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A MONTE CARLO STUDY ON
THE SELECTION OF
COINTEGRATING RANK USING
INFORMATION CRITERIA

Z1IJUN WANG AND DAaviD A. BESSLER
Texas A&M University

We conduct Monte Carlo simulations to evaluate the use of information criteria
(Akaike information criteriof AIC] and Schwarz information criterioi8C]) as

an alternative to various probability-based tests for determining cointegrating rank
in multivariate analysisFirst information criteria are used to determine co-
integrating rank given the lag order in a levels vector autoregresSiecond
information criteria are used to determine the lag order and cointegrating rank
simultaneouslyResults show that AIC has an advantage over trace tests for cointe-
grated or stationary processes in small sampM€ does not perform well in
large samplesThe performance of SC is close to that of the trace ®6tshows
better large sample results than AIC and the trace é&sh if the series are close

to nonstationary series or they contain large negative moving average compo-
nents We also find evidence that supports the joint estimation of lag order and
cointegrating rank by the SC criteriowe conclude that information criteria can
complement traditional parametric tests

1. INTRODUCTION

Cointegration of time-ordered observational data has received considerable atten-
tion in the past decad&arious procedures have been proposed in the literature
to determine cointegrating rankhey include single equation methods such as
the Engle—Granger residual-based t&sigle and Grangei987) and the ECM
test of KremersEricsson and Dolado(1992. Recently empirical researchers
have relied more on multiple-equation or system-based mettiadexample
the principal components test of Stock and Wat$b888, Johanser(1988
1991), and the likelihood ratio test of Ahn and Reing&b90 based on canon-
ical correlation analysis

Because these parametric test procedures are probability;besedre likely
to have problems of low power and size distortions wHen example errors
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(innovation$ are not independent and identically distributedd.) or the series
are close to nonstationary ond3odivinsky (1990, Cheung and Lai{1993,
Toda (1995, Haug (1996, and Gonzalo and Pitaraki2999 provide simula-
tion evidence that these tests may either over- or underspecify cointegrating
rank especially in small(finite) samplesAn alternative to the preceding para-
metric procedures is to consider various information critéi@) in determin-

ing rank restrictionsThis application of the model selection approach was
first suggested and implemented in Phillips and McFarlét2B7). For prac-
tical purposesmodel specification ultimately involves a trade-off between model
parsimony(complexity) and fit given the fact that the true model is rargiy
ever known As various IC take into account both model fit and parsimony
they have become increasingly important tools for specifying modelpar-
ticular, they now have a rich history in selecting lag order in both univariate
and multivariate modelingBecause the determination of cointegrating rank
is essentially a model specification problem just like the lag order seledtion
is quite natural to consider IC in the determination of cointegrating (&xkl-

lips, 1996.

An advantage of IC over traditional probability-based test procedures in deter-
mining rank order is that researchers are exempt from first having to select an
“appropriate” significance level to implement a test procedaithough a 5%

(or perhaps a 10%significance level is “traditionally” chosen as a benchmark
such a choice may generate concefffisr example Maddala and Kim(1998

ch. 6) suggest that researchers should be more conservative in testing for a unit
root, that it may be better to use the 25% level instead of the 5% .|&wether-
more to many empirical researchei@s argued by Maddala and Kjrithe goal

of cointegration tests is not to uncover ttrae numberof cointegrating rela-
tionships per se but rather to have a useful guide in imposing restrictions on
vector autoregressiofVAR) models and error correction moddlECM) that

may lead to more efficient estimation and improve forecasting performance
(p. 233). When forecasting performance of a model is of interelgarly both

fit and complexity have to weigh in at the same time

Another attractive feature of using IC is that it allows researchers to conduct
cointegration analysis within a single stépstead of a two-step proceduiss
is well known the choice of lag order in a VAR has an important impact on the
cointegration test performande.g., Boswijk and Frasnesl992. However
because choices of lag order and cointegrating rank are two separate steps in
application of the trace test and other probability-based procedtis®ssen-
tially impossible to comment on the underlying probability distribution of the
final results In contrastit is possible to determine the lag order and cointegrat-
ing rank in one step by minimizing an IC over a domain of models with differ-
ent lag orders and cointegrating ranks

Phillips (1996 formally shows how cointegrating ranlag length and trend
degree in a VAR can be jointly determined using the model selection method
Gonzalo and Pitaraki€l 998 evaluate both the theoretical and applied proper-
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ties of the model selection approach for the estimation of the cointegrating rank
given lag orders in the model&znar and Salvado2002 establish the consis-
tency of a general IC that includes the Schwarz information crite/$%) as a
special caseKapetaniog2004) recently derived the asymptotic distribution of
the cointegrating rank estimator based on the Akaike information critéAism).
He shows that the estimator is inconsistentesult similar to that found when
AIC is used as a tool for lag order selectidior the purpose of model specifi-
cation in a(partially) nonstationary frameworkesearchers have also proposed
other IC For exampleextending the analysis of Phillips and Ploberge®96),
Chao and Phillipg1999 show the consistency of the posterior information cri-
terion(PIC) in the joint determination of cointegrating ranks and VAR lag arder
They also provide Monte Carlo evidence that shows that PIC performs at least
as well and sometimes better than SC and AD@ the empirical sidePhillips
and McFarland1997) use the SC criterion to jointly estimate the lag order and
cointegrating rank in the VAR analysis of the Australian exchange manaatg
and Bessle(2002 apply a similar procedure in studying.®) meat demand
systems

The goal of this paper is to provide more comprehensive evidence on the
performance of the model selection appro&th) in cointegration analysis
We conduct three Monte Carlo simulatiori$he design of the first simulation
borrows from Toda(1995. Here we provide evidence on the performance of
the two widely used IC procedureSC and AIGC in testing the cointegrating
rank when the lag order of the VAR is knowin the second simulatigemploy-
ing a data generating proced3GP) used by Haug1996 and otherswe eval-
uate the performance of IC in determining the lag order and cointegrating rank
simultaneouslyThese two DGPs allow us to investigate the test performance
under a great variety of model specificatipimcluding moving average com-
ponents closeness to a unit raotorrelation between innovationand so on
The third simulation evaluates the use of IC in a laydiee-variable system
Throughout the papgemwe pay special attention to the small sample perfor-
mance of the approaclas it is probably more relevant to many macroeco-
nomic seriegthe sample size considered by Gonzalo and Pitard®88 and
Chao and Phillips1999 is at least 150

