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Flow reversals in Rayleigh–Bénard convection
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Flow reversals in two-dimensional Rayleigh–Bénard convection led by non-Oberbeck–
Boussinesq (NOB) effects due to large temperature differences are studied by direct
numerical simulation. Perfect gas is chosen as the working fluid and the Prandtl
number is 0.71 for the reference state. If NOB effects are included, the flow pattern
P11 with only one dominant roll often becomes unstable by the growth of the cold
corner roll, which sometimes results in cession-led flow reversals. By exploiting
the vorticity transport equation, it is found that the asymmetries of buoyancy and
viscous forces are responsible for the growth of the cold corner roll because both
such asymmetries cause an imbalance between the corner rolls and the large-scale
circulation (LSC). The buoyancy force near the cold wall increases and decreases near
the hot wall originating from the temperature-dependent isobaric thermal expansion
coefficient α = 1/T if NOB effects are included. Moreover, the decreased dissipation
due to lower viscosity is favourable for the growth of the cold corner roll, while the
increased viscosity further suppresses the growth of the hot corner roll. Finally, it is
found that the boundary layer near the cold wall plays an important role in the mass
transport from LSC to corner rolls subject to mass conservation.

Key words: Bénard convection, convection, convection in cavities

1. Introduction
A fascinating dynamic feature of the large-scale circulation in Rayleigh–Bénard

convection (RBC) is the cessation and reversal phenomenon, which has been exhibited
by many experiments and numerical simulations (see Ahlers, Grossmann & Lohse
2009; Xia 2013, and references therein). It is therefore of great importance to explore
the mechanism of the flow reversal phenomenon. For instance, it could provide us
with insights into the occasional magnetic polarity reversal associated with convection
in the Earth’s mantle (Glatzmaier & Roberts 1995; Glatzmaier et al. 1999).

There are two categories of flow reversal classified by distinct physical mechanisms.
One is rotation-led reversal, which occurs only in a cylinder sample caused by
incessant azimuthal meandering of the circulating plane (see Brown & Ahlers 2006,
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for example). The other is cessation-led reversal, in which large-scale circulation
(LSC) sometimes stops and then randomly restarts in a different direction (see
Sugiyama et al. 2010, for example). The cessation-led reversal can occur both
in a cylindrical cell and in a box. In order to explain and predict the observed
reversal phenomenon, several theoretical models have been prompted including either
stochastic differential equations (Sreenivasan, Bershadskii & Niemela 2002; Benzi
2005; Brown & Ahlers 2007a) or deterministic ones (Fontenele Araujo, Grossmann
& Lohse 2005; Resagk et al. 2006; Gissinger 2012). The physical model proposed by
Sreenivasan et al. (2002) showed that the imbalance between buoyancy effects and
friction might possibly be responsible for the reversals of LSC. Deriving it directly
from the equations of motion, Brown & Ahlers (2007a) proposed a model consisting
of two coupled stochastic ordinary differential equations that were able to reproduce
some of the important features of the LSC in three-dimensional (3D) RBC, such as
cessations and azimuthal meandering. Fontenele Araujo et al. (2005) assumed, in their
model, that a long-lived plume carried by LSC tends to act against the prevailing
flow in the far side. Thus their model is suited to flows with large Prandtl numbers.
By incorporating the effects of corner rolls, Ni, Huang & Xia (2015) proposed a
stochastic model that bridges the discrepancy found in quasi-two-dimensional (2D)
and 3D systems. The experimental study in a 3D box by Huang et al. (2015) reported
a decoupling of the flow strength and stability of LSC or wind, i.e. reversal behaviour.
They claimed that flow reversal is a process of symmetry restoration and found that
the more symmetric the system is, the more frequently the flow reversals occur. Later,
Huang & Xia (2016) further showed that the reversal frequency increased dramatically
in smaller Γ cells and confirmed the conclusion proposed by Ni et al. (2015).

