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We conduct Monte Carlo simulations to evaluate the use of information criteria
~Akaike information criterion@AIC# and Schwarz information criterion@SC# ! as
an alternative to various probability-based tests for determining cointegrating rank
in multivariate analysis+ First, information criteria are used to determine co-
integrating rank given the lag order in a levels vector autoregression+ Second,
information criteria are used to determine the lag order and cointegrating rank
simultaneously+ Results show that AIC has an advantage over trace tests for cointe-
grated or stationary processes in small samples+ AIC does not perform well in
large samples+ The performance of SC is close to that of the trace test+ SC shows
better large sample results than AIC and the trace test, even if the series are close
to nonstationary series or they contain large negative moving average compo-
nents+ We also find evidence that supports the joint estimation of lag order and
cointegrating rank by the SC criterion+ We conclude that information criteria can
complement traditional parametric tests+

1. INTRODUCTION

Cointegration of time-ordered observational data has received considerable atten-
tion in the past decade+ Various procedures have been proposed in the literature
to determine cointegrating rank+ They include single equation methods such as
the Engle–Granger residual-based test~Engle and Granger, 1987! and the ECM
test of Kremers, Ericsson, and Dolado~1992!+ Recently, empirical researchers
have relied more on multiple-equation or system-based methods, for example,
the principal components test of Stock and Watson~1988!, Johansen~1988,
1991!, and the likelihood ratio test of Ahn and Reinsel~1990! based on canon-
ical correlation analysis+

Because these parametric test procedures are probability-based, they are likely
to have problems of low power and size distortions when, for example, errors
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~innovations! are not independent and identically distributed~i+i+d+! or the series
are close to nonstationary ones+ Podivinsky ~1990!, Cheung and Lai~1993!,
Toda ~1995!, Haug ~1996!, and Gonzalo and Pitarakis~1999! provide simula-
tion evidence that these tests may either over- or underspecify cointegrating
rank, especially in small~finite! samples+ An alternative to the preceding para-
metric procedures is to consider various information criteria~IC! in determin-
ing rank restrictions+ This application of the model selection approach was
first suggested and implemented in Phillips and McFarland~1997!+ For prac-
tical purposes, model specification ultimately involves a trade-off between model
parsimony~complexity! and fit, given the fact that the true model is rarely, if
ever, known+ As various IC take into account both model fit and parsimony,
they have become increasingly important tools for specifying models; in par-
ticular, they now have a rich history in selecting lag order in both univariate
and multivariate modeling+ Because the determination of cointegrating rank
is essentially a model specification problem just like the lag order selection, it
is quite natural to consider IC in the determination of cointegrating rank~Phil-
lips, 1996!+

An advantage of IC over traditional probability-based test procedures in deter-
mining rank order is that researchers are exempt from first having to select an
“appropriate” significance level to implement a test procedure+ Although a 5%
~or perhaps a 10%! significance level is “traditionally” chosen as a benchmark,
such a choice may generate concerns+ For example, Maddala and Kim~1998,
ch+ 6! suggest that researchers should be more conservative in testing for a unit
root, that it may be better to use the 25% level instead of the 5% level+ Further-
more, to many empirical researchers, as argued by Maddala and Kim, the goal
of cointegration tests is not to uncover thetrue numberof cointegrating rela-
tionships per se but rather to have a useful guide in imposing restrictions on
vector autoregression~VAR! models and error correction models~ECM! that
may lead to more efficient estimation and improve forecasting performance
~p+ 233!+ When forecasting performance of a model is of interest, clearly both
fit and complexity have to weigh in at the same time+

Another attractive feature of using IC is that it allows researchers to conduct
cointegration analysis within a single step, instead of a two-step procedure+ As
is well known, the choice of lag order in a VAR has an important impact on the
cointegration test performance~e+g+, Boswijk and Frasnes, 1992!+ However,
because choices of lag order and cointegrating rank are two separate steps in
application of the trace test and other probability-based procedures, it is essen-
tially impossible to comment on the underlying probability distribution of the
final results+ In contrast, it is possible to determine the lag order and cointegrat-
ing rank in one step by minimizing an IC over a domain of models with differ-
ent lag orders and cointegrating ranks+

Phillips ~1996! formally shows how cointegrating rank, lag length, and trend
degree in a VAR can be jointly determined using the model selection method+
Gonzalo and Pitarakis~1998! evaluate both the theoretical and applied proper-
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ties of the model selection approach for the estimation of the cointegrating rank
given lag orders in the models+ Aznar and Salvador~2002! establish the consis-
tency of a general IC that includes the Schwarz information criterion~SC! as a
special case+ Kapetanios~2004! recently derived the asymptotic distribution of
the cointegrating rank estimator based on the Akaike information criterion~AIC !+
He shows that the estimator is inconsistent, a result similar to that found when
AIC is used as a tool for lag order selection+ For the purpose of model specifi-
cation in a~partially! nonstationary framework, researchers have also proposed
other IC+ For example, extending the analysis of Phillips and Ploberger~1996!,
Chao and Phillips~1999! show the consistency of the posterior information cri-
terion~PIC! in the joint determination of cointegrating ranks and VAR lag order+
They also provide Monte Carlo evidence that shows that PIC performs at least
as well and sometimes better than SC and AIC+ On the empirical side, Phillips
and McFarland~1997! use the SC criterion to jointly estimate the lag order and
cointegrating rank in the VAR analysis of the Australian exchange market+Wang
and Bessler~2002! apply a similar procedure in studying U+S+ meat demand
systems+

The goal of this paper is to provide more comprehensive evidence on the
performance of the model selection approach~IC! in cointegration analysis+
We conduct three Monte Carlo simulations+ The design of the first simulation
borrows from Toda~1995!+ Here we provide evidence on the performance of
the two widely used IC procedures, SC and AIC, in testing the cointegrating
rank when the lag order of the VAR is known+ In the second simulation, employ-
ing a data generating process~DGP! used by Haug~1996! and others, we eval-
uate the performance of IC in determining the lag order and cointegrating rank
simultaneously+ These two DGPs allow us to investigate the test performance
under a great variety of model specifications, including moving average com-
ponents, closeness to a unit root, correlation between innovations, and so on+
The third simulation evaluates the use of IC in a larger, five-variable system+
Throughout the paper, we pay special attention to the small sample perfor-
mance of the approach, as it is probably more relevant to many macroeco-
nomic series~the sample size considered by Gonzalo and Pitarakis, 1998, and
Chao and Phillips, 1999, is at least 150!+

For comparison purposes, we also examine the performance of Johansen’s
trace test, which is chosen for its current popularity in empirical applications+1

Recently, Johansen~2000, 2002! has proposed the use of so-called Bartlett cor-
rection to improve the small sample performance of the trace test+ In this paper,
we will have an opportunity to see how the correction factor fits into the sim-
ulation models+

The paper is organized as follows+ Section 2 briefly discusses the basic model,
the trace test statistic, and the AIC and SC formulas+ Section 3 reports the first
Monte Carlo simulation results+ The design and results of the second experi-
ment are summarized in the fourth section+ Section 5 offers a real life example
and simulation results corresponding to it+A short summary concludes the paper+
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2. THE MODEL AND TEST STATISTICS

The basic model is anm-dimensional VAR model+ Using conventional nota-
tion, the model can be described as

zt 5 A1 zt21 1 {{{ 1 Ap zt2p 1 m 1 «t , t 5 1, + + + ,T, (1)

wherezt is anm3 1 vector of time series, zt21, + + +zt2p, are 1 up top lags ofzt ,
«t are i+i+d+ random variates following multivariateN~0,S! with S being posi-
tive definite, A1, + + + ,Ap are conformable parameter matrices, andm is anm3 1
vector of parameters+ The error correction form of~1! is