For comparison purposewe also examine the performance of Johansen’s
trace testwhich is chosen for its current popularity in empirical applicatibns
Recently Johanseri200Q 2002 has proposed the use of so-called Bartlett cor-
rection to improve the small sample performance of the traceltestiis paper
we will have an opportunity to see how the correction factor fits into the sim-
ulation models

The paper is organized as followSection 2 briefly discusses the basic model
the trace test statistiand the AIC and SC formula$ection 3 reports the first
Monte Carlo simulation result§he design and results of the second experi-
ment are summarized in the fourth secti®ection 5 offers a real life example
and simulation results corresponding toAitshort summary concludes the paper
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2. THE MODEL AND TEST STATISTICS

The basic model is am-dimensional VAR modelUsing conventional nota-
tion, the model can be described as

Z=AZi gt FAZL Tt ey, t=1...,T, 1)

wherez; is anm X 1 vector of time serigg;_,,...z_p, are 1 up top lags ofz,
g are ii.d. random variates following multivariatsd(0, ) with 3 being posi-
tive definitg A,,..., A, are conformable parameter matricasdw is anm X 1
vector of parameter§he error correction form ofl) is

Azy =T1AZ g+ - + 1,107 o T 11Z + pt gy, t=1,...,T, (2)
with

L[ =(AtALt - +tA), fori=12,...,p-1

and

M=—(p—A—Ay— - —A).

The hypothesis of cointegration in the vector procgssan be formulated as
testing the rank of th&l matrix (Johansen1988 1991). When the null hypoth-
esis is that the cointegrating rankristhe trace test statistic\,,) is given by

Ag=—T ﬁ In(1-A;), ®3)

i=r+1

wherer is the cointegrating rank order angdis theith largest eigenvalue related

to theIl matrix The sequential tests start from the null hypothesisO (namely

all eigenvalues are O'slf this hypothesis is rejectedne continues to test= 1

and stops testing the first time the hypothesis is not rejected orraften — 1.

For 0 <r < m, z is a cointegrated processtherwisg it is nonstationary if

r = 0 (or stationary ifr = m). The asymptotic distributions of the trace statistic

are affected by the assumption on the time trend in the protfeb® constant

in (2) is restricted to the cointegration spatiee process contains a stochastic

trend If it is unrestricted then the process contains both a linear time trend and

a stochastic trend\lthough other assumptions on the time trend have also been

consideredJohansen1996, these two are used most often in applied studies
The small sample correction for the preceding test statistic proposed by

Johanseit200Q 2002 is of Bartlett type The idea is to approximate the expec-

tation of the likelihood ratio test statistic and to thereby correct it to have the

same mean as the asymptotic distributidine correction factor depends on

moments of functions of the random walk and functions of the paramédtees

exact formulas and coefficients necessary to compute the factor can be found

in Johanseri2002.
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We examine the performance of two widely used IC in the simulatidis
(Akaike, 1973 and SC(Schwarz 1978.2 They are computed according to the
following equations

AIC = In(det(2)) + 2K/T, (4)
SC= In(det(2)) + KIn(T)/T, (5)

where? is the maximum likelihood estimate of the variance-covarianasf
the innovation e;'s) andK is the number of free parameters in the modiich,
other things being equahcreases with the lag ordép) and the cointegrating
rank(r) assumed in the modérlhe first term in equationg&}) and(5) is the log
determinant ofS, which measures lack of fit of the modélhe second term
penalizes overparameterization of the modiels clear from(4) and (5) that
SC punishes model overparameterization more than AIC for sample sizes equal
to or larger than eight

Clearly the IC method and the trace test are closely relatéey both con-
dition on the feature of matriki. The trace test detects the rankibby testing
the statistical significance of the eigenvalues related.tdhe IC method deter-
mines cointegrating rank by balancing the benefit and cost of adding additional
restriction vectorgcointegrating vectopsto the model Specifically if IT has
rankr, it may be written as the product of two matricés= af’, wherea and
B are of dimensiorm X r. We may regard3’z,_, asr linear restrictiong
combinations on right-hand-side variablgs,. If a restriction is trugit must
carry some useful information to explain the variation in the left-hand-side vari-
ablesz,. The more significant the restriction {sorrespondinglythe larger the
associated eigenvaluesdj, the more information it can convely the restric-
tion is true the useful information it contains should be enough to offset its
cost(introducing more parameters to the mgdéC would accept the restric-
tion in this caself, on the other handhe restriction is insignificant or false
the information it carries cannot offset the cd§& would reject the addition of
such a restriction

3. MONTE CARLO SIMULATION I

In this section we investigate the sampling properties of AISC, and two
forms of the trace test in determining the cointegrating rank of mddelssum-
ing the lag order is knowrilo this end Toda(1994 1995 shows thatwithout
loss of generalitywe can study a “canonical form” mod&Consider the fol-
lowing m-dimensional process

w. 0 v 0 Wy €
wo=( )= n R (M), t=12,..0T,
Wa ¢ O€m— 0 I Wo, t—1 €2t

(6)
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where the dimensions of;, wy , andw, , arem, r, and(m — r), respectively
8 is a nonnegative scala,, , = (0,...,0,1)" is an(m — r)-dimensional vector
all eigenvalues of? lie inside the unit circleand finally

e I 0
) ~iidN(of :
€o.t () Imfr

Clearly the subvector process, . is stationary andv, ; is nonstationaryThey
are correlated by a matri®. The processy, ; also contains a linear determin-
istic trend unles$ = 0. Following Toda(1995, we consider a bivariate VAR).
There are three possibilities in regard to the cointegration relations of BGP

First, if r = 0, that is (6) contains only nonstationary componeriteen model
(6) simplifies to

W, = 06, + W,_; + g (7)
ande; ~ i.i.d. N(Q, 1,). In (7), the only parameter i8.

Secondif r = 1, (6) becomes a cointegrated process with the following explicit
form:

Wa, t 0 0 1/\Wy1 €2t
and

(o) -uan(e(5 3))

where|y| < 1 and|g] < 1.
Third, if r = 2, (6) becomes a stationary process

W, = YW,y + g, 9

whereg; ~ i.i.d. N(O,l,) andW¥ is further assumed to be diagonal

- (wa 0
0 )’
where|y,| < 1 and|y,| < 1.