Free from complicated and puzzling 3D structures, 2D rectangular samples have
been exploited in studying cessation-led reversals (Sugiyama et al. 2010; Chandra
& Verma 2013; Podvin & Sergent 2015; Verma, Ambhire & Pandey 2015). It is
concluded by Sugiyama et al. (2010) that two diagonally arranged corner-rolls and
moderate Prandtl numbers are necessary in cessation-led reversals. Chandra & Verma
(2011, 2013) used the Fourier decomposition method to study the reversals. They
proved that flow reversals occur only at a narrow band of Rayleigh numbers with
Prandtl numbers equal to 1, where both the Fourier modes (1, 1) and (2, 2) are
comparatively strong with nearly equal energy. Podvin & Sergent (2015) applied
proper orthogonal decomposition to the velocity and temperature fields of RBC in a
2D square cell. A three-mode model was proposed based on the interaction of the
LSC, the quadrupolar flow and horizontal rolls.

Recently, the influence of non-Oberbeck–Boussinesq (NOB) effects on flow
dynamics and heat transfer has been studied extensively in turbulent thermal
convection (Ahlers et al. 2006, 2007, 2008; Brown & Ahlers 2007b; Sugiyama et al.
2007, 2009; Sameen, Verzicco & Sreenivasan 2008; Horn, Shishkina & Wagner
2013; Horn & Shishkina 2014). To the best of our knowledge, flow reversals
in RBC with NOB effects have not been investigated yet. Therefore, the major
objective of this study is to show the scenarios of the flow reversals due to NOB
effects, which are quite different in large-scale dynamics from those found under
the Oberbeck–Boussinesq (OB) approximation. Moreover, in the NOB case, detailed
physical mechanisms of flow reversals are studied from the perspective of vortex
dynamics. The remainder of the paper is organized as follows. Section 2 introduces
the governing equations and numerical methods. In § 3, the main results are presented
and discussed. Finally, a short summary is given in § 4.
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2. Governing equations and numerical methods
2.1. Governing equations

Consider thermal convection in a square box with height Ĥ as the reference length
(hatted quantities are dimensional). The bottom and upper walls have high and low
constant temperatures T̂h and T̂c respectively, the average of which serves as the
reference temperature T̂0 = (T̂c + T̂h)/2. The side walls are insulated. All four walls
are assumed to be no-slip. OB approximation is not applicable for large temperature
differences because of the variable physical properties and nonlinear relation between
temperature and density in buoyancy force. Thus low-Mach-number equations
(Paolucci 1982) are adopted in this paper. Free-fall velocity Û = (2εĝĤ)1/2 is chosen
for the reference velocity with ε defined later. Other reference quantities include p̂0,
ρ̂0, ĉp0, µ̂0, k̂0 and ĝ. These dimensional quantities are not always independent, e.g.
p̂0 = ρ̂0R̂T̂0 with R̂ the gas constant 8.314 J K−1 mol−1 and µ̂0, k̂0 are functions of
T̂0 at reference state with 300 K, unless otherwise stated. Moreover the dynamic
pressure is non-dimensionalized by ρ̂0Û2. The non-dimensional low-Mach-number
Navier–Stokes (NS) equations in which the acoustic wave is filtered are cast in the
form of a Cartesian tensor

∂ρ

∂t
+ (ρuj),j = 0, p= ρT, (2.1)

∂ρui

∂t
+ (ρuiuj),j +π,i =

(
Pr
Ra

)0.5

τij,j + 1
2ε
(ρ − 1)ni, (2.2)

ρcp

(
∂T
∂t
+ ujT,j

)
=
(

1
RaPr

)0.5

(kT,j),j + Γ dp
dt
. (2.3)

The comma notation for spatial derivatives is adopted, for example, π,i := ∂iπ, which
is the gradient of hydrodynamic pressure. ρ is the fluid density, and ui = (v, w) and
xi = (y, z) are the velocity components and coordinates in the horizontal and vertical
directions, respectively. τij=µ(ui,j+ uj,i)+ λδijuk,k is the viscosity stress tensor with µ
the dynamic viscosity, λ=−2µ/3 and δij the Kronecker delta function. ni= (0,−1) is
the unit vector in the direction of gravity. cp= 1 is the isobaric specific heat, γ = 1.4
is the ratio of specific heats, and Γ = (γ − 1)/γ is a measure of the resilience
of the fluid. T is temperature, k is thermal conductivity and p is thermodynamic
pressure uniform in space and a function of only time. The independent dimensionless
parameters characterizing the flow are temperature differential ε =1T̂/2T̂0 with 1T̂
the dimensional temperature difference between the top and bottom walls, Rayleigh
number Ra =1T̂ ĉp0ρ̂