Dzt 5 G1 Dzt21 1 {{{ 1 Gp21 Dzt2p11 1 Pzt21 1 m 1 «t , t 5 1, + + + ,T, (2)

with

Gi 5 ~2Ai11 1 Ai12 1 {{{ 1 Ap!, for i 5 1, 2, + + + , p 2 1

and

P 5 2~Im 2 A1 2 A2 2 {{{ 2 Ap!+

The hypothesis of cointegration in the vector processzt can be formulated as
testing the rank of theP matrix ~Johansen, 1988, 1991!+When the null hypoth-
esis is that the cointegrating rank isr, the trace test statistic~ltr! is given by

ltr 5 2T (
i5r11

m

ln~12 l i !, (3)

wherer is the cointegrating rank order andl i is thei th largest eigenvalue related
to theP matrix+ The sequential tests start from the null hypothesisr 5 0 ~namely,
all eigenvalues are 0’s!+ If this hypothesis is rejected, one continues to testr # 1
and stops testing the first time the hypothesis is not rejected or afterr # m2 1+
For 0 , r , m, zt is a cointegrated process; otherwise, it is nonstationary if
r 5 0 ~or stationary ifr 5 m!+ The asymptotic distributions of the trace statistic
are affected by the assumption on the time trend in the process+ If the constant
in ~2! is restricted to the cointegration space, the process contains a stochastic
trend+ If it is unrestricted, then the process contains both a linear time trend and
a stochastic trend+ Although other assumptions on the time trend have also been
considered~Johansen, 1996!, these two are used most often in applied studies+

The small sample correction for the preceding test statistic proposed by
Johansen~2000, 2002! is of Bartlett type+ The idea is to approximate the expec-
tation of the likelihood ratio test statistic and to thereby correct it to have the
same mean as the asymptotic distribution+ The correction factor depends on
moments of functions of the random walk and functions of the parameters+ The
exact formulas and coefficients necessary to compute the factor can be found
in Johansen~2002!+
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We examine the performance of two widely used IC in the simulations: AIC
~Akaike, 1973! and SC~Schwarz, 1978!+2 They are computed according to the
following equations:

AIC 5 ln~det~ ZS!! 1 2K0T, (4)

SC5 ln~det~ ZS!! 1 K ln~T !0T, (5)

where ZS is the maximum likelihood estimate of the variance-covarianceS of
the innovation~«t ’s! andK is the number of free parameters in the model, which,
other things being equal, increases with the lag order~ p! and the cointegrating
rank ~r ! assumed in the model+ The first term in equations~4! and~5! is the log
determinant of ZS, which measures lack of fit of the model+ The second term
penalizes overparameterization of the model+ It is clear from~4! and ~5! that
SC punishes model overparameterization more than AIC for sample sizes equal
to or larger than eight+

Clearly, the IC method and the trace test are closely related+ They both con-
dition on the feature of matrixP+ The trace test detects the rank ofP by testing
the statistical significance of the eigenvalues related toP+ The IC method deter-
mines cointegrating rank by balancing the benefit and cost of adding additional
restriction vectors~cointegrating vectors! to the model+ Specifically, if P has
rank r, it may be written as the product of two matrices: P 5 ab ' , wherea and
b are of dimensionm 3 r+ We may regardb 'zt21 as r linear restrictions0
combinations on right-hand-side variableszt21+ If a restriction is true, it must
carry some useful information to explain the variation in the left-hand-side vari-
ableszt + The more significant the restriction is~correspondingly, the larger the
associated eigenvalues ofP!, the more information it can convey+ If the restric-
tion is true, the useful information it contains should be enough to offset its
cost ~introducing more parameters to the model!+ IC would accept the restric-
tion in this case+ If , on the other hand, the restriction is insignificant or false,
the information it carries cannot offset the cost; IC would reject the addition of
such a restriction+

3. MONTE CARLO SIMULATION I

In this section, we investigate the sampling properties of AIC, SC, and two
forms of the trace test in determining the cointegrating rank of model~1! assum-
ing the lag order is known+ To this end, Toda~1994, 1995! shows that, without
loss of generality, we can study a “canonical form” model+3 Consider the fol-
lowing m-dimensional process:

wt 5 Sw1, t

w2, t
D5S 0

dem2r
D1SC 0

0 Im2r
DSw1, t21

w2, t21
D1S«1, t

«2, t
D, t5 1,2, + + + ,T,

(6)
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where the dimensions ofwt , w1, t , andw2, t arem, r, and~m 2 r !, respectively,
d is a nonnegative scalar, em2r 5 ~0, + + + ,0,1!' is an~m2 r !-dimensional vector,
all eigenvalues ofC lie inside the unit circle, and finally,

S«1, t

«2, t
D ; i+i+d+ NS0,S Ir Q

Q' Im2r
DD+

Clearly, the subvector processw1, t is stationary andw2, t is nonstationary+ They
are correlated by a matrixQ+ The processw2, t also contains a linear determin-
istic trend unlessd 5 0+ Following Toda~1995!, we consider a bivariate VAR~1!+
There are three possibilities in regard to the cointegration relations of DGP~6!+

First, if r 5 0, that is, ~6! contains only nonstationary components, then model
~6! simplifies to

wt 5 de2 1 wt21 1 «t (7)

and«t ; i+i+d+ N~0, I2!+ In ~7!, the only parameter isd+
Second, if r 51, ~6! becomes a cointegrated process with the following explicit

form:

Sw1, t

w2, t
D 5 S0

dD1Sc 0

0 1DSw1, t21

w2, t21
D1S«1, t

«2, t
D (8)

and

S«1, t

«2, t
D ; i+i+d+ NS0,S1 u

u 1DD,
where6c6 , 1 and6u6 , 1+

Third, if r 5 2, ~6! becomes a stationary process

wt 5 Cwt21 1 «t , (9)

where«t ; i+i+d+ N~0, I2! andC is further assumed to be diagonal

C 5 Sca 0

0 cb
D,

where6ca6 , 1 and6cb6 , 1+
In this and the next simulation, we examine the IC performance for four

sample sizes: 30, 50, 100, and 200+ The number of replications for each sample
size is 5,000+ Following tradition, for each replication we generate an addi-
tional 50 random observations to eliminate start-up effects+ Toda~1995! explic-
itly considers the impact of starting values ofwt on the test performance+ It is
clear from his reported results that the relative performance of the trace test
does not change significantly for three different sets of starting values+ To save
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space, and also to follow tradition, we only report the simulation results using
w0 5 0 in all cases+

The results reported in Table 1 are based on DGP~7!, a nonstationary pro-
cess without cointegration relations~r 5 0!+ Each entry is the percentage of
times the four test procedures, AIC, SC, trace test~l tr!, and the small sample
adjusted trace test~l tr

* ! of Johansen~2002!, correctly determine the cointegrat-
ing rank of the simulated data+4 When the sample size is small~30! and the
DGP has no linear trend~d 5 0!, the AIC correctly finds the cointegrating rank
~r 5 0! only 39+3% of the time+ The performance of SC is much better~86+1%!+
The probability that SC chooses alternative models withr 5 1 and r 5 2 is
12+2% and 1+7%, respectively, whereas the numbers are 39+3% and 21+4% for
AIC ~not reported in the table!+ The result, that AIC tends to choose more com-
plicated models~in this case, models with higher cointegrating ranks! than SC,
is as expected+ The trace test, ltr, selects the correct model in 93+1% of the
cases, whereas the performance of the small sample adjusted trace test, ltr

* ,
shows even further improvement~94+3%!, close to the test size~recall that we
use the 5% significance level for the two trace tests throughout the paper!+ It is
clear from the table that the performance of all four procedures deteriorates
when a linear trend is present in the model~d . 0!+ The effect of trend on the
two ICs is more noticeable than that on the trace tests+ Nevertheless, the results
also show that all tests perform better when the trend signal is strong~d 5 1!+

