Journal of the Inst. of Math. Jussieu (2003) **2**(1), 1–21 © Cambridge University Press DOI:10.1017/S147474800300001X Printed in the United Kingdom

CHARACTERS OF COVERING GROUPS OF SL(n)

JEFFREY ADAMS

University of Maryland

(Received 20 April 2002; accepted 17 June 2002)

Abstract We study characters of an n-fold cover $\widetilde{SL}(n,\mathbb{F})$ of $SL(n,\mathbb{F})$ over a non-Archimedean local field. We compute the character of an irreducible representation of $\widetilde{SL}(n,\mathbb{F})$ in terms of the character of an irreducible representation of $\widetilde{SL}(n,\mathbb{F})$. We define an analogue of L-packets for $\widetilde{SL}(n,\mathbb{F})$, such that the character of a linear combination of the representations in such a packet is computed in terms of the character of an irreducible representation of $PGL(n,\mathbb{F})$. This is analogous to stable endoscopic lifting for linear groups. We also prove an 'inversion' formula expressing the character of a genuine irreducible representation of $\widetilde{SL}(n,\mathbb{F})$ as a linear combination of virtual characters, each of which is obtained from $PGL(n,\mathbb{F})$.

Keywords: metaplectic group; representation theory; lifting; character

AMS 2000 Mathematics subject classification: Primary 22E50 Secondary 11F70

1. Introduction

Let \mathbb{G} be a reductive linear group defined over a local field \mathbb{F} of characteristic 0, and let $G = \mathbb{G}(\mathbb{F})$. One of the ingredients of the local portion of the Langlands program for G is the study of characters of admissible representations of G. These are used on one side of the trace formula, and provide information about automorphic representations of \mathbb{G} over a global field.

Important examples of automorphic representations involve reductive groups which are not linear, such as the oscillator representation of the metaplectic group, the twofold cover of $Sp(2n, \mathbb{F})$. We refer to a finite central extension \tilde{G} of G which is not itself a linear group as a *nonlinear* group. It would be interesting to understand the representation theory of such groups, and to extend the Langlands program to the study of their automorphic representations.

A representation π of \tilde{G} is said to be *genuine* if it does not factor to any proper quotient of \tilde{G} . One approach to the representation theory of \tilde{G} is to relate genuine representations of \tilde{G} to representations of a linear group via character theory. There are a number of examples of this approach. See the references and [3] for a survey.

Now assume the cardinality of the *n*th roots of unity μ_n of \mathbb{F} is *n*. We consider a certain central extension $\widetilde{SL}(n, \mathbb{F})$ of $SL(n, \mathbb{F})$ by μ_n (cf. § 2).

Arbitrary covers $GL(n, \mathbb{F})$ of $GL(n, \mathbb{F})$ have been studied extensively [5–8]. Flicker, Kazhdan and Patterson relate character theory of $\widetilde{GL}(n, \mathbb{F})$ to that of $GL(n, \mathbb{F})$. The group $\widetilde{SL}(n, \mathbb{F})$ is a subgroup of a corresponding group $\widetilde{GL}(n, \mathbb{F})$, and a natural approach is to study representations of $\widetilde{SL}(n, \mathbb{F})$ by restricting representations of $\widetilde{GL}(n, \mathbb{F})$. The corresponding problem for $SL(n, \mathbb{F})$ and $GL(n, \mathbb{F})$ is quite difficult [9, 18]. For example the case of n = 2 is the first example of endoscopy and is highly non-trivial [10].

Surprisingly the corresponding restriction problem for genuine representations of $\widetilde{SL}(n, \mathbb{F})$ is very easy, and character theory of $\widetilde{SL}(n, \mathbb{F})$ reduces to that of $\widetilde{GL}(n, \mathbb{F})$. Our first step is to write a formula (Theorem 3.3) for the character of an irreducible genuine representation π of $\widetilde{SL}(n, \mathbb{F})$ in terms of the character of an irreducible representation of $\widetilde{GL}(n, \mathbb{F})$ which contains π in its restriction.

We are interested in relating the characters of representations of $SL(n, \mathbb{F})$ to those of a linear group. This is modelled on the theory of endoscopy for linear groups. So suppose for the moment that \mathbb{G} is a connected reductive algebraic group defined over \mathbb{F} , and let $G = \mathbb{G}(\mathbb{F})$. A virtual representation π of G is a formal sum $\sum_{i=1}^{n} a_i \pi_i$ of irreducible representations π_i with integral coefficients. We consider the global character

$$\Theta_{\pi} = \sum a_i \Theta_{\pi_i}$$

as a conjugation invariant function on the strongly regular semisimple elements of G. It is said to be *stable* if it is invariant under conjugation by $\mathbb{G}(\bar{\mathbb{F}})$ where $\bar{\mathbb{F}}$ is the algebraic closure of \mathbb{F} . The stable virtual characters are simpler than general virtual characters, and are basic objects in the theory.

The set of irreducible representations of G is conjecturally the disjoint union of finite sets called L-packets. If $\Pi = \{\pi_1, \ldots, \pi_n\}$ is a tempered L-packet (i.e. each π_i is tempered), then $\sum_i \pi_i$ is conjectured to be stable. The goal of endoscopy is to find virtual sums $\sum_i a_i \pi_i$, each of which is computed via 'transfer' or 'lifting' from a stable virtual character on a smaller quasi-split 'endoscopic' group of the same rank. Furthermore we attempt to write each π_i as a linear combination of such lifted characters ('inversion').

If Π is not tempered, then $\sum_i \pi_i$ may not be stable. Arthur has conjectured that in some cases Π may be expanded to a larger 'Arthur packet' which does contain a stable sum [4]. Unlike L-packets Arthur packets may contain both tempered and non-tempered representations.

A special case of an endoscopic group is $H = G_{qs}$, the quasi-split form of G. In this case transfer preserves stability, and the stable virtual characters of G are obtained from the stable virtual characters of G_{qs} .

Flicker, Kazhdan and Patterson have defined a lifting theory modelled on endoscopy for linear groups, conjecturally taking an irreducible unitary representation π of $GL(n, \mathbb{F})$ to an irreducible genuine unitary representation $t_*(\pi)$ of $\widetilde{GL}(n, \mathbb{F})$ or 0 [6–8]. The character of $t_*(\pi)$ is computed in terms of the character of π . For $GL(n, \mathbb{F})$ all virtual characters are stable, so this theory is analogous to transfer from G_{qs} to G in the linear case.

We are interested in the analogous theory for $SL(n, \mathbb{F})$. The preceding results for $\widetilde{GL}(n, \mathbb{F})$, together with Theorem 3.3, express the character of an irreducible constituent of $t_*(\pi)$ restricted to $\widetilde{SL}(n, \mathbb{F})$ in terms of characters of $GL(n, \mathbb{F})$. The resulting formula

3

does not formally have the properties of lifting. In particular $GL(n, \mathbb{F})$ and $SL(n, \mathbb{F})$ do not have the same rank.

Our main result is that by taking an appropriate sum of representations of $\widetilde{SL}(n, \mathbb{F})$ we do obtain such a lifting formula, relating the character of the sum to an irreducible character of $PGL(n, \mathbb{F})$. This sum is our analogue of a stable virtual character for $\widetilde{SL}(n, \mathbb{F})$. In the tempered case the set of representations is analogous to an L-packet, and more generally to an Arthur packet. We proceed to describe this sum.

A constituent of $t_*(\pi)$ restricted to $SL(n, \mathbb{F})$ is determined by a character ν of \mathbb{F}^* for which ν^n equals the central character of π . More precisely, let

$$\widetilde{GL}(n,\mathbb{F})_+ = \{g \in \widetilde{GL}(n,\mathbb{F}) \mid \det(g) \in \mathbb{F}^{*n}\} = \widetilde{SL}(n,\mathbb{F})\widetilde{Z}.$$

Here \tilde{Z} is the inverse image of the centre Z of $GL(n, \mathbb{F})$ in $\widetilde{GL}(n, \mathbb{F})_+$, which is also the centre of $\widetilde{GL}(n, \mathbb{F})_+$. The constituents of $t_*(\pi)$ restricted to $\widetilde{GL}(n, \mathbb{F})_+$, equivalently $\widetilde{SL}(n, \mathbb{F})$, are parametrized by their central characters. These in turn are parametrized by characters ν of \mathbb{F}^* with given restriction to \mathbb{F}^{*n} . See Proposition 3.1.