2
0 ĝĤ3/T̂0µ̂0k̂0 with ĝ the gravity acceleration, and the reference

Prandtl number Pr = ĉp0µ̂0/k̂0 = 0.71. Temperature differential ε is used to quantify
the NOB effects. The larger ε is, the stronger the NOB effects are. Dimensionless
dynamic viscosity µ and conductivity k are computed by Sutherland laws

µ= T1.5 1+ Sµ
T + Sµ

,

k= T1.5 1+ Sk

T + Sk
,

 (2.4)

where Sk = 0.648 and Sµ = 0.368 for the reference temperature T0 = 300 K. Since
Sk 6= Sµ, the Prandtl number is not globally constant. Temperature differential ε is
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bound to 0.005 6 ε 6 0.6. To achieve OB approximation, we set ε = 0.005, µ= k=
p= 1, uj,j = 0 and ρ = 1 except in buoyancy term ρ = 1−1T .

For a closed system with no-slip and no-penetrative boundary conditions, the time
derivative of thermodynamic pressure and divergence of velocity are displayed as
follows

dp
dt
= 1
(1− Γ )V

(
1

RaPr

)0.5 ∮
S

kT,jnj dS, (2.5)

uj,j = 1
p

[
(Γ − 1)

dp
dt
+
(

1
RaPr

)0.5

(kT,j),j

]
. (2.6)

S is the surface surrounding the flow domain with volume V . The total mass M in
a closed system is conservative and time-independent. So integrating the equation of
state over the whole domain, we obtain the thermodynamic pressure

p=M
(∫

V

dV
T

)−1

, (2.7)

which is only a function of temperature. Clearly we see that equations (2.1) to
(2.3) coupled with (2.5), (2.6) and (2.7) form an integro-differential system, so the
aforementioned model equations are global rather than local.

2.2. Numerical method and validation
The low-Mach-number NS equations (2.1)–(2.3) along with proper boundary
conditions are solved by the finite difference method. A non-uniform grid with
clustered points near walls is adopted to improve the grid resolution. Scalar and
vector variables are staggered in space in order to avoid pressure-velocity decoupling.
All spatial derivative terms are approximated by a second-order central difference
scheme which intrinsically conserves energy. It has been further illustrated by Moin
& Verzicco (2016) that staggered second-order finite difference schemes can produce
comparatively accurate simulations at lower computational cost. A fractional-step
approach is used to solve momentum equations (2.2). Pressure is also staggered
in time with other physical variables to further couple pressure-velocity fields. A
multi-grid strategy is exploited to accelerate the iteration process in the Poisson
equation.

To validate the code called lMn2d, typical cases in thermal convection are computed
and compared with existing results. As illustrated in table 1, under OB approximation,
the errors between present results and those of de Vahl Davis & Jones (1983) are less
than 0.1 %. In the NOB case with ε= 0.6, our code also gives a relatively small error
which is less than 0.1 % compared with those of Le Quéré et al. (2005). Note that the
reference temperature T̂0= 600 K is just used here and we set Sµ= Sk= 0.1842 in the
Sutherland law to keep the Prandtl number constant. Another 2D thermal convection
is also preformed in a tall side-heated box with an aspect ratio of length to height
L/H = 1/8. The oscillating frequency is 3.42 which agrees well with the results in
Bathe, Brezzi & Pironneau (2001). For 2D RBC in a square cavity with adiabatic
sidewalls, the critical Rayleigh number given by our code is Rac= 2584.12, which is
excellently in agreement with 2585.27 by Sugiyama et al. (2009).
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(b)

 0.5

 0

 –0.5(a)

 0.5 1.0  1.5 0.65 0.70 0.75 0.80 0.85

Pr

FIGURE 1. (Colour online) (a) µ and k as functions of rescaled T . (b) Pr as a function
of rescaled T . Temperature differentials are ε = 0.2, 0.4 and 0.6. Red solid vertical lines
show the case under OB approximation for comparison. µ, k and subsequently Pr are all
subject to Sutherland laws with reference temperature 300 K.