Table 1. Performance of IC and trace tests for cointegrating rank:
r 5 0, Simulation I

T 5 30 T 5 50

d 5 0+0 d 5 0+2 d 5 1+0 d 5 0+0 d 5 0+2 d 5 1+0

AIC 39+3 27+2 33+3 40+5 29+3 34+4
SC 86+1 70+9 75+8 93+2 82+8 86+4
ltr 93+1 87+9 92+7 93+6 89+1 93+9
ltr
* 94+3 89+1 93+7 94+4 89+9 94+3

T 5 100 T 5 200

d 5 0+0 d 5 0+2 d 5 1+0 d 5 0+0 d 5 0+2 d 5 1+0

AIC 42+2 31+9 36+7 42+4 35+5 38+0
SC 97+6 92+8 93+7 99+5 97+3 97+4
ltr 94+1 92+0 94+2 94+3 93+4 94+8
ltr
* 94+2 92+1 94+6 94+5 93+5 94+9

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIC, SC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! procedures+ The DGP is a bivariate
VAR ~1! without cointegration relations+
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The performance of SC improves considerably when the sample size increases+
For example, when T 5 50, the frequencies with which it correctly identifies
the rank are 93+2%, 82+8% and 86+4% whend 5 0+0, 0+2, and 1+0, respectively+
At T 5 100, the success ratios of SC are all larger than 90% for the different
values ofd+ When the sample size further increases to 200, SC almost always
finds the correct rank~99+5%! in the case ofd 5 0+ In models with a linear
trend, the percentages are also high, 97+3% or higher+ In contrast, the change in
sample size has little impact on AIC, which confirms that SC is consistent
whereas AIC is not+

Using DGP~8!, we examine the performance of the four procedures when
the true model is a bivariate cointegrated process withr 5 1+We use following
parameter values in the simulations: d 5 0+0, 0+2, and 1+0, c 5 0+8 and 0+9, and
u 5 0+0, 0+4, and 0+8 ~results based on negativeu are omitted because they are
very close to their positive counterparts!+ Table 2 contains the simulation results
for two small sample sizes, T 5 30 and 50+ Clearly, all four procedures perform

Table 2. Performance of IC and trace tests for cointegrating rank:
r 5 1, T 5 30, 50, Simulation I

d 5 0+0 d 5 0+2 d 5 1+0

u 5 0+0 u 5 0+4 u 5 0+8 u 5 0+0 u 5 0+4 u 5 0+8 u 5 0+0 u 5 0+4 u 5 0+8

T 5 30, c 5 0+8
AIC 40+5 42+6 48+2 42+2 43+3 49+1 63+0 64+8 70+0
SC 14+4 15+4 36+6 23+8 26+0 42+7 29+4 32+2 54+2
l tr 7+8 9+4 27+4 9+3 10+4 22+5 9+0 10+2 24+8
l tr
* 6+6 8+3 26+5 8+4 9+6 23+7 8+4 9+4 24+8

T 5 30, c 5 0+9
AIC 38+6 39+2 41+1 40+2 40+3 44+2 55+5 56+4 60+3
SC 11+3 11+6 18+2 20+8 21+0 25+7 23+3 24+1 30+0
l tr 6+0 6+7 13+1 7+8 7+4 10+1 7+1 7+0 10+2
l tr
* 5+5 6+2 12+6 7+4 7+3 10+7 6+3 6+3 10+0

T 5 50, c 5 0+8
AIC 47+4 49+0 53+0 50+8 53+0 57+2 74+0 75+3 76+9
SC 11+8 15+9 56+4 26+1 31+2 62+9 30+7 36+2 73+8
l tr 12+5 16+1 56+7 14+8 18+4 49+7 14+5 18+7 56+7
l tr
* 11+3 15+2 56+9 14+3 17+9 51+2 13+7 17+5 56+6

T 5 50, c 5 0+9
AIC 40+7 40+7 44+4 43+6 45+1 52+5 60+4 61+1 67+0
SC 7+0 7+9 20+6 15+1 16+7 29+4 16+5 18+2 34+0
l tr 6+4 7+7 22+2 8+0 8+5 17+6 7+1 7+9 19+1
l tr
* 5+9 7+1 22+3 7+8 8+6 19+3 6+7 7+7 19+7

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIC, SC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! procedures+ The DGP is a bivariate
VAR ~1! with cointegrating rank of 1+
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poorly in small sample sizes+ In models withu 5 0+0 andd 5 0+0, namely, no
correlation between the stationary and nonstationary components and no linear
trend, ltr makes the correct rank choice only 7+8% of the time~the small sam-
ple correction actually leads to slightly worse performance, 6+6%!+ The success
ratio of SC is higher but still low~14+4%!+ AIC performs best in this case+
When the two component series are more closely related~largeru!, the perfor-
mance of all procedures improves+ The frequencies that SC andltr find correct
rank, whenu 5 0+8, increase to 36+6% and 27+4%, respectively+ The presence
of a linear trend in the data appears to have different impacts for IC and the
trace tests+ Compared to the results whend 5 0+0, the performance of SC when
d 5 1+0 improves considerably~29+4% vs+ 14+4%!, whereas AIC’s performance
also increases to 63+0%+ The numbers remain small for bothltr andltr

* ~9+0%
and 8+4%!+ As in the model withd 5 0+0, the test power increases for larger
correlation~u 5 0+8 andd 5 1+0!+ And SC ~54+2%! still leads the trace tests
~24+8%!+

The second part of Table 2 repeats the preceding simulations with the auto-
regressive coefficient further approaching 1~c 5 0+9!+ Not surprisingly, all four
test procedures are less powerful, as the stationary component is now closer to
a nonstationary component+ In the case ofd 5 1 andu 5 0+8 ~the rightmost
column!, SC concludes with zero or two unit roots 70+0% ~100%2 30+0%! of
the time, even if the true model has only one unit root, whereas the trace test is
more likely to err~about 90%!+ Correcting for small sample bias does not help+

The results in the third and fourth sections of Table 2 are based on the slightly
larger sample size of 50+ In general, all procedures, especially SC, ltr, andltr

* ,
perform better whenc 5 0+8 in the DGP+ The improvement is obvious foru 5
0+8+ The proceduresl tr andl tr

* now have similar power as SC in models with-
out linear trends+ Nevertheless, at this sample size, AIC and SC are still better
choices than are the trace tests when a linear trend is present~d . 0!+ Compar-
ing the results in the fourth section with the second section, we find that the
increase ofT from 30 to 50 does not lead to much improvement on perfor-
mance for any of the four tests ifc 5 0+9 with the exception ofu 5 0+8+

Results in Table 3 are also based on DGP~8! using a moderate sample size
of 100 and a larger size of 200+WhenT 5 100, bothltr andltr

* outperform SC
in the model withd 5 0+0 but are outperformed by the latter ifd Þ 0+0+Although
the performance of AIC is primarily affected byd, the correlation coefficientu
is an important factor in determining the performance of SC, l tr, andl tr

* , given
c+ For example, when u 5 0+0 or 0+4, and c 5 0+8, all procedures perform
poorly, even when the sample size is 100+ In contrast, all perform quite well
when the two innovations are strongly correlated+ The low power of the test
procedures against largec is still evident whenT 5 200+ If c 5 0+8, all four
procedures perform well, except AIC in the models withd 5 0+Whenc 5 0+9,
the performance of SC, ltr, andltr

* deteriorates significantly~lower than 60%!
in models with low correlations+ These three procedures perform equally well
~around 90%! whenu 5 0+8; in other cases, ltr andl tr