We write $L(\pi,\nu)$ for the summand of $t_*(\pi)$ corresponding to ν . This is an irreducible genuine representation of $\widetilde{SL}(n,\mathbb{F})$. For any character α of \mathbb{F}^* we have $L(\pi\alpha^n,\nu\alpha^n) \approx L(\pi,\nu)$; we sum over $\widehat{\mathbb{F}^*}/\widehat{\mathbb{F}^{*n}} \approx \hat{\mu}_n$ and define (cf. Definition 5.7)

$$L_{\rm st}(\pi,\nu) = \sum_{\alpha \in \hat{\mu}_n} L(\pi\alpha,\nu\alpha).$$

This is our candidate for a 'stable' virtual character of $\widetilde{SL}(n, \mathbb{F})$. Now $\pi \nu^{-1}$ factors to $PGL(n, \mathbb{F})$, and it turns out that the character $\Theta_{L_{st}(\pi,\nu)}$ of $L_{st}(\pi,\nu)$ may be computed in terms of the character $\Theta_{\pi\nu^{-1}}$ of $\pi\nu^{-1}$. The main result is Theorem 8.1:

$$\Theta_{L_{\mathrm{st}}(\pi,\nu)}(g) = \sum_{\substack{h \in PGL(n,\mathbb{F})\\\phi(h) = p(g)}} \Delta_{\mu}(h,g) \Theta_{\pi\nu^{-1}}(h).$$
(1.1)

Here g is a regular semisimple element of $\widetilde{SL}(n, \mathbb{F})$, and we identify the character of a representation with a function on the regular semisimple elements. Also ϕ is the *orbit* correspondence $\phi(g) = \det(g^{-1})g^n \in SL(n, \mathbb{F})$ (see § 6), p is projection from $\widetilde{SL}(n, \mathbb{F})$ to $SL(n, \mathbb{F})$, and $\Delta_{\mu}(h, g)$ is a transfer factor (see § 7). These ingredients are analogous to those of endoscopy for linear groups. Formula (1.1) is analogous to endoscopic lifting from G_{qs} to G, and $L_{st}(\pi, \nu)$ is analogous to the stable lift of $\pi\nu^{-1}$, although since $\widetilde{SL}(n, \mathbb{F})$ is nonlinear the notion of stable distribution is not defined. If π is tempered, the set $\Pi(\pi, \nu) = \{L(\pi\alpha, \nu\alpha) \mid \alpha \in \hat{\mu}_n\}$ is our analogue of an L-packet for a linear group. In general it is analogous to an Arthur packet.

The group $PGL(n, \mathbb{F})$ is the one predicted by the Hecke algebra isomorphism of [14]. An L-packet for $SL(n, \mathbb{F})$ is the set of constituents of the restriction of an irreducible representation of $GL(n, \mathbb{F})$ to $SL(n, \mathbb{F})$ [9]. The character of the sum of these representations is stable, i.e. invariant by conjugation by $SL(n, \overline{\mathbb{F}})$, and these sets satisfy other required properties of L-packets. It is interesting to note, however, that $\Pi(\pi, \nu)$ is not the set of constituents of the restriction of a representation of $\widetilde{GL}(n, \mathbb{F})$. In particular (see

the remark following Theorem 8.1) $\Theta_{L_{st}(\pi,\nu)}$ is typically not $GL(n,\mathbb{F})$ conjugation invariant. It would be interesting to find an intrinsic characterization of the virtual characters $L_{st}(\pi,\nu)$.

We turn now to inversion. By analogy with the linear case we seek to write $L(\pi, \nu)$ as a linear combination of virtual representations, in the span of the elements of $\Pi(\pi, \nu)$, each of which is computed in terms of characters of a linear group. For $\zeta \in \mu_n$ let

$$L_{\zeta}(\pi,\nu) = \sum_{\alpha \in \hat{\mu}_n} \alpha(\zeta) L(\pi\alpha,\nu\alpha).$$

We obtain an inversion formula (Theorem 9.3),

$$\Theta_{L(\pi,\nu)}(g) = \frac{1}{n} \sum_{\zeta \in \mu_n} L_{\zeta}(\pi,\nu) = \frac{1}{n} \sum_{\zeta \in \mu_n} \chi^{-1}(z_{\zeta}) \Theta_{L_{\rm st}(\pi,\nu)}(z_{\zeta}g).$$

Here χ is the central character of $L(\pi, \nu)$ and z_{ζ} is an element of $\widetilde{SL}(n, \mathbb{F})$ with image $\zeta I \in SL(n, \mathbb{F})$.

These results all hold as stated for $\mathbb{F} = \mathbb{R}$ and n = 2, in which case they are equivalent to a special case of [2].

Similar results hold for certain other N-fold covers of $\widetilde{SL}(n, \mathbb{F})$. One would not expect the general N-fold cover to be amenable to these methods, as the case N = 1 makes abundantly clear.

The case of n = 2, worked out in detail, is the subject of the University of Maryland thesis of Schultz [15]. This gives an intrinsic characterization of the local lift of Waldspurger [19]. In this case the set Π containing a genuine discrete series representation π consists of two elements π, π' where π' is the 'Waldspurger involution' [19] applied to π . This goes back to the Shimura correspondence for modular forms of half-integral weight which is the origin of the theory of nonlinear groups.

1.1. Desiderata

We consider covering groups which fit in an exact sequence,

$$1 \to \mu_n \to \tilde{G} \xrightarrow{p} G \to 1,$$

with μ_n central in \tilde{G} (cf. § 2). We write χ_{π} for the central character of a representation π . We say a representation π of \tilde{G} is genuine if π has a central character χ_{π} whose restriction to μ_n is injective. If a representation π with a central character is not genuine, then π factors to a representation of a cover of G with kernel a subgroup of μ_n . If $\iota : \mu_n \hookrightarrow \mathbb{C}^*$ is an embedding, we say π is of type ι if $\chi_{\pi}|_{\mu_n} = \iota$.

An important role is played by the exact sequences

$$1 \to \mu_n \to \mathbb{F}^* \xrightarrow{n} \mathbb{F}^{*n} \to 1, \tag{1.2}$$

$$1 \to \mathbb{F}^{*n} \xrightarrow{\iota} \mathbb{F}^* \to \mathbb{F}^* / \mathbb{F}^{*n} \to 1$$
(1.3)

and their Pontriagin duals,

$$1 \to \widehat{\mathbb{F}^{*n}} \to \widehat{\mathbb{F}^*} \xrightarrow{\text{res}} \hat{\mu}_n \to 1, \tag{1.4}$$

$$1 \to \widehat{\mathbb{F}^*/\mathbb{F}^{*n}} \to \widehat{\mathbb{F}^*} \xrightarrow{\text{res}} \widehat{\mathbb{F}^{*n}} \to 1.$$
 (1.5)

Suppose μ_n is in the kernel of a character λ of \mathbb{F}^* . Then by (1.4) $\lambda(x) = \mu(x^n)$ for some character μ of $\widehat{\mathbb{F}^{*n}}$, which by (1.5) extends to $\tau \in \widehat{\mathbb{F}^*}$. This gives the following well-known lemma which we use repeatedly.

Lemma 1.1. Let $\lambda \in \widehat{\mathbb{F}^*}$. Then $\lambda = \mu^n$ for some $\mu \in \widehat{\mathbb{F}^*}$ if and only if $\lambda(\zeta) = 1$ for all $\zeta \in \mu_n$.

We identify the centre Z of $GL(n, \mathbb{F})$ with \mathbb{F}^* and the central character χ_{π} of a representation of $GL(n, \mathbb{F})$ with an element of $\widehat{\mathbb{F}^*}$.

For $\alpha \in \widehat{\mathbb{F}^*}$ we write α for the character $\alpha \circ \det$ of $GL(n, \mathbb{F})$, and also for the character $\alpha \circ p$ of $\widetilde{GL}(n, \mathbb{F})$. Note that for π a representation of $GL(n, \mathbb{F})$ (with a central character)

$$\chi_{\pi\alpha} = \chi_{\pi} \alpha^n. \tag{1.6}$$

We write Θ_{π} for the global character of a representation π , considered as a function on the set of regular semisimple elements.

2. Group structure

We continue with the notation of §1. We first define the group $\widetilde{SL}(n, \mathbb{F})$ (cf. [11,12,17]); this is a topological group which fits in an exact sequence,

$$1 \to \mu_n \xrightarrow{i} \widetilde{SL}(n, \mathbb{F}) \xrightarrow{p} SL(n, \mathbb{F}) \to 1,$$
(2.1)

with i, p continuous, i closed and p open. The classes of such extensions are parametrized by the group of (bilinear) Steinberg cocycles with values in μ_n . Let $(\cdot, \cdot)_n : \mathbb{F}^* \times \mathbb{F}^* \to \mu_n$ denote the *n*th norm residue symbol for \mathbb{F} . For properties of $(\cdot, \cdot)_n$ see [16] and [7, § 0.1]. In particular $(\cdot, \cdot)_n$ is a perfect pairing on $\mathbb{F}^*/\mathbb{F}^{*n}$ and gives an isomorphism of $\mathbb{F}^*/\mathbb{F}^{*n}$ with $\widehat{\mathbb{F}^*/\mathbb{F}^{*n}}$. Each Steinberg cocycle is given by $c(x, y) = (x, y)_n^k$ for some k. Write G[k] for the group defined by the cocycle $(x, y)_n^k$. Then G[k] and G[k'] are equivalent extensions if and only if $k \equiv k' \mod(n)$.

The commutator subgroup $G[k]_c$ of G[k] is a covering group of $SL(n, \mathbb{F})$ with kernel a subgroup of μ_n . If G[k] is not perfect, then $G[k] = G[k]_c \mu_n$ and the representations of G[k] of type ι are in bijection with the representations of $G[k]_c$ of type $\iota|_{\mu_n \cap G[k]_c}$. For this reason we assume G[k] is perfect, which holds if and only if gcd(k, n) = 1.

The map $G[k] \ni (g, \zeta) \to (g, \zeta^j) \in G[kj]$ is a homomorphism, and is an isomorphism if gcd(j, n) = 1. In particular if gcd(k, n) = 1 then G[k] is isomorphic to G[1] (although not equivalent as an extension unless $k \equiv 1 \mod(n)$). We let $\widetilde{SL}(n, \mathbb{F}) = G[1]$. Once and for all we fix an embedding

$$\iota:\mu_n(\mathbb{F})\hookrightarrow\mathbb{C}^*$$

and we identify μ_n with its image. Henceforth we assume all genuine representations are of type ι .