Ra 103 104 105 106 106 (ε = 0.6)
Nu 1.072 2.056 4.341 8.654 8.694

Ref. 1.071∗ 2.054∗ 4.337∗ 8.640∗ 8.687[

TABLE 1. Comparison of the averaged Nusselt numbers Nu of the present computations
and those of de Vahl Davis & Jones (1983)∗, Le Quéré et al. (2005)[.

3. Results and discussion
3.1. Cessation-led reversals by the single corner roll

The Rayleigh number covers a range of 105 6 Ra 6 5 × 107. Three meshes have
been adopted, the grid points of which are between 1282 and 3842. Since the NOB
effects are included, the boundary layer (BL) near the cold wall is much thinner and
more grid points should be clustered there. To meet the Courant–Friedrichs–Lewy
condition, the time step is of an order of magnitude O(1x), i.e. approximately 10−3

dimensionless time unit. The mesh size 1x stringently satisfies the Kolmogorov and
Batchelor length scales, both in BLs and bulk regime (Shishkina et al. 2010).

3.1.1. Variable physical properties beyond OB approximation
Figure 1 shows that dynamic viscosity µ, conductivity k and also Prandtl number Pr

vary with temperature. µ and k are computed with (2.4). As shown in figure 1(a), µ
and k vary greatly with T in the NOB case. For example, µ is reduced by more than
50 % near the cold wall and increased by approximately 40 % near the hot wall when
ε= 0.6. It is also observed that k varies with T a bit faster than µ. In figure 1(b), Pr
also varies with temperature because of the asynchronous changes of µ and k. The red
solid vertical line helps to reveal that for the reference state and OB case Pr= 0.71.
Compared with the OB approximation, the Prandtl number increases near the cold top
wall and decreases near the hot bottom wall. Even with ε = 0.6, the Prandtl number
is approximately 0.8 which is still less than unity, and thus the viscous BL is always
nested in the thermal one. Since the change of thermal pressure is relatively small (Le
Quéré et al. 2005) and perfect gas is used as the working fluid, ρ = p/T becomes
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FIGURE 2. (Colour online) Log–log plots of Nu as a function of Ra for various
temperature differentials. (a) OB approximation, (b) ε= 0.2, (c) ε= 0.4, (d) ε= 0.6. Grey
square symbols are flow pattern P11. Grey triangular symbols are flow pattern P12. Grey
circle symbols are specially mixed patterns with both P11 with definite period and P12
with random period in the process of flow reversals. Red symbols ‘+’ represent where
there exist flow reversals and the dashed lines denote that the growth of corner rolls is
observed only once and P12 is achieved in the end.

larger near the cold wall and smaller near the hot wall. Thus near the cold wall,
kinematic viscosity ν =µ/ρ becomes smaller and similarly for the thermal diffusivity
κ = k/ρcp = k/ρ. Near the hot wall, ν and κ are increased. As regards the thermal
isobaric expansion coefficient, clearly α = 1/T becomes larger in magnitude near the
cold wall.

3.1.2. New flow reversals
Figure 2 shows plots of Nu as a function of Ra for various temperature differentials

and the phenomenon of the co-existence of multiple solutions is identified. In general,
two flow patterns P11 and P12 are identified where P11 has one dominant cavity-sizable
roll with two diagonally arranged secondary rolls and P12 has two vertically stacked
dominant rolls. Under the OB approximation, pattern P11 is unchanged in the full
Rayleigh number range. When the temperature differential increases, with ε > 0.2,
we observed the corner roll growth at Rayleigh numbers denoted by dashed lines
and symbols ‘+’, and the symbols ‘+’ in particular show cases of flow reversals.
Phenomenally, flow reversal is caused by corner roll growth. However, corner roll
growth does not always result in flow reversal. Dashed lines mean that the corner
roll in pattern P11 grows in size but ends up with pattern P12. It is conjectured that
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0 5 10 15 200 1.25 2.50 3.75 5.00

 0.5

 0
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1.0

t t

(a) (b)

