also called the unique no-arbitrage price of H. To see that any other price
will lead to an arbitrage possibility, i.e. to a risk-free gain, suppose that the
price of H at time 0 is given by H0 � E, where E > 0. A risk-free gain of E can
now be generated in the following way:
ö Sell the claim H at time 0 and receive H0 � E. Thus, at time T we have

to pay H to the buyer of the claim.
ö Invest H0 via the self-financing strategy j � �W; Z� defined by taking

Wt � WH
t and by choosing Zt such that (3.1) is satisfied, i.e.

Zt � V0�j� �
Z t

0
Ws dXs ÿ WtXt:

ö The value of the portfolio jT at time T is now exactly equal to H, see
(3.1) and (3.2), which is to be paid to the buyer of the contract.

The net result of these transactions is the gain E. (If the price of H is H0 � E,
with E < 0, the gain ÿE can be obtained by buying H and using the hedging
strategy ÿj.) The argument illustrates how the amount H0 received at time 0
can be transformed into the amount H at time T by following a self-
financing strategy, so that H0 is indeed the only reasonable price.
A financial market is said to be complete if all claims are attainable. One

example of a complete market with continuous trading is the so-called Black-
Scholes model, which consists of two assets: a stock whose price process is
described by a geometric Brownian motion; and a savings account which
pays a deterministic and constant rate of return. An example with discrete
time trading is the Cox-Ross-Rubinstein model described above, which is
also known as the binomial model. One important feature of complete
markets admitting no arbitrage possibilities is the existence of a unique risk-
neutral measure. A risk-neutral measure is a probability measure Q which is
equivalent to P and which is such that X is a (local) Q-martingale. (Recall
that two probability measures P and Q are said to be equivalent if they have
the same null sets, i.e. if they assign probability 0 to the same events. This
means that the probability of an event A is 0 under P if and only if the
probability of A is 0 under Q, i.e. 8A 2 F : P�A� � 0, Q�A� � 0.) From
the general theory of stochastic calculus, it follows that

R
WH

dX is also a local
Q-martingale under certain conditions on WH. Furthermore, if WH is
sufficiently integrable for

R
WH

dX to be a true Q-martingale, then it follows
from (3.2) that the no-arbitrage price of H is H0 � EQ�H�, since in this case
EQ�

R T

0 WH
dX� � 0.

If there exist claims that are not attainable, i.e. claims which do not
allow a representation of the form (3.2), and hence cannot be replicated by
means of any self-financing trading strategy, then the market is said to be
incomplete; in this case there are infinitely many risk-neutral measures. The
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completeness property is often lost when we move on to more general
models than the ones described above. In the discrete time case,
incompleteness occurs already if we replace the binomial model with a
trinomial model, i.e. a model where the change in the value of the stock
between two trading times can attain three different values. An example of
an incomplete model under continuous trading is obtained by adding to the
geometric Brownian motion a Poisson-driven jump component, say.
Another class of examples of incomplete markets consists of models where
claims are allowed to depend on more uncertainty than the one generated
by the financial market. Pricing of non-attainable claims is far more delicate
than the pricing of attainable claims, and typically requires a description
of the preferences of the buyers and sellers. In the following we list some
different approaches to pricing and hedging in incomplete markets.

3.1 Super-Replication
One approach to pricing in incomplete markets is super-replication; see

e.g. El Karoui & Quenez (1995). For a given contingent claim H, this
approach essentially consists in finding the smallest number V �0 , say, such
that there exists a self-financing strategy ~j with V 0� ~j� � V �0 and

VT � ~j� � H; P-a.s.

By charging the price V �0 and applying the strategy ~j, the hedger can
generate an amount which exceeds the needed amount H, P-a.s. Thus, the
main advantage of this approach is that it leaves no risk to the hedger, since,
after an initial investment, no additional capital is needed in order to pay
the amount H to the buyer of the contract.

3.2 A (Marginal) Utility Approach
An alternative is to derive fair prices from some utility function

describing the preferences of the buyers and sellers; see Davis (1997) and
references therein. Using a marginal utility argument, Davis (1997) defines
the fair price of a claim H as the price which makes investors indifferent
between investing `a little of their funds' in the contract and not investing in
this contract. More precisely, let u be a utility function, c the investor's initial
capital at time 0, p the price charged at time 0 per unit of some claim H, z
the amount invested in H, and introduce:

W �z; p; c� � sup
W

E u cÿ z�
Z T

0
Wu dXu �

z

p
H

� �� �
where the supremum is taken over all strategies W from some suitable space
of processes. The number W �z; p; c� is the maximum obtainable expected
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utility for an investor with initial capital c who invests in z=p units of the
risk H. The fair price ~u�H; c� of H is then defined as the solution ~p to the
equation:

@

@z
W �0; p; c� � 0

provided that the relevant quantities exist. One possible disadvantage of this
approach is that it focuses on a small fraction of the risk, and hence partly
leaves open the choice of hedging strategy for (say) one unit of the risk.

3.3 Quadratic Approaches
A third class of approaches for pricing and hedging in incomplete

markets consists of the so-called quadratic methods; see e.g. Schweizer
(2001a) for a survey. This class of approaches can be divided into (local) risk-
minimisation approaches, proposed by Fo« llmer & Sondermann (1986) for
the case where X is a martingale and generalised to semi-martingales by
Schweizer (1988, 1991), and mean-variance hedging approaches, proposed by
Bouleau & Lamberton (1989) and Duffie & Richardson (1991). With mean-
variance hedging approaches, the main idea is essentially to `approximate'
the claim H as closely as possible by the terminal value of a self-financing
strategy using a quadratic criterion. More precisely, this amounts to finding a
self-financing strategy j� � �W�; Z�� which minimises:

E Hÿ VT �j�� �2� � � kHÿ VT �j�k2L 2�P� �3:3�

over all self-financing strategies j, i.e. a strategy which approximates H in
the L 2-sense. By (3.1), this strategy is completely determined by the pair
(V0�j��; W��, so that the solution to the problem of minimising (3.3) is
obtained in principle by projecting the random variable H in L 2�P� on the
subspace spanned by R and random variables of the form

R T

0 W dX. The
optimal initial capital V0�j�� is often called the approximation price for H,
and the optimal strategy is the mean-variance hedging strategy.

Let us now turn to the criterion of risk-minimisation. For any (not
necessarily self-financing) strategy j � �W; Z�, we define the cost process by:

Ct�j� � Vt�j� ÿ
Z t

0
Ws dXs: �3:4�

This process keeps track of the hedger's accumulated costs associated with
j. At any time t, it is the current value Vt�j� of the strategy reduced by
trading gains

R t

0 W dX. In particular, it follows by inserting (3.1) in (3.4) that
the cost process of a self-financing strategy is P-a.s. constant. In contrast to
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(3.3), Fo« llmer & Sondermann (1986) proposed to drop the restriction to
self-financing strategies, but insisted on keeping the condition VT �j� � H.
With their terminology, a strategy j is now said to be risk-minimising (for H)
if VT �j� � H and if it minimises at any time t the conditional expected
squared remaining costs:

Rt�j� � E CT �j� ÿ Ct�j�� �2��F t

� �
:

This optimality criterion amounts to keeping the fluctuations in the cost
process as small as possible under the condition VT �j� � H. In particular,
Fo« llmer & Sondermann (1986) proved that the cost process of a risk-
minimising strategy is a martingale.

3.4 Quantile Hedging and Shortfall Risk Minimisation
One possibly undesirable feature of the quadratic approaches is the fact

that they punish losses and gains equally. An alternative is to use quantile
hedging, see Fo« llmer & Leukert (1999), where the objective is to hedge the
claim with a certain probability. Another alternative is the criterion of
minimising the expected shortfall risk, i.e. expected losses from hedging,
which has been proposed by Fo« llmer & Leukert (2000) and Cvitanicè (2000).
They introduce a loss function l : �0;1� 7! �0;1�, which is taken to be an
increasing convex function with l�0� � 0, and consider the problem of
minimising:

E l �Hÿ VT �j���
ÿ �� � �3:5�

over the class of self-financing hedging strategies. Typical loss functions are
power functions l�x� � xp, p � 1, and, in this case, (3.5) is related to
minimising the so-called lower partial moments.

