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Abstract. A laser wakefield accelerator (LWFA) with a weak focusing force is
considered to seek improved beam quality in LWFA. We employ super-Gaussian
laser pulses to generate the wakefield and study the behavior of the electron beam
dynamics and synchrotron radiation arising from the transverse betatron oscillations
through analysis and computation. We note that the super-Gaussian wakefields
radically reduce the betatron oscillations and make the electron orbits mainly
ballistic over a single stage. This feature permits to obtain small emittance and thus
high luminosity, while still benefitting from the low-density operation of LWFA
(Nakajima et al. 2011 Phys. Rev. ST Accel. Beams 14, 091301), such as the reduced
radiation loss, less number of stages, less beam instabilities, and less required wall
plug power than in higher density regimes.

1. Introduction

During the past few decades after the first suggestion of
a laser plasma accelerator by Tajima and Dawson (1979),
thanks to vital research, the development of laser-driven
plasma accelerators (LPAs) has achieved major results.
After the first proof-of-principle experiments (Modena
et al., 1995; Nakajima et al., 1995), LPA experiments
also demonstrated the production of electron beams
with energies in the GeV regime (Leemans et al., 2006;
Clayton et al., 2010), with high quality of energy spread
(1% level) (Kameshima et al., 2008) and transverse
emittance (1-πmm-mrad level) (Karsch et al., 2007) in
addition to 1-fs level bunch duration (Lundh et al.,
2011). These characteristics ensure the high stability
of reproduction, which is on par with present high-
power ultrashort-pulse lasers with controlled injection
(Hafz et al., 2008; Osterhoff et al., 2008). Today it is a
very promising technology for compact next generation
accelerators with a broad range of applications such as
radiolysis (Crowell et al., 2004; Brozek-Pluskab et al.,
2005), electron diffraction (van Outheusden et al., 2010),
intraoperative radio therapy (Giulietti et al., 2008), radi-
ation sources of terahertz (THz) (Hamster et al., 1993;
Leemans et al., 2003), and others. In particular, the
scale and cost of large-scale particle accelerators, such
as high-energy colliders, could be reduced. Most of the
above-cited experimental results were conducted using
ultrashort (∼ 30 − 80 fs) laser pulses interacting with

short plasmas, such as gas jets with lengths ranging from
few millimeters to few centimeters with plasma densities
of 1018 − 1019 cm−3. There the acceleration of electrons
to energies of the order of 1 GeV is accomplished by
the efficient trapping of electrons in the wake with an
accelerating gradient of the order of 100 GeVm–1.

The leading experiments demonstrating the produc-
tion of quasi-monoenergetic electron beams (Faure et al.,
2004; Geddess et al., 2004; Mangles et al., 2004) used
self-injection and subsequent acceleration of electrons in
a nonlinear wakefield, the so-called bubble (Kostyukov
et al., 2004; Lu et al., 2006), which is characterized
by its normalized vector potential, a0 = εA0/mec

2 � 1,
where A0 is the peak amplitude of the vector po-
tential and me is the rest mass of the electron. The
bubble is a region where plasma electrons are blown
out due to radiation pressure of a laser pulse with
relativistic intensity. Self-injection occurs due to self-
focusing and self-compression if the drive laser exceeds
the threshold power, (P/Pc)th ≈ 3 (Froula et al., 2009),
where Pc ≈ 17(ω0/ωp)

2 GW is the critical power for
the relativistic self-focusing with laser frequency ω0

and plasma frequency ωp =
√

4πe2ne/me. The sup-
pression of self-injection and betatron oscillations is
important to produce high-quality beams, as they are
required for most of the possible applications. Several
experiments were carried out using controlled injection
mechanisms such as colliding optical injection (Faure
et al., 2006), density-transition injection (Schmid et al.,
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2010), ionization-induced injection (McGuffey et al.,
2010; Pak et al., 2010), and two-stage laser plasma
accelerator with ionization-induced injection (Liu et al.,
2011; Pollock et al., 2011) in the quasi-linear regime,
which is characterized by a moderate intensity of the
drive laser pulse of a0 ∼ 1, providing high-quality GeV-
class electron beam injectors.