The Steinberg cocycle defines a cover $GL(n, \mathbb{F})$ of $GL(n, \mathbb{F})$ by [7], and $SL(n, \mathbb{F})$ is a subgroup of $\widetilde{GL}(n, \mathbb{F})$ (we are taking c = 0 in the notation of [7]).

We write $c(\cdot, \cdot)$ for the cocycle defining $GL(n, \mathbb{F})$. Then

$$GL(n,\mathbb{F}) = \{(g,\zeta) \mid g \in GL(n,\mathbb{F}), \ \zeta \in \mu_n\},\$$

with multiplication $(g,\zeta)(g',\zeta') = (gg',\zeta\zeta'c(g,g')).$

An essential role is played by the commutator. Suppose g and h are commuting elements of $GL(n,\mathbb{F})$. Choose any inverse images \tilde{g} , \tilde{h} of g, h in $\widetilde{GL}(n,\mathbb{F})$. Then $\eta = \tilde{g}\tilde{h}\tilde{g}^{-1}\tilde{h}^{-1} \in \mu_n$ is independent of the choices of \tilde{g} and \tilde{h} . We write $\{g,h\} = \eta$.

An important property of the commutator is (see [7, Proof of Proposition 0.1.1])

$$\{xI,g\} = (x,\det(g))_n^{-1}.$$
(2.2)

2.1. Centres

Let

$$GL(n, \mathbb{F})_{+} = \{g \in GL(n, \mathbb{F}) \mid \det(g) \in \mathbb{F}^{*n}\} = SL(n, \mathbb{F})Z.$$

Write \tilde{H} for the inverse image in $\widetilde{GL}(n, \mathbb{F})$ of a subgroup H of $GL(n, \mathbb{F})$. The following lemma follows immediately from (2.2) and properties of the norm residue symbol.

Lemma 2.1. Let $Z_+ = \{xI \mid x \in \mathbb{F}^{*n}\}.$

- (1) The centre of $GL(n, \mathbb{F})$ is \tilde{Z}_+ .
- (2) The centre of $\widetilde{GL}(n, \mathbb{F})_+$ is \tilde{Z} .
- $(3) \ \operatorname{Cent}_{\widetilde{GL}(n,\mathbb{F})}(\widetilde{GL}(n,\mathbb{F})_+) = \widetilde{Z} \ and \ \operatorname{Cent}_{\widetilde{GL}(n,\mathbb{F})}(\widetilde{Z}) = \widetilde{GL}(n,\mathbb{F})_+.$

Thus \tilde{Z} and $GL(n, \mathbb{F})_+$ form a dual pair in the sense of Howe.

Therefore, $\widetilde{GL}(n, \mathbb{F})_+ = \widetilde{SL}(n, \mathbb{F})\tilde{Z}$, and \tilde{Z} is the centre of $\widetilde{GL}(n, \mathbb{F})_+$. Consequently, an irreducible representation of $\widetilde{GL}(n, \mathbb{F})_+$ restricts to an irreducible representation of $\widetilde{SL}(n, \mathbb{F})$, and every irreducible representation of $\widetilde{SL}(n, \mathbb{F})$ is obtained this way. For many purposes we may replace $\widetilde{SL}(n, \mathbb{F})$ by $\widetilde{GL}(n, \mathbb{F})_+$. This is analogous to the corresponding situation for the linear groups. Note that

$$\frac{GL(n,\mathbb{F})}{\widetilde{GL}(n,\mathbb{F})_{+}} \approx \frac{GL(n,\mathbb{F})}{GL(n,\mathbb{F})_{+}} \approx \frac{\mathbb{F}^{*}}{\mathbb{F}^{*n}}.$$

The cocycle restricted to Z_+ is trivial so $\tilde{Z}_+ \approx \mathbb{F}^{*n} \times \mu_n$. The cocycle restricted to Z is given by

$$c(xI, yI) = \prod_{i < j} (x, y)_n = (x, y)_n^{n(n-1)/2}$$

This is equal to 1 if n is odd, or ± 1 if n is even.

 $\mathbf{6}$

For later use we note there exists a (genuine) character μ of \tilde{Z} satisfying

$$\mu|_{\tilde{Z}_{\perp}} = 1 \times \iota. \tag{2.3}$$

In fact we may take

$$\mu(xI,\zeta) = \begin{cases} \zeta, & n \text{ odd,} \\ \gamma(x,\psi)\zeta, & n \text{ even.} \end{cases}$$
(2.4)

Here ψ is a non-trivial additive character of \mathbb{F} and $\gamma(x, \psi) \in \{\pm 1, \pm i\}$ is the Weil index (see [13, Appendix]). In particular $\mu^n = 1$ (*n* odd), and $\mu^{2n} = 1$ (*n* even). We only use this explicit formula for (7.2).

Given μ , the genuine characters of \tilde{Z} are in bijection with $\widehat{\mathbb{F}^*}$; given $\nu \in \widehat{\mathbb{F}^*}$ let

$$\chi_{\nu}(z) = \mu(z)\nu(x), \quad z \in \tilde{Z}, \quad p(z) = xI, \tag{2.5}$$

i.e.

$$\chi_{\nu}(xI,\zeta) = \mu(xI,\zeta)\nu(x) = \mu(xI,1)\zeta\nu(x).$$
(2.6)

2.2. Cartan subgroups

We define a Cartan subgroup of $\widetilde{GL}(n, \mathbb{F})$ or $\widetilde{SL}(n, \mathbb{F})$ to be the inverse image of a Cartan subgroup of the corresponding linear group. These groups are in general nonabelian, and an important role is played by their centres. We say an element of a covering group is semisimple (respectively, regular) if its image in the linear group is semisimple (respectively, regular).

Lemma 2.2. Let T be a Cartan subgroup of $GL(n, \mathbb{F})$ with inverse image \tilde{T} in $\widetilde{GL}(n, \mathbb{F})$.

- (1) The centre of \tilde{T} is $p^{-1}(T^n)$.
- (2) The centre of $\tilde{T} \cap \widetilde{SL}(n, \mathbb{F})$ is $p^{-1}(ZT^n \cap SL(n, \mathbb{F}))$.

Proof. (1) is proved in $[6, \S 3]$, and (2) follows from this as well. We will sketch another proof of (2) in §3.

We say a regular semisimple element $g \in \tilde{T}$ is *relevant* if it is contained in the centre of \tilde{T} [3]. It is a basic fact that if π is a genuine representation of \tilde{G} , then $\Theta_{\pi}(g) = 0$ if gis not relevant (see [5] and [3, Proposition 2.7]).

3. Restriction from $\widetilde{GL}(n,\mathbb{F})$ to $\widetilde{SL}(n,\mathbb{F})$

We compute the character of an irreducible representation of $\widetilde{SL}(n,\mathbb{F})$ or $\widetilde{GL}(n,\mathbb{F})_+$ in terms of a character of $\widetilde{GL}(n,\mathbb{F})$ (Theorem 3.3). The main point is that Clifford theory for restriction of a genuine representation Π of $\widetilde{GL}(n,\mathbb{F})$ to $\widetilde{GL}(n,\mathbb{F})_+$ is very easy: each such representation restricts to a direct sum of $|\mathbb{F}^*/\mathbb{F}^{*n}|$ distinct irreducible representations which are permuted by the action of $\widetilde{GL}(n,\mathbb{F})/\widetilde{GL}(n,\mathbb{F})_+ \approx \mathbb{F}^*/\mathbb{F}^{*n}$. Furthermore, the

character of each summand may be computed in terms of the character of Π using Fourier inversion on $\tilde{Z}/\tilde{Z}_+ \approx \mathbb{F}^*/\mathbb{F}^{*n}$.

Let π be a genuine representation of $GL(n, \mathbb{F})_+$. Write $\pi \to \pi^g$ for the action (by conjugation on $\widetilde{GL}(n, \mathbb{F})_+$) of $g \in \widetilde{GL}(n, \mathbb{F})$ on representations of $\widetilde{GL}(n, \mathbb{F})_+$. Assume π has a central character χ_{π} . We compute χ_{π^g} . Let $z \in \widetilde{Z}$ with p(z) = xI. Then

$$\chi_{\pi^g}(z) = \chi_{\pi}(gzg^{-1})$$

$$= \chi_{\pi}(\{p(g), xI\}z)$$

$$= \chi_{\pi}((x, \det(g))_n z) \quad (by (2.2))$$

$$= \chi_{\pi}(z)(x, \det(g))_n \quad (since \ \pi \ is \ genuine). \tag{3.1}$$

By non-degeneracy of the symbol, if $\det(g) \notin \mathbb{F}^{*n}$ there exists x such that $(x, \det(g))_n \neq 1$. Therefore, if $g \notin \widetilde{GL}(n, \mathbb{F})_+$, $\chi_{\pi^g} \neq \chi_{\pi}$, and a fortiori $\pi^g \not\approx \pi$. Note the assumption π is genuine is essential; the corresponding result is false for representations of $\widetilde{GL}(n, \mathbb{F})$ which factor to $GL(n, \mathbb{F})$.