ã. Interplay between Insurance and Finance

This section mentions some specific areas of the interplay between finance
and insurance.

4.1 Unit-Linked Insurance Contracts
Unit-linked insurance contracts seem to have been introduced for the first

time in the Netherlands in the early 1950s; in the United States of America
the first unit-linked insurance contracts were offered around 1954, and in the
United Kingdom unit-linked contracts appeared for the first time in 1957.
We refer to Turner (1971) for an overview of the early history of unit-linked
life insurance products. For a treatment of some institutional aspects of unit-
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linked insurance contracts, see also Squires (1986). The contracts are also
called equity-linked or equity-based insurance contracts, and in the U.S.A.
they are known as variable life insurance contracts. A unit-linked life
insurance contract differs from the traditional life insurance contracts
described in Section 2.1 in that benefits (and sometimes also premiums)
depend explicitly on the development of some stock index or the value of
some (more or less) specified portfolio. This construction allows for great
flexibility as compared with traditional life insurance products, in that the
policyholder is offered the opportunity of deciding how his or her premiums
are to be invested. Today, issuers of unit-linked life insurance contracts
typically offer a variety of investment possibilities that include e.g. worldwide
or country specific indices, and reference portfolios with specific investment
profiles, e.g. investments in companies from certain branches or regions, or
organisations with certain ethical codes.

Denote by St the value of the stock index at time t. In the following, we
shall refer to the entire development of the stock by simply writing S. As in
Section 2.1, consider a portfolio consisting of n policyholders with remaining
life times T1; . . . ; Tn. Assume, for simplicity, that they all buy the same form
of unit-linked pure endowment contract at time 0 and that the life times are
stochastically independent of the development on the financial market. The
contracts specify the payment of some (non-negative) amount f �S� to the
policyholder at time T if he or she is still alive at this time; f is a function
which prescribes some dependence on the development of the stock price.
Thus, the present value at time 0 of the insurance company's liability towards
the n policyholders is:

H �
Xn

i�1
1fTi>T g f �S�eÿ

R T

0
ru du �4:1�

where we have discounted the payment by the short rate of interest r. For
example, the amount paid could be a function of the terminal value of the
stock only, that is:

f �S� � ST �4:2�

or the terminal value guaranteed against falling short of some prefixed
amount K:

f �S� � max�ST ;K�: �4:3�

The contract (4.2) is known as a pure unit-linked contract and (4.3) is called
unit-linked with guarantee (the guaranteed benefit is K). However, f could
also be a more complex function of the process S, for example a guaranteed
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annual return is given by:

f �S� � K �
YT
j�1

max 1� Sj ÿ Sjÿ1
Sjÿ1

; 1� dj

� �
:

Here, the fraction �Sj ÿ Sjÿ1�=Sjÿ1 is the return in year j on the asset S and dj

is the guaranteed return in year j. At time 0 the amount payable at time T is
guaranteed against falling short of K �QT

1 �1� dj�, but the guarantee goes
beyond this `worst case scenario'.

Unit-linked contracts have been analysed by actuaries since the late 1960s;
see e.g. Turner (1969), Kahn (1971) and Wilkie (1978); the two last mentioned
give simulation studies for an insurance company administering portfolios of
unit-linked insurance contracts. Using modern theories of financial
mathematics, Brennan & Schwartz (1979a,b) proposed new valuation
principles and investment strategies for unit-linked insurance contracts with
so-called asset value guarantees (minimum guarantees). Their principles
essentially consisted in combining traditional (law of large numbers)
arguments from life insurance with the methods of Black & Scholes (1973) and
Merton (1973). By appealing to the law of large numbers, Brennan &
Schwartz (1979a,b) first replaced the uncertain courses of the insured lives by
their expected values, so that the actual insurance claims, including mortality
risk as well as financial risk, were replaced by modified claims, which only
contained financial uncertainty. More precisely, instead of considering the
claim (4.1) they looked at:

H0 � n T py f �S�eÿ
R T

0
ru du
: �4:4�

(Recall the notation T py � P�T1 > T � introduced in Section 2.1.) These
modified claims were then recognised as essentially being options (with a
very long maturity, though) which could, in principle, be priced and hedged
using the basic principles of (modern) financial mathematics due to Black &
Scholes (1973) and Merton (1973). For the pure unit-linked contract (4.2),
the claim (4.4) is proportional to the terminal value of the stock ST , and
hence can be hedged by a buy-and-hold strategy which consists of buying
n T py units of the stock at time 0 and holding these until T . Thus, in the case
of no guarantee, the unique no-arbitrage price of H0 is simply n T py S0.
Consequently, one possible fair premium for each policyholder is T py S0, the
probability of survival to T times the value at time 0 of the stock index. Now
consider the contract with benefit f �S� � max�ST ;K� � �ST ÿK�� �K. In
this case, pricing of (4.4) involves the pricing of a European call option. In
the general case, we see that this principle suggests the premium n T py V

f

0 ,
where V

f

0 is the price at time 0 of the purely financial contract which pays
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f �S� at time T . More recently, the problem of pricing unit-linked life
insurance contracts (under constant interest rates) has been addressed by
Delbaen (1986), Bacinello & Ortu (1993a) and Aase & Persson (1994), among
others, who combined the martingale approach of Harrison & Kreps (1979)
and Harrison & Pliska (1981) with law of large numbers arguments. Whereas
all the above mentioned papers assumed a constant interest rate, Bacinello
& Ortu (1993b), Nielsen & Sandmann (1995) and Bacinello & Persson (1998),
among others, generalised existing results to the case of stochastic interest
rates.

In contrast to earlier approaches, Aase & Persson (1994) worked with
continuous survival probabilities (i.e. with death benefits that are payable
immediately upon the death of the policyholder, and not at the end of the
year, as would be implied by discrete time survival probabilities) and
suggested investment strategies for unit-linked insurance contracts by
methods similar to the ones proposed by Brennan & Schwartz (1979a,b) for
discrete time survival probabilities. In contrast to Brennan & Schwartz
(1979a,b), who considered a `large' portfolio of policyholders and therefore
worked with `deterministic mortality', Aase & Persson (1994) considered a
portfolio consisting of one policyholder only. However, in all the above
papers, the uncertain courses of the insured lives were replaced at an early
point with the expected courses in order to allow an application of standard
financial valuation techniques for complete markets. The resulting strategies,
therefore, did not account for the mortality uncertainty within a portfolio
of unit-linked life insurance contracts, and the approach thus leaves open the
question of how to quantify and manage the combined actuarial and
financial risk inherent in these contracts. In particular, it leaves open the
question to which extent this combined risk can be hedged on the financial
markets.

It is now natural to ask the question: ªIs the assumption of diversifiable
mortality risk essential for the derivation of prices for unit-linked insurance
contracts?'' Or alternatively: ªCan (the same) prices and hedging strategies
be derived by using alternative approaches which do not involve limiting
arguments for the size of the insurance portfolio?'' These questions are
answered in Section 5, where we give examples of incomplete market
approaches that lead to the same prices as the ones suggested by Brennan &
Schwartz (1979a,b), as well as examples of approaches that lead to
alternative prices.

4.2 Other Insurance Derivatives
This section describes some further specific products that have appeared in

practice and that combine traditional insurance risk and financial derivatives.
The best known examples are probably catastrophe futures, catastrophe-
linked bonds, financial stop-loss contracts and stop-loss contracts with a
barrier. These new products are really genuine combinations of financial
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derivatives and insurance products, and they are known as insurance
derivatives. The emergence of such products has been serving as a catalyst for
breaking down borders between traditional reinsurance and finance and has
opened up the possibility of rethinking fundamental principles of reinsurance
and investment. This development presents a challenge to direct insurers and
reinsurers as well as to financial institutions in general.