High-energy accelerator applications of LPA require
a multistage setup to achieve the desired energy gain
for electrons, since the acceleration length of a single
LPA stage is limited by dephasing length and/or by
the energy-depletion length of the drive laser pulse.
Minimizing the total linac length for an LPA with
final beam energy of 0.5 TeV, a drive laser intensity of
a0 = 1.5, and a coupling distance of � 1 m leads to the
operating plasma density of ne = 1017 cm−3 (Schroeder
et al., 2010). In this density regime, several possible
designs of LPA linac colliders have been conceived
(Tajima, 1985; Xie et al., 1997; Schroeder et al., 2010).
Recent considerations (Nakajima et al., 2011) took into
account further constraints on the plasma density. For
example, further considerations on the coupling section
installing both laser and beam focusing systems, which
realistically might require a distance of the order of
several meters using conventional technologies, instead
of that previously considered less than 1 m, leading to a
reduced optimum operating plasma density of 1015−1016

cm−3 rather than 1017 cm−3. In addition, the technology
allowing to preform a large-scale plasma channel also
points plasma density to the same region of 1015 −
1016 cm−3. It was shown (Nakajima et al., 2011) that the
low-density regime with ne = 1015 cm−3 has a number
of advantages, such as the reduced radiation loss, the
reduced number of stages, the reduced beam instabilities,
and significantly the reduced wall plug power, while the
lower density requires a very large laser peak power of
∼ 11 PW and a laser energy of ∼10 kJ per pulse for a
stage of 0.5 TeV. These requirements on the laser have
not been matched by any existing laser system so far.
It was also pointed out that a large number of stages,
as required in higher density regimes, such as ne ∼ 1017

cm−3, makes the low emittance beam dynamics very
challenging (Cheshkov et al., 2000; Chiu et al., 2000).
Generally, the operation at low-plasma density increases
the single-stage energy gain and the pump depletion
length Lpd, while it reduces the accelerating gradient
and the number of stages.

Application of multi-staged LPAs in the field of high-
energy physics requires extreme high-quality beams with
small energy spread and transverse emittance as well as
sufficiently large charge/number of particles per bunch.
We find that besides the advantages of a low-density
LPA linac design, there is one problem arising from
simultaneous requirements on both the transverse emit-
tance as well as the particle number per bunch. We
focus on this problem in this paper. In order to preserve
the loaded charge of the accelerated particle beam
Qb ∼ σ2

x0

√
ne while decreasing the density, the initial

radius of the particle beam σx0 needs to be increased.
And since σ2

x0 ∼ εn0, this leads to an increased initial
emittance εn0 of the particle beam. Nakajima et al.
(2011) showed that radiation damping is not sufficient to
cool the beam down to a reasonable value of emittance
during acceleration for the range of TeV in low-density
regime.

In this paper we employ laser pulses with a super-
Gaussian radial profile to drive the laser wakefield. This
technology allows for a small initial emittance while
keeping the radius of the beam large enough to fulfill the
requirements for a large number of particles and there-
fore sufficient luminosity. We will show that the super-
Gaussian wakefield reduces the betatron oscillations
radically and makes the electron orbits mainly ballistic
over a single stage of acceleration while keeping the emit-
tance at an almost constant level. The formulas utilized
for tailoring a super-Gaussian wakefield are presented in
Sec. 2. Considering beam dynamics, analytical estimates
for betatron oscillation and radiation damping in differ-
ent cases of super-Gaussian pulse-driven wakefields are
evaluated in Sec. 3. Based on our results, in Sec. 4 we
deliberate on possible future steps toward experimental
realizations of super-Gaussian laser pulses for tailoring
a laser wakefield.

2. Laser wakefield with super-Gaussian
laser pulse

In this paper we study the quasi-linear laser wakefield
regime characterized by the normalized peak intensity
of linearly polarized laser pulse a0 = 0.85(Iλ2/1018

Wcm−2µm2)1/2 ∼ 1, where I is the laser peak intensity
and λ = 2πc/ω0 is the laser wavelength. The wake
potential Φ is obtained from a simple harmonic equation
(Gorbunov and Kirsanov, 1987; Sprangle et al., 1988),

∂2Φ

∂ζ2
+ k2

pΦ = k2
pmec

2 a
2(r, ζ)