Let

$$\Pi = \operatorname{Ind}_{\widetilde{GL}(n,\mathbb{F})_{+}}^{\widetilde{GL}(n,\mathbb{F})}(\pi).$$

By (3.1) and Clifford theory $\widetilde{GL}(n, \mathbb{F})/\widetilde{GL}(n, \mathbb{F})_+$ acts simply transitively on the set of constituents of Π restricted to $\widetilde{GL}(n, \mathbb{F})_+$. For each $x \in \mathbb{F}^*/\mathbb{F}^{*n}$ choose $g_x \in \widetilde{GL}(n, \mathbb{F})$ with $\det(g) \equiv x \mod(\mathbb{F}^{*n})$. Let $\pi^x = \pi^{g_x}$; the isomorphism class of π^x is independent of the choice of g_x . Thus

$$\Pi|_{\widetilde{GL}(n,\mathbb{F})_{+}} = \sum_{x \in \mathbb{F}^{*}/\mathbb{F}^{*n}} \pi^{x}.$$
(3.2)

If π' is a constituent of the restriction of Π to $\widehat{GL}(n, \mathbb{F})_+$, then $\chi_{\pi'}$ (a character of \tilde{Z}) restricted to \tilde{Z}_+ is equal to χ_{Π} . The set of extensions of χ_{Π} to \tilde{Z} is in bijection with $\widehat{\mathbb{F}^*/\mathbb{F}^{*n}}$. By (3.2) the constituents of this restriction are in bijection with $\widehat{\mathbb{F}^*/\mathbb{F}^{*n}}$. This proves the following result.

Proposition 3.1. Let Π be an irreducible genuine representation of $\widehat{GL}(n, \mathbb{F})$. Let S be the set of extensions of χ_{Π} to \tilde{Z}_+ ; this set is in bijection with $\widehat{\mathbb{F}^*/\mathbb{F}^{*n}}$. For $\lambda \in S$ let Π_{λ} be the λ eigenspace of Π .

For all λ , Π_{λ} is an irreducible representation of $GL(n, \mathbb{F})_+$ and

$$\Pi|_{\widetilde{GL}(n,\mathbb{F})_+} = \sum_{\lambda \in S} \Pi_{\lambda}.$$

Fix an irreducible constituent π of this restriction. Then

$$\Pi|_{\widetilde{GL}(n,\mathbb{F})_+} = \sum_{x \in \mathbb{F}^*/\mathbb{F}^{*n}} \pi^x$$

and the central character of π^x is $\chi_{\pi}(\cdot, x)_n$.

Remark 3.2. A similar result holds for $\widetilde{SL}(n, \mathbb{F})$: $\Pi|_{\widetilde{SL}(n,\mathbb{F})} = \sum_x \pi^x$ as above. However, the π^x are not necessarily distinct; in some cases $\pi \approx \pi^x$ (this implies $(x, \zeta)_n = 1$ for all $\zeta \in \mu_n$).

9

We strengthen this result using Fourier inversion on $\mathbb{F}^*/\mathbb{F}^{*n}$ to write Θ_{π} in terms of Θ_{Π} .

For $z \in \tilde{Z}, z' \in \tilde{Z}_+, \chi_{\pi}(zz')^{-1}\Theta_{\Pi}(zz'g) = \chi_{\pi}(z)\Theta_{\Pi}(zg)$. Thus $\chi_{\pi}(z)^{-1}\Theta_{\Pi}(zg)$ is well defined for $z \in \tilde{Z}/\tilde{Z}_+$. We compute

$$\sum_{z \in \tilde{Z}/\tilde{Z}_{+}} \chi_{\pi}(z)^{-1} \Theta_{\Pi}(zg) = \sum_{z \in \tilde{Z}/\tilde{Z}_{+}} \chi_{\pi}(z)^{-1} \sum_{x \in \mathbb{F}^{*}/\mathbb{F}^{*n}} \Theta_{\pi^{x}}(zg) \quad (by \ (3.2))$$
$$= \sum_{z \in \tilde{Z}/\tilde{Z}_{+}} \sum_{x \in \mathbb{F}^{*}/\mathbb{F}^{*n}} \chi_{\pi}(z)^{-1} \chi_{\pi^{x}}(z) \Theta_{\pi^{x}}(g).$$

Now $\chi_{\pi}(z)^{-1}\chi_{\pi^{x}}(z)$ factors to $\tilde{Z}/\tilde{Z}_{+} \approx \mathbb{F}^{*}/\mathbb{F}^{*n}$, and by orthogonality of characters the right-hand side equals $|\mathbb{F}^{*}/\mathbb{F}^{*n}|\Theta_{\pi}(g)$. Explicitly, by (3.1),

$$\chi_{\pi}(z)^{-1}\chi_{\pi^{x}}(z) = \chi_{\pi}(z)^{-1}\chi_{\pi}(z)(y,x)_{n} = (y,x)_{n},$$

where p(z) = yI. As z runs over \tilde{Z}/\tilde{Z}_+ , y runs over representatives of $\mathbb{F}^*/\mathbb{F}^{*n}$, and this gives

$$\sum_{y \in \mathbb{F}^* / \mathbb{F}^{*n}} \sum_{x \in \mathbb{F}^* / \mathbb{F}^{*n}} (y, x)_n \Theta_{\pi^x} = \left| \frac{\mathbb{F}^*}{\mathbb{F}^{*n}} \right| \Theta_{\pi}(g),$$

since $(\cdot, \cdot)_n$ is a perfect pairing. This proves the following result.

Theorem 3.3. Let π be a genuine representation of $\widetilde{GL}(n, \mathbb{F})_+$ with a central character. Let

$$\Pi = \operatorname{Ind}_{\widetilde{GL}(n,\mathbb{F})_{+}}^{\widetilde{GL}(n,\mathbb{F})}(\pi).$$

This is a genuine representation of $\widetilde{GL}(n, \mathbb{F})$ and is irreducible if π is irreducible. Assume Θ_{π} exists. Then for $g \in \widetilde{GL}(n, \mathbb{F})_+$ (a regular semisimple element)

$$\Theta_{\pi}(g) = \frac{1}{|\mathbb{F}^*/\mathbb{F}^{*n}|} \sum_{z \in \tilde{Z}/\tilde{Z}_+} \chi_{\pi}(z)^{-1} \Theta_{\Pi}(zg)$$
$$= \frac{1}{|\mathbb{F}^*/\mathbb{F}^{*n}|} \sum_{x \in \mathbb{F}^*/\mathbb{F}^{*n}} \chi_{\pi}(z_x)^{-1} \Theta_{\Pi}(z_xg).$$
(3.3)

In the first sum z runs over any set of coset representatives of \tilde{Z}/\tilde{Z}_+ . In the second the sum runs over any coset representatives of $\mathbb{F}^*/\mathbb{F}^{*n}$, and for each $x, z_x \in \tilde{Z}$ is any element satisfying $p(z_x) = xI$. Each term is independent of the choices.

Essentially the same result holds for genuine representations of $SL(n, \mathbb{F})$. Let π be a genuine representation of $\widetilde{SL}(n, \mathbb{F})$, and extend π to a genuine representation π' of $\widetilde{GL}(n, \mathbb{F})_+$ (cf. § 2). Then (3.3) holds for $g \in \widetilde{SL}(n, \mathbb{F})$ and π replaced by π' . Each summand is independent of the choice of π' .

We can now sketch a proof of Lemma 2.2(2).

Sketch of proof. By the theorem, if π is a genuine representation of $\widetilde{GL}(n, \mathbb{F})_+$ then $\Theta_{\pi}(g) = 0$ unless $p(zg) \in T^n$ for some z by Lemma 2.2(1), i.e. $p(g) \in ZT^n$. Conversely,

if g satisfies this condition then there exists a genuine representation for which $\Theta_{\pi}(g) \neq 0$, by the property that characters separate points. This proves the result for regular semisimple elements. For general elements apply a continuity argument. Alternatively apply the argument of Theorem 3.1 directly to an irreducible finite-dimensional genuine representation π of \tilde{T} , in which case Θ_{π} is defined for all $g \in \tilde{T}$.

4. Lifting from $GL(n, \mathbb{F})$ to $GL(n, \mathbb{F})$

In this section we summarize results on lifting of characters from $GL(n, \mathbb{F})$ to $GL(n, \mathbb{F})$ (see $[\mathbf{6}-\mathbf{8}]$).

We first define transfer factors in this setting. Recall that the Weyl denominator for $GL(n, \mathbb{F})$ is given by

$$\Delta(g) = \prod_{i < j} \frac{|x_i - x_j|_{\bar{\mathbb{F}}}}{|x_i x_j|_{\bar{\mathbb{F}}}^{1/2}}$$

if g is a regular semisimple element with (distinct) eigenvalues x_i (in an algebraic closure of \mathbb{F}).

Definition 4.1. Suppose $h \in GL(n, \mathbb{F})$, $g \in \widetilde{GL}(n, \mathbb{F})$ are regular semisimple elements satisfying $h^n = p(g)$.

Let

$$\tau(h,g) = gs(h)^{-n}u(h). \tag{4.1}$$

Here $u(h) = \pm 1 \in \mu_n$ is defined by [8, §2] (we take u(h) = 1 if n is odd), and $s: GL(n, \mathbb{F}) \to \widetilde{GL}(n, \mathbb{F})$ is any section. Note that $p\tau(h, g) = 1$ and we consider $\tau(h, g)$ to be an element of μ_n .