* outperform SC+ Notice
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in the fourth section of the table~c 5 0+9! that the power of SC is extremely
low when d 5 0+0 andu is small, even at the sample size of 200~9+2% and
17+6% for u 5 0+0 and 0+4, respectively!+ In additional simulations we con-
ducted~not reported in detail here!, only when the sample size increases to 400
does the ratio increase to 52% and 76+1%+ These percentages increase to 79+1%
and 93+4% whenT 5 500+

Table 4 contains simulation results assuming the DGP is a stationary process
~equation~9!!+ The parameters that affect the distribution of the test statistics in
this model are the two autoregressive coefficients, for which we useca 5 0+5,
0+7, and 0+9 andcb 5 0+7, 0+8, and 0+9+ In small samples, AIC performs much
better than SC, l tr, andltr

* + SC outperformsltr andltr
* whenT 5 30 but does

not outperform them whenT 5 100+ The later three procedures perform simi-
larly when T 5 50+ As before, the power of the procedures decreases as the
series considered approach nonstationary processes~ca and0or cb approaches 1!+
For example, there is a high probability~about 70%! that SC, l tr, andl tr

* con-

Table 3. Performance of IC and trace tests for cointegrating rank:
r 5 1, T 5 100, 200, Simulation I

d 5 0+0 d 5 0+2 d 5 1+0

u 5 0+0 u 5 0+4 u 5 0+8 u 5 0+0 u 5 0+4 u 5 0+8 u 5 0+0 u 5 0+4 u 5 0+8

T 5 100, c 5 0+8
AIC 57+2 57+7 56+3 67+1 66+7 65+9 83+5 83+2 80+3
SC 22+3 34+4 91+3 50+9 62+0 87+3 55+5 67+2 94+7
l tr 37+9 50+0 93+0 45+3 55+3 83+3 47+3 60+3 91+9
l tr
* 37+3 49+4 94+1 44+9 55+1 84+8 46+5 59+4 92+9

T 5 100, c 5 0+9
AIC 45+9 48+6 54+4 59+9 61+5 65+4 74+5 76+4 77+8
SC 4+5 6+7 42+1 15+3 19+3 57+5 16+1 21+0 62+2
l tr 11+9 15+2 55+7 13+6 17+3 50+9 13+0 16+9 55+3
l tr
* 11+9 15+1 56+7 13+3 17+1 52+4 12+7 16+7 56+1

T 5 200, c 5 0+8
AIC 58+3 57+7 58+1 75+1 75+3 74+6 84+4 84+2 82+2
SC 74+7 88+9 97+4 92+8 94+4 94+6 95+6 97+1 97+4
l tr 90+7 93+7 94+9 88+9 89+7 90+1 93+7 94+5 94+0
l tr
* 90+7 94+1 95+5 89+2 90+0 90+7 93+8 94+7 94+3

T 5 200, c 5 0+9
AIC 56+7 57+4 56+7 75+1 75+4 74+0 84+7 84+1 80+5
SC 9+2 17+6 88+0 34+9 47+9 92+8 35+4 48+7 95+4
l tr 35+3 48+5 92+9 44+5 57+2 88+7 45+2 58+6 92+5
l tr
* 35+3 48+6 94+1 44+3 57+3 89+9 44+9 58+4 93+1

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIC, SC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! procedures+ The DGP is a bivariate
VAR ~1! with cointegrating rank of 1+
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clude that the DGP~9! is nonstationary, without cointegration relations, when
T 5 50 andca 5 cb 5 0+9 ~not reported in the table!+ Finally, if T increases to
200, all procedures work well even forca 5 cb 5 0+9 ~the lowest score is SC’s
83+9%!+

We end the discussion of the first simulation by noting that the trace test
tends to perform quite well for the cases where the DGP is of full rank~r 5 2!+
This is not surprising, as Johansen~1992! has shown analytically that the prob-
ability of overestimation of rank does not go to zero if a fixed significance
level is used in the sequential trace tests+ However, in the full rank DGP~r 5 m!,
it is impossible to have overestimation in the trace test, which helps explain the
good performance of the trace tests in this model+ Similarly, as mentioned in
the Introduction, AIC is also inconsistent and overestimates the cointegrating
rank+ This explains why AIC does quite well for models withr 5 2 although
performing poorly in other cases+5

Table 4. Performance of IC and trace tests for cointegrating rank:
r 5 2, Simulation I

ca 5 0+5 ca 5 0+7 ca 5 0+9

cb 5 0+7 cb 5 0+8 cb 5 0+9 cb 5 0+7 cb 5 0+8 cb 5 0+9 cb 5 0+7 cb 5 0+8 cb 5 0+9

T 5 30
AIC 97+7 91+5 77+6 94+7 87+3 73+7 72+5 66+7 56+7
SC 82+5 66+2 46+8 63+2 49+2 34+3 33+9 26+0 18+8
ltr 72 54+6 35+8 50+5 36+6 23+7 24+0 17+2 11+5
ltr
* 69 51+8 33+6 46+8 33+4 21+2 21+6 15+2 9+7

T 5 50
AIC 99+9 99+0 88+0 99+8 98+6 87+7 87+2 84+1 72+6
SC 98+2 87+1 57+3 89+3 72+9 44+4 44+8 31+3 17+7
ltr 98+4 88+1 58+5 90+5 74+9 46+3 46+8 33+6 19+1
ltr
* 98+2 87+3 57+2 89+3 72+9 44+1 44+8 31+3 17+5

T 5 100
AIC 100+0 100+0 98+9 100+0 100+0 99+0 98+7 98+6 96+2
SC 100+0 99+7 80+8 100+0 99+3 79+3 79+4 66+3 32+0
ltr 100+0 99+9 89+4 100+0 99+9 89+3 89+5 83+7 55+8
ltr
* 100+0 99+9 89+0 100+0 99+8 88+6 88+9 82+7 53+8

T 5 200
AIC 100+0 100+0 100+0 100+0 100+0 100+0 100+0 100+0 100+0
SC 100+0 100+0 99+1 100+0 100+0 99+1 99+1 99+0 83+9
ltr 100+0 100+0 99+9 100+0 100+0 99+9 99+9 99+9 99+0
ltr
* 100+0 100+0 99+9 100+0 100+0 99+9 99+9 99+9 98+9

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIC, SC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! procedures+ The DGP is a stationary
bivariate VAR~1!+
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4. MONTE CARLO SIMULATION II

As discussed in the Introduction, both the lag order determination and the test
of cointegration relations in a multivariate model relate to model specification+
In the preceding simulations, we have assumed that the lag order of the DGP is
known, which is rarely true in empirical studies+When the lag order is unknown,
the practice is to determine the lag order first using either IC or sequential like-
lihood ratio tests+ In the second stage, a parametric test such asltr is used to
determine the cointegrating rank conditional on the lag order chosen in the first
stage+ In this section, we examine the performance of AIC and SC when they
are used to determine the lag order and the cointegrating rank simultaneously+
For the purpose of comparison, we also implement the two-step procedure to
the new DGP+ The new DGP again includes two series: yt andxt + Specifically,
the DGP is described by the following equations:

yt 2 xt 5 vt ,

a1 yt 1 xt 5 ct ,

vt 5 rvt21 1 wt ,

ct 5 ct21 1 rt ,

rt 5 wt 1 uwt21,

and

Fwt

wt
G 5 i+i+d+ NFS0

0D,S 1 hs

hs s2DG, (10)

