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Existing control-volume models for predicting the front velocity of internal bores
enforce the conservation of mass and streamwise momentum, but not vertical
momentum. Instead, they usually invoke an empirical assumption relating the up- and
downstream energy fluxes to obtain an additional equation required for determining
the pressure jump across a bore. The present investigation develops a control-volume
model for internal bores on the basis of mass and momentum conservation alone,
without the need for considering energy. This is accomplished by combining the
streamwise and vertical momentum equations to obtain a vorticity relation that no
longer involves pressure. Hence, this vorticity equation, in combination with the
conservation of mass, is sufficient for evaluating the bore velocity. The energy loss
across the bore can then be predicted by the streamwise energy equation and compared
to the assumptions underlying earlier models. The flux of vorticity across the internal
bore predicted by the new model is seen to be in close agreement with direct
numerical simulation results. Any discrepancies with experimentally measured bore
velocities are shown to be due to the effects of downstream mixing.
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1. Introduction

Internal bores occur in a wide variety geophysical flows. In the atmosphere, they
arise from the interaction of sea-breezes or thunderstorm outflows with inversion layers
(Clarke, Smith & Reid 1981; Haase & Smith 1984; Wakimoto & Kingsmill 1995). In
marine environments, they can be caused by the breaking of internal waves (Leichter
et al. 1996), by tides interacting with seafloor topography (Morozov et al. 2002), or
by gravity current flows past submarine obstacles (Gonzalez-Juez et al. 2010). Several
analytical models have been proposed to relate the speed of propagation of a bore to
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FIGURE 1. (a) Simplified geometry of an internal bore used by Wood & Simpson (1984),
Klemp et al. (1997) and Borden et al. (2012). (b) The same simple geometry, but with a shear
layer of finite thickness separating the upper and lower layers. The velocity and density vary
linearly across the layer.

its size, but these models usually invoke an empirical assumption about the change in
energy flux across the bore. On the other hand, computational investigations based on
Navier–Stokes simulations are able to reproduce the dynamics of internal bores from
mass and momentum considerations alone (Borden, Meiburg & Constantinescu 2012),
which suggests the same should be possible for an analytical model.

In this investigation, we develop a closed-form analytical model for internal bores
without the need for an energy assumption by considering the flux of vorticity across
the front of a bore. We compare the new model with two-dimensional direct numerical
simulation results, and show that any discrepancy between the predicted and actual
front velocity of a bore can be explained by considering the effect of mixing at the
downstream interface on the conservation of mass in each fluid layer.

2. Analytical models for Boussinesq internal bores

Existing models of two-layer internal bores, particularly those of Wood & Simpson
(1984), Klemp, Rotunno & Skamarock (1997) and Borden et al. (2012), consider
the flow sketched in figure 1(a) to derive an expression for the bore velocity U
in terms of the geometrical parameters H, hf and ha. Following the approach of
Rayleigh (1914) in his work on single-layer hydraulic jumps, each model makes
the following assumptions: that the bore propagates at a steady velocity U, that the
pressure field far up- and downstream of the front is hydrostatic, and that viscous
effects are negligible. In a control volume around the front of the bore, each model
enforces the conservation of mass within each layer, along with the conservation of
overall streamwise momentum

U1hf = Uha, (2.1)

U2(H − hf )= U(H − ha), (2.2)∫ H

0
(pl + ρU2) dz=

∫ H

0
(pr + ρu2

r ) dz, (2.3)

where ur represents the local velocity far downstream of the front, and pl and pr

indicate the hydrostatic pressure plus the pressure at the top of the channel (ptl and ptr)
at streamwise locations far up- and downstream of the front.

It would seem that we have three equations available to solve for U, U1

and U2 in terms of the given values of H, hf , ha, ρ1 and ρ2. However, (2.3)
introduces an additional unknown: the pressure jump across the front along the top
wall of the channel, ptl − ptr. Therefore, unlike for single-layer hydraulic jumps, the
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conservation equations for mass and streamwise momentum alone do not provide
enough information for a closed-form solution. An additional equation is required.

Traditionally, this fourth equation has been obtained by making an assumption about
the conservation of mechanical energy across the front of the bore. Wood & Simpson
(1984) assumed that, similar to a single-layer hydraulic jump, no energy should be
lost across the front of the bore in the light, upper-layer fluid. By equating the energy
fluxes in and out of the control volume in the upper layer, they obtained the front
velocity

uws =
{

R(1+ R)(1− Rr)2

R2r − 3Rr + 2

}1/2

, (2.4)

where R = hf /ha, r = ha/H and u = U/(g′ha)
1/2 is the non-dimensional front velocity

(with g′ = g(1− ρ2/ρ1) denoting the reduced gravity). We hereafter refer to this model
as WS.