Let

$$\Delta(h,g) = |n^n|_{\mathbb{F}}^{-1/2} \tau(h,g) \frac{\Delta(h)}{\Delta(g)}.$$
(4.2)

Let π be a representation of $GL(n, \mathbb{F})$ with central character χ_{π} satisfying $\chi_{\pi}(\zeta I) = 1$ for all $\zeta \in \mu_n$. Suppose g is a regular semisimple element of $\widetilde{GL}(n, \mathbb{F})$, so p(g) is contained in a Cartan subgroup T of $GL(n, \mathbb{F})$. Let

$$t_*(\Theta_\pi)(g) = \sum_{\substack{h \in T \\ h^n = p(g)}} \Delta(h, g) \Theta_\pi(h).$$
(4.3)

This is a conjugation invariant function on the regular semisimple elements of $GL(n, \mathbb{F})$.

This is a special case of [6, 26.1], and we have written it in a different form. We use the notation of [6]. To see that (4.3) agrees with [6] first note that in our case the centre \widetilde{Z}_+ of $\widetilde{GL}(n, \mathbb{F})$ is equal to $s(Z^n)\mu_n$, and it follows that the supplementary choice of $\widetilde{\omega}$ of [6] is unnecessary. The summand in [6] is over

$$\{h \in T \mid h^{*-1}g \in \tilde{Z}_+\}/Z.$$

Given \bar{h} in this set, choose a representative $h \in T$, and write $h^*z = g$ for $z \in \tilde{Z}_+$.

Equivalently the sum is over

$$A = \{h \in T \mid (hz)^n = p(g) \text{ for some } z \in Z\}/Z.$$

On the other hand, we have written the sum over

$$B = \{h \in T \mid h^n = p(g)\}.$$

There is an n to 1 surjective map from B to A given by $h \to \bar{h}$. Finally, if $h^n = p(g)$ then $h^{*-1}g = s(h)^{-n}u(h)g = \tau(g,h)$, and since this is an element of μ_n , $\tilde{\omega}(\tau(g,h)) = \tau(g,h)$. We have incorporated this term, together with the constant b of [6, §24] (divided by n because of the difference between A and B) into the transfer factor $\Delta(h,g)$.

Flicker, Kazhdan and Patterson conjecture that for π an irreducible unitary representation $t_*(\pi)$ is either 0 or \pm the character of a genuine irreducible unitary representation of $\widetilde{GL}(n, \mathbb{F})$. We refine this conjecture into two hypotheses for later use.

Hypothesis I. Let π be an irreducible representation of $GL(n, \mathbb{F})$ such that $\chi_{\pi}(\zeta I) = 1$ for all $\zeta \in \mu_n$. We say 'Hypothesis I holds for π ' if $t_*(\pi)$ is 0 or \pm the character of an irreducible representation of $\widetilde{GL}(n, \mathbb{F})$. If this holds, we define the virtual representation $t_*(\pi)$ by $t_*(\Theta_{\pi}) = \Theta_{t_*(\pi)}$. Furthermore, if $t_*(\pi) \neq 0$ define $\epsilon(\pi) = \pm 1$ so that $\epsilon(\pi)t_*(\pi)$ is a representation. We say 'Hypothesis I holds' if it holds for all π .

Hypothesis II. Every genuine irreducible unitary representation of $\widetilde{GL}(n, \mathbb{F})$ is isomorphic to $\epsilon(\pi)t_*(\pi)$ for some irreducible unitary representation π satisfying Hypothesis I.

Hypotheses I and II hold for n = 2 (see [5]). Hypothesis I is true if π is a discrete series representation, and t_* is a bijection between a subset of the discrete series of $GL(n, \mathbb{F})$ and the genuine discrete series of $\widetilde{GL}(n, \mathbb{F})$ (see [6, § 26]). Hence Hypothesis II holds in the context of discrete series representations. For π a discrete series representation $\epsilon(\pi) = 1$. If $t_*(\pi)$ is supercuspidal, then π is supercuspidal, but not conversely.

Hypothesis I holds if π is tempered (see [6]), with the caveat that this statement depends on [6, Proposition 26.2], and in some cases there is a technical obstruction to this result holding as stated (the construction of an irreducible representation of \tilde{M} is not valid in all cases). In any event if π is tempered and satisfies Hypothesis I, then $t_*(\pi)$ is tempered and $\epsilon(\pi) = 1$. Subject to the preceding caveat Hypothesis II holds for tempered representations and t_* is a bijection between a subset of the irreducible tempered representations of $GL(n, \mathbb{F})$ and the genuine irreducible tempered representations of $\widetilde{GL}(n, \mathbb{F})$ (see [6, Theorem 27.3]).

Assuming Hypothesis II holds for tempered representations, then the Grothendieck group of genuine representations of $\widetilde{GL}(n, \mathbb{F})$ is spanned by the $t_*(\pi)$ for π satisfying Hypothesis I. Furthermore, the non-zero $t_*(\pi)$ as π runs over all standard modules for $GL(n, \mathbb{F})$ is a basis of the Grothendieck group of genuine representations of $\widetilde{GL}(n, \mathbb{F})$.

We are particularly interested in non-tempered representations π satisfying Hypothesis I. For example Hypothesis I holds for any character α satisfying $\alpha(\zeta) = 1$ for all $\zeta \in \mu_n$. In this case $t_*(\alpha)$ is a singular unitary quotient of a minimal principal series with a one-dimensional space of Whittaker functionals (see [5] and [7, Corollary I.3.6]).

https://doi.org/10.1017/S147474800300001X Published online by Cambridge University Press

Hypothesis I should hold for all characters α . For example for $n = 2, -t_*(\alpha)$ is the supercuspidal constituent of the oscillator representation if $\alpha(-1) = -1$ (see [5]).

The central characters of π and $t_*(\pi)$ are related by

$$\chi_{t_*(\pi)}(x^n I, 1) = \chi_{\pi}(x). \tag{4.4}$$

We also have for any $\alpha \in \widehat{\mathbb{F}^*}$

$$t_*(\pi\alpha^n) = t_*(\pi)\alpha. \tag{4.5}$$

These follow immediately from (4.3).

5. Parameters for $\widetilde{SL}(n, \mathbb{F})$

We put lifting from $GL(n,\mathbb{F})$ to $\widetilde{GL}(n,\mathbb{F})$ together with restriction from $\widetilde{GL}(n,\mathbb{F})$ to $\widetilde{SL}(n,\mathbb{F})$ to obtain a character formula relating $GL(n,\mathbb{F})$ and $\widetilde{SL}(n,\mathbb{F})$.

We first consider $GL(n, \mathbb{F})_+$. Suppose for the moment that Hypothesis II is true. We parametrize the genuine irreducible unitary representations of $\widetilde{GL}(n, \mathbb{F})_+$ as follows.

Fix a genuine irreducible unitary representation Π of $GL(n, \mathbb{F})$. By Proposition 3.1 a constituent of the restriction of Π to $\widetilde{GL}(n, \mathbb{F})_+$ is determined by a character λ of \tilde{Z} satisfying $\lambda|_{\tilde{Z}_+} = \chi_{\Pi}$, i.e.

$$\lambda(x^n, 1) = \chi_{\Pi}(x^n, 1), \quad x \in \mathbb{F}^*.$$

By Hypothesis II there exists an irreducible representation π of $GL(n, \mathbb{F})$, with $\chi_{\pi}(\mu_n) = 1$, such that $t_*(\pi) = \pm \Pi$. By (4.4)

$$\chi_{\Pi}(x^n, 1) = \chi_{\pi}(x),$$

so we have

$$\lambda(x^n, 1) = \chi_\pi(x). \tag{5.1}$$

Fix a genuine character μ of \tilde{Z} satisfying (2.3). Then the set of characters λ of \tilde{Z} satisfying (5.1) is (cf. (2.5))

$$\{\chi_{\nu} \mid \nu^n = \chi_{\pi}\}.$$

Note that by Lemma 1.1 and (1.5) the set of such ν is parametrized by $\widetilde{\mathbb{F}^*/\mathbb{F}^{*n}}$, and by Proposition 3.1 this parametrizes the constituents of $\Pi|_{\widetilde{GL}(n,\mathbb{F})_+}$.

This motivates the following definition.

Definition 5.1. Let X be the set of pairs (π, ν) where the following hold.

- (1) π is an irreducible representation of $GL(n, \mathbb{F})$, with central character χ_{π} satisfying $\chi_{\pi}(\zeta I) = 1$ for all $\zeta \in \mu_n$.
- (2) ν is a character of \mathbb{F}^* satisfying $\nu^n = \chi_{\pi}$.

Let $(\pi, \nu) \in X$, and assume Hypothesis I holds for π .

- (3) Let $L_{+}(\pi,\nu)$ be the constituent of $t_{*}(\pi)$ restricted to $\widetilde{GL}(n,\mathbb{F})_{+}$ with central character χ_{ν} (cf. (2.5)).
- (4) Let $L(\pi, \nu)$ be the restriction of $L_+(\pi, \nu)$ to $\widetilde{SL}(n, \mathbb{F})$.

Remark 5.2. L and L_+ depend on the choice of μ satisfying (2.3).

By definition $\epsilon(\pi)L(\pi,\nu)$ is the character of a representation. Assuming Hypothesis II every genuine irreducible unitary representation of $\widetilde{GL}(n,\mathbb{F})_+$ is isomorphic to $\epsilon(\pi)L(\pi,\nu)$ for some $(\pi,\nu) \in X$.