In this and the next simulatigrwe examine the IC performance for four
sample sizes30, 50, 100, and 200 The number of replications for each sample
size is 5000. Following tradition for each replication we generate an addi-
tional 50 random observations to eliminate start-up efféi@da (1995 explic-
itly considers the impact of starting valueswf on the test performancé is

clear from his reported results that the relative performance of the trace test
does not change significantly for three different sets of starting valieesave
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spaceand also to follow traditionwe only report the simulation results using
Wy = 0 in all cases

The results reported in Table 1 are based on OD®Pa nonstationary pro-
cess without cointegration relatioris = 0). Each entry is the percentage of
times the four test proceduresIC, SC, trace test(\), and the small sample
adjusted trace te$i\},) of Johanseri2002, correctly determine the cointegrat-
ing rank of the simulated dafawhen the sample size is sm&B0) and the
DGP has no linear tren@ = 0), the AIC correctly finds the cointegrating rank
(r = 0) only 393% of the time The performance of SC is much bet{86.1%).
The probability that SC chooses alternative models with 1 andr = 2 is
12.2% and 17%, respectivelywhereas the numbers are.3% and 214% for
AIC (not reported in the tabJeThe resultthat AIC tends to choose more com-
plicated modelgin this casemodels with higher cointegrating rankhan SC
is as expectedThe trace testi, selects the correct model in 936 of the
caseswhereas the performance of the small sample adjusted tragerfgst
shows even further improveme(84.3%), close to the test siz@ecall that we
use the 5% significance level for the two trace tests throughout the p#taer
clear from the table that the performance of all four procedures deteriorates
when a linear trend is present in the mod&l> 0). The effect of trend on the
two ICs is more noticeable than that on the trace téééverthelessthe results
also show that all tests perform better when the trend signal is sti®nrgl).

TaBLE 1. Performance of IC and trace tests for cointegrating rank
r = 0, Simulation |

AlIC 39.3 272 333 405 293 344

SC 861 709 758 932 828 864

Ay 931 87.9 927 936 891 939

Ay 94.3 891 937 944 899 943
T =100 T =200

0=0.0 0=02 60=10 6=00 0=02 60=10

AlIC 42.2 319 367 424 355 380
SC 976 928 937 995 97.3 974
Atr 941 920 942 943 934 948
Ay 94.2 921 946 945 935 949

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIG SC trace test(A,), and small sample adjusted trace tés}) proceduresThe DGP is a bivariate
VAR (1) without cointegration relations
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The performance of SC improves considerably when the sample size increases
For examplewhenT = 50, the frequencies with which it correctly identifies
the rank are 92%, 82.8% and 864% whené = 0.0, 0.2, and 10, respectively
At T =100 the success ratios of SC are all larger than 90% for the different
values ofs. When the sample size further increases to, 20 almost always
finds the correct rank99.5%) in the case o = 0. In models with a linear
trend the percentages are also hi§#7.3% or higherIn contrastthe change in
sample size has little impact on Al@vhich confirms that SC is consistent
whereas AIC is not

Using DGP(8), we examine the performance of the four procedures when
the true model is a bivariate cointegrated process withl. We use following
parameter values in the simulatiods= 0.0, 0.2, and 10, s = 0.8 and 09, and
0 = 0.0, 0.4, and Q8 (results based on negatideare omitted because they are
very close to their positive counterpatt$able 2 contains the simulation results
for two small sample size§ = 30 and 50Clearly, all four procedures perform

TaBLE 2. Performance of IC and trace tests for cointegrating rank
r=21 T = 30, 50, Simulation |

6=0.0 0=02 6=10

/=00 6=04 6=08 6=00 6=04 6=08 #=00 6=04 6=08

T=30, ¢=08
AIC 405 426 482 422 433 491 630 648 700
SC 144 154 366 238 260 427 294 322 542
Ay 7.8 904 274 93 104 225 90 102 248
XL 6.6 83 265 84 96 237 84 94 248

T=30, ¢=09
AIC 386 392 411 402 403 442 555 564 603
sC 113 116 182 208 210 257 233 241 300
A 6.0 67 131 78 74 101 71 70 102
X 55 62 126 74 73 107 63 63 100

T=50, ¢=08
AIC 474 490 530 508 530 572 740 753 769
scC 118 159 564 261 312 629 307 362 738
\¢ 125 161 567 148 184 497 145 187 567
X, 113 152 569 143 179 512 137 175 566

T=50, ¢ =09
AIC 407 407 444 436 451 525 604 611 670

SC 7.0 79 206 151 167 294 165 182 340
At 6.4 7.7 222 8.0 85 176 7.1 7.9 191
At 59 7.1 223 7.8 8.6 193 6.7 7.7 197

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIG SC trace test(A,), and small sample adjusted trace tés}) proceduresThe DGP is a bivariate
VAR (1) with cointegrating rank of 1
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poorly in small sample sizetn models withd = 0.0 andé = 0.0, namely no
correlation between the stationary and nonstationary components and no linear
trend A, makes the correct rank choice only8% of the time(the small sam-

ple correction actually leads to slightly worse performai@@%). The success
ratio of SC is higher but still low(14.4%). AIC performs best in this case
When the two component series are more closely reldeaderd), the perfor-
mance of all procedures improvéghe frequencies that SC ang find correct

rank when# = 0.8, increase to 36% and 274%, respectivelyThe presence

of a linear trend in the data appears to have different impacts for IC and the
trace testsCompared to the results whén= 0.0, the performance of SC when

6 = 1.0 improves considerabl§29.4% vs 14.4%), whereas AIC’s performance
also increases to 886. The numbers remain small for both, and A3, (9.0%

and 84%). As in the model withd = 0.0, the test power increases for larger
correlation(6 = 0.8 andé = 1.0). And SC (54.2%) still leads the trace tests
(24.8%).

The second part of Table 2 repeats the preceding simulations with the auto-
regressive coefficient further approachingyd= 0.9). Not surprisingly all four
test procedures are less poweyfag the stationary component is now closer to
a nonstationary componerin the case o = 1 and# = 0.8 (the rightmost
column), SC concludes with zero or two unit roots.@% (100% — 30.0%) of
the time even if the true model has only one unit roehereas the trace test is
more likely to err(about 90%. Correcting for small sample bias does not help

The results in the third and fourth sections of Table 2 are based on the slightly
larger sample size of 50n general all proceduresespecially SCA,, and A},
perform better whews = 0.8 in the DGPThe improvement is obvious f@r =
0.8. The procedured,, andAj, now have similar power as SC in models with-
out linear trendsNeverthelessat this sample sizeAIC and SC are still better
choices than are the trace tests when a linear trend is presen0). Compar-
ing the results in the fourth section with the second sectigm find that the
increase ofT from 30 to 50 does not lead to much improvement on perfor-
mance for any of the four testsf = 0.9 with the exception o = 0.8.