Later, Klemp et al. (1997) discovered that they obtained closer agreement with
laboratory experiments of internal bores if they instead applied conservation of energy
across the front of the bore in the heavy, lower-layer fluid. This produces the front
velocity

ukrs =
{

R2[2− r(1+ R)](1− Rr)

R2r − 3Rr + R+ 1

}1/2

, (2.5)

which we refer to as the KRS model.
Based on direct numerical simulations (DNS) of internal bores, Borden et al. (2012)

show that within an internal bore mechanical energy is lost due to turbulent mixing in
the interfacial shear layer, cf. figure 1(b). Furthermore, this turbulent mixing can result
in a net energy transfer from the contracting to the expanding layer. By solving for
the amount of energy lost in the mixing layer, the authors obtain a front velocity that
is a function of the Reynolds and Schmidt numbers as well as R and r. Hereafter, we
denote their front velocity as the BMC model.

2.1. Circulation-based model
Within this investigation, we pursue an alternative approach for deriving an expression
for the bore velocity. As explained above, in the earlier models the need for invoking
an energy argument arose from the fact that the streamwise momentum equation (2.3)
introduced the pressure difference along the top wall as an additional unknown. Hence,
if we were able to impose the conservation of momentum in a form that does not
involve the pressure, the energy equation would no longer have to enter into our
considerations. This can indeed be accomplished by focusing on the well-known
vorticity formulation of the momentum conservation principle, which eliminates the
pressure variable by taking a linear superposition of the streamwise and vertical
momentum equations.

Consider the internal bore with the simple geometry and sharp interface in
figure 1(a). Conservation of mass remains as stated in (2.1) and (2.2). But, instead
of enforcing the conservation of streamwise momentum, we examine the flux of
vorticity across the control volume. For steady, two-dimensional Boussinesq flows, the
vorticity is governed by

u ·∇ω =−g′
∂ρ∗

∂x
+ ν∇2ω, (2.6)
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where ω = ∂w/∂x− ∂u/∂z is the vorticity normal to the page and ρ∗ = (ρ − ρ2)/(ρ1 −
ρ2) denotes the dimensionless Boussinesq density. In deriving (2.6), we have not made
the assumption that the flow is hydrostatic. The fact that the pressure does not appear
is solely the result of the Boussinesq approximation.

To obtain a control-volume conservation argument, we integrate (2.6) over the entire
control volume to produce∮

ωu ·n dS=
∫∫
−g′

∂ρ∗

∂x
dA+

∮
ν∇ω ·n dS, (2.7)

where n is a unit vector normal to the surface of the control volume. By writing the
advective and diffusive terms in (2.7) as surface integrals, we are assuming that the
divergence theorem applies.

Both the in- and outflow are normal to the control-volume boundaries, and vorticity
is generated only along the interface, i.e. away from the walls. Especially for high-
Reynolds-number flows, we can therefore neglect diffusive losses of vorticity across
the control-volume boundaries. Equation (2.7) then states that the change in the
vorticity flux across the control volume is entirely the result of baroclinic vorticity
generation within.

For sharp interfaces, the baroclinic term simplifies to the reduced gravity multiplied
by the change in height of the interface: −g′(hf − ha) in this case. Upstream of the
bore, the velocity field is horizontal and uniform, cf. figure 1(a), so no vorticity flows
into the control volume. Vorticity exits the control volume as a vortex sheet along the
interface between the upper and lower layers, assuming inviscid flow. The vorticity
flux carried by a vortex sheet is given as the vortex sheet strength, γ = U1 − U2,
multiplied by principal velocity of the sheet, uPV = (U2 + U1)/2 (Saffman 1992;
Pozrikidis 1997). Therefore, (2.7) reduces to

1
2(U

2
2 − U2

1)= g′(hf − ha). (2.8)

Because (2.8) does not contain the pressure, we no longer require a fourth equation
relating the energy up- and downstream of the front. Combining (2.8) with the
conservation of mass stated in (2.1) and (2.2) produces a closed-form solution for
the front velocity of the bore

uvs =
{

2R2(Rr − 1)2

R− 2Rr + 1

}1/2

, (2.9)

which we hereafter refer to as the vortex sheet (VS) model.
The evolution of vorticity, as stated in (2.6), can be derived from a linear

combination of the conservation equations for both streamwise and vertical momentum.
In this way, the streamwise momentum equation does enter into the VS front velocity
computation. If we desired, we could now use the conservation of streamwise
momentum alone to solve for the pressure jump at the top of the channel given
the VS front velocity.