If $(\pi, \nu) \in X$, then by (1.6)

$$\chi_{\pi\nu^{-1}} = \chi_{\pi}\nu^{-n} = 1, \tag{5.2}$$

i.e. $\pi\nu^{-1}$ factors to a representation of $PGL(n, \mathbb{F})$. If π is a representation of $GL(n, \mathbb{F})$ with trivial central character, let $\bar{\pi}$ be the corresponding representation of $PGL(n, \mathbb{F})$.

Definition 5.3. For $(\pi, \nu) \in X$, let $M(\pi, \nu)$ be the irreducible representation $\overline{\pi\nu^{-1}}$ of $PGL(n, \mathbb{F})$.

Thus X is the graph of a correspondence between irreducible genuine representations of $\widetilde{GL}(n, \mathbb{F})_+$ or $\widetilde{SL}(n, \mathbb{F})$ and $PGL(n, \mathbb{F})$. That is for π an irreducible representation of $\widetilde{GL}(n, \mathbb{F})_+$ or $\widetilde{SL}(n, \mathbb{F})$ and π' an irreducible representation of $PGL(n, \mathbb{F})$ we say π corresponds to π' if there exists $x = (\pi, \nu) \in X$, with π satisfying Hypothesis I, such that $L_+(x) = \pi$ or $L(x) = \pi$, and $M(x) = \pi'$. Assuming Hypothesis II every genuine irreducible unitary representation of $\widetilde{SL}(n, \mathbb{F})$ is in the image of the correspondence.

Lemma 5.4

(1) If $(\pi, \nu) \in X$, then $(\pi\alpha, \nu\alpha) \in X$ for all $\alpha \in \widehat{\mathbb{F}^*}$. Thus $x = (\pi, \nu) \to \alpha x = (\pi\alpha, \nu\alpha)$ defines an action of $\widehat{\mathbb{F}^*}$ on X.

For all $\alpha \in \widehat{\mathbb{F}^*}$ and $x \in X$, we have the following.

- (2) $M(\alpha x) = x$.
- (3) $L_+(\alpha^n x) = L_+(x)\alpha$.
- (4) $L(\alpha^n x) = L(x).$

Proof. (1) and (2) are immediate. By (4.5) $t_*(\alpha^n \pi) = t_*(\pi)\alpha$, and by (1.6) $L_+(\alpha^n x)$ and $L_+(x)\alpha$ have the same central character; (3) follows and (4) is an immediate consequence of (3).

Remark 5.5. If $\beta \in \widehat{\mathbb{F}^*}$ is non-trivial on μ_n , then $\beta \notin \widehat{\mathbb{F}^{*n}}$, and there is no elementary relationship between $L_+(\beta x)$ and $L_+(x)$.

Remark 5.6. The action of $\widehat{\mathbb{F}^*}/\widehat{\mathbb{F}^{*n}} \approx \hat{\mu}_n$ on genuine representations of $\widetilde{SL}(n, \mathbb{F})$ given by $\alpha : L(x) \to L(\alpha x)$ generalizes the 'Waldspurger involution' for $\widetilde{SL}(2, \mathbb{F})$ (see [19]). We intend to return to this point in another paper.

We compute the set of representations of $\widetilde{SL}(n, \mathbb{F})$ corresponding to a given irreducible representation of $PGL(n, \mathbb{F})$.

Fix $x = (\pi, \nu) \in X$. If M(x') = M(x), then $x' = \alpha x$ for some α . By Lemma 5.4(4) if $\alpha \in (\widehat{\mathbb{F}^*})^n \approx \widehat{\mathbb{F}^{*n}}$, then $L(\alpha x) = L(x)$. Therefore, the irreducible representations of $\widetilde{SL}(n,\mathbb{F})$ corresponding to M(x) are the $L(\alpha x)$ for $\alpha \in \widehat{\mathbb{F}^*}/\widehat{\mathbb{F}^{*n}}$ (not to be confused with $\widehat{\mathbb{F}^*/\mathbb{F}^{*n}}$), which by (1.4) is isomorphic to $\hat{\mu}_n$.

Definition 5.7. Let π be an irreducible representation of $GL(n, \mathbb{F})$ with central character trivial on μ_n . Suppose Hypothesis I holds for $\pi\alpha$ for all $\alpha \in \widehat{\mathbb{F}^*}$.

(1) For $(\pi, \nu) \in X$ let

$$L_{\rm st}(\pi,\nu) = \sum_{\alpha} L(\pi\alpha,\nu\alpha)$$

where the sum runs over a set of representatives of $\widehat{\mathbb{F}^*}/\widehat{\mathbb{F}^{*n}} \approx \hat{\mu}_n$.

(2) Let π be an irreducible representation of $PGL(n, \mathbb{F})$, and let π' denote π pulled back to $GL(n, \mathbb{F})$. Assume $\pi' \alpha$ satisfies Hypothesis I for all $\alpha \in \widehat{\mathbb{F}^*}$. Define $L_{\mathrm{st}}(\pi) = L_{\mathrm{st}}(\pi', 1)$.

Remark 5.8. $L_{\rm st}(\pi,\nu) = L_{\rm st}(\pi\alpha,\nu\alpha)$ for all α , and in particular

$$L_{\rm st}(\pi,\nu) = L_{\rm st}(\pi\nu^{-1},1) = L_{\rm st}(\pi\nu^{-1}).$$

As discussed in § 1, $L_{\rm st}(\pi)$ and $\Pi(\pi,\nu) = \{L(\pi\alpha,\nu\alpha) \mid \alpha \in \hat{\mu}_n\}$ are our candidates for a 'stable' virtual character and packet of $\widetilde{SL}(n,\mathbb{F})$. Note that the non-zero representations $L(\pi\alpha,\nu\alpha)$ in $\Pi(\pi,\nu)$ are distinct, and in fact have distinct central characters on $\widetilde{SL}(n,\mathbb{F})$. One could define a stable virtual character of $\widetilde{SL}(n,\mathbb{F})$ to be in the span of the $L_{\rm st}(\pi)$. It is not clear how to characterize the stable virtual characters intrinsically.

Not all $L(\pi\alpha,\nu\alpha)$ are necessarily non-zero. For example suppose π is the principal series representation defined by the character $\lambda(\operatorname{diag}(h_1,\ldots,h_n)) = \prod \lambda_i(h_i)$. This has central character trivial on μ_n if $\prod_i \lambda_i(\zeta) = 1$ for all $\zeta \in \mu_n$. On the other hand, $t_*(\pi) = 0$ unless $\lambda_i(\zeta) = 1$ for all $i, \zeta \in \mu_n$. Assume this holds. Then $L(\pi,\alpha)$ is a principal series of $\widetilde{GL}(n,\mathbb{F})$, and $L(\pi\alpha,\nu\alpha) = 0$ for all $\alpha \neq 1$, so $L(\pi,\nu) = L_{\mathrm{st}}(\pi,\nu)$.

If π is a discrete series representation, then π satisfies Hypothesis I; if $\chi_{\pi}(\mu_n) = 1$, then $t_*(\pi\alpha) \neq 0$ for all α , and $L(\pi\alpha, \nu\alpha) \neq 0$ for all α . Therefore, in this case, $|\Pi(\pi, \alpha)| = n$.

In the case n = 2, L(1, 1) is non-tempered, and is isomorphic to $\omega_{\rm e}$, the even half of the oscillator representation $\omega = \omega_{\rm e} \oplus \omega_{\rm o}$ of $\widetilde{SL}(n, \mathbb{F})$ (ω depends on an additive character ψ , which is determined by μ). If $\alpha(-1) = -1$, then $L(\alpha, \alpha) = -\omega_{\rm o}$ is supercuspidal, and $L_{\rm st}(1) = \omega_{\rm e} - \omega_{\rm o}$ (see [1,5,15]).

6. Orbit correspondence

For $g \in GL(n, \mathbb{F})$ write \overline{g} for the image of g in $PGL(n, \mathbb{F})$.

Definition 6.1. For $h \in GL(n, \mathbb{F})$ let

$$\phi(h) = \det(h^{-1})h^n \in SL(n, \mathbb{F}).$$

Then $\phi(zg) = \phi(g)$ for all $z \in Z$, so ϕ factors to a map from $PGL(n, \mathbb{F})$ to $SL(n, \mathbb{F})$.

Thus $GL(n, \mathbb{F})$ is the graph of a correspondence between $PGL(n, \mathbb{F})$ and $SL(n, \mathbb{F})$ via the maps the maps $g \to \overline{g} \in PGL(n, \mathbb{F})$ and $g \to \phi(g) \in SL(n, \mathbb{F})$. The following lemma is immediate.

Lemma 6.2.

- (1) For all $h \in PGL(n, \mathbb{F}), g \in GL(n, \mathbb{F}), \phi(\bar{g}h\bar{g}^{-1}) = g\phi(h)g^{-1}$.
- (2) If h is a regular semisimple element, then $\phi(h)$ is relevant (cf. Lemma 2.2).