Results in Table 3 are also based on D@Pusing a moderate sample size
of 100 and a larger size of 200henT = 100, both A, and A}, outperform SC
in the model withs = 0.0 but are outperformed by the lattewit= 0.0. Although
the performance of AIC is primarily affected By the correlation coefficiert
is an important factor in determining the performance of $C and A, given
Y. For examplewhen & = 0.0 or 04, andy = 0.8, all procedures perform
poorly, even when the sample size is 100 contrast all perform quite well
when the two innovations are strongly correlatétie low power of the test
procedures against largeis still evident whenT = 200. If = 0.8, all four
procedures perform weléxcept AIC in the models with = 0. Whenys = 0.9,
the performance of SQ\,,, and A}, deteriorates significantlflower than 60%
in models with low correlationsThese three procedures perform equally well
(around 90% when# = 0.8; in other casesA, and A}, outperform SCNotice
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TaBLE 3. Performance of IC and trace tests for cointegrating rank
r=1 T =10Q 200, Simulation |

6=00 0=02 6=10

=00 #=04 6=08 6=00 6=04 6=08 #=00 #=04 6=08

T=100 ¢ =08
AIC  57.2 577 563 671 667 659 835 832 803
SC 223 344 913 509 620 873 555 672 947
A¢e 379 500 930 453 553 833 473 603 919
Xi 373 494 941 449 551 848 465 594 929

T=100 =09
AIC 459 486 544 599 615 654 745 764 778

SC 45 6.7 421 153 193 575 161 210 622
Ay 119 152 557 136 17.3 509 130 169 553
At 119 151 567 133 171 524 127 167 561

T=200 =08
AIC 583 577 581 751 753 746 844 842 822
SC 747 889 974 928 944 946 956 971 974
Ay 907 937 949 889 897 901 937 945 940
AL 907 941 955 892 900 907 938 947 943

T=200 ¢ =09
AIC  56.7 574 567 751 754 740 847 841 805
sc Q2 176 880 349 479 928 354 487 954
A¢ 353 485 929 445 572 887 452 586 925
X; 353 486 941 443 573 899 449 584 931

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIG SC trace test(A,), and small sample adjusted trace tes}) proceduresThe DGP is a bivariate
VAR (1) with cointegrating rank of 1

in the fourth section of the tablgs = 0.9) that the power of SC is extremely
low whené = 0.0 andé is small even at the sample size of 209.2% and
17.6% for & = 0.0 and 04, respectively. In additional simulations we con-
ducted(not reported in detail hejgonly when the sample size increases to 400
does the ratio increase to 52% and1P6. These percentages increase talv®
and 934% whenT = 500

Table 4 contains simulation results assuming the DGP is a stationary process
(equation(9)). The parameters that affect the distribution of the test statistics in
this model are the two autoregressive coefficigfas which we useap, = 0.5,
0.7, and Q9 andy, = 0.7, 0.8, and Q9. In small samplesAIC performs much
better than SCAy, and Aj.. SC outperforms\,, and A;, whenT = 30 but does
not outperform them whem = 100. The later three procedures perform simi-
larly whenT = 50. As before the power of the procedures decreases as the
series considered approach nonstationary procégsesd/or i, approaches)l
For examplethere is a high probabilityabout 70% that SC A, and A}, con-
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TaBLE 4. Performance of IC and trace tests for cointegrating rank
r = 2, Simulation |

Ya =05 o= 0.7 a= 0.9

l/lb =07 l/lb =028 l/lb =09 l/lb =07 lllb =028 l/fb =09 l/!b =07 l,bb =038 l,bb =09

T=30
AIC 97.7 915 776 947 87.3 737 725 667 567
SC 825 662 468 632 492 343 339 260 188
Ay 72 546 358 505 366 237 240 172 115
Ay 69 518 336 468 334 212 216 152 9.7
T=50
AIC 99.9 990 880 998 986 87.7 87.2 841 726
SC 982 87.1 57.3 893 729 444 448 313 177
At 984 881 585 905 749 463 468 336 191
Ay 982 873 572 893 729 441 448 313 175
T =100

AlC 100.0 1000 989 1000 1000 990 987 986 962
SC 1000 997 808 10Q0 993 793 794 663 320
At 1000 999 894 1000 999 893 895 837 558
Ay 1000 999 890 10Q0 998 886 889 827 538

AIC 100.0 10Q0 1000 10Q0 1000 10Q0 1000 10Q0 10Q0
SC 1000 1000 991 1000 1000 991 991 990 839
Ay 1000 1000 999 1000 1000 999 999 999 990
A 1000 1000 999 1000 1000 999 999 999 989

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the AIG SC trace test(Ay), and small sample adjusted trace tesf) proceduresThe DGP is a stationary
bivariate VAR(1).

clude that the DGR9) is nonstationarywithout cointegration relationsvhen
T = 50 andy, = ¢, = 0.9 (not reported in the tabJeFinally, if T increases to
200, all procedures work well even fa¥, = s, = 0.9 (the lowest score is SC’'s
83.9%).

We end the discussion of the first simulation by noting that the trace test
tends to perform quite well for the cases where the DGP is of full fark 2).
This is not surprisingas Johansefl1992 has shown analytically that the prob-
ability of overestimation of rank does not go to zero if a fixed significance
level is used in the sequential trace tebtewever in the full rank DGP(r = m),
it is impossible to have overestimation in the trace,testich helps explain the
good performance of the trace tests in this mo&éhilarly, as mentioned in
the Introduction AIC is also inconsistent and overestimates the cointegrating
rank This explains why AIC does quite well for models with= 2 although
performing poorly in other casés
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4. MONTE CARLO SIMULATION Il

As discussed in the Introductiphoth the lag order determination and the test
of cointegration relations in a multivariate model relate to model specification
In the preceding simulationgve have assumed that the lag order of the DGP is
known which is rarely true in empirical studigd/hen the lag order is unknown

the practice is to determine the lag order first using either IC or sequential like-
lihood ratio testsIn the second staga parametric test such as is used to
determine the cointegrating rank conditional on the lag order chosen in the first
stage In this sectionwe examine the performance of AIC and SC when they
are used to determine the lag order and the cointegrating rank simultaneously
For the purpose of comparisowe also implement the two-step procedure to
the new DGPThe new DGP again includes two setigsandx;. Specifically

the DGP is described by the following equations

Yo = Xi = Uy
ar Yy + X = i,
Uy = pug t W,
=1t pos

Pt =@t 0o 4,

and

JoserfE) )