Many researchers have used DGPs similar to~10!+ A short list includes Baner-
jee, Dolado, Hendry, and Smith~1986!, Engle and Granger~1987!, Blangie-
wicz and Charemza~1990!, Hansen and Phillips~1990!, Gonzalo~1994!, and
Haug ~1996!+ To examine the impact of the model parameters on the test per-
formance, we use the following values in the experiments: a1 5 ~0, 1!, r 5
~0+1, 0+3, 0+5, 0+7, 0+85, 0+9, 0+95, 1!, u 5 ~20+8, 20+5, 20+25, 20+1, 0+0, 0+1,
0+25, 0+5, 0+8!, and h 5 ~20+8, 20+5, 20+25, 20+1, 0+0, 0+1, 0+25, 0+5, 0+8!+
Because, unlike other cointegrating rank tests, both the IC and trace tests do
not depend on the standard deviation of the second innovation processwt , s,
we fix it at s 5 1+ Nor, in the case of equation~10!, do results depend on
whetherxt is weakly exogenous~a1 5 1! or endogenous~a1 5 0! to the system+

As before, all basic simulations are conducted for four different sample sizes,
30, 50, 100, and 200+ Tables A+1, A+2, and A+3 summarize the major results for
r 5 0+5, 0+85, and 1+0, respectively+ In each section, we report the performance
of four two-stage procedures and two one-step procedures+ After using AIC or
SC to determine the optimal lag order of VARs in the first stage, we use the
same criterion in the second stage to determine cointegrating rank+ Denote this
two-step procedure by AICAIC and SCSC, respectively~they correspond to the
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notations AIC and SC used in Simulation I!+ We denote the proceduresltr and
ltr
* that use the trace and small sample adjusted trace test to determine the

cointegrating rank with lag order chosen by SC in the first stage+ Here, we
simply use AIC and SC to denote, respectively, the one-step procedures that
use AIC and SC to simultaneously determine the lag order and cointegrating
rank+

Figures 1–3 are graphical presentations of the simulation results for two sam-
ple sizes~T 5 50 and 200!+ Because the performances ofltr andltr

* are very

Figure 1. Performance of IC and trace tests for cointegrating rank with different val-
ues ofu ~given h 5 0!, Simulation II+
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similar, and the one-step AIC performs slightly better than the two-step AIC-
AIC for almost all parameters and sample sizes, we only compare in each
figure the performances of SCSC, ltr, AIC, and SC+

In Figure 1, we examine the impact of the parameteru on the test perfor-
mance while fixingh at 0+0 andr at three values: 0+5, 0+85, and 1+ First, we
discuss Figures 1a and 1b+ The DGP is a cointegrated process with a moderate
value onr~0+5!+ When there is a large negative moving average component
~u 5 20+8! in the DGP, all four procedures perform poorly+ The percentages of

Figure 2. Performance of IC and trace tests for cointegrating rank with different val-
ues ofr ~r , 1! ~given h 5 0!, Simulation II+
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correct choices on rank are only 4+1%, 8+7%, 11+1%, and 5+0% for SCSC, ltr,
AIC , and SC, respectively, when the sample size is small~50!+ The per-
formances do not improve significantly if the sample size increases to 200
~Figure 1b!+

It is clear from Figure 1a that asu gets larger, all four procedures perform
better, although AIC improves relatively slowly+ When the magnitude of the
moving average componentu is small in the DGP, the procedures perform best

Figure 3. Performance of IC and trace tests for cointegrating rank with different val-
ues ofh, Simulation II+ The legends in graphs~a!, ~b!, ~c!, ~e!, and~f ! are the same as
those in~d!+ For ease of reading, they are omitted+
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~around 60%!+ When a large and positiveu is involved, the performances also
deteriorate but are still better than whenu is large and negative+ The procedure
ltr performs better than both SCSC and SC withu being large in magnitude,
whereas it is outperformed by the latter two for smallu ~in absolute values!+
The two-step SCSC performs slightly better than the one-step SC for allu val-
ues exceptu 5 20+8+ AIC is better than SC only foru , 0+5+WhenT increases
to 200, SCSC, ltr, and SC can correctly find the rank in 90% or more of the
cases, unless the DGP has a large and negative moving average component+ In
contrast, AIC’s performance always falls below 60% for allu+ The one-step SC
performs slightly better than the two-step SCSC over the entire range ofu,
although the difference is smaller foru near or at zero+ The percentages for
both procedures are also slightly higher than those ofltr+ Nevertheless, consid-
ering that the significance level of 95% is used for theltr test, their perfor-
mances can be labeled as similar+

Results summarized in Figures 1c and 1d are also based on a cointegrated DGP
with rank 1, but here the process is closer to a nonstationary one without coin-
tegrations~r 5 0+85!+ In this case, all procedures are less powerful than they
are in the models withr 5 0+5 ~Figures 1a and 1b! for corresponding model
parameters+ The exception is that all test procedures perform much better when
u 5 20+8 for sample sizes smaller than 100+ Also note in Figure 1c that SCSC,
ltr, and SC perform worst whenu is around 0, which is the opposite of the pat-
tern found in Figure 1a+ Figure 1d shows that the performances of the model
selection approaches, SCSC and SC, appear more sensitive than the trace test to
the magnitude ofr ~especially when the correlation between the innovationsh
equals zero, as in the graphs!+ For example, whenu 5 0+8, ltr’s performance
decreases from 91+9% in Figure 1b wherer 5 0+5 to 60+3% in Figure 1d with
r 5 0+85+ At the same time, SC’s performance decreases from 95+7% to only
26+0%+ In contrast, the impact of changingr from 0+5 to 0+85 on AIC is quite
small+ AIC also performs better than SCSC and SC for mostu values+

Whenr 5 1, DGP~10! is a nonstationary process without cointegration rela-
tions+ Figures 1e and 1f summarize the cointegration test performances of the
four procedures under this assumption+ First, the two graphs show that SCSC,
ltr, and SC are much more powerful when the true model is a nonstationary
process without cointegration than for the cointegrated process summarized in
Figures 1a–d if the model contains either no moving average or positive mov-
ing average components+ Second, the one-step SC consistently performs better
than the two-step SCSC, especially for large values ofu whenT 5 50+ SC also
outperformsl tr whenT 5 200+

Figure 2 offers more details on how the test performances change over param-
eterr by fixing u at 20+8, 0, and 0+8+ Here, the DGP is cointegrated with rank 1
~0 , r , 1!+ For u 5 20+8 ~Figures 1a and 1b!, the power of all four proce-
dures in finding correct rank is low for small or moderater values+ Per-
formances improve when the DGP is closer to a nonstationary process~r
approaches 1!+ When T 5 50, AIC performs best, followed by SC, ltr, and
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SCSC in order, for r 5 0+1 and 0+3+ However, for largerr, ltr is the best pro-
cedure+ When the sample size is large~200!, the one-step SC finds the rank
most accurately forr up to 0+7+ As Figures 1c and 1d, SCSC, ltr, and SC work
quite well for smallr when u 5 20+8 and 0+ This is true even if the sample
size is only 50~Figures 2c and 2e!+ The performances of SCSC, ltr, and SC
quickly deteriorate asr gets larger+ When r . 0+7, all tests perform poorly,
even if T 5 200, althoughl tr does better than SCSC and SC+

So far in both Figures 1 and 2, we have maintained the assumption that fun-
damental innovations in the DGPs are not correlated~h 5 0!+ Figure 3 provides
evidence on whether the test performances also vary withh+ First, theU-shaped
patterns in Figures 3a, 3c, and 3e indicate that, for the cointegrated process, all
procedures perform better when the fundamental innovations are correlated than
when they are not, especially when eitherT is 50 or u 5 20+8+ At the same
time, the sign of the correlationh matters little; that is, the impact ofh is sym-
metric+ Second, for nonstationary process~r 5 1!, the effect ofu is either small
~u 5 20+8 in Figure 3b! or essentially zero~u 5 0+0 in Figure 3d, 0+8 in Fig-
ure 3f!+ The bell-shaped curves in Figure 1b indicate that all procedures per-
form better when the fundamental innovations are not correlated than when
they are correlated+