We also need the weak orbit correspondence. Suppose $h\in GL(n,\mathbb{F}),\ g\in SL(n,\mathbb{F})$ satisfy

$$h^n = zg, \quad z \in Z$$

Multiplying both sides by $det(h^{-1})$ shows this is equivalent to

$$\phi(h) = \det(h^{-1})zg, \quad z \in Z.$$

Since $\phi(h)$ and g have determinant one this gives

$$\det(h^{-1})z = \phi(h)g^{-1} = \zeta I, \quad \zeta \in \mu_n.$$
(6.1)

Definition 6.3. We say $h \in PGL(n, \mathbb{F}), g \in SL(n, \mathbb{F})$ weakly correspond, written

$$h \xleftarrow{\text{weak}} g_i$$

if for any (equivalently all) $h' \in GL(n, \mathbb{F})$ with $\bar{h}' = h$,

$$h'^n = zg, \quad z \in Z.$$

Equivalently,

$$q = \zeta \phi(h), \quad \zeta \in \mu_n.$$

If $h \xleftarrow{\text{weak}} g$, define $\zeta(h,g) \in \mu_n$ by

$$g = \zeta(h, g)\phi(h). \tag{6.2}$$

We give an alternative description of the orbit correspondences in terms of roots and weights. This is not needed for what follows. Given a Cartan subgroup T of $GL(n, \mathbb{F})$, we identify the root and weight lattices of the corresponding Cartan subgroups of $PGL(n, \mathbb{F})$ and $SL(n, \mathbb{F})$.

Lemma 6.4. Fix a Cartan subgroup T of $GL(n, \mathbb{F})$, with corresponding subgroups $T_{PGL(n)}$ and $T_{SL(n)}$. Suppose $h \in T_{PGL(n)}$ and $g \in T_{SL(n)}$.

- (1) $h \xleftarrow{\text{weak}} g$ if and only if $\alpha(h^n) = \alpha(g)$ for all roots α .
- (2) $\phi(h) = g$ if and only if $(n\lambda)(h) = \lambda(g)$ for all weights λ .

Proof. Part (1) is immediate. For (2) we need to show for $h \in GL(n, \mathbb{F}), \zeta \in \mu_n$,

 $(n\lambda)(h) = \lambda(\zeta \det(h^{-1})h^n)$ for all weights $\lambda \Leftrightarrow \zeta = 1$.

The subtlety is that $\lambda(h)$ is not defined for arbitrary elements of $GL(n, \mathbb{F})$. If $h \in SL(n, \mathbb{F}), Z = GL(n, \mathbb{F})_+$, then $\lambda(h)$ is defined and this is immediate. It is enough to work over the algebraic closure $\overline{\mathbb{F}}$, in which case $GL(n, \overline{\mathbb{F}})_+ = GL(n, \overline{\mathbb{F}})$, proving the result.

Remark 6.5. If g is in the split torus, then $|\{h \mid \phi(h) = g\}| = n^{n-2}$ or 0. In general the cardinality of the inverse image of a $g \in SL(n, \mathbb{F})$ depends on the Cartan subgroup containing g.

7. Transfer factors

We continue with the notation of §6. Fix a character μ of \tilde{Z} satisfying (2.3). We define transfer factors $\Delta_{\mu}(h,g)$ (Definition 7.3). These satisfy one of the standard requirements of transfer factors: $|\Delta_{\mu}(h,g)| = |\Delta(h)/\Delta(g)|$ (see (7.2)), up to a constant which is 1 for almost every residual characteristic.

Definition 7.1. Suppose $h \in GL(n, \mathbb{F}), g \in \widetilde{SL}(n, \mathbb{F})$ satisfy

$$h^n = p(zg), \quad z \in \tilde{Z} \tag{7.1}$$

(cf. Definition 4.1).

Let

$$\Delta_{\mu}(h,g) = \frac{n^2}{|\mathbb{F}^*/\mathbb{F}^{*n}|} \mu(z)^{-1} \Delta(h,zg).$$

This is independent of the choice of z satisfying (7.1).

Lemma 7.2. For all $\lambda \in \mathbb{F}^*$

$$\Delta_{\mu}(\lambda h, g) = \Delta_{\mu}(h, g).$$

Proof. Choose $z \in \tilde{Z}$ satisfying $h^n = p(zg)$, and $w \in \tilde{Z}$ satisfying $p(w) = \lambda^n I$. Then $(\lambda h)^n = p(wzg)$. We need to show $\Delta_{\mu}(h,g) = \Delta_{\mu}(\lambda h,g)$, i.e.

$$\mu(z)^{-1}zgs(h)^{-n}u(h) = \mu(wz)^{-1}wzgs(\lambda h)^{-n}u(\lambda h).$$

After cancellations this is equivalent to

$$s(\lambda h)^n u(\lambda h) = \mu(w)^{-1} w s(h)^n u(h).$$

By $[6, \S 4] s(\lambda h)^n u(\lambda h) = s(h)^n u(h) s_0(\lambda^n)$, where s_0 is the distinguished section, i.e. $s_0(g) = (g, 1)$. Inserting this we are reduced to showing $s_0(\lambda^n) = \mu(w)^{-1}w$, which is precisely the fact that $\mu|_{\tilde{Z}_+} = \iota$.

Definition 7.3. Suppose $h \in PGL(n, \mathbb{F})$, $g \in \widetilde{SL}(n, \mathbb{F})$ satisfy

$$h \xleftarrow{\text{weak}} p(g).$$

Choose $h' \in GL(n, \mathbb{F})$ satisfying $\bar{h}' = h$. Let

$$\Delta_{\mu}(h,g) = \Delta_{\mu}(h',g).$$

By the lemma this is independent of the choice of h'.

Given h, g as in Definition 7.3, choose $h' \in GL(n, \mathbb{F})$ satisfying $\bar{h}' = h$, and choose $z \in \tilde{Z}$ with $h'^n = p(zg)$. Recall τ is given by Definition 4.1, and $|\mathbb{F}^*/\mathbb{F}^{*n}| = n^2/|n|_{\mathbb{F}}$ (see [7, Lemma 0.3.2]). This gives

$$\begin{aligned} \Delta_{\mu}(h,g) &= \frac{n^2}{|\mathbb{F}^*/\mathbb{F}^{*n}|} \mu(z)^{-1} \Delta(h',zg) \\ &= |n|_{\mathbb{F}}^{1-n/2} \mu(z)^{-1} \tau(h',zg) \frac{\Delta(h)}{\Delta(g)} \\ &= |n|_{\mathbb{F}}^{1-n/2} \mu(z)^{-1} zgs(h')^{-n} u(h') \frac{\Delta(h)}{\Delta(g)}. \end{aligned}$$

This is independent of the choices.

Remark 7.4. If n = 2 or the residual characteristic of \mathbb{F} does not divide n, then by (2.4)

$$\left(\frac{\Delta_{\mu}(h,g)}{\Delta(h)/\Delta(g)}\right)^{N} = 1,$$
(7.2)

with N = n (n odd) or N = 2n (n even).

Remark 7.5. If μ' is another character satisfying (2.3), then $\mu'(z) = \mu(z)(y, x)_n$ for some y, where p(z) = xI, and

$$\frac{\Delta_{\mu'}}{\Delta_{\mu}}(h,g) = \frac{\mu}{\mu'}(h) = (\det(h), y)_n$$

 $(\det(h) \text{ is a well-defined element of } \mathbb{F}^*/\mathbb{F}^{*n}).$

Although we will not need it we state the invariance property of Δ_{μ} . Suppose $h \xleftarrow{\text{weak}} g$. For $y \in \widetilde{GL}(n, \mathbb{F})$ let $y_0 = \overline{p(y)} \in PGL(n, \mathbb{F})$.

Lemma 7.6. We have

$$\Delta_{\mu}(y_0 h y_0^{-1}, y g y^{-1}) = \Delta_{\mu}(h, g) (\det(h) \zeta(h, g), \det(y))_n.$$

Proof. A straightforward computation which is left to the reader.

8. Stable character formula

We state the formula relating the character of an irreducible representation π of $PGL(n, \mathbb{F})$ to the character of the virtual genuine representation $L_{st}(\pi)$ of $\widetilde{SL}(n, \mathbb{F})$. Fix μ as in (2.3), define L_{st} as in Definition 5.7, ϕ as in §6 and Δ_{μ} as in §7.

Theorem 8.1 (main theorem). Let π be an irreducible representation of $PGL(n, \mathbb{F})$, for which $L_{st}(\pi)$ is defined (Definition 5.7). Then for g a regular semisimple element of $\widetilde{SL}(n, \mathbb{F})$,

$$\Theta_{L_{\rm st}(\pi)}(g) = \sum_{\substack{h \in PGL(n,\mathbb{F})\\\phi(h) = p(g)}} \Delta_{\mu}(h,g) \Theta_{\pi}(h).$$
(8.1)

Recall the hypothesis on π is that $t_*(\pi \alpha)$ is defined for all $\alpha \in \widehat{\mathbb{F}^*}$ (we have pulled π back to $GL(n, \mathbb{F})$).

Remark 8.2. By Lemma 7.6 the right-hand side of (8.1) is a priori $\widetilde{SL}(n, \mathbb{F})$ conjugation invariant. We do not need this, and it is a consequence of the theorem. Note that $\Theta_{L_{st}(\pi)}$ is not necessarily invariant by conjugation by $\widetilde{GL}(n, \mathbb{F})$, since Δ_{μ} is only $\widetilde{SL}(n, \mathbb{F})$ conjugation invariant (Lemma 7.6).

Proof. We first give a formula for $\Theta_{L(\pi,\nu)}(g)$ for arbitrary $(\pi,\nu) \in X$ (with π satisfying Hypothesis I).

