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Abstract We study characters of an n-fold cover S̃L(n, F) of SL(n, F) over a non-Archimedean local
field. We compute the character of an irreducible representation of S̃L(n, F) in terms of the character
of an irreducible representation of a cover G̃L(n, F) of GL(n, F). We define an analogue of L-packets
for S̃L(n, F), such that the character of a linear combination of the representations in such a packet is
computed in terms of the character of an irreducible representation of PGL(n, F). This is analogous to
stable endoscopic lifting for linear groups. We also prove an ‘inversion’ formula expressing the character
of a genuine irreducible representation of S̃L(n, F) as a linear combination of virtual characters, each of
which is obtained from PGL(n, F).
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1. Introduction

Let G be a reductive linear group defined over a local field F of characteristic 0, and let
G = G(F). One of the ingredients of the local portion of the Langlands program for G is
the study of characters of admissible representations of G. These are used on one side of
the trace formula, and provide information about automorphic representations of G over
a global field.

Important examples of automorphic representations involve reductive groups which are
not linear, such as the oscillator representation of the metaplectic group, the twofold cover
of Sp(2n, F). We refer to a finite central extension G̃ of G which is not itself a linear group
as a nonlinear group. It would be interesting to understand the representation theory
of such groups, and to extend the Langlands program to the study of their automorphic
representations.

A representation π of G̃ is said to be genuine if it does not factor to any proper quotient
of G̃. One approach to the representation theory of G̃ is to relate genuine representations
of G̃ to representations of a linear group via character theory. There are a number of
examples of this approach. See the references and [3] for a survey.

Now assume the cardinality of the nth roots of unity µn of F is n. We consider a certain
central extension S̃L(n, F) of SL(n, F) by µn (cf. § 2).
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2 J. Adams

Arbitrary covers G̃L(n, F) of GL(n, F) have been studied extensively [5–8]. Flicker,
Kazhdan and Patterson relate character theory of G̃L(n, F) to that of GL(n, F). The
group S̃L(n, F) is a subgroup of a corresponding group G̃L(n, F), and a natural approach
is to study representations of S̃L(n, F) by restricting representations of G̃L(n, F). The
corresponding problem for SL(n, F) and GL(n, F) is quite difficult [9,18]. For example
the case of n = 2 is the first example of endoscopy and is highly non-trivial [10].

Surprisingly the corresponding restriction problem for genuine representations of
S̃L(n, F) is very easy, and character theory of S̃L(n, F) reduces to that of G̃L(n, F). Our
first step is to write a formula (Theorem 3.3) for the character of an irreducible genuine
representation π of S̃L(n, F) in terms of the character of an irreducible representation of
G̃L(n, F) which contains π in its restriction.

We are interested in relating the characters of representations of S̃L(n, F) to those of
a linear group. This is modelled on the theory of endoscopy for linear groups. So suppose
for the moment that G is a connected reductive algebraic group defined over F, and let
G = G(F). A virtual representation π of G is a formal sum

∑n
i=1 aiπi of irreducible

representations πi with integral coefficients. We consider the global character

Θπ =
∑

aiΘπi

as a conjugation invariant function on the strongly regular semisimple elements of G. It
is said to be stable if it is invariant under conjugation by G(F̄) where F̄ is the algebraic
closure of F. The stable virtual characters are simpler than general virtual characters,
and are basic objects in the theory.

The set of irreducible representations of G is conjecturally the disjoint union of finite
sets called L-packets. If Π = {π1, . . . , πn} is a tempered L-packet (i.e. each πi is tem-
pered), then

∑
i πi is conjectured to be stable. The goal of endoscopy is to find virtual

sums
∑

i aiπi, each of which is computed via ‘transfer’ or ‘lifting’ from a stable virtual
character on a smaller quasi-split ‘endoscopic’ group of the same rank. Furthermore we
attempt to write each πi as a linear combination of such lifted characters (‘inversion’).

If Π is not tempered, then
∑

i πi may not be stable. Arthur has conjectured that in
some cases Π may be expanded to a larger ‘Arthur packet’ which does contain a stable
sum [4]. Unlike L-packets Arthur packets may contain both tempered and non-tempered
representations.

A special case of an endoscopic group is H = Gqs, the quasi-split form of G. In this
case transfer preserves stability, and the stable virtual characters of G are obtained from
the stable virtual characters of Gqs.

Flicker, Kazhdan and Patterson have defined a lifting theory modelled on endoscopy for
linear groups, conjecturally taking an irreducible unitary representation π of GL(n, F) to
an irreducible genuine unitary representation t∗(π) of G̃L(n, F) or 0 [6–8]. The character
of t∗(π) is computed in terms of the character of π. For GL(n, F) all virtual characters
are stable, so this theory is analogous to transfer from Gqs to G in the linear case.

We are interested in the analogous theory for S̃L(n, F). The preceding results for
G̃L(n, F), together with Theorem 3.3, express the character of an irreducible constituent
of t∗(π) restricted to S̃L(n, F) in terms of characters of GL(n, F). The resulting formula
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does not formally have the properties of lifting. In particular GL(n, F) and S̃L(n, F) do
not have the same rank.

Our main result is that by taking an appropriate sum of representations of S̃L(n, F) we
do obtain such a lifting formula, relating the character of the sum to an irreducible char-
acter of PGL(n, F). This sum is our analogue of a stable virtual character for S̃L(n, F).
In the tempered case the set of representations is analogous to an L-packet, and more
generally to an Arthur packet. We proceed to describe this sum.

A constituent of t∗(π) restricted to S̃L(n, F) is determined by a character ν of F∗ for
which νn equals the central character of π. More precisely, let

G̃L(n, F)+ = {g ∈ G̃L(n, F) | det(g) ∈ F∗n} = S̃L(n, F)Z̃.

Here Z̃ is the inverse image of the centre Z of GL(n, F) in G̃L(n, F)+, which is also
the centre of G̃L(n, F)+. The constituents of t∗(π) restricted to G̃L(n, F)+, equivalently
S̃L(n, F), are parametrized by their central characters. These in turn are parametrized
by characters ν of F∗ with given restriction to F∗n. See Proposition 3.1.