Before ending presentation of Simulation II, we turn to the Appendix tables
for some interesting results that are not seen in the preceding graphs+ First, we
note that some of the results in Table A+2 are comparable to those of Haug
~1996!+ In our simulations withu 5 0+0 andT 5 100, the power ofltr is 37+1%,
22+1%, and 35+3% for h 5 20+5, 0+0, and 0+5, respectively, which are slightly
higher than the maximum eigenvalue test~lmax~SC!! results~31+1%, 17+6%,
and 29+9%! reported in Haug~1996, Table 1, p+ 104!+6 Second, because both IC
and the trace tests perform poorly whenu 5 20+8 for all sample sizes consid-
ered previously, we conduct additional simulations to see how they perform
under larger sample sizes+ The simulation results are tabulated in Table A+4+ As
expected from the consistency of the SC criterion, both SCSC and SC do better
thanltr+ For example, whenT 5 1,000, the performance of SC is better than
77%, whereas the performance ofl tr is always less than 67%+ AIC’s perfor-
mance is only about 35% at best+ Third, comparing the results in Table 1 for
d 5 0+0 with those in Table A+3 under the columnu 5 0+0, we find that the
performance of all procedures is similar in the two Monte Carlo designs+ This
is because the two simulation designs are quite similar under the current assump-
tions: the true DGP are nonstationary processes without cointegration relations,
and they include stochastic trends and no moving average components+

5. AN EXAMPLE OF THE U.S. HOG DATA AND
MONTE CARLO SIMULATION III

So far, we have concentrated on bivariate models+ The purpose of this section
is twofold: first, we provide evidence of cointegration analysis using the SC
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and trace test procedures on a real life example+7 Second, we conduct a third
Monte Carlo simulation to compare the performance of the model selection
approach with the parametric trace test in a five-variable VAR where the DGP
uses the parameter values estimated from the real example+

The data set we analyze contains five variables related to the U+S+ hog mar-
ket+ Specifically, we study annual observations from 1867 to 1948 on the farm
wage rate, hog supply, hog price, corn price, and corn supply+ These data were
first edited and studied by Quenouille~1957, pp+ 88–101!+ He logarithmically
transformed each variable and linearly coded the logs+ Several other authors,
including Box and Tiao~1977!, Tiao and Tsay~1983, 1989!, Reinsel~1983!,
Velu, Reinsel, and Wichern~1986!, Reinsel and Velu~1998, ch+ 5!, and Wang
and Bessler~2004!, have analyzed these data from various perspectives+ The
original data are included in Quenouille~1957!+

Following Box and Tiao~1977! and Reinsel and Velu~1998! we shift
backward by one period the wage rate and hog price+ We first implement the
two-step procedure+ To this end, in the first step, both SC and a likelihood
ratio test are applied+ They agree on two lags~the maximum number of lags in
the levels VAR used in the test is four!, which is also consistent with the afore-
mentioned literature+ In the second step, we calculate SC values forr 5 0, 1,
2, + + + ,5 andltr andltr

* statistics forr # 0, 1, 2, + + + ,4, respectively, based on a
VAR ~2! model+ The results are presented in section A of Table 5+ For compar-
ison, we also reproduce the likelihood ratio test statistics of Reinsel and Velu
~1998! in Table 5+ SC is minimized atr 5 2, the same choice based on the
other three parametric tests+ Section B contains SC values for all combinations
of lag order and cointegrating rank~ p 5 0, 1, 2, 3, 4; r 5 0, 1, 2, + + + ,5!+ Again,
SC is minimized atr 5 2 andp 5 2+ Therefore, in this example, the one-step
SC agrees with the four two-step procedures in choices of both the order of
autoregression and the cointegrating rank+ The one-step results are also illus-
trated in Figure 4, where the surface of SC values against possiblep and
r values is displayed in Figure 1a and a cross-section of the surface at[p 5 1
in Figure 1b~where [p is the number of lags in the ECM, which, of course, is
[p 5 p 2 1!+

Assuming [p 5 1 andr 5 2, the parameter estimates of the hog data, using
notations in model~2!, are as follows:

[m 5 ~159+033, 2421+906, 2142+852, 106+623, 210+688!',

ZP 5 1
20+133 20+062

0+328 20+177

0+059 20+62

20+055 0+277

0+004 20+107

2S1+000 22+824 1+580 0+370 1+370

2+169 1+000 0+342 21+142 21+264D,
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ZG1 5 1
20+165 20+345 0+291 0+234 0+243

20+195 0+496 20+275 20+312 0+493

0+154 0+417 20+076 20+172 0+252

20+267 20+327 0+039 20+319 0+289

0+148 0+092 0+030 20+014 0+360

2 ,
ZS 5 1

550+705 2368+370 308+664 2175+909 192+249

2368+370 3,843+067 1,811+162 362+860 1,145+455

308+664 1,811+162 9,655+385 24,796+441 1,687+970

2175+909 362+860 24,796+441 4,974+835 105+510

192+249 1,145+455 1,687+970 105+510 1,372+676

2 +

Table 5. Determination of the cointegrating rank for Quenouille’s
U+S+ hog data

SC Trace statistics
Trace statistics

~adjusted!

Reinsel and Velu
likelihood ratio

statistics

A: Two steps~assumep 5 2!
r 5 0 40+781 138+773~68+681! 124+938~68+681! 142+9 ~71+1!

1 40+241 58+797~47+208! 53+909~47+208! 61+7 ~49+4!
2 40.204 25.655~29+376! 24.067~29+376! 30.2 ~31+7!
3 40+263 8+437~15+340! 8+006~15+340! 10+5 ~18+0!
4 40+323 0+033 ~3+841! 0+029 ~3+841! 0+04 ~8+16!
5 40+379

p 5 1 2 3 4

B: One step~SC!
r 5 0 40+769 40+781 40+974 41+418

1 40+540 40+241 41+060 41+567
2 40+287 40.204 41+138 41+698
3 40+326 40+263 41+208 41+812
4 40+362 40+323 41+248 41+852
5 40+415 40+379 41+305 41+906

Note: Numbers within parentheses are critical values at the 5% significance level+ The trace test critical values
are from Hansen and Juselius~1995, Table B+3, p+ 81!+ Reinsel and Velu’s likelihood ratio test results are from
Reinsel and Velu~1998, Table 5+3, p+ 149!+ The bold number in the SC column represents the minimum SC
among all possible rank orders~and all lag orders in the VAR in the one-step procedure!+ The bold numbers in
the columns Trace statistics, Trace statistics~adjusted!, and Reinsel and Velu likelihood ratio statistics are the
statistics at which the null hypothesis of the cointegrating rank equals the specified value fails to be rejected+

COINTEGRATING RANK AND INFORMATION CRITERIA 611

https://doi.org/10.1017/S0266466605050334 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050334


Assuming the DGP in equation~2! is described by these parameters, we pro-
ceed with the third simulation as follows: first, sequences of i+i+d+ standard nor-
mal random numbers are generated; second, these pseudo numbers are multiplied
by a factor of variance and covarianceZS to derive sequences of multivariate

Figure 4. SC values, lag order, and cointegrating rank of Quenouille’s U+S+ hog data+
~a! Plots the SC values for different values of cointegrating rankr and autoregressive
orderp in the hog model+ ~b! Plots the SC values for different values of cointegrating
rank r given [p 5 1+
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normal errors0innovations~following Doan, 1996, p+ 10-2!+ A random sample
is formed with these generated errors and the preceding parameter matrices
according to equation~2!+ Repeating the previous process, we obtain 5,000 ran-
dom samples+

Table 6 summarizes the IC and the trace test performance based on the pre-
viously simulated samples+ As in the first two bivariate model simulations, the
performance of the one-step and two-step AIC procedures is poor, which reflects
the fact that these procedures are known to be inconsistent+ The performance
of SC is similar to that ofltr for all sample sizes+ In this large system, ltr