Many researchers have used DGPs similafltd. A short list includes Baner-
jee Doladg Hendry and Smith(1986), Engle and Granget1987), Blangie-
wicz and Charemz&1990, Hansen and Phillip$1990, Gonzalo(1994), and
Haug (1996. To examine the impact of the model parameters on the test per-
formance we use the following values in the experimends = (0, 1), p =
(0.1, 0.3, 0.5, 0.7, 0.85, 0.9, 0.95, 1), # = (—0.8, —0.5, —0.25, —0.1, 0.0, 0.1,
0.25, 0.5, 0.8), andn = (—0.8, —0.5, —0.25, —0.1, 0.0, 0.1, 0.25, 0.5, 0.8).
Becausgeunlike other cointegrating rank testsoth the IC and trace tests do
not depend on the standard deviation of the second innovation pregess
we fix it at ¢ = 1. Nor, in the case of equatiofil0), do results depend on
whetherx; is weakly exogenou&, = 1) or endogenou&a; = 0) to the system

As before all basic simulations are conducted for four different sample sizes
30, 50, 100 and 200 Tables Al, A.2, and A3 summarize the major results for
p = 0.5, 0.85, and 10, respectivelyln each sectionwe report the performance
of four two-stage procedures and two one-step procedAfes using AIC or
SC to determine the optimal lag order of VARs in the first stage use the
same criterion in the second stage to determine cointegrating beemote this
two-step procedure by AICAIC and SCSK@spectively(they correspond to the

; (10)
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notations AIC and SC used in Simulation We denote the procedurasg and

i that use the trace and small sample adjusted trace test to determine the
cointegrating rank with lag order chosen by SC in the first stdtgre we
simply use AIC and SC to dengtesspectivelythe one-step procedures that
use AIC and SC to simultaneously determine the lag order and cointegrating

rank

Figures 1-3 are graphical presentations of the simulation results for two sam-
ple sizes(T = 50 and 200. Because the performances &f and A;, are very
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FiGure 1. Performance of IC and trace tests for cointegrating rank with different val-

ues off (givenn = 0), Simulation IL
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FiGure 2. Performance of IC and trace tests for cointegrating rank with different val-
ues ofp (p < 1) (givenn = 0), Simulation IL

similar, and the one-step AIC performs slightly better than the two-step AIC-
AIC for almost all parameters and sample sjze® only compare in each
figure the performances of SCS&,, AIC, and SC

In Figure 1 we examine the impact of the parameteon the test perfor-
mance while fixingn at 0.0 andp at three values0.5, 0.85, and 1 First, we
discuss Figures 1a and.Ibhe DGP is a cointegrated process with a moderate
value onp(0.5). When there is a large negative moving average component
(6 = —0.8) in the DGR all four procedures perform poorlyhe percentages of
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FiGcure 3. Performance of IC and trace tests for cointegrating rank with different val-
ues ofyn, Simulation IL The legends in graph@), (b), (c), (e), and(f) are the same as
those in(d). For ease of readindghey are omitted

correct choices on rank are onlyl%q, 8.7%, 11.1%, and 50% for SCSC Ay,
AIC, and SC respectively when the sample size is smahb0). The per-
formances do not improve significantly if the sample size increases to 200
(Figure 1h.

It is clear from Figure la that a&gets largerall four procedures perform
better although AIC improves relatively slowlywWhen the magnitude of the
moving average componefts small in the DGPthe procedures perform best
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(around 60% When a large and positivg¢ is involved the performances also
deteriorate but are still better than wheis large and negativd he procedure
Ay performs better than both SCSC and SC witbeing large in magnitude
whereas it is outperformed by the latter two for smallin absolute values
The two-step SCSC performs slightly better than the one-step SC féwalk
ues excep = —0.8. AIC is better than SC only fof < 0.5. WhenT increases
to 20Q SCSC Ay, and SC can correctly find the rank in 90% or more of the
casesunless the DGP has a large and negative moving average compbnent
contrastAIC’s performance always falls below 60% for @ll The one-step SC
performs slightly better than the two-step SCSC over the entire range of
although the difference is smaller férnear or at zeroThe percentages for
both procedures are also slightly higher than thosg,oNeverthelessconsid-
ering that the significance level of 95% is used for thetest their perfor-
mances can be labeled as similar

Results summarized in Figures 1c and 1d are also based on a cointegrated DGP
with rank 1 but here the process is closer to a nonstationary one without coin-
tegrations(p = 0.85). In this caseall procedures are less powerful than they
are in the models witlp = 0.5 (Figures 1a and Jbfor corresponding model
parametersThe exception is that all test procedures perform much better when
0 = —0.8 for sample sizes smaller than 1@0so note in Figure 1c that SCSC
Aw, and SC perform worst whemis around Qwhich is the opposite of the pat-
tern found in Figure laFigure 1d shows that the performances of the model
selection approacheSCSC and SCappear more sensitive than the trace test to
the magnitude op (especially when the correlation between the innovatipns
equals zerpas in the graphs For examplewhen§ = 0.8, A,’s performance
decreases from 99% in Figure 1b where = 0.5 to 6Q3% in Figure 1d with
p = 0.85. At the same timgSC’s performance decreases from™@5 to only
26.0%. In contrast the impact of changing from 0.5 to 0.85 on AIC is quite
small AIC also performs better than SCSC and SC for ntogalues

Whenp =1, DGP(10) is a nonstationary process without cointegration rela-
tions Figures 1e and 1f summarize the cointegration test performances of the
four procedures under this assumptidtirst, the two graphs show that SCSC
Aw, @and SC are much more powerful when the true model is a nonstationary
process without cointegration than for the cointegrated process summarized in
Figures la—d if the model contains either no moving average or positive mov-
ing average componentSecondthe one-step SC consistently performs better
than the two-step SCS@specially for large values #fwhenT = 50. SC also
outperformsA, whenT = 200

Figure 2 offers more details on how the test performances change over param-
eterp by fixing 6 at —0.8, 0, and Q8. Here the DGP is cointegrated with rank 1
(0< p <1).For6 = —0.8 (Figures 1la and Jbthe power of all four proce-
dures in finding correct rank is low for small or moderatevalues Per-
formances improve when the DGP is closer to a nonstationary prdgess
approaches )L When T = 50, AIC performs bestfollowed by SG A, and
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SCSC in orderfor p = 0.1 and 03. However for largerp, Ay is the best pro-
cedure When the sample size is lard200), the one-step SC finds the rank
most accurately fop up to Q7. As Figures 1c and 1&8CSC Ay, and SC work
quite well for smallp when# = —0.8 and 0 This is true even if the sample
size is only 50(Figures 2c and 2eThe performances of SCSQ@,, and SC
quickly deteriorate ap gets largerWhenp > 0.7, all tests perform poorly
even if T = 200, althoughA,, does better than SCSC and .SC