FIGURE 3. (Colour online) Time evolution of vertical velocity component at (y, z) =
(0.1, 0.5). (a) Ra = 7 × 105, ε = 0.4; (b) Ra = 107, ε = 0.4. Green solid
diamonds correspond to the closeups near them. In (a), times for the two closeups
are 1560 and 3270. In (b), times for the three closeups are 1250, 6250 and 18 750.
Corresponding flow animations are shown in supplementary movies 1 and 2, available at
http://dx.doi.org/10.1017/jfm.2016.338.

sometimes, in the phase space the trajectory of pairs of P11 passes by the stable
pattern P12 and is attracted by the stationary point or limiting cycle of P12. In
figure 2(d), it is noteworthy that with strong NOB effects two counter-rotating flow
patterns P11 could switch back and forth with an unstable intermediate pattern P12 in
3× 106 6Ra6 4× 106. In short, as ε > 0.2, we could observe the growth of the cold
corner roll at a large range of Rayleigh numbers, for some of which cession-led flow
reversals are clearly found. To some extent, the newly found flow reversals may be
related to the tendency for symmetry restoration of an asymmetric system.

Currently, the vertical velocity component w at y = 0.1 and z = 0.5 is selected as
an indicator of flow reversal, since the flow field is well organized by LSC, corner
rolls and BLs rather than plumes (Breuer & Hansen 2009; Chandra & Verma 2011).
Figure 3(a,b) shows the time evolution of w at Ra = 7 × 105 and 107, in which
flow reversals can be clearly found. At Ra = 7 × 105, the flow is laminar and the
period of reversal is definite. At Ra = 107, the flow is chaotic or turbulent with
random periods of reversal. As shown by the inset closeups, at Ra= 7× 105, the flow
reversals only include pattern P11 which circulates clockwise, counter-clockwise and
back (Sugiyama et al. 2010; Chandra & Verma 2013). At Ra= 107, flow pattern P12
sometimes appears, which has been recently reported by Podvin & Sergent (2015).
In other words, the process of flow reversals in this case contains two flow patterns
P11 and P12.

3.2. The mechanism of growth of the cold corner roll
3.2.1. Kinematics of reversals

In the work of Sugiyama et al. (2010), flow reversals occur due to the growth in
size of corner rolls. The flow satisfies top-down symmetry under OB approximation,
two diagonally arranged corner rolls grow simultaneously and merge as a new
LSC, and finally the preceding LSC is then divided into two new corner rolls
(see also Chandra & Verma 2013). When NOB effects are included, the top-down
symmetry breaks, which greatly influences the behaviour of large-scale dynamics and
consequently flow reversal. Figure 4 shows a half-period of flow reversal for Ra= 107
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FIGURE 4. (Colour online) Snapshots of four characteristic temperature fields during a
half-period of a flow reversal. Red indicates hot fluid and blue cold fluid. Black arrows
represent velocity vectors. Ra= 107, ε= 0.4 and the time is near t= 17 000 in figure 3(b).

and ε = 0.4. It is found that only the top-right corner roll in figure 4(a), which is
larger in size and more energetic than the bottom-left one, grows alone and eventually
replaces the LSC. The preceding LSC is divided into two parts. One merges with
the existing left hot corner roll and both of them die away finally. The other shrinks
to a new hot corner roll near the right wall. Compared with the OB case, two major
differences in the reversal process have been identified in the NOB case. On the
one hand, the hot corner roll with comparatively small size is weak and no visible
expansion is observed. This is caused by both buoyancy reduction and larger viscous
dissipation near the bottom wall due to the higher temperature. On the other hand,
only the single cold corner roll grows and when it reaches the opposite wall, the
buildup of a new cold corner roll can be seen in figure 4(b), which is caused by
adverse pressure gradient. As seen in figure 4(c), a portion of descending hot plume
is observed near the right wall. Huang & Zhou (2013) found that there exists strong
counter-gradient local heat flux with a magnitude much larger than the global Nusselt
number Nu. Two mechanisms were proposed to be responsible for the local reverse
heat flux. One is due to bulk dynamics and the other comes from the competition
between LSC and corner rolls. It is the first mechanism that is recognized presently.
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FIGURE 5. (Colour online) (a) Distribution of dilation defined by equation (2.6); only
the field of the top-left quarter of the box is shown. Ra = 107, ε = 0.4. (b) Sketch of
th control volume related to (a). The time is the same as figure 4(d). Dashed lines are
contours of vorticity density of zero value and roughly serve as dividing lines between
LSC and corner rolls.