4.2.1 Catastrophe insurance (CAT) futures
In the 1980s and early 1990s several severe catastrophes impaired the

capacity of reinsurers offering traditional catastrophe covers, and this
situation caused an increase in reinsurance premiums. In 1992 the so-called
catastrophe insurance (CAT) futures and options on CAT futures were
introduced. These instruments standardised catastrophe insurance risk and
transformed it into tradeable securities, thus providing a new tool for
insurers seeking cover against catastrophe risk. This securitisation was
modified in 1995, but the underlying idea essentially remained the same. For
an introduction to CAT futures, see e.g. Cummins & Geman (1995) and
references therein. An overview of securitisation of catastrophe insurance
risk and an analysis of some of the problems associated with securitisation
can be found in Tilley (1997).

The basic idea is the following. Consider losses occurring in a specific
area and caused by certain well defined catastrophic events, e.g. hurricanes
with a certain wind speed or earthquakes of a certain magnitude. Clearly,
different insurers will be subject to different exposures from such risks as a
consequence of differences in the composition of their insurance portfolios,
and with traditional reinsurance contracts, each company would purchase its
own insurance covers against risk. Assume now that a number of (suitably
chosen) insurance companies report premiums and claims related to the pre-
specified type of catastrophes (during certain pre-specified periods) to some
central office. Based on the reports, this office constructs a loss index
L � �L t�0�t�T , which is taken to be the underlying process for a futures price
process. More precisely, this means that the index L is being reported
regularly to the public and that a futures price process F � �Ft�0�t�T is
constructed by fixing the terminal value FT � min�2; L T =k�, where k are the
accumulated premiums for the reporting companies and T is some fixed
finite time horizon. Insurance and reinsurance companies, as well as other
investors, can now buy and sell this standardised catastrophe risk by
purchasing and issuing options on this index on some stock exchange. For
example, the call spread H � �FT ÿK1�� ÿ �FT ÿK2��, 0 � K1 � K2 � 2,
provides cover for relative losses (i.e. the ratio of losses over premiums) in
the interval �K1;K2�. The main advantage of this construction lies in the
standardisation and securitisation of the catastrophic risk, which serves to
transform the risk related to individual insurance companies into one
(common) quantity. Thus, this transformed risk may be more attractive and
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conceivable to a group of investors which extends beyond traditional
reinsurance companies, since it is relatively close in nature to existing
financial derivatives. By attracting sellers from a wider group of agents than
just the traditional reinsurance companies, these instruments increase the
financial capacity of the reinsurance market. On the other hand, the
disadvantage for direct insurers buying this contract is that their own relative
losses may differ considerably from the average relative losses of the
reporting companies. Thus, for a direct insurer, the cover from the call
spread on the CAT futures index will typically not correspond exactly to the
actual loss experienced by this company.

4.2.2 Catastrophe-linked bonds
Individual insurance companies can also choose to securitise part of their

insurance risk directly, for example by issuing bonds that are linked to
insurance losses from certain insurance portfolios. One example of such an
arrangement is the so-called Winterthur Insurance Convertible Bond, also
called WinCAT bond. This bond, which was introduced by Winterthur in
1997, is described and analysed in Schmock (1999); see also Gisler & Frost
(1999). With this three-year bond, investors receive annual coupons as long
as certain catastrophic events related to one of Winterthur's own insurance
portfolios have not occurred. Thus, the investors receive a return from the
bond, which exceeds the market interest rate as long as no catastrophe has
occurred, and a lower return in the case of a catastrophe. The difference
between the return under no catastrophe and the interest rate on the market
is essentially a premium that Winterthur pays investors for `putting their
money at risk'; similarly, the low return in connection with a catastrophic
event essentially implies that the investors have covered part of Winterthur's
losses. In Cox & Pedersen (2000) catastrophe bonds are priced within a
discrete time model via some equilibrium considerations.

This type of product has the advantage over, for example, options on the
CAT futures index, in that it provides a much more tailor-made cover for the
issuer in that the trigger events that knock out the coupons are directly
linked to the company's own insurance portfolio and not to some
standardised index. The disadvantage is that there may be considerable costs
associated with the selling of such bonds, and that the seller will have to
convince buyers that they are only subject to a minimal moral hazard and
credit risk.

4.2.3 Financial stop-loss contracts
Whereas CAT futures and catastrophe-linked bonds are aimed at a larger

group of investors, new reinsurance contracts that combine elements of
insurance and financial derivatives have also been introduced by traditional
reinsurers. In Swiss Re (1998) several new contracts are described under the
title `Integrated Risk Management Solutions'. One example is the so-called
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financial stop-loss contract, which promises to pay at some fixed time T the
amount:

H � �UT � YT ÿK�� �4:5�

where UT is the aggregate claim amount during �0; T � on some insurance
portfolio, YT is some financial loss and K is some retention limit. For YT � 0
P-a.s., the contract is just a traditional stop-loss contract; however, the loss
YT could, for example, be a put option on some underlying stock index S,
that is YT � �cÿ ST ��, or it could simply be the loss associated with holding
one unit of this index, that is, YT � S0 ÿ ST . The financial stop-loss contracts
provide a coverage, not only for large losses due to fluctuations within the
insurance portfolio (insurance risk), but also for adverse development of the
financial markets (financial risk). In practice, reinsurance companies would
typically sell spreads of the form �UT � YT ÿK1�� ÿ �UT � YT ÿK2��, where
0 � K1 � K2, which covers the �K1;K2� layer of the losses UT � YT .

The main idea behind the insurance contract (4.5) is that it provides cover
for the insurer's total risk, i.e. the combined insurance risk from the
insurance portfolio and the financial risk from the financial portfolio. With a
traditional stop-loss contract, the reinsurer would cover insurance losses
exceeding the level K. However, the financial stop-loss contract is designed
so that the cover is only paid provided that the insurance loss augmented by
the financial loss exceeds this level. Thus, a large financial gain ÿYT may
compensate for large insurance losses, and, in this situation, the buyer does
not really need additional compensation from the reinsurer. This feature is
illustrated by Figure 1(a), where the area above the solid line represents pairs
�YT ;UT � of financial losses YT and accumulated insurance claims UT that

Figure 1. Regions of cover under the financial stop-loss contract with
retention K (figure (a)) and under the combination of a traditional stop-loss
contract �UT ÿK0�� and a call option �YT ÿK00�� (figure (b))
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generate a payment from the reinsurer. In the area between the solid line
and the dashed line are pairs �YT ;UT �, where (large) insurance claims UT are
partly compensated by financial gains ÿYT . The problem of pricing these
contracts is a challenge to both actuaries and financial mathematicians. This
fact is, for example, underscored by the following quotation from Swiss Re
(1998, p15): ª..., the risk-neutral valuation technique traditionally used for
the pricing of financial derivatives cannot be applied directly but needs to be
adjusted and complemented by actuarial methods.''

The contract (4.5) should be compared to the alternative of buying a
traditional stop-loss contract with retention level K0 paying �UT ÿK0�� and a
traditional financial derivative which pays �YT ÿK00��; the constants K0 and
K00 could, for example, be chosen such that K0 �K00 � K. It follows already
from the inequality:

�UT � YT ÿK�� � �UT ÿK0�� � �YT ÿK00�� �4:6�

which is satisfied provided that K0 �K00 � K, that the cover from the
financial stop-loss contract is dominated by combinations of a traditional
stop-loss contract on UT and a call option on YT . The region of cover under
the stop-loss contract and the call option is depicted in Figure 1(b) as the
area above the solid lines. This figure shows that the region is indeed larger
than the corresponding region under the financial stop-loss contract. In
particular, it follows that the insurer will receive compensation from the
reinsurer also in the situation where very large gains have arisen from
investments. Thus, with the traditional instruments, the insurer has actually
bought too much insurance cover; the financial stop-loss contract suits the
needs of the insurer better.