2
, (2.1)

where ζ = z− vgt and vg = c
√

(1 − ω2
p/ω

2
0) is the group

velocity of the laser pulse, a2(r, ζ) is defined in (2.4),
and kp = ωp/c is the plasma wave number. The wake
potential Φ is calculated as

Φ(r, ζ) = −mec
2kp

2

∫ ∞

ζ

dζ ′ sin kp(ζ − ζ ′)a2(r, ζ ′). (2.2)

The axial and radial electric fields are given by

eEz = −∂Φ

∂z
and eEr = −∂Φ

∂r
. (2.3)

Consider a temporally Gaussian laser pulse, of which
the ponderomotive potential is given by

a2(r, ζ) = U(r) exp

(
− ζ2

σ2
z

)
. (2.4)

The coefficient U(r) is considered below. The wake
potential may be calculated as

Φ(r, ζ) = −BU(r)[C(ζ) sin kpζ + S(ζ) cos kpζ], (2.5)
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where

B =

√
πmec

2kpσz

4
exp

(
−
k2
pσ

2
z

4

)
, (2.6)

C (ζ) = 1 − Re

[
erf

(
ζ

σz
− i

kpσz

2

)]
, (2.7)

S (ζ) = Im

[
erf

(
ζ

σz
− i

kpσz

2

)]
, (2.8)

and erf(z) = 2√
π

∫ z

0 e−z′2
dz′ is the error function. This

leads to the axial and radial electric fields

eEz(r, ζ) = −∂Φ

∂ζ
= BkpU(r)[C(ζ) cos kpζ − S(ζ) sin kpζ],

(2.9)

eEr(r, ζ) = −∂Φ

∂r
= B

∂U(r)

∂r
[C(ζ) sin kpζ + S(ζ) cos kpζ].

(2.10)

Behind the laser pulse, ζ � σz , C(ζ) → 2 and S(ζ) → 0.
The wakefields are then given by

eEz(r, ζ) = 2BkpU(r) cos kpζ, (2.11)

eEr(r, ζ) = 2B
∂U(r)

∂r
sin kpζ. (2.12)

We now investigate wakefields created by radially
super-Gaussian laser fields. The radial potential profile
is described by super-Gaussian functions

U(r) = a2
0 exp

(
−2rn

rnL

)
, (2.13)

where n � 2. In this paper n denotes the power of
the super-Gaussian potential. A Gaussian profile cor-
responds to n = 2. For a super-Gaussian potential, the
axial and radial wakefields are derived as

eEz(r, ζ) =

√
π

2
a2

0mec
2k2

pσz exp

(
−2rn

rnL
−

k2
pσ

2
z

4

)

× cos kpζ, (2.14)

eEr(r, ζ) = −n
√

πa2
0mec

2kpσz
rn−1

rnL
exp

(
−2rn

rnL
−

k2
pσ

2
z

4

)

× sin kpζ. (2.15)

Electrons are accelerated by the axial field (2.14) while
executing betatron oscillations in the radial field (2.15)
if they are in the accelerating and focusing phase of the
wakefield, which occurs over a quarter period of each
wake oscillation (0 � kpζ � π/2).

3. Betatron oscillations and radiation
damping in a super-Gaussian pulse-driven
laser wakefield accelerator (LWFA)

3.1. Betatron oscillations

We focus on the transverse dynamics of electrons in
wakefields. Because of the super-Gaussian nature we
expect no harmonic betatron oscillations. Instead the
betatron oscillations are non-harmonic and display very
weak focusing force near the middle of the plasma
channel and large restoring force only toward the edge of
the wakefield. In super-Gaussian pulse-driven wakefields
given by (2.14) and (2.15), for r � rL, the focusing force
can be approximately written as

Fr = −2n
rn−1

rnL

Êz

E0
sin kpζ, (3.1)

where

Êz

E0
=

√
π

2
a2

0kpσz exp

(
−
k2
pσ

2
z

4

)
. (3.2)

The corresponding equation of betatron oscillation is

d2x

dz2
+

K2

γ
xn−1 = 0, (3.3)

where the focusing constant is calculated as

K2 =
2n

rnL

Êz

E0
〈sin kpζ〉. (3.4)

The envelope equation of the root-mean-square (rms)
beam radius σrb is given by (Lee and Cooper, 1976;
Swanekamp et al., 1992)

d2σrb

dz2
+

K2

γ
σn−1
rb − ε2n0

γ2σ3
rb

= 0. (3.5)