We write L(π, ν) for the summand of t∗(π) corresponding to ν. This is an irreducible
genuine representation of S̃L(n, F). For any character α of F∗ we have L(παn, ναn) ≈
L(π, ν); we sum over F̂∗/F̂∗n ≈ µ̂n and define (cf. Definition 5.7)

Lst(π, ν) =
∑

α∈µ̂n

L(πα, να).

This is our candidate for a ‘stable’ virtual character of S̃L(n, F). Now πν−1 factors to
PGL(n, F), and it turns out that the character ΘLst(π,ν) of Lst(π, ν) may be computed
in terms of the character Θπν−1 of πν−1. The main result is Theorem 8.1:

ΘLst(π,ν)(g) =
∑

h∈PGL(n,F)
φ(h)=p(g)

∆µ(h, g)Θπν−1(h). (1.1)

Here g is a regular semisimple element of S̃L(n, F), and we identify the character of
a representation with a function on the regular semisimple elements. Also φ is the orbit
correspondence φ(g) = det(g−1)gn ∈ SL(n, F) (see § 6), p is projection from S̃L(n, F)
to SL(n, F), and ∆µ(h, g) is a transfer factor (see § 7). These ingredients are analogous
to those of endoscopy for linear groups. Formula (1.1) is analogous to endoscopic lifting
from Gqs to G, and Lst(π, ν) is analogous to the stable lift of πν−1, although since
S̃L(n, F) is nonlinear the notion of stable distribution is not defined. If π is tempered,
the set Π(π, ν) = {L(πα, να) | α ∈ µ̂n} is our analogue of an L-packet for a linear group.
In general it is analogous to an Arthur packet.

The group PGL(n, F) is the one predicted by the Hecke algebra isomorphism of [14].
An L-packet for SL(n, F) is the set of constituents of the restriction of an irreducible

representation of GL(n, F) to SL(n, F) [9]. The character of the sum of these represen-
tations is stable, i.e. invariant by conjugation by SL(n, F̄), and these sets satisfy other
required properties of L-packets. It is interesting to note, however, that Π(π, ν) is not
the set of constituents of the restriction of a representation of G̃L(n, F). In particular (see
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the remark following Theorem 8.1) ΘLst(π,ν) is typically not G̃L(n, F) conjugation invari-
ant. It would be interesting to find an intrinsic characterization of the virtual characters
Lst(π, ν).

We turn now to inversion. By analogy with the linear case we seek to write L(π, ν) as
a linear combination of virtual representations, in the span of the elements of Π(π, ν),
each of which is computed in terms of characters of a linear group. For ζ ∈ µn let

Lζ(π, ν) =
∑

α∈µ̂n

α(ζ)L(πα, να).

We obtain an inversion formula (Theorem 9.3),

ΘL(π,ν)(g) =
1
n

∑
ζ∈µn

Lζ(π, ν) =
1
n

∑
ζ∈µn

χ−1(zζ)ΘLst(π,ν)(zζg).

Here χ is the central character of L(π, ν) and zζ is an element of S̃L(n, F) with image
ζI ∈ SL(n, F).

These results all hold as stated for F = R and n = 2, in which case they are equivalent
to a special case of [2].

Similar results hold for certain other N -fold covers of S̃L(n, F). One would not expect
the general N -fold cover to be amenable to these methods, as the case N = 1 makes
abundantly clear.

The case of n = 2, worked out in detail, is the subject of the University of Maryland
thesis of Schultz [15]. This gives an intrinsic characterization of the local lift of Wald-
spurger [19]. In this case the set Π containing a genuine discrete series representation π

consists of two elements π, π′ where π′ is the ‘Waldspurger involution’ [19] applied to π.
This goes back to the Shimura correspondence for modular forms of half-integral weight
which is the origin of the theory of nonlinear groups.

1.1. Desiderata

We consider covering groups which fit in an exact sequence,

1 → µn → G̃
p−→ G → 1,

with µn central in G̃ (cf. § 2). We write χπ for the central character of a representation π.
We say a representation π of G̃ is genuine if π has a central character χπ whose restriction
to µn is injective. If a representation π with a central character is not genuine, then π

factors to a representation of a cover of G with kernel a subgroup of µn. If ι : µn ↪→ C∗

is an embedding, we say π is of type ι if χπ|µn = ι.
An important role is played by the exact sequences

1 → µn → F∗ n−→ F∗n → 1, (1.2)

1 → F∗n ι−→ F∗ → F∗/F∗n → 1 (1.3)
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and their Pontriagin duals,

1 → F̂∗n → F̂∗ res−−→ µ̂n → 1, (1.4)

1 → F̂∗/F∗n → F̂∗ res−−→ F̂∗n → 1. (1.5)

Suppose µn is in the kernel of a character λ of F∗. Then by (1.4) λ(x) = µ(xn) for some
character µ of F̂∗n, which by (1.5) extends to τ ∈ F̂∗. This gives the following well-known
lemma which we use repeatedly.

Lemma 1.1. Let λ ∈ F̂∗. Then λ = µn for some µ ∈ F̂∗ if and only if λ(ζ) = 1 for all
ζ ∈ µn.

We identify the centre Z of GL(n, F) with F∗ and the central character χπ of a repre-
sentation of GL(n, F) with an element of F̂∗.

For α ∈ F̂∗ we write α for the character α ◦ det of GL(n, F), and also for the character
α◦p of G̃L(n, F). Note that for π a representation of GL(n, F) (with a central character)

χπα = χπαn. (1.6)

We write Θπ for the global character of a representation π, considered as a function
on the set of regular semisimple elements.

2. Group structure

We continue with the notation of § 1. We first define the group S̃L(n, F) (cf. [11,12,17]);
this is a topological group which fits in an exact sequence,

1 → µn
i−→ S̃L(n, F)

p−→ SL(n, F) → 1, (2.1)

with i, p continuous, i closed and p open. The classes of such extensions are parametrized
by the group of (bilinear) Steinberg cocycles with values in µn. Let (·, ·)n : F∗ ×F∗ → µn

denote the nth norm residue symbol for F. For properties of (·, ·)n see [16] and [7, § 0.1].
In particular (·, ·)n is a perfect pairing on F∗/F∗n and gives an isomorphism of F∗/F∗n

with F̂∗/F∗n. Each Steinberg cocycle is given by c(x, y) = (x, y)k
n for some k. Write

G[k] for the group defined by the cocycle (x, y)k
n. Then G[k] and G[k′] are equivalent

extensions if and only if k ≡ k′ mod(n).
The commutator subgroup G[k]c of G[k] is a covering group of SL(n, F) with kernel

a subgroup of µn. If G[k] is not perfect, then G[k] = G[k]cµn and the representations of
G[k] of type ι are in bijection with the representations of G[k]c of type ι|µn∩G[k]c . For
this reason we assume G[k] is perfect, which holds if and only if gcd(k, n) = 1.