So far in both Figures 1 and %e have maintained the assumption that fun-
damental innovations in the DGPs are not correldige 0). Figure 3 provides
evidence on whether the test performances also varysvikirst, the U-shaped
patterns in Figures 38c, and 3e indicate thafor the cointegrated procesal
procedures perform better when the fundamental innovations are correlated than
when they are notespecially when eithef is 50 or§ = —0.8. At the same
time, the sign of the correlatiof matters little that is the impact ofy is sym-
metric. Secondfor nonstationary proces® = 1), the effect off is either small
(# = —0.8 in Figure 3b or essentially zer¢d = 0.0 in Figure 3¢ 0.8 in Fig-
ure 3f). The bell-shaped curves in Figure 1b indicate that all procedures per-
form better when the fundamental innovations are not correlated than when
they are correlated

Before ending presentation of Simulation We turn to the Appendix tables
for some interesting results that are not seen in the preceding giEipstswe
note that some of the results in Table2fare comparable to those of Haug
(1996. In our simulations withd = 0.0 andT = 100, the power ofA,, is 37.1%,
22.1%, and 353% forn = —0.5, 0.0, and 05, respectivelywhich are slightly
higher than the maximum eigenvalue t€at,.,(SC)) results(311%, 17.6%,
and 299%) reported in Haug@1996 Table 1 p. 104).° Secongbecause both IC
and the trace tests perform poorly whes —0.8 for all sample sizes consid-
ered previouslywe conduct additional simulations to see how they perform
under larger sample sizeBhe simulation results are tabulated in Tabld.A\s
expected from the consistency of the SC criteyiooth SCSC and SC do better
than A. For examplewhenT = 1,000, the performance of SC is better than
77% whereas the performance af; is always less than 67%AIC’s perfor-
mance is only about 35% at begthird, comparing the results in Table 1 for
6 = 0.0 with those in Table &8 under the colum® = 0.0, we find that the
performance of all procedures is similar in the two Monte Carlo desighis
is because the two simulation designs are quite similar under the current assump-
tions the true DGP are nonstationary processes without cointegration relations
and they include stochastic trends and no moving average components

5. AN EXAMPLE OF THE U.S. HOG DATA AND
MONTE CARLO SIMULATION lii

So fat we have concentrated on bivariate mod@lse purpose of this section
is twofold: first, we provide evidence of cointegration analysis using the SC
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and trace test procedures on a real life exam@econd we conduct a third
Monte Carlo simulation to compare the performance of the model selection
approach with the parametric trace test in a five-variable VAR where the DGP
uses the parameter values estimated from the real example

The data set we analyze contains five variables related to t8ehdg mar-
ket. Specifically we study annual observations from 1867 to 1948 on the farm
wage ratehog supplyhog price corn price and corn supplyThese data were
first edited and studied by Quenouil{@957 pp. 88—101. He logarithmically
transformed each variable and linearly coded the.l&gveral other authars
including Box and Tiao1977), Tiao and Tsay(1983 1989, Reinsel(1983,
Velu, Reinse) and Wichern(1986), Reinsel and Vel (1998 ch. 5), and Wang
and Bessle2004), have analyzed these data from various perspectivies
original data are included in Quenouil{&957).

Following Box and Tiao(1977) and Reinsel and Vel§1998 we shift
backward by one period the wage rate and hog pii¢e first implement the
two-step proceduteTo this end in the first step both SC and a likelihood
ratio test are appliedrhey agree on two lagéhe maximum number of lags in
the levels VAR used in the test is fguwhich is also consistent with the afore-
mentioned literatureln the second stepve calculate SC values for= 0, 1,
2,...,5 and A and A}, statistics forr = 0, 1, 2,...,4, respectivelybased on a
VAR (2) model The results are presented in section A of Tahl&& compar-
ison we also reproduce the likelihood ratio test statistics of Reinsel and Velu
(1998 in Table 5 SC is minimized atr = 2, the same choice based on the
other three parametric tesSection B contains SC values for all combinations
of lag order and cointegrating rartp =0, 1, 2, 3,4;r =0, 1, 2,...,5). Again,

SC is minimized at = 2 andp = 2. Therefore in this examplethe one-step

SC agrees with the four two-step procedures in choices of both the order of
autoregression and the cointegrating rafke one-step results are also illus-
trated in Figure 4where the surface of SC values against possgbiend

r values is displayed in Figure 1la and a cross-section of the surfgte-dt

in Figure 1b(wherep is the number of lags in the ECMvhich, of coursg is
p=p—1.

Assumingp = 1 andr = 2, the parameter estimates of the hog daising
notations in mode(2), are as follows

o = (159033 —421.906 —142852 106623 —10.688),

~0.133 —0.062
0328 —0.177
. 1.000 —2.824 1580 Q370 1370
fi=| 0059 —062 < )
2169 1000 Q342 —1.142 —1.264
~0055 Q277
0.004 —0.107
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TaBLE 5. Determination of the cointegrating rank for Quenouille’s

U.S. hog data
Reinsel and Velu
Trace statistics likelihood ratio
SC Trace statistics (adjusted statistics
A: Two steps(assume = 2)
r=0 40781 138773(68.681) 124.938(68.681) 1429 (711)
1 40241 58797(47.208 53.909(47.208 617 (49.4)
2 40.204 25.655%29.376) 24.067(29.376) 30.2 (317)
3 40263 8437(15.340 8.006(15.340 105 (180)
4 40323 Q033 (3.84)) 0.029 (3.841) 0.04 (8.16)
5 40379
p=1 2 3 4
B: One step(SC)
r=0 40769 40781 40974 41418
1 40540 40241 41060 41567
2 40287 40.204 41,138 41698
3 40326 40263 41208 41812
4 40362 40323 41248 41852
5 40415 40379 41305 41906

Note: Numbers within parentheses are critical values at the 5% significance Teweltrace test critical values
are from Hansen and Juseli(®995 Table B3, p. 81). Reinsel and Velu’s likelihood ratio test results are from
Reinsel and Vely1998 Table 53, p. 149. The bold number in the SC column represents the minimum SC
among all possible rank ordefand all lag orders in the VAR in the one-step proceglufée bold numbers in
the columns Trace statistic§race statistic§adjusted, and Reinsel and Velu likelihood ratio statistics are the
statistics at which the null hypothesis of the cointegrating rank equals the specified value fails to be.rejected

Fl =

M>
Il

—0.165
—0.195
0.154
—0.267
0.148

550,705
—368370
308664
—175909
192249

—0.345

Q496
Q417

—0.327

Q092

0291 0234 Q243
—0.275 —-0.312 Q493
—0.076 -0.172 0252

Q039 -0.319 0289

Q030 -0.014 Q360

—368370
3843067
1811162

362860

1145455

—4,796441

308664  —175909
1811162 362860
9655385 —4,796441
4974835
1687970 105510
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47.542.0

sc values

40.541.9

SC values
40.5

40.0

@) 1 2 3 4
Cointegrating rank (r)

(b)

FiGure 4. SC valueslag ordey and cointegrating rank of Quenouille’s®) hog data

(a) Plots the SC values for different values of cointegrating ramd autoregressive
orderp in the hog model(b) Plots the SC values for different values of cointegrating
rankr givenp = 1.