Finally, we emphasise that the inequality (4.6) indeed indicates that the
premium for the financial stop-loss contract should be dominated by the sum
of the price on the financial market of �YT ÿK00�� and the reinsurers'
premium for �UT ÿK0��. However, the difference may be relatively small,
since financial stop-loss contracts have only appeared recently and since they
are only bought and sold in very limited amounts. Another important point
is that, whereas the call option is sold on the financial market, the (financial
and traditional) stop-loss contracts are agreements between a reinsurer and
an insurer, and such contracts are typically not traded on stock exchanges.
Therefore, it is not, in general, possible to make statements like `by no-
arbitrage arguments', etc. about insurance premiums; see also the discussion
on the difference between actuarial and financial valuation principles in
Embrechts (2000).

4.3 Combining Theories for Financial and Actuarial Valuation
One fundamental difference between the financial valuation techniques,

or, more precisely, pricing by no-arbitrage, and the classical actuarial
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valuation principles reviewed above is that the financial valuation principles
are formulated within a framework which includes the possibility of trading
certain assets, whereas several of the classical actuarial valuation principles
are based on more or less ad hoc considerations involving the law of large
numbers. While the financial valuation principles are based on dynamic
trading, many decision problems in insurance, for example concerning the
choice of optimal reinsurance plans and premiums, were traditionally
analysed taking a static view. Several attempts have been made to bring
together elements of the two theories, and this whole area is still very much
`under construction'. We do not aim at giving a complete overview of this
process, but rather at focusing on some specific developments.

4.3.1 Dynamic reinsurance markets (from financial to actuarial valuation
principles)

Several authors have studied dynamic reinsurance markets in a
continuous time framework using no-arbitrage conditions; see, for example,
Sondermann (1991), Delbaen & Haezendonck (1989) and de Waegenaere &
Delbaen (1992). For an equilibrium analysis of dynamic reinsurance markets,
see e.g. Aase (1993) and references therein. The main idea underlying the
above mentioned papers is to allow for dynamic rebalancing of proportional
reinsurance covers. They all assume that some process related to an insurance
risk process (accumulated premiums minus claims) of some insurance
business is tradeable and that positions can be rebalanced continuously. For
example, this could mean that reinsurers can change at any time
(continuously) the amount of insurance business that they have accepted.
Thus, the insurance risk process can essentially be viewed as a traded
security, and this already imposes no-arbitrage bounds on premiums for
other (traditional) reinsurance contracts such as stop-loss contracts.

Let us review the main results obtained by Sondermann (1991) and
Delbaen & Haezendonck (1989) in more detail. As in the previous section, let
Ut be the accumulated claims during �0; t� in some insurance business. Let,
furthermore, p � �pt�0�t�T be a predictable process related to the premiums on
this business, and define a new process X by:

Xt � Ut � pt: �4:7�

Sondermann (1991) takes ÿpt to be the premiums paid during �0; t�, so that
ÿXt is, in fact, identical to the insurance risk process. Thus, one can think of
Xt as the value at time t of an account where claims are added and
premiums subtracted as they occur. In particular, in the special case where
premiums are paid continuously at a fixed rate k, pt � ÿkt. Reinsurers can
now participate in the risk by trading the asset X, i.e. by holding a position in
the asset with price process X. Sondermann (1991) points out that, in
this setting of a dynamic market for proportional reinsurance contracts,
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traditional reinsurance contracts such as stop-loss contracts can be viewed
as contingent claims, and that these claims should be priced so that no
arbitrage possibilities arise. Delbaen & Haezendonck (1989) take pt to be the
premium at which the direct insurer can sell the remaining risk UT ÿUt on
the reinsurance market. Thus, in their framework Xt represents the insurer's
liabilities at time t. In the special case where the direct insurer receives
continuously paid premiums at rate k and, provided that this premium is
identical to the one charged by the reinsurers, we obtain pt � k�T ÿ t�, so
that pt in this situation differs from Sondermann's choice only by the
constant kT . Delbaen & Haezendonck (1989) assume that U is a compound
Poisson process, i.e. Ut �

PNt

i�1 Zi, where N is a Poisson process and
Z1;Z2; . . . is a sequence of i.i.d. non-negative random variables which are
independent of N. They then focus on the set of equivalent measures Q which
are such that U is also a Q-compound Poisson process. For each such
measure Q, a predictable premium process p is obtained by requiring that X
be a Q-martingale. This procedure is partly motivated by no-arbitrage
considerations (assuming, in addition, that all amounts have been discounted
with the interest rate on the market), since this guarantees that no arbitrage
possibilities arise from trading in X. In this way, Delbaen & Haezendonck
(1989) recover several traditional actuarial valuation principles on a certain
subspace of claims from no-arbitrage considerations, namely the expected
value principle, the variance principle and the Esscher principle. A more
detailed account of the results of Delbaen & Haezendonck (1989) is also
given by Embrechts (2000).

In Steffensen (2000, 2001) general life insurance contracts are studied
within a securitisation framework which covers both classical and unit-linked
life insurance contracts. More precisely, it is assumed that there exist
certain traded assets whose price processes are affected by some underlying
insurance risk, for example the number of deaths within a portfolio of
insured lives. Within this setup, which also opens for a systematic treatment
of bonus in life insurance, Steffensen (2000) defines the reserve as the market
price of future payments and derives generalised versions of Thiele's
differential equation under various assumptions about the structure of the
payments.

4.3.2 From actuarial to financial valuation principles
Gerber & Shiu (1996), among others, consider the situation where the

logarithm of the stock price process is a Levy process, i.e. a process with
independent and stationary increments. For example, this class of processes
includes the geometric Brownian motion and the geometric (shifted)
compound Poisson process. Within this setting, they demonstrate how the
Esscher transform (2.6) can be used in the pricing of options. They give a
very simple option pricing formula which involves Esscher transforms and
which, for a European call option, indeed specialises to the well-known
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Black-Scholes formula in the case of a geometric Brownian motion.
Furthermore, they demonstrate how this pricing formula can be derived via a
simple utility indifference argument in the case of a power utility function
u�x� � x1ÿa

1ÿa
with parameter a > 0. This way, they give a candidate for

a martingale measure that could be used for pricing in incomplete markets
also; they call the resulting martingale measure the risk-neutral Esscher
measure. For further results on the relation between Esscher transforms,
utility theory and equilibrium theory, see Bu« hlmann (1980, 1984) and
references in Delbaen & Haezendonck (1989). A treatment of some of the
mathematical aspects associated with Esscher transforms for stochastic
processes can be found in Bu« hlmann et al. (1997).

In Schweizer (2001b), the starting points are the traditional standard
deviation and variance principles, which are of the form (2.4). These
principles are taken as measures of riskiness, which assign to each claim a
premium. It is then argued that the measures can equivalently be viewed as
measures of preferences which operate on the insurer's terminal wealth by
simply changing the sign on the loading factor. This way, Schweizer (2001b)
obtains functionals which assign a number to each outcome of the insurer's
final wealth, and one can think of this number as the expected value of the
insurer's utility of this wealth. For the standard deviation principle, the
corresponding functional is given by:

u�Y � � E�Y � ÿ a�Var�Y ��1=2: �4:8�

(Dana (1999) refers to a functional of this form as a mean variance utility
function.) These new functionals are then embedded in a financial framework
where the insurer can trade certain assets. Via an indifference argument,
Schweizer (2001b) derives financial counterparts of the actuarial standard
deviation and variance principles. More precisely, the fair premium p is
defined as the unique solution to:

sup
j

u c� p� VT �j� ÿH� � � sup
j

u c� VT �j�� � �4:9�

where the suprema are taken over self-financing strategies with initial value
0 satisfying certain integrability conditions. Here, the term c� p� VT �j� ÿH
is the insurer's wealth at time T from selling the claim H at the price p. It is
given by the initial capital c augmented by the premium p and trading gains
VT �j� and reduced by the claim H payable at time T . Similarly, c� VT �j� is
the insurer's wealth at T from not selling the claim and investing according
to the strategy j. The insurer is now said to be indifferent between selling H
and not selling H, if the maximum obtainable utilities in the two scenarios
are identical, that is, if (4.9) is satisfied. This leads to new financial valuation
principles which resemble their actuarial counterparts, in that they consist
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of an expectation plus some safety loading. However, for the financial
valuation principles, the expected value is now computed under a specific
martingale measure ~P known as the variance optimal martingale measure.
This martingale measure is the risk-neutral measure whose Radon-Nikodym
derivative with respect to P has the smallest variance, i.e. it minimises Var�dQ

dP
�

among all risk-neutral measures Q. Moreover, ~P has the special property
that the Radon-Nikodym derivative can be represented as a constant plus a
stochastic integral, that is:

d ~P

dP
� ~Z0 �

Z T

0

~zt dXt:

Furthermore, the loading factor is now a function of the variance of the so-
called non-hedgeable part of the claim H, which, in general, is smaller than
the variance of H, and which can be quite difficult to determine. These new
financial valuations are in accordance with no-arbitrage pricing for
attainable claims, and thus they provide alternative approaches for the
valuation of options and other derivatives in incomplete markets.