*

performs significantly worse thanltr when sample size is 30 and 50+ This is
similar to the finding in Johansen~2002! that the power function of the trace
test is actually shifted down by the correction factor in the simulation on the
Danish data+ SC correctly determines the cointegrating rank 30+2% of time in
the one-step procedure whenT 5 30, which is lower thanltr’s 46+2%+ How-
ever, when the sample size is larger than 50, the two methods perform simi-
larly+ The right half of Table 6 also includes the performance of AIC and SC in
finding correct lag order and cointegrating rank in the one-step procedure+ Except
when the sample size is small~T 5 30!, both IC criteria appear to be able to
find correct ranks if they can find correct lag orders~comparing the last two
columns with the two to their left!+

Table 6. Performance of IC and trace tests for cointegrating rank:
Simulation based on Quenouille’s U+S+ hog data

Correct choices ofr
Correct choices
of both p andr

Two-step One-step One-step

AICAIC SCSC ltr ltr
* AIC SC AIC SC

T 5 30
7+5 40+4 46+2 21+6 0+7 30+2 0+2 14+3

T 5 50
12+1 62+8 64+7 47+5 10+4 59+4 9+1 51+0

T 5 100
16+7 95+2 89+9 92+1 17+2 94+9 16+9 94+8

T 5 200
19+7 98+8 92+3 93+6 19+5 98+7 19+4 98+7
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6. SUMMARY

Information criteria are widely used in selecting the lag order of time series
models+ In this paper, we investigate whether they are also useful in the cointe-
gration analysis by conducting three separate Monte Carlo simulations+We sum-
marize the major findings as follows+

First, the design of the first simulation is of “canonic form,” which is invari-
ant to the nonsingular transformation of the original series+ The second simula-
tion design allows investigation of the test performance under more detailed
assumptions on model specifications+ Simulation results from these two differ-
ent designs agree when the underlying DGPs are similar~e+g+, when r 5 0, or
whenr 51 in the models free of moving average correlation!+ This suggests that
the DGPs used here are likely to be representative in other cointegration analyses+

Second, the IC approach can either be used to determine the lag order and
cointegrating rank of the VAR in two steps, or it can be used to determine them
in one step+ The one-step AIC in general performs better than the two-step
AICAIC + There is also some gain in using the one-step SC if the underlying
DGP is nonstationary or the sample size is 100 or higher+

Third, AIC performs better than SC and the trace tests when the true DGP is
stationary~of full rank!+ But in most cases, it converges to true models slowly
in the first simulation+ It does not converge in the second simulation+ This result
agrees with the theoretical result that AIC is inconsistent in selecting lag order
or cointegrating rank+

Fourth, although SC’s performance is close to that of the trace test in most
cases, it may perform better than equally as well as, or worse than the trace
tests depending on the presence of linear time trends, the strength of correla-
tion between two series, and the absence of moving averages in the innova-
tions+ The results show that SC is consistent in the joint estimation of lag order
and cointegrating rank+ Furthermore, when the sample size is larger than 100,
SC performs at least as well as, and many times better than, the trace test in
selecting cointegrating rank for all model specifications+

The simulation based on a five-variable system shows that the IC perfor-
mance obtained from the bivariate models may extend to larger VAR models+
In particular, the one-step SC still performs quite well in the selection of both
lag order and cointegrating rank if the sample size is at least moderate~larger
than 50!+

To conclude, future research could proceed by providing additional simula-
tion and empirical evidence on the IC performance in larger systems and by
considering alternative IC+

NOTES

1+ Johansen’s likelihood ratio test can be implemented in two forms+ In this study, we will use
his trace test statistic+ Because the alternative maximum eigenvalue test has similar power to the
trace test, it is not examined here+
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2+ We also investigated PIC as recently discussed in Chao and Phillips~1999!+ Using the approx-
imation given in their equation~20!, we find our Monte Carlo results on PIC close to those dis-
cussed here for SC+ Results are available from the senior author+

3+ To make our results directly comparable to the relevant parts of Toda~1995! for this simu-
lation, and those of Haug~1996! for the second simulation, we deliberately use the same notations
to specify the DGPs as their corresponding sources+ Thus, the same parameters~e+g+, c andu! do
not have the same meaning in the two simulations+ Defining them in two sections separately, we
hope to minimize the confusion caused by this abuse of notation+

4+ The actual output contains more specific information on what exact model~r 5 0, 1, or 2! is
chosen+ To save space here we only report the success ratio for each test, namely, the percentage
that models withr 5 0 are chosen in the case of Table 1+

5+ We thank an anonymous referee for the suggestion to add the discussion in this paragraph+
6+ Correspondingly, the empirical size ofl tr is 12 0+8785 0+122 whenu 5 0+8, h 5 20+5, and

T 5100~Table A+3!, which is also slightly higher than thelmax~SC!’s 0+094 in Haug~1996, Table 3,
p+ 105!, implying more serious size distortion+

7+ Both the one-step AIC and the two-step AICAIC conclude with the highly parameterized
model~r 5 4!+ To save space, the details of these results are not presented in Table 6+
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APPENDIX:
TABULAR RESULTS ON SIMULATION II

Table A.1. Performance of IC and trace tests for cointegrating rank:
r 5 0+5, Simulation II

u 5 20+8 u 5 0+0 u 5 0+8

h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5

T 5 30
AICAIC 15+4 13+3 15+2 51+3 50+9 52+3 44+4 42+3 45+1
SCSC 20+6 18+2 22+4 54+8 40+9 56+3 61+2 45+4 62+3
l tr 46+1 43+6 45+8 42+0 28+6 43+0 58+1 37+8 58+5
ltr
* 46+6 44+1 45+8 39+2 25+1 39+7 52+1 29+8 52+7

AIC 18+2 16+1 18+1 53+0 52+2 54+0 45+9 44+5 46+5
SC 21+1 18+8 21+9 54+0 39+9 55+2 50+9 40+4 52+0

T 5 50
AICAIC 12+3 9+3 13+1 55+2 54+8 55+9 50+4 46+6 51+1
SCSC 6+6 4+1 7+1 82+0 64+9 81+2 62+7 54+1 63+0
l tr 13+1 8+7 13+1 81+9 63+3 81+7 64+5 56+7 64+9
ltr
* 13+4 9+1 13+4 80+8 61+2 80+9 59+8 50+1 60+1

AIC 14+5 11+1 15+1 56+1 55+6 56+7 51+5 48+6 52+0
SC 7+2 5+0 7+8 81+8 64+6 81+0 53+9 50+5 54+5

T 5 100
AICAIC 19+0 14+7 20+0 56+8 57+0 57+8 54+3 53+9 56+4
SCSC 14+6 8+9 15+4 95+1 94+2 94+8 85+2 81+0 84+4
l tr 15+7 9+9 16+4 95+1 94+0 94+6 89+1 85+5 88+7
ltr
* 15+8 10+0 16+6 95+3 94+3 95+0 88+5 84+1 87+6

AIC 21+0 16+2 22+2 57+2 57+5 58+3 55+1 55+0 57+1
SC 16+8 10+9 18+0 95+2 94+2 94+9 83+5 79+9 82+6

T 5 200
AICAIC 27+8 22+5 28+7 58+1 58+7 57+6 56+9 56+5 57+1
SCSC 35+0 24+8 34+9 97+4 97+2 97+2 96+4 94+9 96+5
l tr 29+7 20+8 29+7 94+5 94+7 94+5 93+7 91+9 93+7
ltr
* 29+9 21+1 29+9 94+8 94+7 94+6 94+2 92+3 94+1