It is also interesting to note that the front velocity in (2.9) can be arrived at by
an alternative method. Instead of considering the conservation of circulation, we write
the Boussinesq, two-layer shallow-water momentum equations and take their difference
to eliminate the pressure at the top of the channel. By considering this equation
along with the conservation of mass in (2.1) and (2.2), a shock-joining solution
identical to (2.9) can be found (Baines 1995). Sandstrom & Quon (1993) also claim
to derive a bore front velocity based on two-layer shallow-water equations for mass
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FIGURE 2. (a) Density field of a bore from DNS at time t = 32 with R = 2.22, r = 0.1,
Re = 3500 and Sc = 1. (b) Measured and predicted vorticity flux as functions of streamwise
position. The solid line corresponds to the measured vorticity flux from a DNS with R = 1.87,
r = 0.1, Re = 3500 and Sc = 1. The dashed lines represent the vorticity flux predicted by the
different analytical models. Here, x= 0 corresponds to the front of the bore.

and vorticity, but they have not written down their expression for the front velocity,
so a comparison with VS cannot be made. Any approach that involves shallow-water
equations, however, must assume that the flow near the bore front is hydrostatic in
order for the shallow-water equations to apply. Our analysis, on the other hand, does
not require such an assumption.

To assess the validity of (2.8) as a jump condition, we can compare its predicted
vorticity flux with the actual flux of vorticity in DNS of internal bores using the
code of Borden et al. (2012). The density field of a representative bore generated
by this code is shown in figure 2(a). For each analytical model, we compute the
predicted vorticity flux Ω∗ = ∫ ωu dz= (U2

2 − U2
1)/2g′ha (where Ω∗ =Ω/(g′ha) is the

dimensionless vorticity flux) as a function of the streamwise position given the local
height h(x)= ∫ H

0 ρ
∗(x, z) dz.

By comparing these predictions with the actual vorticity flux measured from a DNS
(figure 2b), we observe that in the quasi-steady region close to the front of the bore,
the VS model predicts the correct vorticity flux more accurately than any of the earlier
models. In the wake region of the bore, local time-dependent oscillations near the
interface degrade the comparison, but spatially averaging the measured vorticity flux
in this region in many simulations, each one with a different value of R, reveals that
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FIGURE 3. (a) Averaged vorticity flux in the wake region of internal bores computed for
nine values of R with r = 0.1, Re = 3500 and Sc = 1 (circles). The error bars represent a
95 % confidence interval of the mean value. The lines represent the predictions of each model.
(b) Comparison of the front velocity given by (2.9) with WS, KRS, BMC and DNS data for
r = 0.1, Re= 3500, Sc= 1.

the VS model is more accurate than WS and BM (figure 3a). Measurement uncertainty
clouds any distinction between VS and KRS.

Figure 3(b) shows how closely each of the models presented above predicts the front
velocity of DNS internal bores as a function of R for r = 0.1, Re = 3500, and Sc = 1.
Even though it does the best job of reproducing the correct vorticity flux, the VS
model is not as accurate as the KRS and BMC models when it comes to predicting the
front velocity. In § 2.3, we explore the reasons for this discrepancy. First however, we
consider the energetics of an internal bore, and the implications of the VS model in
this context.

2.2. Energetics
The models of WS, KRS and BMC all required a condition relating the downstream
flux of energy to the upstream flux in order to obtain a closed-form solution for the
front velocity of an internal bore as a function of R and r (and Re and Sc for BMC).
WS assumes that there is no change in energy flux across the upper layer of a bore,
KRS assumes that there is no change in energy flux across the lower layer of a
bore, and BMC assumes that there is a slight increase in the energy flux across the
lower layer. In contrast, the vortex sheet model makes no assumption about energy
conservation across the front of a bore. Therefore, we can now truly predict the energy
loss across each layer.

Li & Cummins (1998) developed expressions for the loss of energy in each
layer given u, R and r, assuming that the velocity in each layer is uniform and
that the downstream interface between the layers is infinitely thin. Substituting the
front velocity of the VS model into their relations produces expressions for the
change in energy flux across the lower and upper layers, non-dimensionalized by
ė = Ė/(ρ1g′3/2h5/2

a ). The expressions for the change in energy for WS, KRS and BMC
are reported in Borden et al. (2012).