The map G[k] � (g, ζ) → (g, ζj) ∈ G[kj] is a homomorphism, and is an isomorphism
if gcd(j, n) = 1. In particular if gcd(k, n) = 1 then G[k] is isomorphic to G[1] (although
not equivalent as an extension unless k ≡ 1 mod(n)). We let S̃L(n, F) = G[1]. Once and
for all we fix an embedding

ι : µn(F) ↪→ C∗
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and we identify µn with its image. Henceforth we assume all genuine representations are
of type ι.

The Steinberg cocycle defines a cover G̃L(n, F) of GL(n, F) by [7], and S̃L(n, F) is a
subgroup of G̃L(n, F) (we are taking c = 0 in the notation of [7]).

We write c(·, ·) for the cocycle defining G̃L(n, F). Then

G̃L(n, F) = {(g, ζ) | g ∈ GL(n, F), ζ ∈ µn},

with multiplication (g, ζ)(g′, ζ ′) = (gg′, ζζ ′c(g, g′)).
An essential role is played by the commutator. Suppose g and h are commuting

elements of GL(n, F). Choose any inverse images g̃, h̃ of g, h in G̃L(n, F). Then
η = g̃h̃g̃−1h̃−1 ∈ µn is independent of the choices of g̃ and h̃. We write {g, h} = η.

An important property of the commutator is (see [7, Proof of Proposition 0.1.1])

{xI, g} = (x,det(g))−1
n . (2.2)

2.1. Centres

Let
GL(n, F)+ = {g ∈ GL(n, F) | det(g) ∈ F∗n} = SL(n, F)Z.

Write H̃ for the inverse image in G̃L(n, F) of a subgroup H of GL(n, F). The following
lemma follows immediately from (2.2) and properties of the norm residue symbol.

Lemma 2.1. Let Z+ = {xI | x ∈ F∗n}.

(1) The centre of G̃L(n, F) is Z̃+.

(2) The centre of G̃L(n, F)+ is Z̃.

(3) Cent
G̃L(n,F)(G̃L(n, F)+) = Z̃ and Cent

G̃L(n,F)(Z̃) = G̃L(n, F)+.

Thus Z̃ and G̃L(n, F)+ form a dual pair in the sense of Howe.
Therefore, G̃L(n, F)+ = S̃L(n, F)Z̃, and Z̃ is the centre of G̃L(n, F)+. Consequently,

an irreducible representation of G̃L(n, F)+ restricts to an irreducible representation of
S̃L(n, F), and every irreducible representation of S̃L(n, F) is obtained this way. For many
purposes we may replace S̃L(n, F) by G̃L(n, F)+. This is analogous to the corresponding
situation for the linear groups. Note that

G̃L(n, F)

G̃L(n, F)+
≈ GL(n, F)

GL(n, F)+
≈ F∗

F∗n
.

The cocycle restricted to Z+ is trivial so Z̃+ ≈ F∗n × µn. The cocycle restricted to Z

is given by
c(xI, yI) =

∏
i<j

(x, y)n = (x, y)n(n−1)/2
n .

This is equal to 1 if n is odd, or ±1 if n is even.
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For later use we note there exists a (genuine) character µ of Z̃ satisfying

µ|Z̃+
= 1 × ι. (2.3)

In fact we may take

µ(xI, ζ) =

{
ζ, n odd,

γ(x, ψ)ζ, n even.
(2.4)

Here ψ is a non-trivial additive character of F and γ(x, ψ) ∈ {±1,±i} is the Weil index
(see [13, Appendix]). In particular µn = 1 (n odd), and µ2n = 1 (n even). We only use
this explicit formula for (7.2).

Given µ, the genuine characters of Z̃ are in bijection with F̂∗; given ν ∈ F̂∗ let

χν(z) = µ(z)ν(x), z ∈ Z̃, p(z) = xI, (2.5)

i.e.
χν(xI, ζ) = µ(xI, ζ)ν(x) = µ(xI, 1)ζν(x). (2.6)

2.2. Cartan subgroups

We define a Cartan subgroup of G̃L(n, F) or S̃L(n, F) to be the inverse image of
a Cartan subgroup of the corresponding linear group. These groups are in general non-
abelian, and an important role is played by their centres. We say an element of a covering
group is semisimple (respectively, regular) if its image in the linear group is semisimple
(respectively, regular).

Lemma 2.2. Let T be a Cartan subgroup of GL(n, F) with inverse image T̃ in G̃L(n, F).

(1) The centre of T̃ is p−1(Tn).

(2) The centre of T̃ ∩ S̃L(n, F) is p−1(ZTn ∩ SL(n, F)).

Proof. (1) is proved in [6, § 3], and (2) follows from this as well. We will sketch another
proof of (2) in § 3. �

We say a regular semisimple element g ∈ T̃ is relevant if it is contained in the centre
of T̃ [3]. It is a basic fact that if π is a genuine representation of G̃, then Θπ(g) = 0 if g

is not relevant (see [5] and [3, Proposition 2.7]).

3. Restriction from G̃L(n, F) to S̃L(n, F)

We compute the character of an irreducible representation of S̃L(n, F) or G̃L(n, F)+ in
terms of a character of G̃L(n, F) (Theorem 3.3). The main point is that Clifford theory for
restriction of a genuine representation Π of G̃L(n, F) to G̃L(n, F)+ is very easy: each such
representation restricts to a direct sum of |F∗/F∗n| distinct irreducible representations
which are permuted by the action of G̃L(n, F)/G̃L(n, F)+ ≈ F∗/F∗n. Furthermore, the
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character of each summand may be computed in terms of the character of Π using Fourier
inversion on Z̃/Z̃+ ≈ F∗/F∗n.