By Theorem 3.3,

$$\Theta_{L(\pi,\nu)}(g) = \sum_{z \in \tilde{Z}/\tilde{Z}_+} \chi_{\nu}(z)^{-1} \Theta_{t_*(\pi)}(zg)$$

(sum over any set of coset representatives). Inserting (4.3) gives

$$\Theta_{L(\pi,\nu)}(g) = \frac{1}{|\mathbb{F}^*/\mathbb{F}^{*n}|} \sum_{z \in \tilde{Z}/\tilde{Z}_+} \sum_{h^n = p(zg)} \chi_{\nu}(z)^{-1} \Delta(h, zg) \Theta_{\pi}(h).$$
(8.2)

Write the summand as follows:

$$\chi_{\nu}(z)^{-1} \Delta(h, zg) \Theta_{\pi}(h) = \mu(z)^{-1} \nu(z)^{-1} \Delta(h, zg) \Theta_{\pi}(h) \quad \text{(by (2.6))}$$
$$= \frac{|\mathbb{F}^*/\mathbb{F}^{*n}|}{n^2} \nu(z)^{-1} \Delta_{\mu}(h, g) \Theta_{\pi}(h) \quad \text{(Definition 7.1)}$$
$$= \frac{|\mathbb{F}^*/\mathbb{F}^{*n}|}{n^2} \nu(h) \nu(z)^{-1} \Delta_{\mu}(h, g) \Theta_{\pi\nu^{-1}}(h).$$

By (5.2) and Lemma 7.2, $\Delta_{\mu}(h,g)$ and $\Theta_{\pi\nu^{-1}}(h)$ only depend on the image $\bar{h} \in PGL(n,\mathbb{F})$ of h. By (6.1) and (6.2), $\nu(h)\nu(z)^{-1} = \nu(\phi(h)^{-1}g) = \nu(\zeta(\bar{h},g))$. This gives

$$\frac{|\mathbb{F}^*/\mathbb{F}^{*n}|}{n^2}\nu(\zeta(\bar{h},g))\Delta_{\mu}(\bar{h},g)\theta_{\pi\nu^{-1}}(\bar{h}).$$

Inserting this in (8.2) and changing the order of summation gives the following intermediate result. Proposition 8.3. We have

$$\Theta_{L(\pi,\nu)}(g) = \frac{1}{n} \sum_{\substack{h \in PGL(n,\mathbb{F}) \\ h \xleftarrow{\text{weak}} g}} \nu(\zeta(h,g)) \Delta_{\mu}(h,g) \theta_{\pi\nu^{-1}}(h)$$
$$= \frac{1}{n} \sum_{\zeta \in \mu_n} \nu(\zeta) \sum_{\substack{h \in PGL(n,\mathbb{F}) \\ \phi(h) = \zeta g}} \Delta_{\mu}(h,g) \theta_{\pi\nu^{-1}}(h).$$

Replace (π, ν) with $(\pi \alpha, \nu \alpha)$. On the right-hand side only the term $\nu(\zeta(h, g))$ is affected. Summing over α gives

$$\Theta_{L_{\mathrm{st}}(\pi,\nu)}(g) = \frac{1}{n} \sum_{\zeta \in \mu_n} \sum_{\alpha \in \hat{\mu}_n} \nu(\zeta) \alpha(\zeta) \sum_{\substack{h \in PGL(n,\mathbb{F})\\\phi(h) = \zeta g}} \Delta_{\mu}(h,g) \theta_{\pi\nu^{-1}}(h).$$

By orthogonality of characters for μ_n this equals

$$\sum_{\substack{h \in PGL(n,\mathbb{F})\\\phi(h)=g}} \Delta_{\mu}(h,g) \theta_{\pi\nu^{-1}}(h)$$

This completes the proof.

9. Inversion

We continue in the setting of the preceding section. Suppose $\pi \alpha$ satisfies Hypothesis I for all α .

Definition 9.1. For $\zeta \in \mu_n$ let

$$L_{\zeta}(\pi,\nu) = \sum_{\alpha \in \hat{\mu}_n} \alpha(\zeta) L(\pi\alpha,\nu\alpha).$$

This is a virtual character in which we allow rational coefficients, and $L_1(\pi, \nu) = L_{\rm st}(\pi, \nu)$.

By Fourier inversion on μ_n we have

$$L(\pi,\nu) = \frac{1}{n} \sum_{\zeta \in \mu_n} L_{\zeta}(\pi,\nu).$$
 (9.1)

Recall the central character of $L(\pi\alpha,\nu\alpha)$ is $\chi_{\alpha\nu}$, i.e.

$$\chi_{L(\pi\alpha,\nu\alpha)}(z_{\zeta}) = \chi_{\nu}(z_{\zeta})\alpha(\zeta),$$

where $p(z_{\zeta}) = \zeta I$. That is,

$$\alpha(\zeta)\Theta_{L(\pi\alpha,\nu\alpha)}(g) = \chi_{\nu}^{-1}(z_{\zeta})\Theta_{L(\pi\alpha,\nu\alpha)}(z_{\zeta}g).$$

Inserting this into the definition gives the following result.

https://doi.org/10.1017/S147474800300001X Published online by Cambridge University Press

Lemma 9.2. For all $\zeta \in \mu_n$,

$$\Theta_{L_{\zeta}(\pi,\nu)}(g) = \chi_{\nu}^{-1}(z_{\zeta})\Theta_{L_{\mathrm{st}}(\pi,\nu)}(z_{\zeta}g)$$

for any choice of z_{ζ} satisfying $p(z_{\zeta}) = \zeta I$.

Inserting this in (9.1) gives the following result.

Theorem 9.3 (inversion). Suppose $(\pi, \nu) \in X$, and $\pi \alpha$ satisfies Hypothesis I for all $\alpha \in \widehat{\mathbb{F}^*}$. Then

$$\Theta_{L(\pi,\nu)}(g) = \frac{1}{n} \sum_{\zeta \in \mu_n} L_{\zeta}(\pi,\nu)(g)$$

$$= \frac{1}{n} \sum_{\zeta \in \mu_n} \chi_{\nu}^{-1}(z_{\zeta}) \Theta_{L_{\rm st}(\pi,\nu)}(z_{\zeta}g).$$
(9.2)

By Theorem 8.1 each term on the right-hand side of (9.2) may be expressed in terms the character $\Theta_{\pi\nu^{-1}}$ of $PGL(n,\mathbb{F})$. The resulting formula is Proposition 8.3.

We record the analogue of Theorem 8.1 for $L_{\zeta}(\pi,\nu)$,

$$\Theta_{L_{\zeta}(\pi,\nu)}(g) = \nu(\zeta)^{-1} \sum_{\substack{h \xleftarrow{\mathrm{veak}} \\ \zeta(h,g) = \zeta^{-1}}} \Delta_{\mu}(h,g) \Theta_{\pi\nu^{-1}}(h).$$

References

- 1. J. ADAMS, Character of the oscillator representation, Israel J. Math. 98 (1997), 229–252.
- J. ADAMS, Lifting of characters on orthogonal and metaplectic groups, *Duke Math. J.* 92 (1998), 129–178.
- 3. J. ADAMS, Characters of non-linear groups, in *Proc. Conf. on Representation Theory and Harmonic Analysis, Okayama, Japan*, vol. 26 (2000), pp. 1–18.
- 4. J. ARTHUR, On some problems suggested by the trace formula, in *Lie group representations*, *II*, pp. 1–49 (Springer, 1984).
- 5. Y. FLICKER, Automorphic forms on covering groups of GL(2), *Invent. Math.* 57 (1980), 119–182.
- Y. FLICKER AND D. A. KAZHDAN, Metaplectic correspondence, Inst. Hautes Études Sci. Publ. Math. 64 (1986), 53–110.
- D. A. KAZHDAN AND S. J. PATTERSON, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. 59 (1984), 35–142.
- 8. D. A. KAZHDAN AND S. J. PATTERSON, Towards a generalized Shimura correspondence, *Adv. Math.* **60(2)** (1986), 161–234.
- 9. A. KNAPP AND S. GELBART, L-indistinguishability and R groups for the special linear group, *Adv. Math.* **43** (1982), 101–121.
- R. P. LANGLANDS AND J.-P. LABESSE, L-indistinguishability for SL(2), Can. J. Math. 31 (1979), 726–785.
- H. MATSUMOTO, Sur les sous groupes arithmétiques des groupes semi-simples, Annls Sci. Ec. Norm. Super. 4 (1969), 1–62.
- C. MOORE, Group extensions of p-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 157–222.

- R. RANGA RAO, On some explicit formulas in the theory of the Weil representation, *Pac. J. Math.* 157 (1993), 335–371.
- 14. G. SAVIN, Local Shimura correspondence, Math. Ann. 280 (1988), 185–190.
- 15. J. SCHULTZ, Lifting of Characters on $\widetilde{SL}(2)$ and SO(2,1) over a non-Archimedean local field, PhD thesis, University of Maryland (1998).
- 16. J.-P. SERRE, Local fields, Graduate Texts in Mathematics, no. 67 (Springer, 1979).
- 17. R. STEINBERG, Générateurs, relations et revêtements de groupes algébriques, in *Colloq. Théorie des Groupes Algébriques*, pp. 113–127 (Librairie Universitaire, Louvain, 1962).
- 18. M. TADIĆ, Notes on representations of non-archimedean SL(n), Pac. J. Math. **152** (1992), 375–396.
- J.-L. WALDSPURGER, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219–307.