Assuming the beam energy γ as constant for now, this
becomes

d2σ2
rb

dz2
+ κ2σn

rb = A, (3.6)

where

κ2 =
2K2

γ

n + 2

n
=

4(n + 2)

γrnL

Êz

E0
〈sin kpζ〉, (3.7)

and

A = 2

(
dσrb
dz

)2

z=0

+
4K2

nγ
σn
rb0 +

2ε2n0
γ2σ2

rb0

. (3.8)

With (dσrb/dz)z=0 = 0, the equilibrium radius is ob-
tained by setting d2σ2

rb/dz
2 = 0 as

σ2
rbM =

(
εn0

K
√
γ

)4/(n+2)

. (3.9)

3.2. Radiation damping

The synchrotron radiation causes the energy loss of
beams and affects the energy spread and transverse
emittance via the radiation reaction force (Jackson,
1999). The motion of an electron traveling along z -
axis in the accelerating field Ez and the focusing force
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from the plasma wave evolves according to

dux
cdt

= −K2xn−1 +
Frad
x

mec2
, (3.10)

duz
cdt

= kp
Ez

E0
+

Frad
z

mec2
, (3.11)

where Frad is the radiation reaction force and u = p/mec

is the normalized electron momentum. The classical
radiation reaction force is (Jackson, 1999)

Frad

mecτR
=

d

dt

(
γ
du

dt

)
+ γu

[(
dγ

dt

)2

−
(

du

dt

)2
]
, (3.12)

where γ = (1 + u2)1/2 is the relativistic Lorentz factor of
the electron and τR = 2re/3c 
 6.26 × 10−24 s. Since the
scale length of the radiation reaction cτR is much smaller
than that of the betatron motion, assuming that the
radiation reaction force is a perturbation and uz � ux, the
equations of motion (3.10) and (3.11) are approximately
written as

dux
dt


 −cK2xn−1 − c2τRK
2ux(1 + K2γx2(n−1)), (3.13)

duz
dt


 ωp

Ez

E0
− c2τRK

4γ2x2(n−1), (3.14)

dx

dt
=

cux

γ

 c

ux

uz
. (3.15)

Finally, the particle dynamics are obtained from the
following coupled differential equations:

d2x

dt2
+

(
ωp

γ

Ez

E0
+ τRc

2K2

)
dx

dt
+

c2K2

γ
xn−1 = 0, (3.16)

dγ

dt
=ωp

Ez

E0
− τRc

2K4γ2x2(n−1). (3.17)

On the right-hand side of (3.17) the accelerating force (if
it is in the accelerating phase) and the radiation damping
term compete. If radiation damping is significant, elec-
trons that were originally in the accelerating phase may
fall into the decelerating phase and fall out of the rest
of the bunch. However, in this current study we neglect
this detrapping phenomenon and concentrate only on
transverse dynamics. In (3.16) the last term is the super-
Gaussian restoring force, while the second term makes
the betatron oscillations to damp.

3.3. Particle orbits in super-Gaussian wakefields

In this section we investigate the behavior of a single
particle which is accelerated in Gaussian/super-
Gaussian wakefields, using the analysis described above.
The particle orbit is obtained from the coupled differ-
ential equations describing the single particle dynamics
(3.16) and (3.17). The equations are integrated numer-
ically using the implicit Runge–Kutta algorithm. We
want to compare the Gaussian wakefield case (n =
2) with different super-Gaussian cases (n = 4, 6, 200)
qualitatively. Figure 1 shows the particle orbits for a