One undesirable feature with this approach is that the variance optimal
measure is, in general, only a signed measure and not necessarily a true
probability measure. In particular, this property has the very unfortunate
consequence that the financial principles may assign a negative value to a
positive claim! However, if the discounted price processes of the traded assets
are continuous, then the variance optimal martingale measure is indeed a
true probability measure which is equivalent to the true probability measure
P. For more details, see e.g. Schweizer (2001a).

ä. Hedging and Indifference Pricing in Insurance

In this section we mention some further results for insurance claims that
combine financial and insurance risk. Section 5.1 reviews existing applications
to insurance of the theory of risk-minimisation with special emphasis on
hedging (and pricing) of unit-linked insurance contracts, and Section 5.2 is
related to the financial variance and standard deviation principles of
Schweizer (2001b).

5.1 Hedging Unit-Linked Insurance Contracts
5.1.1 Risk-minimisation

In MÖller (1998) risk-minimising hedging strategies were determined for a
portfolio of unit-linked pure endowment contracts using the theory of risk-
minimisation due to Fo« llmer & Sondermann (1986). An introduction to the
problem of the pricing and hedging of unit-linked insurance contracts can
also be found in MÖller (2001a), where various approaches for hedging and
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pricing in incomplete markets are discussed in a discrete time model
framework. This opens for a simple comparison of the techniques proposed
by Brennan & Schwartz (1979a,b) to the ones suggested by risk-minimisation
and super-replication, respectively. In contrast to the approaches of
Brennan & Schwartz (1979a,b) and Aase & Persson (1994), MÖller (1998,
2001a) did not average away the mortality risk (the uncertainty associated
with not knowing the number of survivors), but analysed the insurance
contracts as contingent claims in an incomplete market. Consequently, the
resulting strategies reflect, and react to, the financial risk as well as the
insurance risk. In particular, it is clearly visible from these strategies how an
insurer applying the risk-minimising hedging strategy is currently adapting
his portfolio of stocks and his deposit on the savings account to the actual
development within the portfolio of insured lives.

As an example, consider unit-linked pure endowment contracts of the
form (4.1) for n policyholders aged y with i.i.d. remaining life times
T1; . . . ; Tn, and assume that the amount payable upon survival to T , f �S�, is
attainable in the sense that:

f �S�eÿ
R T

0
rudu � H

f

0 �
Z T

0
W f

u dXu �5:1�

see Section 3 for more motivation. Thus, the discounted no-arbitrage price
at time t of the claim f �S� is given by:

V
f

t � H
f

0 �
Z t

0
W f

u dXu:

Denote the number of deaths up to time t by Nt �
Pn

i�1 1fTi�tg, so that the
current number of survivors at t is �nÿNt�. The filtration F � �F t�t2�0;T � is
defined as:

F t � sf�Nu; Su;Bu�; u � tg

where Bt � exp�R t

0 rudu�. This has the usual interpretation. The insurance
company is observing the process N as well as the price processes �S;B�.
Under the natural assumption of independence between the remaining life
times and the financial risk, the arguments used in MÖller (1998) show the
following:

Theorem 1. Assume that P is a martingale measure. The unique risk-
minimising strategy j� � �W�; Z�� for (4.1) is given by:
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W�t � �nÿNtÿ� Tÿtpy�t W
f
t

Z�t � �nÿNt� Tÿtpy�t V
f

t ÿ W�t Xt:

This strategy prescribes holding a number of stocks at time t which is
equal to the dynamic hedge W f

t for f �S� multiplied by the current expected
number of survivors just before time t, and the amount invested in the
savings account Z�t is chosen such that at any time t:

Vt�j�� � �nÿNt� Tÿtpy�t V
f

t :

In particular, the value at time 0 is V0�j�� � n T py V
f

0 , which coincides with
the price suggested by Brennan & Schwartz (1979a,b): the expected number
of survivors to T multiplied by the no-arbitrage price at time 0 of the amount
f �S� payable upon survival to T ; see also the discussion in Section 4.1. The
strategy in the theorem is not self-financing, and its cost process is given by:

Ct�j�� � n T py V
f

0 ÿ
Z t

0
V f

u Tÿupy�u dMu

where M is a martingale defined by:

dMt � dNt ÿ �nÿNtÿ� my�t dt

and where my�t is the mortality intensity (or the hazard rate); see Section
2.1. Using the results of Fo« llmer & Sondermann (1986), MÖller (1998) also
derived measures for the part of the total risk in the unit-linked contracts
that cannot be hedged away by trading on financial markets only, the so-
called intrinsic risk. It is given by:

R0�j�� � E��CT �j�� ÿ C0�j���2� � n T py

Z T

0
E��V f

u �2�Tÿupy�u my�u du

see MÖller (1998, Theorem 4.2). Furthermore, it was shown that this
intrinsic risk could actually be completely eliminated by including in addition
a dynamic reinsurance market. More precisely, it was assumed that the
insurer could trade continuously, in addition to the stock and the savings
account, a third asset with a price process which was, at any time, equal to
the prospective reserve associated with a pure endowment insurance with
sum insured 1. In this way, the insurance risk was essentially transformed
into a traded asset or a security. In the model considered there, this
additional asset was indeed sufficient to restore completeness, leading to
unique prices and self-financing investment strategies.
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The theory of risk-minimisation, introduced by Fo« llmer & Sondermann
(1986), focuses on the problem of hedging a contingent claim payable at a
fixed time. However, insurance contracts often generate genuine payment
streams where amounts are paid out over time. For example, with a so-called
life annuity, payments are due yearly, say, from a certain time and as long
as the policyholder is still alive. Similarly, life insurance contracts, in general,
are often paid by periodic premiums, e.g. premiums paid at the beginning of
each year as long as the policyholder is still alive. In MÖller (2001c), general
payment streams are incorporated into the theory of risk-minimisation, thus
providing a framework which allows for the analysis of (insurance) payment
processes. This modified framework is applied to the analysis of general unit-
linked life insurance contracts, where the state of the policy is described by
a Markov jump process with a finite state space. This generalises previous
results obtained in MÖller (1998).

5.1.2 Mean-variance hedging
In the situation where P is not a martingale measure, that is when the

discounted stock price process X � S=B is not a martingale under P, we can
instead determine the mean-variance hedging strategy for H and the so-called
approximation price, cf. Section 3. In the present situation, we have, under
certain technical conditions on the process X, the following result; see MÖller
(2002a, Section 7):

Theorem 2. The mean-variance hedging strategy ~j � � ~W; ~Z� for (4.1) is
given by:

~Wt � �nÿNtÿ� Tÿtpy�t W
f
t � ~zt

Z t

0
V f

u
~Zÿ1u Tÿupy�u dMu

~Zt � V0� ~j� �
Z t

0

~Wu dXu ÿ ~WtXt

where the processes ~z and ~Z are determined by the variance optimal
martingale measure. The approximation price is V0� ~j� � n T py V

f

0 .