Assuming the DGP in equatid2) is described by these parameteve pro-
ceed with the third simulation as followfrst, sequences ofiid. standard nor-
mal random numbers are generatsecondthese pseudo numbers are multiplied
by a factor of variance and covariangeto derive sequences of multivariate
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normal errorginnovations(following Doan 1996 p. 10-2). A random sample
is formed with these generated errors and the preceding parameter matrices
according to equatiofR). Repeating the previous procesg obtain 5000 ran-
dom samples

Table 6 summarizes the IC and the trace test performance based on the pre-
viously simulated sampless in the first two bivariate model simulationthe
performance of the one-step and two-step AIC procedures is wbarh reflects
the fact that these procedures are known to be inconsist@et performance
of SC is similar to that ofA, for all sample sizesin this large systemA;,
performs significantly worse than, when sample size is 30 and.50his is
similar to the finding in Johansef2002 that the power function of the trace
test is actually shifted down by the correction factor in the simulation on the
Danish dataSC correctly determines the cointegrating rank280 of time in
the one-step procedure wha@n= 30, which is lower thani,'s 46.2%. How-
evetr when the sample size is larger than, file two methods perform simi-
larly. The right half of Table 6 also includes the performance of AIC and SC in
finding correct lag order and cointegrating rank in the one-step procdexept
when the sample size is sma&ll = 30), both IC criteria appear to be able to
find correct ranks if they can find correct lag ordécomparing the last two
columns with the two to their left

TaBLE 6. Performance of IC and trace tests for cointegrating rank
Simulation based on Quenouille’s %) hog data

Correct choices

Correct choices of of bothp andr
Two-step One-step One-step
AICAIC SCsC Atr A AIC SC AIC SC
T=30
7.5 404 462 216 0.7 302 0.2 143

T=50

121 628 64.7 475 104 594 91 510
T=100

16.7 952 899 921 172 94.9 169 948
T =200

197 988 923 936 195 987 194 987
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6. SUMMARY

Information criteria are widely used in selecting the lag order of time series
models In this paperwe investigate whether they are also useful in the cointe-
gration analysis by conducting three separate Monte Carlo simulatdmsum-
marize the major findings as follows

First, the design of the first simulation is of “canonic fofmvhich is invari-
ant to the nonsingular transformation of the original seffé®e second simula-
tion design allows investigation of the test performance under more detailed
assumptions on model specificatio@mulation results from these two differ-
ent designs agree when the underlying DGPs are sirtélgr, whenr = 0, or
whenr = 1 in the models free of moving average correlafidrhis suggests that
the DGPs used here are likely to be representative in other cointegration analyses

Secongthe IC approach can either be used to determine the lag order and
cointegrating rank of the VAR in two stepar it can be used to determine them
in one step The one-step AIC in general performs better than the two-step
AICAIC. There is also some gain in using the one-step SC if the underlying
DGP is nonstationary or the sample size is 100 or higher

Third, AIC performs better than SC and the trace tests when the true DGP is
stationary(of full rank). But in most casest converges to true models slowly
in the first simulationIt does not converge in the second simulatidhis result
agrees with the theoretical result that AIC is inconsistent in selecting lag order
or cointegrating rank

Fourth although SC’s performance is close to that of the trace test in most
casesit may perform better than equally as well, @s worse than the trace
tests depending on the presence of linear time tretidsstrength of correla-
tion between two seriegnd the absence of moving averages in the innova-
tions The results show that SC is consistent in the joint estimation of lag order
and cointegrating rankFurthermorewhen the sample size is larger than 100
SC performs at least as well,aand many times better thathe trace test in
selecting cointegrating rank for all model specifications

The simulation based on a five-variable system shows that the IC perfor-
mance obtained from the bivariate models may extend to larger VAR models
In particular the one-step SC still performs quite well in the selection of both
lag order and cointegrating rank if the sample size is at least modéaager
than 50.

To conclude future research could proceed by providing additional simula-
tion and empirical evidence on the IC performance in larger systems and by
considering alternative I1C

NOTES

1. Johansen’s likelihood ratio test can be implemented in two fotmghis study we will use
his trace test statisti@ecause the alternative maximum eigenvalue test has similar power to the
trace testit is not examined here
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2. We also investigated PIC as recently discussed in Chao and PkilB8$). Using the approx-
imation given in their equatio20), we find our Monte Carlo results on PIC close to those dis-
cussed here for SQResults are available from the senior author

3. To make our results directly comparable to the relevant parts of To@@b for this simu-
lation, and those of Hau¢1996 for the second simulatignve deliberately use the same notations
to specify the DGPs as their corresponding sourtesis the same parametefs.g., y and6) do
not have the same meaning in the two simulatiddsfining them in two sections separatelye
hope to minimize the confusion caused by this abuse of notation

4. The actual output contains more specific information on what exact modeD, 1, or 2) is
chosenTo save space here we only report the success ratio for eacima@sély the percentage
that models withr = 0 are chosen in the case of Table 1

5. We thank an anonymous referee for the suggestion to add the discussion in this paragraph

6. Correspondinglythe empirical size of is 1— 0.878= 0.122 wherd = 0.8, n = —0.5, and
T = 100(Table A3), which is also slightly higher than thg,a( SC)’s 0.094 in Haug(1996 Table 3
p. 105), implying more serious size distortion

7. Both the one-step AIC and the two-step AICAIC conclude with the highly parameterized
model(r = 4). To save spacgehe details of these results are not presented in Table 6
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APPENDIX:
TABULAR RESULTS ON SIMULATION I

TABLE A.1l. Performance of IC and trace tests for cointegrating rank
p = 0.5, Simulation Il