This descending hot plume forced by the velocity field originated from the newly
formed bulk produces counter-gradient local heat flux which results in even negative
average Nu (Chandra & Verma 2013; Yanagisawa, Hamano & Sakuraba 2015; Huang
& Xia 2016).

3.2.2. Physical mechanism from dynamics of vorticity transport
As aforementioned, the growth of the single cold corner roll induces flow reversals

when NOB effects are included, but the physical mechanisms corresponding to the
corner roll growth have not yet been analysed. In this subsection, we attempt to
understand the detailed mechanisms of growth of the cold corner roll from the
perspective of vortex dynamics. First, based on the low-Mach-number momentum
equations (2.2) and Reynolds transport theorem, we derive the vorticity transport
equation in the NOB case. It is believed that vorticity in corner rolls and LSC is in
dynamic balance under OB approximation. And thus possibly the balance is broken
by vorticity generation in corner rolls when flow reversals occur with NOB effects.
Our aim is to pinpoint which terms in this equation are dominant for the vorticity
generation in the corner roll. The vorticity transport equation can be expressed as

∂

∂t

∫
V0

dVΩi = −
∮

S0

nj dSΩiuj︸ ︷︷ ︸
I

−
∫

V0

dVΩi∂juj︸ ︷︷ ︸
II

−
∫

V0

dV
1
T

eijk∂jT∂kπ︸ ︷︷ ︸
III

+
(

Pr
Ra

)0.5 ∫
V0

dV
1
T

eijk∂j(T∂lτlk)︸ ︷︷ ︸
IV

− 1
2ε

∫
V0

dV
1
T

eijk∂jTnk︸ ︷︷ ︸
V

, (3.1)

where S0 and V0 are the control surface and volume in figure 5(b). The control volume
in (3.1) is roughly surrounded by the zero-value vorticity lines near the top-left corner
and two other straight lines y≈ 0.35 and z≈ 0.75. Since 2D RBC is considered, the
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FIGURE 6. (Colour online) Intensities of contributions to the time rate of change of
vorticity in the control volume in ten snapshots. The intensities are normalized by the
grey area in figure 5(b) for integration. Ra= 107, ε = 0.4.

term ‘control volume’ is actually a fixed area and S0 the line surrounding it. With
no stretching and tilting of the vortex filament, Ωi= ρωi is the vorticity density with
i = 1 in 2D simulation. eijk is the permutation tensor. The left integral term is the
time rate of change of total vorticity surrounded by S0. On the right-hand side of the
equality, term I means vorticity transport by convection; term II represents the change
of vorticity by dilation or compressibility, vanishing under the OB limit; term III is
the interaction of gradient of temperature and hydrodynamic pressure, i.e. baroclinity;
term IV is the vorticity diffusion by viscous force; and the last term V indicates the
vorticity generation by buoyancy force.

Figure 5(a) shows distributions of dilation for Ra = 107 with ε = 0.4. LSC and
corner rolls could be divided by black-dashed auxiliary vorticity contour lines with
zero value. Qualitatively, term I becomes stronger when the Rayleigh number increases
and subsequently more plumes detach from the unstable corner roll. For term II, the
maximum and minimum regions of dilation in figure 5(a), denoted ‘1’, ‘2’ and ‘3’,
are all approximately within the corner roll. The zero contour line of vorticity density
goes through ‘1’. The maximum ‘2’ and minimum ‘3’ are near each other, and thus
their contributions would approximately offset each other. Since low-Mach-number
flow with large temperature difference is barotropic, term III, baroclinity, may possibly
change with temperature gradient. The contribution should be specified quantitatively.
Term IV, associated with viscosity force, is always negative, corresponding to the
vorticity diffusion and dissipation. When the Rayleigh number increases, the viscous
effect decreases and concentrates near the wall and the thin region between the corner
rolls and LSC. The last term, V, shows the interaction between gravity and temperature
gradient. When NOB effects become stronger, it can be affected by T,i/2ε and the
reciprocal of temperature 1/T . The coefficient 1/T of terms III and V introduces some
extent of asymmetry between the diagonally arranged top and bottom corner rolls. The
asymmetry in term IV is µ in τij rather than 1/T .