Let π be a genuine representation of G̃L(n, F)+. Write π → πg for the action (by
conjugation on G̃L(n, F)+) of g ∈ G̃L(n, F) on representations of G̃L(n, F)+. Assume π

has a central character χπ. We compute χπg . Let z ∈ Z̃ with p(z) = xI. Then

χπg (z) = χπ(gzg−1)

= χπ({p(g), xI}z)

= χπ((x,det(g))nz) (by (2.2))

= χπ(z)(x,det(g))n (since π is genuine). (3.1)

By non-degeneracy of the symbol, if det(g) �∈ F∗n there exists x such that (x,det(g))n �=
1. Therefore, if g �∈ G̃L(n, F)+, χπg �= χπ, and a fortiori πg �≈ π. Note the assumption
π is genuine is essential; the corresponding result is false for representations of G̃L(n, F)
which factor to GL(n, F).

Let
Π = IndG̃L(n,F)

G̃L(n,F)+
(π).

By (3.1) and Clifford theory G̃L(n, F)/G̃L(n, F)+ acts simply transitively on the set of
constituents of Π restricted to G̃L(n, F)+. For each x ∈ F∗/F∗n choose gx ∈ G̃L(n, F)
with det(g) ≡ x mod(F∗n). Let πx = πgx ; the isomorphism class of πx is independent of
the choice of gx. Thus

Π|
G̃L(n,F)+

=
∑

x∈F∗/F∗n

πx. (3.2)

If π′ is a constituent of the restriction of Π to G̃L(n, F)+, then χπ′ (a character of Z̃)
restricted to Z̃+ is equal to χΠ . The set of extensions of χΠ to Z̃ is in bijection with
F̂∗/F∗n. By (3.2) the constituents of this restriction are in bijection with F̂∗/F∗n. This
proves the following result.

Proposition 3.1. Let Π be an irreducible genuine representation of G̃L(n, F). Let S be
the set of extensions of χΠ to Z̃+; this set is in bijection with F̂∗/F∗n. For λ ∈ S let Πλ

be the λ eigenspace of Π.
For all λ, Πλ is an irreducible representation of G̃L(n, F)+ and

Π|
G̃L(n,F)+

=
∑
λ∈S

Πλ.

Fix an irreducible constituent π of this restriction. Then

Π|
G̃L(n,F)+

=
∑

x∈F∗/F∗n

πx

and the central character of πx is χπ(·, x)n.

Remark 3.2. A similar result holds for S̃L(n, F): Π|
S̃L(n,F) =

∑
x πx as above. However,

the πx are not necessarily distinct; in some cases π ≈ πx (this implies (x, ζ)n = 1 for all
ζ ∈ µn).
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We strengthen this result using Fourier inversion on F∗/F∗n to write Θπ in terms
of ΘΠ .

For z ∈ Z̃, z′ ∈ Z̃+, χπ(zz′)−1ΘΠ(zz′g) = χπ(z)ΘΠ(zg). Thus χπ(z)−1ΘΠ(zg) is well
defined for z ∈ Z̃/Z̃+. We compute∑

z∈Z̃/Z̃+

χπ(z)−1ΘΠ(zg) =
∑

z∈Z̃/Z̃+

χπ(z)−1
∑

x∈F∗/F∗n

Θπx(zg) (by (3.2))

=
∑

z∈Z̃/Z̃+

∑
x∈F∗/F∗n

χπ(z)−1χπx(z)Θπx(g).

Now χπ(z)−1χπx(z) factors to Z̃/Z̃+ ≈ F∗/F∗n, and by orthogonality of characters the
right-hand side equals |F∗/F∗n|Θπ(g). Explicitly, by (3.1),

χπ(z)−1χπx(z) = χπ(z)−1χπ(z)(y, x)n = (y, x)n,

where p(z) = yI. As z runs over Z̃/Z̃+, y runs over representatives of F∗/F∗n, and this
gives ∑

y∈F∗/F∗n

∑
x∈F∗/F∗n

(y, x)nΘπx =
∣∣∣∣ F∗

F∗n

∣∣∣∣Θπ(g),

since (·, ·)n is a perfect pairing. This proves the following result.

Theorem 3.3. Let π be a genuine representation of G̃L(n, F)+ with a central character.
Let

Π = IndG̃L(n,F)
G̃L(n,F)+

(π).

This is a genuine representation of G̃L(n, F) and is irreducible if π is irreducible. Assume
Θπ exists. Then for g ∈ G̃L(n, F)+ (a regular semisimple element)

Θπ(g) =
1

|F∗/F∗n|
∑

z∈Z̃/Z̃+

χπ(z)−1ΘΠ(zg)

=
1

|F∗/F∗n|
∑

x∈F∗/F∗n

χπ(zx)−1ΘΠ(zxg). (3.3)

In the first sum z runs over any set of coset representatives of Z̃/Z̃+. In the second the
sum runs over any coset representatives of F∗/F∗n, and for each x, zx ∈ Z̃ is any element
satisfying p(zx) = xI. Each term is independent of the choices.

Essentially the same result holds for genuine representations of S̃L(n, F). Let π be
a genuine representation of S̃L(n, F), and extend π to a genuine representation π′ of
G̃L(n, F)+ (cf. § 2). Then (3.3) holds for g ∈ S̃L(n, F) and π replaced by π′. Each sum-
mand is independent of the choice of π′.

We can now sketch a proof of Lemma 2.2 (2).

Sketch of proof. By the theorem, if π is a genuine representation of G̃L(n, F)+ then
Θπ(g) = 0 unless p(zg) ∈ Tn for some z by Lemma 2.2 (1), i.e. p(g) ∈ ZTn. Conversely,
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if g satisfies this condition then there exists a genuine representation for which Θπ(g) �=
0, by the property that characters separate points. This proves the result for regular
semisimple elements. For general elements apply a continuity argument. Alternatively
apply the argument of Theorem 3.1 directly to an irreducible finite-dimensional genuine
representation π of T̃ , in which case Θπ is defined for all g ∈ T̃ . �

4. Lifting from GL(n, F) to G̃L(n, F)

In this section we summarize results on lifting of characters from GL(n, F) to G̃L(n, F)
(see [6–8]).