Table 1 shows the change in energy flux across a bore, separately for each layer
and overall, predicted by each model above for a bore with R= 2, r = 0.1, Re= 3500
and Sc = 1. All four models predict a global loss of energy across a bore, with
the BMC model predicting the largest loss and WS the smallest. The WS and KRS
models predict an energy loss entirely confined to one layer and the BMC model
predicts that the lower layer gains energy across the front of a bore, as explained in
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FIGURE 4. (a) Density field in the wake region of a DNS internal bore with r = 0.1, R = 2.22,
Re = 3500 and Sc = 1. The mainly horizontal solid and dashed lines represent the local and
average height, respectively, in the wake region. The streamwise-averaged velocity and density
profiles are shown with solid lines, and the idealized profiles, which assume a linear profile in
the shear layer, are shown with dashed lines. (b) Front velocity given by (2.14) plotted for four
different values of δ∗ (increasing downward). Also shown are KRS and WS for comparison.
Here, r = 0.1.

Model ėl ėu ėt

WS −0.122 0 −0.122
KRS 0 −0.168 −0.168
BMC 0.080 −0.278 −0.198
VS −0.016 −0.146 −0.162

TABLE 1. Energy change in the lower, upper, and both layers predicted by each model for
a bore with R= 2, r = 0.1, Re= 3500 and Sc= 1.

Borden et al. (2012). In their paper, Li & Cummins (1998) show that for internal
bores with a discontinuous downstream interface, front velocities faster than WS imply
a gain of energy across the upper layer, and velocities slower than KRS imply a gain
of energy across the lower layer. It is not surprising, therefore, that the VS model
predicts the energy loss is split between each layer, as its front velocity is between WS
and KRS.

2.3. Circulation-based model with diffuse interface
Each of the above analytical models for internal bores assumes that the interface
between the upper and lower layers downstream of the front is infinitely thin, that
is, the velocity and density fields are discontinuous across the interface. But if we
examine the downstream interface of a simulated bore, as in figure 4(a), we see that
the average velocity and density profiles transition smoothly over some distance δ

between their respective upper- and lower-layer values. In many cases, the value of δ
is comparable to ha, so that including the effects of this mixing layer could have a
significant impact on the predicted front velocity.

To account for the effects of this diffuse interface in our vorticity-based model, we
assume that the velocity and density vary linearly over the mixing region of thickness
δ, which is centred around z = hf (figure 4a shows that this assumption is reasonable).
If we define a new coordinate z∗, such that z∗ = 0 corresponds to the bottom of the
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shear layer, then the velocity and density over the interfacial region can be written as

u(z∗)= U1 + z∗

δ
(U2 − U1), (2.10)

ρ∗(z∗)= 1− z∗

δ
. (2.11)

With the diffuse interface, the conservation of mass across each layer can no longer
be written as in (2.1)–(2.2). They must now be expressed as

Uha = U1

(
hf − δ2

)
+
∫ δ

0
u(z∗)ρ∗(z∗) dz∗

= U1hf + 1
6δ(U2 − U1) , (2.12)

U(H − ha) = U2

(
H − hf − δ2

)
+
∫ δ

0
u(z∗)

[
1− ρ∗(z∗)] dz∗

= U2(H − hf )− 1
6δ(U2 − U1). (2.13)

An expression governing the flux of vorticity can be calculated directly from (2.7)
using the velocity and density profiles in (2.10) and (2.11), but the end result is the
same as the one given in (2.8). The mixing layer therefore affects the bore velocity
only through the conservation of mass, not through the conservation of momentum.
Combining (2.12), (2.13) and (2.8) produces the front velocity

udvs = (R
2r − R+ δ∗/6)[−6(6Rr − 3R− 3+ δ∗)]1/2

6Rr − 3R− 3+ δ∗ , (2.14)

where δ∗ = δ/ha. Hereafter, we refer to this as the diffuse vortex sheet (DVS) model.
Compared to the WS, KRS and VS models, the DVS model contains an additional

unknown, the mixing layer thickness δ∗. Figure 4(b) shows that for δ∗ = 0, the DVS
model collapses to the regular VS model. As δ∗ increases, the predicted front velocity
decreases uniformly for all values of R.

In order to determine the shear layer thickness δ∗ in the DNS, we evaluate
the streamwise-averaged velocity and density profiles downstream of the bore, as
shown in figure 4(a). From the respective endpoints of the velocity profile and its
maximum slope, we can then calculate a nominal mixing layer thickness. The resulting
values, shown in figure 5(a) as a function of R, can be closely approximated by
an exponential fit in order to obtain δ∗. Substituting these δ∗-values into (2.14), we
find that the DVS model accurately predicts the front velocity of our simulated bores
(figure 5(b)). This leads us to believe that the only shortcoming of the zero-thickness
VS model is its inability to account for mixing in the wake.