AIC 29+1 23+5 29+8 58+3 58+9 57+7 57+2 57+0 57+4
SC 39+3 28+6 39+3 97+4 97+2 97+2 96+5 95+7 96+6

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAIC, SCSC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! and the one-step AIC
and SC procedures+ The DGP is a bivariate VAR with cointegrating rank of 1+
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Table A.2. Performance of IC and trace tests for cointegrating rank:
r 5 0+85, Simulation II

u 5 20+8 u 5 0+0 u 5 0+8

h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5

T 5 30
AICAIC 44+9 44+7 44+9 42+1 42+4 41+4 41+8 42+4 41+3
SCSC 72+3 70+6 72+5 15+9 14+6 16+0 37+6 29+0 38+9
l tr 76+8 71+2 76+4 10+7 8+3 9+8 30+6 21+5 31+4
ltr
* 74+9 68+0 74+7 9+2 6+5 8+8 25+0 15+0 25+6

AIC 46+0 46+3 46+3 41+4 41+5 41+0 42+0 42+7 41+7
SC 69+5 68+3 69+3 14+7 13+3 14+8 28+3 22+3 28+6

T 5 50
AICAIC 31+4 29+3 31+4 45+5 43+1 45+0 45+8 43+7 44+2
SCSC 71+3 70+4 70+9 12+7 8+3 13+0 27+7 17+5 28+4
l tr 79+9 79+6 78+8 12+9 8+9 13+4 28+4 18+5 28+6
ltr
* 80+2 79+7 79+1 12+4 8+3 12+8 24+7 14+3 24+9

AIC 32+9 30+8 32+4 45+3 42+7 44+7 44+9 43+1 43+9
SC 65+0 67+1 65+7 12+4 7+8 12+5 16+7 12+9 17+8

T 5 100
AICAIC 19+6 16+0 20+0 54+9 52+2 55+8 49+6 47+6 51+6
SCSC 42+6 43+0 41+4 21+6 10+2 21+2 20+2 11+4 20+1
l tr 47+8 46+3 47+1 37+1 22+1 35+3 33+0 24+6 32+0
ltr
* 48+0 46+9 47+1 36+7 21+7 35+4 29+1 21+5 28+5

AIC 20+4 17+2 21+1 54+9 52+2 55+8 49+6 47+9 51+8
SC 37+2 38+4 35+6 21+5 10+1 21+1 14+5 9+7 14+3

T 5 200
AICAIC 27+5 22+5 28+0 57+4 58+5 56+8 57+3 55+7 56+1
SCSC 14+2 11+0 14+4 69+2 36+8 69+2 52+3 28+0 52+5
l tr 25+9 19+2 27+0 88+3 70+9 88+5 76+2 60+3 77+1
ltr
* 25+9 19+6 27+1 88+5 70+7 88+7 74+8 58+0 75+6

AIC 28+6 23+7 28+9 57+6 58+7 57+1 57+6 56+3 56+5
SC 13+1 10+6 12+5 69+2 36+8 69+1 45+0 26+0 45+6

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAIC, SCSC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! and the one-step AIC
and SC procedures+ The DGP is a bivariate VAR with cointegrating rank of 1+
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Table A.3. Performance of IC and trace tests for cointegrating rank:
r 5 1+0, Simulation II

u 5 20+8 u 5 0+0 u 5 0+8

h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5 h 5 20+5 h 5 0+0 h 5 0+5

T 5 30
AICAIC 2+1 2+3 2+4 27+0 27+0 27+0 10+3 11+2 10+3
SCSC 4+4 9+5 4+3 84+3 84+3 84+3 60+8 65+1 60+3
l tr 10+5 22+1 11+2 91+3 91+3 91+3 73+0 75+7 71+7
ltr
* 12+4 25+8 13+2 92+9 92+9 92+9 82+0 83+8 80+9

AIC 3+5 3+8 3+8 32+0 32+0 32+0 14+8 16+5 14+9
SC 7+3 12+3 7+9 85+8 85+8 85+8 71+5 74+1 71+1

T 5 50
AICAIC 3+5 3+5 3+4 35+4 35+4 35+4 21+9 22+5 22+4
SCSC 3+1 4+8 2+9 93+1 93+1 93+1 81+0 82+0 80+1
l tr 3+4 6+2 3+5 93+6 93+6 93+6 81+8 82+3 80+8
ltr
* 3+6 6+8 3+8 94+3 94+3 94+3 86+5 86+8 85+6

AIC 4+9 5+2 5+0 37+9 37+9 37+9 26+3 26+9 26+6
SC 7+6 8+7 6+9 93+4 93+4 93+4 87+0 87+1 86+5

T 5 100
AICAIC 7+4 7+7 7+8 39+3 39+3 39+3 31+0 31+1 30+7
SCSC 10+1 9+0 10+4 97+7 97+7 97+7 94+5 94+1 94+1
l tr 8+5 7+5 8+6 93+9 93+9 93+9 87+8 88+3 87+2
ltr
* 8+8 8+0 9+0 94+0 94+0 94+0 90+4 90+7 89+8

AIC 8+9 9+4 9+5 40+5 40+5 40+5 33+5 33+9 33+2
SC 15+6 15+5 16+0 97+7 97+7 97+7 96+1 95+7 95+9

T 5 200
AICAIC 13+9 14+1 14+3 41+3 41+3 41+3 36+4 36+5 36+6
SCSC 25+5 26+8 25+8 99+3 99+3 99+3 98+5 98+4 98+3
l tr 17+4 17+7 18+5 94+6 94+6 94+6 90+9 90+8 90+4
ltr
* 17+9 18+2 18+9 94+7 94+7 94+7 92+2 91+9 91+7

AIC 15+2 15+5 15+4 41+9 41+9 41+9 37+5 37+7 37+9
SC 34+3 34+1 34+3 99+3 99+3 99+3 98+9 98+8 98+8

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAIC, SCSC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! and the one-step AIC
and SC procedures+ The DGP is a bivariate VAR without cointegration relations+
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Table A.4. Performance of IC and trace tests for cointegrating rank:
u 5 20+8, Simulation II

r 5 0+5 r 5 0+85 r 5 1+0

h 5 0+0 h 5 0+5 h 5 0+0 h 5 0+5 h 5 0+0 h 5 0+5

T 5 300
AICAIC 25+8 30+9 26+1 30+9 17+6 17+1
SCSC 36+6 48+4 21+8 28+1 41+2 42+9
ltr 29+2 39+2 29+0 38+6 27+4 28+2
ltr
* 29+3 39+4 29+3 38+9 28+0 28+9

AIC 26+4 31+6 26+6 31+5 18+5 18+0
SC 40+4 52+2 22+7 28+1 50+2 50+3

T 5 500
AICAIC 29+3 33+9 29+0 33+1 21+0 20+1
SCSC 55+1 65+7 53+0 64+6 64+3 64+8
ltr 41+6 51+6 41+8 52+2 41+1 41+5
ltr
* 41+7 51+8 42+0 52+5 41+7 41+9

AIC 29+4 34+0 29+2 33+3 21+3 20+4
SC 57+9 68+8 55+5 67+5 70+4 70+6

T 5 1,000
AICAIC 28+7 34+6 28+5 34+1 20+7 19+4
SCSC 76+0 83+6 75+9 83+6 85+4 85+6
ltr 57+1 66+5 57+2 66+6 58+2 57+9
ltr
* 57+3 66+6 57+4 66+8 58+6 58+4

AIC 28+7 34+7 28+5 34+1 20+8 19+4
SC 77+2 84+8 77+5 85+0 88+1 88+0

Note:Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAIC, SCSC, trace test~ltr!, and small sample adjusted trace test~ltr

* ! and the one-step AIC
and SC procedures+ The DGP is a bivariate VAR~equation~10!!+
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