The number of stocks ~Wt held with the mean-variance hedging strategy
consists of two terms. The first term is exactly the risk-minimising strategy of
Theorem 1. The second term is a correction term, which is driven by the
martingale M introduced above, and which depends on the entire past
development within the portfolio of insured lives. Moreover, this second term
is related to the variance optimal martingale ~P; see the last paragraph of
Section 4.3, via the terms ~z and ~Zt � ~E�d ~P

dP
jF t�. For more details on the

variance optimal martingale measure, see e.g. Schweizer (2001a). In addition,
we see that the approximation price is equal to the price proposed by
Brennan & Schwartz (1979a,b).
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5.1.3 Super-Replication
For comparison, we derive the super-replicating strategy for the unit-

linked contract (4.1). With super-replication, the objective is essentially to
determine the self-financing strategy among the ones whose terminal values
dominate the claim H, i.e. VT �j� � H, which requires the smallest initial
investment. As shown by El Karoui & Quenez (1995), this strategy is closely
related to the process:

V t � ess sup
Q

EQ�HjF t� �5:2�

where the supremum is taken over all equivalent martingale measures. In
the present situation we obtain:

Lemma 1. For the unit-linked pure endowment contract (4.1) the process
(5.2) is given by V t � �nÿNt� V f

t and it admits the decomposition:

V t � n V
f

0 �
Z t

0
�nÿNuÿ� W f

u dXu ÿ
Z t

0
V f

u dNu: �5:3�

Idea of proof. (This result is similar to El Karoui & Quenez, 1995,
Example 3.4.2.) We first show that V t � �nÿNt� V f

t . To see `�', note that
NT � Nt which implies that �nÿNT � � �nÿNt�. Thus, for any martingale
measure Q:

EQ��nÿNT � f �S�eÿ
R T

0
ru dujF t�

� �nÿNt�EQ� f �S�eÿ
R T

0
ru dujF t�

� �nÿNt� V f
t :

To see that V t � �nÿNt� V f
t , consider for h > ÿ1 the martingale measure

Q�h� such that the remaining life times T1; . . . ; Tn are i.i.d. with mortality
intensity �1� h�my�t and independent of �S;B�; see MÖller (1998, Section 2)
for a construction of this measure. Thus, by the independence between the
two sources of risk:

EQ�h� ��nÿNT � f �S�eÿ
R T

0
ru dujF t� � �nÿNt� Tÿtp

�h�
y�t V

f
t

where the survival probability under Q�h� is given by:
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Tÿtp
�h�
y�t � Q�h��T1 > T jT1 > t� � exp ÿ�1� h�

Z T

t

my�u du

� �
and where we have used:

EQ�h� � f �S�eÿ
R T

0
ru dujF t� � V

f
t

for any h > ÿ1. Since limh&ÿ1 Tÿt p
�h�
y�t � 1, we obtain V t � �nÿNt� V f

t . The
decomposition (5.3) finally follows by applying the product rule to
�nÿNt� V f

t .
Using the decomposition (5.3) with t � T , we see that:

n V
f

0 �
Z T

0
�nÿNuÿ� W f

u dXu � H�
Z T

0
V f

u dNu:

Here, the two terms on the left represent the value at T of a self-financing
strategy with initial value n V

f

0 and with �nÿNuÿ� W f
u stocks held at time

0 � u � T . This value exceeds H by the amount
R T

0 V f
u dNu, which is non-

negative, since V f
u � 0 and since N is increasing. We can, in fact, currently

withdraw the amount
R t

0 V f
u dNu from the strategy and still ensure that the

terminal value exceeds H. We summarise this result in the following:

Theorem 3. The super-replicating strategy ĵ � �Ŵ; Ẑ� for (4.1) is determined
by:

Ŵt � �nÿNtÿ� W f
t

Ẑt � V0�ĵ� �
Z t

0
Ŵu dXu ÿ ŴtXt ÿ

Z t

0
V f

u dNu

and V0�ĵ� � n V
f

0 .

Thus, the super-replicating strategy requires an initial investment at
time 0 of the amount n V

f

0 . Comparing with the results obtained in Theorems
1 and 2, we see that this corresponds to using a survival probability of 1!
Thus, the super-hedging price for the unit-linked contract is identical to the
price for the purely financial contract specifying the payoff n f �S� at time T .
This result clearly indicates that super-hedging is not the right approach for
the pricing of unit-linked contracts in the present framework. However, the
result can still be used as an upper bound for reasonable prices. The number
of stocks held at t is exactly the current number of survivors multiplied with
the hedge W f

t for f �S�, which also differs from the risk-minimising and mean-
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variance strategies in that no survival probability is involved. If a
policyholder dies during the infinitesimal interval �t; t� dt�, then dNt � 1,
which implies that the discounted deposit on the savings Ẑt is being reduced
by the amount V f

t , i.e. that the amount V f
t can be withdrawn from the

strategy.

5.2 On Transformations of Actuarial Valuation Principles
This section reviews some results on the financial variance and standard

deviation principles of Schweizer (2001b), mentioned in Section 4.3. Instead
of using the indifference principle applied there, we present two apparently
ad hoc ways of modifying the classical principles. These results are closely
related to an alternative and more direct characterisation of the financial
standard deviation principle given in MÖller (2001b), which does not involve
an indifference argument. For this purpose, it suffices to consider a standard
Black-Scholes market. There are two traded assets S and B with S0 � B0 � 1
and dynamics:

dBt � rBtdt

dSt � aStdt� sStdWt:

These processes are defined on some probability space �O;F ;P� equipped
with a filtration F � �F t�t2�0;T �, where T is a fixed finite time horizon, W is a
standard Brownian motion with respect to F, and r; a and s are known
constants. Consider in addition some insurance (risk) process U � �Ut�t2�0;T �,
which, for example, could be defined by Ut �

PNt

i�1 Zi, where N is
a homogeneous Poisson process with intensity l and Z1;Z2; . . . is a sequence
of i.i.d. random variables representing claim amounts. Alternatively, Ut

could be the number of deaths up to time t within a portfolio of n insured
lives. We assume for simplicity that U and W are independent under P (or,
equivalently, that U and S are independent) and that F t � FW

t _ FU
t , i.e. the

filtration is taken to be the (P-augmentation of the) natural filtration of
�W ;U�.

With the present construction, one can trade the two assets S and B via
trading strategies that are adapted to the filtration generated by S and U.
This means that investors can base investment strategies on observed prices
as well as on the observed insurance claims. Note, however, that the process
U is not related to any traded assets, so that this risk cannot be eliminated by
trading on the market. In this setting, we will consider the problem of
assigning premiums to insurance contracts that depend on both sources of
risk. More precisely, this means that we consider contingent claims H
payable at time T which are FU;W

T -measurable. Non-trivial examples are a
financial stop-loss contract or a unit-linked life insurance contract described
above.
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Define an equivalent measure Q via:

dQ

dP
� L T � exp ÿnWT ÿ

1
2
n2T

� �
where n � aÿr

s . This measure has the following properties:
ö The discounted price process X � S=B is a Q-martingale.
ö U is not affected by the change of measure.
ö S and U are independent under Q.

Thus, Q is an equivalent martingale measure, so that the model is free of
arbitrage. To see that the last property is satisfied, it must be verified that for
any A 2 FW

T and B 2 FU
T we have: Q�A \ B� � Q�A�Q�B�. By using the

definition of the measure Q and by exploiting the independence between the
FW

T -measurable random variable L T and FU
T we get:

Q�A \ B� � EQ�1A\B� � E�L T 1A1B� � E�L T 1A�E�1B� � Q�A�Q�B�:

(Here and throughout we use the notation `E' and `Var' for `EP' and `VarP'.)
Finally, we point out that Q is just one possible martingale measure. Whereas
the change of measure from P to Q does not affect the process U, one can
also consider equivalent martingale measures which change the distribution
of U; see e.g. Delbaen & Haezendonck (1989) for the situation where U is a
compound Poisson process and MÖller (1998) for the case where U counts
the number of deaths within a portfolio of insured lives. Since this can be
done without affecting the stock S, it follows that there are infinitely many
martingale measures in the current model, i.e. the model is incomplete.