6 =-08 0 =0.0 0 =0.8

n=-057=007=057=-057=007n=057n=-057n=00n=05

T=230
AICAIC 154 133 152 513 509 523 444 423 451
SCSC 206 182 224 548 409 563 612 454 623

Ay 46.1 436 458 420 286 430 581 37.8 585
Ay 46.6 441 458 392 251 397 521 298 527
AlIC 18.2 161 181 530 522 540 459 445 465
SC 211 188 219 540 399 5562 509 404 520
T=50
AICAIC 123 9.3 131 552 548 559 504 466 511
SCSC 66 41 71 820 649 812 627 541 630
Ay 131 8.7 131 819 633 817 645 567 649
Ay 134 9.1 134 8038 612 809 598 501 601
AlC 14.5 111 151 561 556 567 515 486 520
SC 72 5.0 7.8 818 64.6 810 539 505 545
T =100
AICAIC  19.0 147 200 568 57.0 57.8 543 539 564
SCSC 146 8.9 154 951 942 94.8 852 810 844
At 157 9.9 164 951 940 946 891 855 887
Ay 158 100 166 953 943 950 885 841 87.6
AlC 21.0 162 222 57.2 575 583 551 550 571
SC 168 109 180 952 942 949 835 799 826
T =200

AICAIC 278 225 287 581 587 57.6 569 565 571
SCSC 350 248 349 97.4 97.2 97.2 964 949 965

At 297 208 297 945 947 945 937 919 937
At 29.9 211 299 948 947 946 942 923 941
AlC 29.1 235 298 583 589 57.7 57.2 57.0 574
SC 393 286 393 97.4 97.2 97.2 965 957 966

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAICSCSC trace tes{A,), and small sample adjusted trace test) and the one-step AIC
and SC procedure3he DGP is a bivariate VAR with cointegrating rank af 1
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TaBLE A.2. Performance of IC and trace tests for cointegrating rank
p = 0.85, Simulation Il

6=-08 6 =0.0 6 =08

n=-057=007n=057n=-057n=007n=057n=-057n=007n=05

T=30
AICAIC 449 447 449 421 424 414 418 424 413
SCSC 723 706 725 159 146 160 376 290 389

At 76.8 712 764 1a7 83 9.8 306 215 314
At 749 680 747 9.2 6.5 8.8 250 150 256
AIC 46.0 463 463 414 415 410 420 427 417
SC 695 683 693 147 133 148 283 223 286
T=50
AICAIC 314 293 314 455 431 450 458 437 442
SCSC 713 704 709 127 8.3 130 277 175 284
Ay 79.9 796 788 129 89 134 284 185 286
Aty 80.2 797 791 124 83 128 247 143 249
AlIC 32.9 308 324 453 427 447 449 431 439
SC 650 67.1 657 124 7.8 125 167 129 17.8
T =100

AICAIC  19.6 160 200 549 522 558 496 476 516
SCSC 4% 430 414 216 102 212 202 114 201

Ay 478 463 471 371 221 353 330 246 320

A 480 469 471 367 217 354 291 215 285

AIC 20.4 172 211 549 522 558 496 47.9 518

SC 372 384 356 215 101 211 145 9.7 143
T =200

AICAIC 275 225 280 574 585 568 57.3 557 561
SCSC 14 110 144 692 368 692 523 280 525

At 259 192 27.0 883 709 885 762 603 771
Ay 259 196 271 885 707 887 748 580 756
AIC 28.6 237 289 576 587 571 576 563 565
SC 131 106 125 692 368 691 450 260 456

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAICSCSC trace tes{A,), and small sample adjusted trace tes}) and the one-step AIC
and SC procedure3he DGP is a bivariate VAR with cointegrating rank af 1
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TaBLE A.3. Performance of IC and trace tests for cointegrating rank
p = 1.0, Simulation II

6=-08 6 =0.0 6 =08

n=-057=007n=057n=-057n=007n=057n=-057n=007n=05

T=30
AICAIC 2.1 23 24 270 270 270 103 112 103
SCSC 44 9.5 4.3 843 843 843 608 651 603
At 105 221 112 913 913 913 730 757 717
A 124 258 132 929 929 929 820 838 809
AIC 35 3.8 38 320 320 320 148 165 149
SC 7.3 123 79 858 858 858 715 741 711
T=50
AICAIC 3.5 35 34 354 354 354 219 225 224
SCSC 31 48 29 931 931 931 810 820 801
Ay 3.4 6.2 35 936 936 936 818 823 808
A 3.6 6.8 38 943 943 943 865 8638 856
AlC 4.9 5.2 50 379 379 37.9 263 269 266
SC 7.6 8.7 6.9 934 934 934 87.0 871 865
T =100
AICAIC 7.4 7.7 7.8 393 393 393 310 311 307
SCSC 101 9.0 104 97.7 97.7 97.7 945 941 941
Ay 8.5 75 86 939 939 939 87.8 883 87.2
A 8.8 8.0 9.0 940 940 940 904 907 898
AIC 8.9 9.4 95 405 405 405 335 339 332
SC 156 155 160 97.7 97.7 97.7 961 957 959
T =200

AICAIC 139 141 143 413 413 413 364 365 366
SCSC 2% 268 258 993 993 993 985 984 983

At 174 17.7 185 94.6 94.6 946 909 908 904
Ay 17.9 182 189 947 947 947 922 919 917
AIC 15.2 155 154 419 419 419 375 377 379
SC 343 341 343 993 993 993 989 988 988

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAICSCSC trace tes{A,), and small sample adjusted trace tes}) and the one-step AIC
and SC procedure3he DGP is a bivariate VAR without cointegration relations
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TaBLE A.4. Performance of IC and trace tests for cointegrating rank
0 = —0.8, Simulation Il

p =05 p =0.85 p=10

n =00 n =05 n =00 n =05 n=0.0 n =05

T =300
AICAIC 25.8 309 261 309 176 171
scsc 366 484 218 281 412 429
Ay 29.2 392 290 386 274 282
X 293 394 293 389 280 289
AlC 26.4 316 266 315 185 180
sC 404 522 227 281 502 503

T = 500
AICAIC 29.3 339 290 331 210 201
scsc 551 657 530 646 643 648
Ay 416 516 418 522 411 415
X 417 518 420 525 417 419
AlC 29.4 340 292 333 213 204
sC 579 688 555 675 704 706

T =1,000
AICAIC 28.7 346 285 341 207 194
scsc 760 836 759 836 854 856
Ay 57.1 665 572 666 582 579
X 57.3 666 574 668 586 584
AlC 28.7 347 285 341 208 194
sc 772 848 775 850 881 880

Note: Each entry is the percentage that the cointegrating rank of the simulated data is correctly determined based
on the two-step AICAICSCSC trace tes{A,), and small sample adjusted trace tes}) and the one-step AIC
and SC procedure3he DGP is a bivariate VARequation(10)).
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