We first define transfer factors in this setting. Recall that the Weyl denominator for
GL(n, F) is given by

∆(g) =
∏
i<j

|xi − xj |F̄
|xixj |1/2

F̄

if g is a regular semisimple element with (distinct) eigenvalues xi (in an algebraic closure
of F).

Definition 4.1. Suppose h ∈ GL(n, F), g ∈ G̃L(n, F) are regular semisimple elements
satisfying hn = p(g).

Let
τ(h, g) = gs(h)−nu(h). (4.1)

Here u(h) = ±1 ∈ µn is defined by [8, § 2] (we take u(h) = 1 if n is odd), and
s : GL(n, F) → G̃L(n, F) is any section. Note that pτ(h, g) = 1 and we consider τ(h, g)
to be an element of µn.

Let

∆(h, g) = |nn|−1/2
F

τ(h, g)
∆(h)
∆(g)

. (4.2)

Let π be a representation of GL(n, F) with central character χπ satisfying χπ(ζI) = 1
for all ζ ∈ µn. Suppose g is a regular semisimple element of G̃L(n, F), so p(g) is contained
in a Cartan subgroup T of GL(n, F). Let

t∗(Θπ)(g) =
∑
h∈T

hn=p(g)

∆(h, g)Θπ(h). (4.3)

This is a conjugation invariant function on the regular semisimple elements of G̃L(n, F).
This is a special case of [6, 26.1], and we have written it in a different form. We use

the notation of [6]. To see that (4.3) agrees with [6] first note that in our case the centre
Z̃+ of G̃L(n, F) is equal to s(Zn)µn, and it follows that the supplementary choice of ω̃

of [6] is unnecessary. The summand in [6] is over

{h ∈ T | h∗−1g ∈ Z̃+}/Z.

Given h̄ in this set, choose a representative h ∈ T , and write h∗z = g for z ∈ Z̃+.
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Equivalently the sum is over

A = {h ∈ T | (hz)n = p(g) for some z ∈ Z}/Z.

On the other hand, we have written the sum over

B = {h ∈ T | hn = p(g)}.

There is an n to 1 surjective map from B to A given by h → h̄. Finally, if hn = p(g) then
h∗−1g = s(h)−nu(h)g = τ(g, h), and since this is an element of µn, ω̃(τ(g, h)) = τ(g, h).
We have incorporated this term, together with the constant b of [6, § 24] (divided by n

because of the difference between A and B) into the transfer factor ∆(h, g).
Flicker, Kazhdan and Patterson conjecture that for π an irreducible unitary represen-

tation t∗(π) is either 0 or ± the character of a genuine irreducible unitary representation
of G̃L(n, F). We refine this conjecture into two hypotheses for later use.

Hypothesis I. Let π be an irreducible representation of GL(n, F) such that χπ(ζI) = 1
for all ζ ∈ µn. We say ‘Hypothesis I holds for π’ if t∗(π) is 0 or ± the character of an
irreducible representation of G̃L(n, F). If this holds, we define the virtual representation
t∗(π) by t∗(Θπ) = Θt∗(π). Furthermore, if t∗(π) �= 0 define ε(π) = ±1 so that ε(π)t∗(π)
is a representation. We say ‘Hypothesis I holds’ if it holds for all π.

Hypothesis II. Every genuine irreducible unitary representation of G̃L(n, F) is isomor-
phic to ε(π)t∗(π) for some irreducible unitary representation π satisfying Hypothesis I.

Hypotheses I and II hold for n = 2 (see [5]). Hypothesis I is true if π is a discrete series
representation, and t∗ is a bijection between a subset of the discrete series of GL(n, F)
and the genuine discrete series of G̃L(n, F) (see [6, § 26]). Hence Hypothesis II holds
in the context of discrete series representations. For π a discrete series representation
ε(π) = 1. If t∗(π) is supercuspidal, then π is supercuspidal, but not conversely.

Hypothesis I holds if π is tempered (see [6]), with the caveat that this statement
depends on [6, Proposition 26.2], and in some cases there is a technical obstruction to
this result holding as stated (the construction of an irreducible representation of M̃ is
not valid in all cases). In any event if π is tempered and satisfies Hypothesis I, then
t∗(π) is tempered and ε(π) = 1. Subject to the preceding caveat Hypothesis II holds for
tempered representations and t∗ is a bijection between a subset of the irreducible tem-
pered representations of GL(n, F) and the genuine irreducible tempered representations
of G̃L(n, F) (see [6, Theorem 27.3]).

Assuming Hypothesis II holds for tempered representations, then the Grothendieck
group of genuine representations of G̃L(n, F) is spanned by the t∗(π) for π satisfying
Hypothesis I. Furthermore, the non-zero t∗(π) as π runs over all standard modules for
GL(n, F) is a basis of the Grothendieck group of genuine representations of G̃L(n, F).

We are particularly interested in non-tempered representations π satisfying Hypoth-
esis I. For example Hypothesis I holds for any character α satisfying α(ζ) = 1 for all
ζ ∈ µn. In this case t∗(α) is a singular unitary quotient of a minimal principal series
with a one-dimensional space of Whittaker functionals (see [5] and [7, Corollary I.3.6]).
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Hypothesis I should hold for all characters α. For example for n = 2, −t∗(α) is the
supercuspidal constituent of the oscillator representation if α(−1) = −1 (see [5]).

The central characters of π and t∗(π) are related by

χt∗(π)(xnI, 1) = χπ(x). (4.4)

We also have for any α ∈ F̂∗

t∗(παn) = t∗(π)α. (4.5)

These follow immediately from (4.3).

5. Parameters for S̃L(n, F)

We put lifting from GL(n, F) to G̃L(n, F) together with restriction from G̃L(n, F) to
S̃L(n, F) to obtain a character formula relating GL(n, F) and S̃L(n, F).

We first consider G̃L(n, F)+. Suppose for the moment that Hypothesis II is true. We
parametrize the genuine irreducible unitary representations of G̃L(n, F)+ as follows.

Fix a genuine irreducible unitary representation Π of G̃L(n, F). By Proposition 3.1
a constituent of the restriction of Π to G̃L(n, F)+ is determined by a character λ of Z̃

satisfying λ|Z̃+
= χΠ , i.e.

λ(xn, 1) = χΠ(xn, 1), x ∈ F∗.