According to the classical actuarial standard deviation principle, the
premium for a contract specifying a discounted payoff H at T is:

~u�H� � E H� � � a Var H� �� �1=2 �5:4�

cf. Section 2.2 (here we apply the principle on the discounted payoff, thus
deviating slightly from tradition). Clearly, it would not make sense to apply
this principle directly to (say) a European call option with discounted payoff
H � eÿrT �ST ÿK��, since this contract is attainable and hence can be priced
uniquely by no-arbitrage arguments alone. One idea is therefore to modify
(or transform) the principle slightly, so as to get a principle that, on the one
hand still resembles the standard deviation principle, and on the other hand
is consistent with absence of arbitrage, in the sense that the premium of an
attainable claim equals the unique no-arbitrage price. We shall look at two
simple ways of modifying the standard deviation principle directly.
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5.2.1 Modified standard deviation principle 1
Consider the following modified premium principle:

p1�H� � EQ H� � � a Var EQ H FU
T

��� �� �ÿ �1=2
: �5:5�

It is not difficult to show that this principle has the properties:
(1) For g � 0, p1�gH� � gp1�H�; i.e. the principle allows for scaling of the

claim. (This property is called positive homogeneity in the literature, cf.
Goovaerts, De Vylder & Haezendonck, 1984.)

(2) For any H � FW
T :

p1�H� � EQ�H�

i.e. for any purely financial contract, the premium under (5.5) is equal
to the unique no-arbitrage price.

(3) For any H � FW ;U
T :

p1�H� � ~u�EQ�HjFU
T ��:

i.e. this modified standard deviation principle corresponds to applying
the traditional standard deviation principle to the no-arbitrage price of
H conditional on the insurance uncertainty FU

T .

Property 1 follows immediately from the definition (5.5). To see that
Property 2 is satisfied, consider a claim H which only depends on the
uncertainty from the financial market, so that H is FW

T -measurable. We can
again exploit the independence between U and W under Q and well-known
properties for conditional expected values to obtain that EQ�HjFU

T � � EQ�H�
for such H. Since the variance of a constant is 0, the loading term in (5.5)
vanishes, and this shows that Property 2 is indeed satisfied. In particular, this
ensures that the premium for a European call option on S coincides with its
unique no-arbitrage price.

Finally, the last property follows by verifying that EQ�H� � EEQ�HjFU
T �,

which, in turn, follows from the rule of iterated expectation under Q and the
definition of Q:

EQ�H� � EQ�EQ�HjFU
T �� � E�L T EQ�HjFU

T ��
� E�L T �E�EQ�HjFU

T �� � E�EQ�HjFU
T ��

where the third equality follows from the independence between L T and U,
and the last equality follows since E�L T � � 1.
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5.2.2 Modified standard deviation principle 2
As an alternative, consider the following modification of the classical

standard-deviation principle:

p2�H� � EQ H� � � a E Var H FW
T

��� �� �ÿ �1=2
: �5:6�

Similarly to principle p1, one can show that p2 is positively homogeneous,
i.e. it satisfies Property 1. Property 2 is also satisfied for p2, since for any
H � FW

T we have that Var�HjFW
T � � 0. The principle p2 does not satisfy

Property 3, but we can instead give the following intuitive characterisation:
(4) For any claim H, there exists a self-financing strategy j with initial

value 0 such that:

p2�H� � ~u�Hÿ VT �j��

where VT �j� is the terminal value of the strategy j.

Thus, p2 simply amounts to applying the traditional standard deviation
principle to the claim H reduced by the terminal value of a certain self-
financing strategy which requires 0 initial investment.

To see that Property 4 is satisfied, consider the (artificial) claim:

H0 � E�HjFW
T � ÿ EQ�H�:

Since by MÖller (2002b, Proposition 3.11), E�HjFW
T � � EQ�HjFW

T �, we find
that EQ�H0� � 0. Furthermore, since H0 is FW

T -measurable, there exists a self-
financing strategy j which replicates H0, i.e. VT �j� � H0. Moreover, it follows
e.g. from the fact that EQ�H0� � 0 and the results reviewed in Section 3 that
this self-financing strategy requires no initial investment (initial capital 0). To
see that Property 4 is satisfied, we only need to compute E�Hÿ VT �j�� and
Var�Hÿ VT �j�� and check that these will correspond to the terms appearing
in (5.6):

E�Hÿ VT �j�� � E�Hÿ �E�HjFW
T � ÿ EQ�H��� � EQ�H�

Var�Hÿ VT �j�� � Var�Hÿ E�HjFW
T �� � E�Var�HjFW

T ��

where the last equality follows by using standard rules for conditional
variances. The idea of applying the original standard deviation principle to
the claim reduced by the terminal value of a self-financing strategy with
initial capital 0 is pursued further in MÖller (2001b). More precisely, it is
shown that one can give an equivalent definition of the financial standard
deviation principle of Schweizer (2001b) by defining a premium principle
via:
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p3�H� � inf
j

~u�Hÿ VT �j��

where the infimum is taken over all self-financing strategies j with initial
value 0 that in addition satisfy some integrability conditions.

5.2.3 Indifference pricing under a change of filtration
In MÖller (2002a,b) the properties of the financial variance and standard

deviation principles of Schweizer (2001b) are studied further. In particular,
focus is on the dependence of the fair premiums (also called indifference
prices) on the amount of information available to the insurer, that is, on the
choice of filtration. Via a comparison result for mean-variance hedging
errors in different filtrations, a natural ordering of the fair premiums is
obtained. More precisely, it is shown in MÖller (2002b) that more actuarial
information leads to lower premiums, and this difference is characterised
further. The results allow for derivation of relatively simple upper and lower
bounds for the fair premiums of reinsurance contracts under the assumption
of independence between the traded assets and the insurance risk involved.
An upper bound is obtained by allowing the hedger to adapt trading
strategies to the information from the financial market only, and the lower
bound corresponds to the artificial situation where the actuarial uncertainty
FU

T is revealed immediately after the signing of the contract. These bounds
are, in fact, closely related to the above mentioned ad hoc modifications of
the classical standard deviation principles; for comparison, we quote the
result from MÖller (2002b) here:

Theorem 4. Assume that a2 � Var�L T �. For the standard deviation
principle, the upper bound for the fair premium is:

pmax�H� � EQ�H� � a1 E�Var�H j FW
T ��

ÿ �1=2 �5:7�

and the lower bound is given by:

pmin�H� � EQ�H� � a2 Var�EQ�H j FU
T ��

ÿ �1=2 �5:8�

where:

a1 � a

�������������������������
1ÿ Var�L T �

a2

r
a2 �

a1����
E
p �L 2

T �
:

Note that in the present model the upper and lower bounds in the theorem
differ from the modified principles (5.5) and (5.6) only via the safety loading
parameters a1 and a2. The fair premiums of the above theorem are only valid

Interface of Insurance and Finance 819

https://doi.org/10.1017/S1357321700003913 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003913


provided that the condition a2 � Var�L T � is satisfied. Since Var�L T � � en
2T ÿ 1,

this means that the so-called market price of risk n � aÿr

s has to be small
compared to the safety-loading parameter a. If a � r then L T � 1, so that
P � Q. In this special situation, a1 � a2 � a, so that the bounds are actually
identical to the above mentioned modified principles. Some applications
related to insurance of these results can be found in MÖller (2002a), where fair
premiums and optimal trading strategies are determined under various
scenarios corresponding to different amounts of information, for example for
unit-linked insurance contracts and financial stop-loss contracts.