single particle in Gaussian and different super-Gaussian
cases. In the Gaussian wakefield, as we know (Michel
et al., 2006; Nakajima et al., 2011), electrons execute
rapid betatron oscillations and synchrotron radiation
makes these oscillations damp. In n = 4, non-harmonic
betatron oscillations occur, whose periods get longer as
the electron gains energy. The initial transverse velocity
of the particle was set to zero, while it was displaced
10−5 m in transverse direction with respect to the laser
beam axis. We assume a constant accelerating gradient
in z -direction of Ez = 1.5 GVm–1. The plasma density
is ne = 1015 cm−3 (see Nakajima et al., 2011). In this
parameter regime, electrons may be accelerated toward
0.5 TeV over a single stage. The visible tendency is that
toward a higher order of n, the particle oscillates less.
In our example, for n � 6, the trajectory eventually gets
ballistic. In these cases (n large) most of the electrons
with small x remain in that region and execute straight
orbit till the end of the accelerator. This property is
helpful to maintain the initial small emittance. We note
that the order of n from which the trajectory of the
particle gets ballistic depends on initial parameters of the
particle as well as on the parameters of the experimental
setup. However, the general trend is valid for any kind of
initial parameters and confirms our expectation. In the
higher order super-Gaussian cases a small initial trans-
verse velocity tends to stay small. This also indicates a
smaller increase of transverse momentum spread during
acceleration when using higher order super-Gaussian
powers and, therefore, a smaller increase of emittance.

4. Discussion and conclusion
We have introduced an analytical treatment for laser
wakefields induced by super-Gaussian laser pulses in the
quasi-linear regime. The super-Gaussian laser pulse may
be able to excite the laser wakefield whose transverse
fields are much weaker than that driven by a Gaussian
laser. This helps to reduce the betatron oscillations and
allows us to inject electron beams with smaller emittance
even with a large diameter of the aperture of plasma.
This allows for a greater number of beam particles while
keeping the emittance small.

An equation for the matched beam radius with de-
pendence on the super-Gaussian power n is derived.
An example of the dependence (3.9) is shown in Fig. 2
for an initial emittance of 10 µm and an initial γ of
2000 with a plasma density of 1015 cm−3. It shows an
increase of the matched beam radius toward increasing
n while leaving the initial value for the emittance and γ

constant. Since the maximum loaded charge in the beam
Qb ∼ σ2

x0 and, therefore the maximum particle number
in the beam Nb ∼ σ2

x0, a larger matched beam radius
allows for a larger number of particles per bunch, leaving
the initial emittance constant and preferably small. For
collider application, both a small emittance and a large
number of particles per bunch are essential, since both
variables enter the equation for geometric luminosity
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Figure 1. (Colour online) Transverse position and transverse velocity of a single particle accelerated in Gaussian/super-Gaussian
laser wakefields. The initial offset of the particle with respect to the laser beam axis is 10−5 m, the initial transverse velocity is
zero. The accelerating gradient, Ez = 1.5 GVm–1, and the plasma density is ne = 1015 cm−3. The final value of ωpt corresponds
to a stage length of 333 m and the final energy γf = 106.

(e.g. Edwards and Edwards, 2008),

L =
N2

bfc

4πσxσy
= γ

N2
bfc

4πεnβ∗ , (4.1)

where fc is the collision frequency, εn is the transverse
normalized emittance, and β∗ is the betatron func-
tion at collision point. Furthermore, σx and σy are

the transverse rms beam sizes at collision point and
σx ∼ σy ∼

√
β∗εn/γ, assuming a round beam.

While the super-Gaussian approach seems promising,
there are limitations on the applicability of this ap-
proach, which we estimate in the following. For a low-
density LWFA (ne = 10−15 cm−3) a long propagation
distance is important to reach high particle energies
(333 m in our example). The super-Gaussian pulse limits
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Figure 2. (Colour online) Matched beam radius σrbM for an
emittance εnx = 10 µm and γ = 2000 with a plasma density
ne = 1015 cm−3 and a laser spot size rL = 504 µm versus the
super-Gaussian power n.

the acceleration distance because of the deformation of
its pulse shape, which occurs due to different group velo-
cities of the fundamental Gaussian mode and the higher
order super-Gaussian modes when pulse propagates in
a plasma channel. For a matched laser case, the group
velocity of the Laguerre–Gaussian mode propagating in
a parabolic density channel is given by (Schroeder et al.,
2011)

βg =
vg

c
= 1 −

k2
p

2k2
0

− 2(1 + N)

k2
0r

2
L

, (4.2)

where vg is the laser group velocity, k0 = ω0/c = 2π/λ0

is the laser wave number with laser frequency ω0 and
the laser wavelength λ0, rL is the laser spot radius,
and N = n − 2 in our estimation. This means that
the group velocity of the higher order modes is slower
than fundamental Gaussian mode (N = 0). Assuming
that the super-Gaussian mode is composed by super-
position of the higher order modes up to the mode
number N, a characteristic length of pulse lengthening
because of higher order mode slippage is estimated
to be