By Hypothesis II there exists an irreducible representation π of GL(n, F), with
χπ(µn) = 1, such that t∗(π) = ±Π. By (4.4)

χΠ(xn, 1) = χπ(x),

so we have

λ(xn, 1) = χπ(x). (5.1)

Fix a genuine character µ of Z̃ satisfying (2.3). Then the set of characters λ of Z̃

satisfying (5.1) is (cf. (2.5))
{χν | νn = χπ}.

Note that by Lemma 1.1 and (1.5) the set of such ν is parametrized by F̂∗/F∗n, and by
Proposition 3.1 this parametrizes the constituents of Π|

G̃L(n,F)+
.

This motivates the following definition.

Definition 5.1. Let X be the set of pairs (π, ν) where the following hold.

(1) π is an irreducible representation of GL(n, F), with central character χπ satisfying
χπ(ζI) = 1 for all ζ ∈ µn.

(2) ν is a character of F∗ satisfying νn = χπ.

Let (π, ν) ∈ X, and assume Hypothesis I holds for π.
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(3) Let L+(π, ν) be the constituent of t∗(π) restricted to G̃L(n, F)+ with central char-
acter χν (cf. (2.5)).

(4) Let L(π, ν) be the restriction of L+(π, ν) to S̃L(n, F).

Remark 5.2. L and L+ depend on the choice of µ satisfying (2.3).

By definition ε(π)L(π, ν) is the character of a representation. Assuming Hypothesis II
every genuine irreducible unitary representation of G̃L(n, F)+ is isomorphic to ε(π)L(π, ν)
for some (π, ν) ∈ X.

If (π, ν) ∈ X, then by (1.6)

χπν−1 = χπν−n = 1, (5.2)

i.e. πν−1 factors to a representation of PGL(n, F). If π is a representation of GL(n, F)
with trivial central character, let π̄ be the corresponding representation of PGL(n, F).

Definition 5.3. For (π, ν) ∈ X, let M(π, ν) be the irreducible representation πν−1 of
PGL(n, F).

Thus X is the graph of a correspondence between irreducible genuine representations
of G̃L(n, F)+ or S̃L(n, F) and PGL(n, F). That is for π an irreducible representation
of G̃L(n, F)+ or S̃L(n, F) and π′ an irreducible representation of PGL(n, F) we say π

corresponds to π′ if there exists x = (π, ν) ∈ X, with π satisfying Hypothesis I, such
that L+(x) = π or L(x) = π, and M(x) = π′. Assuming Hypothesis II every genuine
irreducible unitary representation of S̃L(n, F) is in the image of the correspondence.

Lemma 5.4.

(1) If (π, ν) ∈ X, then (πα, να) ∈ X for all α ∈ F̂∗. Thus x = (π, ν) → αx = (πα, να)
defines an action of F̂∗ on X.

For all α ∈ F̂∗ and x ∈ X, we have the following.

(2) M(αx) = x.

(3) L+(αnx) = L+(x)α.

(4) L(αnx) = L(x).

Proof. (1) and (2) are immediate. By (4.5) t∗(αnπ) = t∗(π)α, and by (1.6) L+(αnx) and
L+(x)α have the same central character; (3) follows and (4) is an immediate consequence
of (3). �

Remark 5.5. If β ∈ F̂∗ is non-trivial on µn, then β �∈ F̂∗n, and there is no elementary
relationship between L+(βx) and L+(x).

Remark 5.6. The action of F̂∗/F̂∗n ≈ µ̂n on genuine representations of S̃L(n, F) given
by α : L(x) → L(αx) generalizes the ‘Waldspurger involution’ for S̃L(2, F) (see [19]).
We intend to return to this point in another paper.
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We compute the set of representations of S̃L(n, F) corresponding to a given irreducible
representation of PGL(n, F).

Fix x = (π, ν) ∈ X. If M(x′) = M(x), then x′ = αx for some α. By Lemma 5.4 (4)
if α ∈ (F̂∗)n ≈ F̂∗n, then L(αx) = L(x). Therefore, the irreducible representations of
S̃L(n, F) corresponding to M(x) are the L(αx) for α ∈ F̂∗/F̂∗n (not to be confused with
F̂∗/F∗n), which by (1.4) is isomorphic to µ̂n.

Definition 5.7. Let π be an irreducible representation of GL(n, F) with central character
trivial on µn. Suppose Hypothesis I holds for πα for all α ∈ F̂∗.

(1) For (π, ν) ∈ X let

Lst(π, ν) =
∑
α

L(πα, να),

where the sum runs over a set of representatives of F̂∗/F̂∗n ≈ µ̂n.

(2) Let π be an irreducible representation of PGL(n, F), and let π′ denote π pulled
back to GL(n, F). Assume π′α satisfies Hypothesis I for all α ∈ F̂∗. Define Lst(π) =
Lst(π′, 1).

Remark 5.8. Lst(π, ν) = Lst(πα, να) for all α, and in particular

Lst(π, ν) = Lst(πν−1, 1) = Lst(πν−1).

As discussed in § 1, Lst(π) and Π(π, ν) = {L(πα, να) | α ∈ µ̂n} are our candidates for a
‘stable’ virtual character and packet of S̃L(n, F). Note that the non-zero representations
L(πα, να) in Π(π, ν) are distinct, and in fact have distinct central characters on S̃L(n, F).
One could define a stable virtual character of S̃L(n, F) to be in the span of the Lst(π).
It is not clear how to characterize the stable virtual characters intrinsically.

Not all L(πα, να) are necessarily non-zero. For example suppose π is the principal
series representation defined by the character λ(diag(h1, . . . , hn)) =

∏
λi(hi). This has

central character trivial on µn if
∏

i λi(ζ) = 1 for all ζ ∈ µn. On the other hand, t∗(π) = 0
unless λi(ζ) = 1 for all i, ζ ∈ µn. Assume this holds. Then L(π, α) is a principal series of
G̃L(n, F), and L(πα, να) = 0 for all α �= 1, so L(π, ν) = Lst(π, ν).

If π is a discrete series representation, then π satisfies Hypothesis I; if χπ(µn) = 1, then
t∗(πα) �= 0 for all α, and L(πα, να) �= 0 for all α. Therefore, in this case, |Π(π, α)| = n.