5.3 Hedging Unit-Linked Insurance Contracts (continued)
5.3.1 Indifference pricing

As described in the previous section, the indifference price depends on the
amount of information available, i.e. on the choice of filtration. In MÖller
(2002a), indifference prices and optimal investment strategies are computed
under different filtrations for the unit-linked pure endowment contract (4.1),
which can also be written as:

H � �nÿNT � f �S� eÿ
R T

0
ru du
: �5:9�

Here, Theorem 4 gives upper and lower bounds for the fair premiums in
the standard Black-Scholes model. For the contract (5.9), we see that:

E�Var�H j FW
T �� � Var��nÿNT ��E f �S�eÿ

R T

0
ru du

� �2
" #

� n T py �1ÿ T py�E f �S�eÿ
R T

0
ru du

� �2
" #

since the lifetimes are assumed to be i.i.d., so that Var��nÿNT �� �
n T py �1ÿ T py�, and where we have also used the notation of Section 5.1.
Similarly, the term appearing in the safety-loading of the lower bound is
(with U � N):

Var�EQ�H j FU
T �� � V

f

0

� �2
n T py �1ÿ T py�:

Thus, the upper bound of Theorem 4 is:

pmax�H� � n T py V
f

0 � a1 n1=2
T py �1ÿ T py�
ÿ �1=2

E f �S�eÿ
R T

0
ru du

� �2
" # !1=2

�5:10�
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and the lower bound is:

pmin�H� � nT py V
f

0 � a2 n1=2
T py �1ÿ T py�
ÿ �1=2

V
f

0 : �5:11�

In MÖller (2002a) optimal investment strategies associated with the two
bounds are derived for the unit-linked contract by considering various
filtrations. These strategies are, in fact, closely linked to the mean-variance
strategy determined in Section 5.1. If we apply the filtration F introduced in
Section 5.1, the optimal investment strategy becomes:

W�t � �nÿNtÿ�Tÿtpy�tW
f
t � ~zt

Z t

0

~Zÿ1u V f
u Tÿupy�u dMu �

�����������������
Var�NH�

q ~Ztlt

a1
�5:12�

where lt � aÿr

s2Xt
. The term Var�NH� is the variance of the part of the liability

which cannot be hedged away in the financial market. This term was
determined and evaluated numerically in MÖller (2001b); it is given by:

NH � ÿ ~ZT

Z T

0

V f
u

~Zu

Tÿupy�u dMu: �5:13�

It was shown in MÖller (2002a) that:

Var�EQ�H j FU
T ��

E�L 2
T �

� Var�NH� � E�Var�H j FW
T ��

which gives simple bounds for the variance of the non-hedgeable part of the
unit-linked contract. This quantity is also closely related to the indifference
prices, since the indifference price corresponding to the filtration F is given
by:

n T py V
f

0 � a1

�����������������
Var�NH�

q
: �5:14�

The first term in the optimal strategy (5.12) is recognised as the risk-
minimising strategy of Theorem 1, and the two first terms correspond to the
mean-variance strategy of Theorem 2. In particular, the second term provides
an adjustment of the number of stocks which depends on the number of
survivors. If the current number of survivors is larger than the expected
number, then the optimal number of stocks held under the mean-variance
principle will typically exceed the one determined under the criterion of risk-
minimisation. The optimal strategy under the indifference pricing principle
deviates from the mean-variance strategy by an additional correction term,
which is proportional to

�����������������
Var�NH�

p
.
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5.3.2 A comparison of the pricing formulae
To get an overview of the approaches discussed above, we list in Table 1

the various formulae derived for the price of the unit-linked pure endowment.
As in Section 5.1, V

f

0 is the price at time 0 of the contract that pays f �S� at
time T .

The table shows how the prices computed under the quadratic approaches
of risk-minimisation and mean-variance hedging coincide with the price
suggested by Brennan & Schwartz (1979a,b). In all three cases, the price is
determined as the expected number of survivors n T py multiplied with the price
V

f

0 of the amount f �S� payable upon survival to T . Thus, the pricing principle
obtained by assuming that mortality risk is diversifiable can equivalently be
derived via a quadratic approach. This property can be explained by the fact
that a quadratic approach punishes gains and losses equally, which, in
particular, means that untraded risk such as mortality risk will be valued by its
expected value. In addition, we mention that, even though the prices for the
unit-linked contracts are the same under the criterion of risk-minimisation and
mean-variance hedging, the investment strategies under the two approaches
actually differ, compare Theorem 1 and 2.

In contrast, the approach of super-hedging requires that the insurer has
sufficient capital, even in the extreme situation where all the policyholders
survive. This requirement leads to a price given as the maximum number of
survivors n times the price of f �S�. Thus, the price does not involve the survival
probability T py. However, one can compare this price further with the other
prices by noting that it corresponds to using a survival probability of one! The
indifference prices under the standard deviation principle consist of two
terms: the first term is equal to the price suggested by Brennan/Schwartz; and
the second term is a loading term which is related to the part of the risk
which cannot be hedged away in the financial market. Note that the loading
terms in the prices (5.10) and (5.11) are proportional to

���
n
p

, whereas the first
terms (the Brennan/Schwartz prices) are proportional to n. This implies that
the price per policyholder converges to the Brennan/Schwartz price for
one policyholder T py V

f

0 , when the size n of the portfolio is increased.

Table 1. Formulae for the various prices for the unit-linked pure
endowment contract

Method Price

Brennan/Schwartz approach n T py V
f

0

Risk-minimisation n T py V
f

0

Mean-variance hedging n T py V
f

0

Super-hedging n V
f

0

Indifference price, upper bound n T py V
f

0 � a1 E�Var�H j FW
T ��

ÿ �1=2
Indifference price, lower bound n T py V

f

0 � a2 Var�EQ�H j FU
T ��

ÿ �1=2
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5.3.3 A numerical comparison of prices
We finally present a small numerical example in order to illustrate the

differences between the principles further. The numbers are essentially taken
from MÖller (2001b), and we refer to this reference for more details. We
consider an insurance portfolio consisting of n � 100 policyholders with i.i.d.
lifetimes and hazard rate function:

my�t � 0:0005� 0:000075858 � 1:09144y�t t � 0: �5:15�

Moreover, we take y � 45 and T � 15, which gives the survival
probability T py � 0:8796. The financial market is modelled by the standard
Black-Scholes model described in Section 5.2 with parameters s � 0:25,
a � 0:10 and r � 0:06. We analyse a portfolio of unit-linked pure endowment
contracts with f �ST � � max�ST ;K�, where we take K � 0 (no guarantee) and
K � erT (guarantee corresponding to risk free interest rate). The option price
V

f

0 can now be computed via the Black-Scholes formula by using that
max�ST ;K� � �ST ÿK�� �K. For K � erT , we get V

f

0 � 1:3718. In order to be
able to compute the indifference prices of Theorem 4 we need that
a2 � Var�L T �. With the notation of Section 5.2, Var�L T � � en

2T ÿ 1 � 0:4618,
so that indifference prices are only well defined for a � 0:6796. If we take
a � 1, the safety loading parameter in (5.14) and Theorem 4 becomes:

a1 � a

�������������������������
1ÿ Var�L T �

a2

r
�

����������������������
1ÿ 0:4618
p

� 0:733:

Moreover, we see that a1 approaches 0 when a converges to 0:6796,
which implies that the two bounds on the indifference price converge to
the Brennan/Schwartz price. From Table 1 in MÖller (2001b), we have
that when K � erT , Var�NH� � 100 � 0:460 � 46:0, and when K � 0,
Var�NH� � 100 � 0:415 � 41:5. A few examples of the relation between a,
a1, the loading a1

�����������������
Var�NH�

p
and the indifference price (5.14) are listed in

Table 2 for the situation K � erT .
In Table 3 we have compared the indifference prices with guarantee

Table 2. Indifference prices as a function of the safety loading a for
K � erT

Safety-loading parameter, a 0.68 0.70 0.80 1 2

New loading parameter, a1 0.02 0.17 0.42 0.73 1.88
Loading, a1

�����������������
Var�NH�

p
0.17 1.14 2.86 4.97 12.75

Indifference price 120.83 121.80 123.52 125.63 133.41
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K � erT and no guarantee, respectively, with the super-hedging price and the
Brennan/Schwartz prices. These numbers can be reconstructed from the
numbers given above. We note that for the case of no guarantee (K � 0), the
price computed with safety-loading parameter a � 2 leads to a price which
exceeds the super-hedging price by 0:07. This example illustrates an
undesirable property of the indifference pricing principle based on the
standard deviation principle; it might lead to prices which are larger than the
super-hedging price. The same phenomenon will occur for the guarantee
K � erT for sufficiently big values of a. Thus, one should be careful when
applying this indifference principle for general contracts and check whether
prices exceed the super-hedging price.
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