Lslippage ≈ cτL

(
1

βgN
− 1

βg0

)−1

≈ cτLk
2
0r

2
L

2N

×
(

1 −
k2
p

k2
0

− 2(2 + N)

k2
0r

2
L

)
, (4.3)

where cτL is the initial pulse length. For the low-density
plasma with k2

p/k
2
0 = ne/nc � 1, the mode slippage length

is

Lslippage ≈ cτLk
2
0r

2
L

2N
=

cτLk
2
pr

2
L

2N

nc

ne
, (4.4)

where nc = π/(reλ
2
0) is the critical plasma density with

the classical electron radius re. In our numerical example,
setting kprL = 3 and kpσL = 1 with the rms pulse length

σL = cτL/2
√

ln 2, the mode slippage is approximately

given by

Lslippage ≈ 9
√

ln 2λ0

2π(n − 2)

(
nc

ne

)3/2

≈ 2.1 km

(n − 2)

(
1 µm

λ0

)2

×
(

1015 cm−3

ne

)3/2

, (4.5)

where n = N + 2 is the mode number of the super-
Gaussian mode. In the numerical example, the stage
length, Lstage = 333 m, is shorter than the slippage
length, Lslippage = 350 m, for the super-Gaussian mode
n = 8. Therefore, the allowable maximum mode number
of the super-Gaussian mode for the stage length of
333 m at the plasma density ne = 1015 cm−3 is n � 8.
For higher order super-Gaussian modes, the slippage
distance becomes shorter than the required acceleration
distance. For example, with n = 200 and ne = 1015 cm−3

the slippage distance becomes Lslippage ≈ 11 m.
However, the pulse lengthening effect may be com-

pensated by pulse etching (Lu et al., 2007) and/or
pulse self-compression that occurs in conjunction with
the group velocity dispersion (GVD) of plasma (Faure
et al., 2005). In fact the multi-dimensional particle-in-
cell (PIC) simulations show that the front of the laser
pulse exciting the wake moves backward due to local
pump depletion at the etching rate, νetch ≈ cω2

p/ω
2
0 =

cne/nc. Consequently, the pulse lengthening rate may
be significantly reduced as νslippage − νcompression, where
νslippage ≈ νg0 − νgN ≈ c(2N/k2

pr
2
L)(ne/nc) is the mode

slippage rate and νcompression ≈ νetch + νself−comp is the
pulse compression rate. With νcompression ≈ αcompcne/nc,
one may find the optimum mode number of the super-
Gaussian pulse as

n ≈ αcomp

2
k2
pr

2
L + 2, (4.6)

for which the pulse length of the super-Gaussian pulse
remains constant over acceleration distance.

Until here the discussion in this paper is focused
only to the low-density linear or quasi-linear regime.
For LWFA regimes other than that, i.e. the nonlinear
bubble or blowout regime (Kostyukov et al., 2004; Lu
et al., 2006) we are pessimistic that the super-Gaussian
approach (or other modified pulse shapes) could help
to improve the performance of such accelerators. This is
because, as described in Sec. 2, the flat-top-tailored trans-
verse profile of the super-Gaussian laser ponderomotive
potential is imprinted on the transverse distribution of
the wake potential only in conjunction with the linear
plasma response. Furthermore, the focusing force in
the nonlinear regime is larger than that in the lin-
ear wakefields driven by Gaussian and super-Gaussian
pulses given by (3.1). Strong focusing force on electrons
(defocusing force on positrons) in the nonlinear bubble
regime is harmful for the desired collider applications
that require extremely high-quality electron and positron
beams with small longitudinal and transverse emittances
as well as easy production of mono-energetic beams.
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For the collider application, the operation in low-
density linear or quasi-linear regime, as described by
Nakajima et al. (2011), has many advantages. In this
regime the super-Gaussian pulse-driven LWFA might
help to improve the beam quality as discussed in this
paper. While efforts to tailor the focusing forces in the
quasi-linear LWFA regime exist (Cormier-Michel et al.,
2009; Geddes et al., 2010), there is more theoretical as
well as experimental research needed in future to gain
more insight.
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