Unfortunately, it is not straightforward to develop an analytical expression for δ∗ as
a function of R and r. In his study on stratified shear layers, Turner (1986) argued that
the shear layer thickness grows in the downstream direction until the global decrease
in kinetic energy equals the global increase in potential energy (i.e. δ∗ tends to the
value where ėt = 0). Using this analysis, he arrived at the relation δ = 2ρ0(1U)2/g1ρ.
We could follow a similar approach, where we compute ėt as a function of δ∗ for a
DVS internal bore, and choose the value of δ∗ where ėt is zero.

To compute the change in energy flux for the DVS model, we cannot use Li
& Cummins’ expressions because we no longer have a thin downstream interface.
Instead, we must directly calculate and subtract the upstream flux of energy from the
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FIGURE 5. (a) Dimensionless interface thickness of our simulations (©) plotted as a function
of R for r = 0.1, Re = 3500 and Sc = 1. The solid line represents an exponential fit to the
data (δ∗ = 0.09848 exp(1.06R)). (b) Front velocity given by (2.14) where δ∗ is given by the
exponential curve in (a). Also shown are the WS, KRS and VS models for comparison.
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FIGURE 6. Change in energy flux across each layer (ėl,diff and ėu,diff ) and globally (ėt,diff ) as a
function of the downstream shear layer thickness for R= 2 and r = 0.1.

downstream flux in each layer with the expression

ėdiff =
[∫ 1/r

0
A(z)u(z)

(
1
2 u(z)2 + ρ∗(z)z+ p(z)

)
dz

]d

u

, (2.15)

where A(z)= ρ∗(z), 1− ρ∗(z), or 1 depending on whether we wish to isolate the upper
or lower layer, or consider both layers together.

Figure 6 shows the change in energy flux in each layer as a function of the
downstream shear layer thickness. The mixing that produces the diffuse interface pulls
some light, high-speed fluid from the upper layer into the lower layer and pushes some
dense, low-speed fluid from the lower layer into the upper layer. The kinetic, potential
and pressure energy flux terms are affected oppositely in each layer, but the net effect
is an increase in the energy flux of the upper layer, a decrease in the lower layer, and
an increase in the total flux compared with the zero-thickness VS model.

For the value of δ∗ measured in the DNS, the DVS model predicts a gain in energy
across the upper layer of the bore. There is a certain critical value of δ∗ above which
the energy change in the upper layer is positive, and another critical value above
which the total energy change is also positive. These critical values are functions of R
and r.
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The critical value where ėt,diff = 0 always exists for any realistic value of R and r. It
is tempting to analytically solve for δ∗ by requiring that a bore conserve energy (i.e.
that ėt,diff = 0). However, notice that in both figures 5(a) and 6 the value of δ∗ where
ėt,diff = 0 is significantly greater than the actual value of δ∗ measured in the DNS.
Turner (1986) noticed this same discrepancy in his research; his energy balance always
significantly over-predicted the thickness of his experimental stratified shear layers. He
attributed the error to the neglect of viscous losses due to shear and proposed that
his energy analysis be used only as a scaling argument, not an equality. Therefore,
although setting ėt,diff = 0 provides an upper limit on the shear layer thickness, it does
not produce an accurate value and therefore would not provide a meaningful analytical
model.

Finally, we attempted to use the linear stability analysis for a stratified shear layer
presented in Turner (1973) to determine δ∗. That analysis found that disturbances of all
wavenumbers are stable if Ri > 0.25, where Ri= g′δ∗/(1u)2 is the gradient Richardson
number. Unfortunately, figure 5(a) shows that this stability criterion underestimates
the thickness. We believe the discrepancy is due to diffusion, unaccounted for in the
stability analysis but present in our DNS.

3. Conclusions

We have shown that by considering the transport of interfacial vorticity, it is possible
to produce an analytical model that describes the propagation of internal bores without
resorting to the traditional assumptions of energy conservation used by existing models.
Furthermore, we have shown that the biggest shortcoming of this vortex sheet model
is its inability to account for mixing produced by shear at the interface downstream
of the front of a bore. If it incorporates shear layer thickness data from a DNS,
the present model very closely reproduces the DNS bore velocity data. For future
work, it would be interesting to extend this analysis to bores propagating into a
shear flow. This would involve modifying (2.8) to account for vorticity entering the
control volume from upstream. We are also working on extending the VS model to
non-Boussinesq flows.
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