In the case n = 2, L(1, 1) is non-tempered, and is isomorphic to ωe, the even half of the
oscillator representation ω = ωe ⊕ ωo of S̃L(n, F) (ω depends on an additive character
ψ, which is determined by µ). If α(−1) = −1, then L(α, α) = −ωo is supercuspidal, and
Lst(1) = ωe − ωo (see [1,5,15]).

6. Orbit correspondence

For g ∈ GL(n, F) write ḡ for the image of g in PGL(n, F).
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Definition 6.1. For h ∈ GL(n, F) let

φ(h) = det(h−1)hn ∈ SL(n, F).

Then φ(zg) = φ(g) for all z ∈ Z, so φ factors to a map from PGL(n, F) to SL(n, F).

Thus GL(n, F) is the graph of a correspondence between PGL(n, F) and SL(n, F) via
the maps the maps g → ḡ ∈ PGL(n, F) and g → φ(g) ∈ SL(n, F). The following lemma
is immediate.

Lemma 6.2.

(1) For all h ∈ PGL(n, F), g ∈ GL(n, F), φ(ḡhḡ−1) = gφ(h)g−1.

(2) If h is a regular semisimple element, then φ(h) is relevant (cf. Lemma 2.2).

We also need the weak orbit correspondence. Suppose h ∈ GL(n, F), g ∈ SL(n, F)
satisfy

hn = zg, z ∈ Z.

Multiplying both sides by det(h−1) shows this is equivalent to

φ(h) = det(h−1)zg, z ∈ Z.

Since φ(h) and g have determinant one this gives

det(h−1)z = φ(h)g−1 = ζI, ζ ∈ µn. (6.1)

Definition 6.3. We say h ∈ PGL(n, F), g ∈ SL(n, F) weakly correspond, written

h ←weak−−−→ g,

if for any (equivalently all) h′ ∈ GL(n, F) with h̄′ = h,

h′n = zg, z ∈ Z.

Equivalently,
g = ζφ(h), ζ ∈ µn.

If h ←weak−−−→ g, define ζ(h, g) ∈ µn by

g = ζ(h, g)φ(h). (6.2)

We give an alternative description of the orbit correspondences in terms of roots and
weights. This is not needed for what follows. Given a Cartan subgroup T of GL(n, F), we
identify the root and weight lattices of the corresponding Cartan subgroups of PGL(n, F)
and SL(n, F).

Lemma 6.4. Fix a Cartan subgroup T of GL(n, F), with corresponding subgroups
TPGL(n) and TSL(n). Suppose h ∈ TPGL(n) and g ∈ TSL(n).
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(1) h ←weak−−−→ g if and only if α(hn) = α(g) for all roots α.

(2) φ(h) = g if and only if (nλ)(h) = λ(g) for all weights λ.

Proof. Part (1) is immediate. For (2) we need to show for h ∈ GL(n, F), ζ ∈ µn,

(nλ)(h) = λ(ζ det(h−1)hn) for all weights λ ⇔ ζ = 1.

The subtlety is that λ(h) is not defined for arbitrary elements of GL(n, F). If
h ∈ SL(n, F), Z = GL(n, F)+, then λ(h) is defined and this is immediate. It is enough
to work over the algebraic closure F̄, in which case GL(n, F̄)+ = GL(n, F̄), proving the
result. �

Remark 6.5. If g is in the split torus, then |{h | φ(h) = g}| = nn−2 or 0. In general
the cardinality of the inverse image of a g ∈ SL(n, F) depends on the Cartan subgroup
containing g.

7. Transfer factors

We continue with the notation of § 6. Fix a character µ of Z̃ satisfying (2.3). We define
transfer factors ∆µ(h, g) (Definition 7.3). These satisfy one of the standard requirements
of transfer factors: |∆µ(h, g)| = |∆(h)/∆(g)| (see (7.2)), up to a constant which is 1 for
almost every residual characteristic.

Definition 7.1. Suppose h ∈ GL(n, F), g ∈ S̃L(n, F) satisfy

hn = p(zg), z ∈ Z̃ (7.1)

(cf. Definition 4.1).
Let

∆µ(h, g) =
n2

|F∗/F∗n|µ(z)−1∆(h, zg).

This is independent of the choice of z satisfying (7.1).

Lemma 7.2. For all λ ∈ F∗

∆µ(λh, g) = ∆µ(h, g).

Proof. Choose z ∈ Z̃ satisfying hn = p(zg), and w ∈ Z̃ satisfying p(w) = λnI. Then
(λh)n = p(wzg). We need to show ∆µ(h, g) = ∆µ(λh, g), i.e.

µ(z)−1zgs(h)−nu(h) = µ(wz)−1wzgs(λh)−nu(λh).

After cancellations this is equivalent to

s(λh)nu(λh) = µ(w)−1ws(h)nu(h).

By [6, § 4] s(λh)nu(λh) = s(h)nu(h)s0(λn), where s0 is the distinguished section,
i.e. s0(g) = (g, 1). Inserting this we are reduced to showing s0(λn) = µ(w)−1w, which is
precisely the fact that µ|Z̃+

= ι. �
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Definition 7.3. Suppose h ∈ PGL(n, F), g ∈ S̃L(n, F) satisfy

h ←weak−−−→ p(g).

Choose h′ ∈ GL(n, F) satisfying h̄′ = h. Let

∆µ(h, g) = ∆µ(h′, g).

By the lemma this is independent of the choice of h′.

Given h, g as in Definition 7.3, choose h′ ∈ GL(n, F) satisfying h̄′ = h, and choose
z ∈ Z̃ with h′n = p(zg). Recall τ is given by Definition 4.1, and |F∗/F∗n| = n2/|n|F
(see [7, Lemma 0.3.2]). This gives

∆µ(h, g) =
n2

|F∗/F∗n|µ(z)−1∆(h′, zg)

= |n|1−n/2
F

µ(z)−1τ(h′, zg)
∆(h)
∆(g)

= |n|1−n/2
F

µ(z)−1zgs(h′)−nu(h′)
∆(h)
∆(g)

.

This is independent of the choices.

Remark 7.4. If n = 2 or the residual characteristic of F does not divide n, then by (2.4)(
∆µ(h, g)

∆(h)/∆(g)

)N

= 1, (7.2)

with N = n (n odd) or N = 2n (n even).