To quantify the contributions of the five terms in (3.1) to the time rate of change of
vorticity, we compute their normalized intensities in ten snapshots at Ra = 107 with
ε = 0.4 in figure 6. Ten snapshots with an equal time interval are carefully chosen
to ensure that they are all at the initial phase of a flow reversal. Compared to the
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1.0

1–1 0

z

FIGURE 7. (Colour online) Buoyancy force fi = (ρ − 1)ni/2ε varying with height
z providing linear distribution of temperature T = 1 + ε(1 − 2z). The black hollow
up-triangles represent the distribution of equivalent buoyancy force with respect to the
reference state with modelled gravity acceleration. The red solid line is to show the case
under OB approximation for comparison.

duration of growth of corner rolls, the ten snapshots are taken within a short time. In
general, terms IV and V are dominant. From flow fields, term I is found to be related
to the oscillations of unstable corner rolls where plume detachment from the corner
rolls by convection causes vorticity and energy loss. The plume detachment could also
be found in the OB case (Sugiyama et al. 2010). Plume detachment occurs frequently,
which could interrupt the growth of corner rolls whether or not NOB effects are
included. In NOB cases, term II is small and negligible, which is consistent with the
previous qualitative analysis. Term III is of an order of magnitude of 0.01 and thus can
be neglected as well. This is because the temperature gradient within the cold corner
rolls may still be small and so is the gradient of velocity, although ε is increased up
to 0.4.

As stated previously, the interesting difference is that only the cold corner roll
grows, while the hot corner roll is found to be nearly quiescent. As we can see
in figure 6, terms IV and V are two decisive factors. It is obvious that term V is
always positive and thus of vital importance in vorticity generation. The asymmetries
caused by 1/T (isobaric thermal expansion coefficient α= 1/T) in this term other than
1/T0= 1 under OB approximation may play key roles in the growth of the cold corner
roll. Term V originates from the buoyancy force fi = δρni/2ε in (2.2). Under the OB
approximation, fi =−δTni/2ε is proportional to δT while this relation does not hold
in the NOB case fi= (1/T − 1)ni/2ε≈ (−δT + δ2T)ni/2ε with δT =T − 1. In figure 7,
due to NOB-effects-led asymmetry, the buoyancy force has increased by up to 150 %
on the cold wall and reduced by approximately 40 % near the hot wall. Equivalently,
we modified the gravity acceleration to model a similar buoyancy force based on the
OB approximation. In figure 7, the up-triangular symbols display a buoyancy force
to model that of ε = 0.4. The expression of acceleration is fi = −δT(ni + dgi)/2ε
with dgi =−2.0χz+ χ in which χ = χ1 = 0.3 when z 6 0.5 and χ = χ2 = 0.7 when
z> 0.5. By adding this equivalent buoyancy force to the OB case, not surprisingly, we
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reproduced flow reversals (see supplementary movie 3). In this case, the hot corner
roll still grows at a smaller rate than its cold counterpart, although the buoyancy
force is reduced near the hot wall. The modified buoyancy force by NOB effects
increases the probability of the balance breaking (Sreenivasan et al. 2002; Liu et al.
2008) between the corner roll and LSC, and thus leads to flow reversal. In addition,
the variation in viscous dissipation in term IV by NOB effects, as seen in figure 1, is
also very important for the growth of the cold corner roll. Near the hot wall, viscous
dissipation is largely enhanced, which helps to suppress the growth of the hot corner
roll. Conversely, the viscous dissipation near the cold wall is considerably attenuated,
which promotes the growth of the cold corner roll. Moreover, it is noteworthy that
thermal conductivity k is also temperature-dependent. Although thermal conductivity k
does not appear explicitly in vorticity transport equation (3.1), as stated by Sugiyama
et al. (2010), small k near the cold wall has small thermal dissipation similar to µ.
In figure 1(b), the Prandtl number does not change much and is always smaller than
one. Therefore the effect of change of the Prandtl number could probably be ignored.