Remark 7.5. If µ′ is another character satisfying (2.3), then µ′(z) = µ(z)(y, x)n for
some y, where p(z) = xI, and

∆µ′

∆µ
(h, g) =

µ

µ′ (h) = (det(h), y)n

(det(h) is a well-defined element of F∗/F∗n).

Although we will not need it we state the invariance property of ∆µ. Suppose h ←weak−−−→ g.
For y ∈ G̃L(n, F) let y0 = p(y) ∈ PGL(n, F).

Lemma 7.6. We have

∆µ(y0hy−1
0 , ygy−1) = ∆µ(h, g)(det(h)ζ(h, g), det(y))n.

Proof. A straightforward computation which is left to the reader. �

https://doi.org/10.1017/S147474800300001X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800300001X


18 J. Adams

8. Stable character formula

We state the formula relating the character of an irreducible representation π of
PGL(n, F) to the character of the virtual genuine representation Lst(π) of S̃L(n, F).

Fix µ as in (2.3), define Lst as in Definition 5.7, φ as in § 6 and ∆µ as in § 7.

Theorem 8.1 (main theorem). Let π be an irreducible representation of PGL(n, F),
for which Lst(π) is defined (Definition 5.7). Then for g a regular semisimple element of
S̃L(n, F),

ΘLst(π)(g) =
∑

h∈PGL(n,F)
φ(h)=p(g)

∆µ(h, g)Θπ(h). (8.1)

Recall the hypothesis on π is that t∗(πα) is defined for all α ∈ F̂∗ (we have pulled π

back to GL(n, F)).

Remark 8.2. By Lemma 7.6 the right-hand side of (8.1) is a priori S̃L(n, F) conjuga-
tion invariant. We do not need this, and it is a consequence of the theorem. Note that
ΘLst(π) is not necessarily invariant by conjugation by G̃L(n, F), since ∆µ is only S̃L(n, F)
conjugation invariant (Lemma 7.6).

Proof. We first give a formula for ΘL(π,ν)(g) for arbitrary (π, ν) ∈ X (with π satisfying
Hypothesis I).

By Theorem 3.3,
ΘL(π,ν)(g) =

∑
z∈Z̃/Z̃+

χν(z)−1Θt∗(π)(zg)

(sum over any set of coset representatives). Inserting (4.3) gives

ΘL(π,ν)(g) =
1

|F∗/F∗n|
∑

z∈Z̃/Z̃+

∑
hn=p(zg)

χν(z)−1∆(h, zg)Θπ(h). (8.2)

Write the summand as follows:

χν(z)−1∆(h, zg)Θπ(h) = µ(z)−1ν(z)−1∆(h, zg)Θπ(h) (by (2.6))

=
|F∗/F∗n|

n2 ν(z)−1∆µ(h, g)Θπ(h) (Definition 7.1)

=
|F∗/F∗n|

n2 ν(h)ν(z)−1∆µ(h, g)Θπν−1(h).

By (5.2) and Lemma 7.2, ∆µ(h, g) and Θπν−1(h) only depend on the image h̄ ∈ PGL(n, F)
of h. By (6.1) and (6.2), ν(h)ν(z)−1 = ν(φ(h)−1g) = ν(ζ(h̄, g)). This gives

|F∗/F∗n|
n2 ν(ζ(h̄, g))∆µ(h̄, g)θπν−1(h̄).

Inserting this in (8.2) and changing the order of summation gives the following interme-
diate result.
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Proposition 8.3. We have

ΘL(π,ν)(g) =
1
n

∑
h∈PGL(n,F)

h←weak−−−→ g

ν(ζ(h, g))∆µ(h, g)θπν−1(h)

=
1
n

∑
ζ∈µn

ν(ζ)
∑

h∈PGL(n,F)
φ(h)=ζg

∆µ(h, g)θπν−1(h).

Replace (π, ν) with (πα, να). On the right-hand side only the term ν(ζ(h, g)) is affected.
Summing over α gives

ΘLst(π,ν)(g) =
1
n

∑
ζ∈µn

∑
α∈µ̂n

ν(ζ)α(ζ)
∑

h∈PGL(n,F)
φ(h)=ζg

∆µ(h, g)θπν−1(h).

By orthogonality of characters for µn this equals∑
h∈PGL(n,F)

φ(h)=g

∆µ(h, g)θπν−1(h).

This completes the proof. �

9. Inversion

We continue in the setting of the preceding section. Suppose πα satisfies Hypothesis I
for all α.

Definition 9.1. For ζ ∈ µn let

Lζ(π, ν) =
∑

α∈µ̂n

α(ζ)L(πα, να).

This is a virtual character in which we allow rational coefficients, and L1(π, ν) =
Lst(π, ν).

By Fourier inversion on µn we have

L(π, ν) =
1
n

∑
ζ∈µn

Lζ(π, ν). (9.1)

Recall the central character of L(πα, να) is χαν , i.e.

χL(πα,να)(zζ) = χν(zζ)α(ζ),

where p(zζ) = ζI. That is,

α(ζ)ΘL(πα,να)(g) = χ−1
ν (zζ)ΘL(πα,να)(zζg).

Inserting this into the definition gives the following result.
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Lemma 9.2. For all ζ ∈ µn,

ΘLζ(π,ν)(g) = χ−1
ν (zζ)ΘLst(π,ν)(zζg)

for any choice of zζ satisfying p(zζ) = ζI.

Inserting this in (9.1) gives the following result.

Theorem 9.3 (inversion). Suppose (π, ν) ∈ X, and πα satisfies Hypothesis I for all
α ∈ F̂∗. Then

ΘL(π,ν)(g) =
1
n

∑
ζ∈µn

Lζ(π, ν)(g)

=
1
n

∑
ζ∈µn

χ−1
ν (zζ)ΘLst(π,ν)(zζg).

(9.2)

By Theorem 8.1 each term on the right-hand side of (9.2) may be expressed in terms
the character Θπν−1 of PGL(n, F). The resulting formula is Proposition 8.3.

We record the analogue of Theorem 8.1 for Lζ(π, ν),

ΘLζ(π,ν)(g) = ν(ζ)−1
∑

h←weak−−−→g
ζ(h,g)=ζ−1

∆µ(h, g)Θπν−1(h).
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