3.2.3. Mass transport and the role of BLs
In the previous section, we conclude that the asymmetry of isobaric thermal

expansion coefficient α = 1/T is the point that results in the growth of the cold
corner roll. A very important issue, from the point of view of conservation, is that
the process of mass transport between corner rolls and other regimes is still unknown.
Figure 8 shows the distribution of density near the top-left corner and the trajectories
of two ‘tracer particles’. The trajectories are computed by the predictor–corrector
method with accuracy of second order, which is consistent with that of the present
code. The corner roll and LSC interact with the top wall and two parts of the BLs
form with the joint point marked ‘O’. When the corner roll grows, point ‘O’ moves
rightward. Figure 8(a) shows that the density in the cold corner roll changes from
1.6 to approximately 1. The initial positions of the tracer particles are located on
either side of the joint point ‘O’. In figure 8(b), tracer particle ‘A’ is initially located
in the left part of the BL and we find that it always circles in the corner roll and is
superimposed by a small velocity pointing to LSC, corresponding to the expansion
of the corner roll. The tracer particle ‘B’ is located initially in the right part of the
BL related to LSC. It is found that the tracer particle ‘B’ moves rightward initially
(black arrow in figure 8(c)) and circles the bulk. After six rounds, when the time
is approximately 390 in figure 8(c), tracer particle ‘B’ turns left into the corner roll
at the seventh round. At this moment, the flow field shows us that the joint point
‘O’ has a horizontal location y ≈ 0.5 so that particle ‘B’ just after the six rounds
has been contained in the left part of the BL. The trajectory of tracer particle ‘B’
clearly shows how the fluid parcel transports from LSC into the cold corner roll.
This process could partially explain why the cold corner roll grows from the point of
view of mass conservation. Then, it is easy to imagine that when the joint point ‘O’
moves to y= 1, all the fluid parcels in the BL would transport into the cold corner
roll and the preceding bulk could eventually be replaced. Moreover, the asymmetry
by NOB effects manifests itself as a thinner BL near the cold upper plate. We could
speculate that the relatively small viscosity there helps to transport mass from the BL
to the corner roll.

4. Summary and conclusion
In this work, by employing low-Mach-number NS equations, we focus on studying

flow reversals in 2D RBC, considering the NOB effects caused by large temperature
difference. In OB cases, no flow reversal is found in the present parameter space.
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FIGURE 8. (Colour online) (a) Distribution of density near top-left corner. (b) Trajectory
of ‘tracer particle’ A for time duration of 400 dimensionless time units. (c) Trajectory of
‘tracer particle’ B for time duration of 400 dimensionless time units. Ra= 7× 105, ε= 0.4.
Initial coordinates of A and B are y = 0.1978, z = 0.9862 and y = 0.3974, z = 0.9862,
respectively shown as black squares. The initial locations are also shown in (b) and (c)
and the nearby black arrows reveal the moving directions at the beginning.

Interestingly, once the NOB effects are included, flow reversals are observed for
certain ranges of Rayleigh number. Moreover, it is found that the flow reversal
occurring at low Ra usually has a definitive period, while this period tends to be
random with increasing Ra. In general, as the temperature differential ε increases,
the parameter range of Ra in which the corner roll grows and flow reversals occur
is widened. This can be viewed as a symmetry restoration process. Phenomenally, in
NOB cases, all flow reversals are led by growth of the single cold corner roll, which
is quite different from that in OB cases. From the perspective of vortex dynamics, we
find that the asymmetries of buoyancy force by variable isobaric thermal coefficient,
temperature-dependent viscosity are the major reason why only the cold corner roll
grows and eventually replaces the LSC, resulting in flow reversals. In the NOB case,
the buoyancy force is increased and viscous dissipation is greatly reduced near the
cold wall, both of which are beneficial for the growth of the cold corner roll and
thus increase the probability of flow reversals. Lastly, from examining the trajectories
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of tracer particles, we find that the rightward-moving joint point separating the two
sections of BLs near the cold wall plays an important role in mass transport from
LSC to corner roll.
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