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Abstract We provide an equivariant extension of the bivariant Cuntz semigroup introduced in previous
work for the case of compact group actions over C∗-algebras. Its functoriality properties are explored, and
some well-known classification results are retrieved. Connections with crossed products are investigated,
and a concrete presentation of equivariant Cuntz homology is provided. The theory that is here developed
can be used to define the equivariant Cuntz semigroup. We show that the object thus obtained coincides
with the one recently proposed by Gardella [‘Regularity properties and Rokhlin dimension for compact
group actions’, Houston J. Math. 43(3) (2017), 861–889], and we complement their work by providing
an open projection picture of it.
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1. Introduction

During the last couple of decades, the Cuntz semigroup, an invariant for C*-algebras
originally proposed by Cuntz [6] in the late 1970s, has gained a prominent role in the
classification programme of C∗-algebras initiated by George Elliott. Important contribu-
tions came from the results of Rørdam [13] and Toms [14], which brought to light the
fact that there are non-isomorphic C∗-algebras with the same Elliott invariant and that
can be told apart by other invariants, like the real rank and their Cuntz semigroup data.

The investigation into the theory of completely positive maps with the order zero prop-
erty (hereafter, c.p. order zero maps for short) undertaken in [16], has led to the discovery
of deep connections between this special class of maps between C∗-algebras and the Cuntz
semigroup. In particular, they have shown that every such map induces a semigroup
homomorphism between the associated Cuntz semigroups. This has opened the doors for
a bivariant extension of the theory of the Cuntz semigroup, which has been established
in [4]. The main idea is to provide a new framework, in spirit similar to Kasparov’s KK-
theory, but that is reminiscent of the idea of Cuntz comparison of positive structures.
The classification result for the class of unital and stably finite C∗-algebras, obtained by
the author in his PhD work, and contributed to [4], can be regarded as an analogue of the
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Kirchberg–Phillips classification of purely infinite C∗-algebras by KK-theory. Thus, the
bivariant Cuntz semigroup complements the classification of purely infinite C∗-algebras in
the sense that it gives a suitable Cuntz-analogue of the KK-theoretic Kirchberg–Phillips
classification result for stably finite C∗-algebras.

The main subject of the present paper is the introduction of an equivariant extension
of the bivariant Cuntz semigroup as a novel tool for the problem of classification of C∗-
dynamical systems. The theory proposed in this paper is specifically designed for compact
group actions on C∗-algebras. With such a tool at our disposal, the definition of an
equivariant extension of the ordinary Cuntz semigroup appears as a natural consequence,
since it has been shown in [4] that the ordinary Cuntz semigroup can be recovered from
the bivariant theory there defined. A notion of equivariant Cuntz semigroup, however,
has recently appeared in the work of Gardella and Santiago [9], where it is also used to
provide a classification result of group actions on certain C∗-algebras. Indeed, we shall
see that the equivariant theory developed in this paper coincides with the new definitions
that have appeared in [9], and that the classification result just mentioned can also be
restated within the framework of the present work.

1.1. Outline

The present paper is organized as follows. In § 2, we introduce the equivariant the-
ory of the bivariant Cuntz semigroup, and we show that most of the properties of the
ordinary bivariant Cuntz semigroup of [4] carry over to the equivariant setting. Here, we
restrict our attention to separable C∗-dynamical systems, i.e. those for which the under-
lying C∗-algebra is separable and the group is second countable. We also investigate the
relations with crossed products to strengthen the analogy with equivariant KK-theory.
In particular, we show that a Green–Julg-type theorem holds for the equivariant theory
of the bivariant Cuntz semigroup developed in this paper (Theorem 2.27). This section
concludes with an equivariant extension of the Cuntz homology for compact Hausdorff
spaces introduced in [4].

In § 3, we introduce an open projection picture for the equivariant Cuntz semigroup.
This new object emerges as the special case CuG(C, A), in complete analogy with the way
we can recover the ordinary Cuntz semigroup from the bivariant theory defined in [4],
and coincides with that introduced in [9].

In § 4, we show how to use the equivariant bivariant Cuntz semigroup for the prob-
lem of classification of actions. In particular, we show how to use the theory developed
in this paper to retrieve the classification result of Handelman and Rossmann [10] on
locally representable actions by compact groups on approximately finite-dimensional
(AF) algebras (Corollary 4.11), and the more recent result of Gardella and Santiago of
locally representable finite Abelian group actions on inductive limits of one-dimensional
non-commutative CW complexes (Corollary 4.8).

1.2. Notation

In what follows, we shall make use of capital letters A,B,C, . . . to denote C∗-algebras,
and the notation A+ to denote the cone of the positive elements of A. The multiplier
algebra of A is denoted by M(A), while the letter K is used to denote the C∗-algebra
of compact operators on an infinite-dimensional separable Hilbert space. For k ∈ N, we
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shall denote by Mk the complex k × k matrix algebra, and by Mk(A) the A-valued k × k
matrix algebra. With this notation we then have Mk = Mk(C).

The Greek letters π, ω, . . . are used to denote ∗-homomorphisms between C∗-algebras,
while φ, ψ are reserved for c.p. order zero maps, whose definition is recalled in this section
for the reader’s convenience.

In describing equivariant theories, we shall reserve the capital letter G for denoting a
topological group, usually assumed to be compact and second countable, unless otherwise
specified.

2. Definitions and main properties

In this section, we introduce an equivariant extension of the bivariant Cuntz semigroup
developed in [4]. As already mentioned, in this paper we restrict our attention to second
countable, compact groups.

Definition 2.1. Let A and B be C∗-algebras. A completely positive map φ : A→ B
has the order zero property if φ(a)φ(b) = 0 whenever ab = 0, with a, b ∈ A+.

The structure of completely positive maps with the order zero property has been
established in [16], where the authors have built on previous work by Wolff [17] on
orthogonality preserving maps. A c.p.c. order zero map is a c.p. map with the order zero
property that is also contractive, i.e. with norm bounded by 1.

A c.p.c. order zero map φ between two G-algebras (A,G, α) and (B,G, β) is said to be
equivariant if it is an intertwiner for the actions α and β, that is

φ ◦ αg = βg ◦ φ, ∀g ∈ G.

Unless otherwise stated, we shall assume that a c.p.c. order zero map φ : A→ B between
the G-algebras A and B is always equivariant. The Cuntz comparison of equivariant
c.p.c. order zero maps then takes the following form.

Definition 2.2. Let A and B be G-algebras, and let φ, ψ : A→ B be c.p.c. order zero
maps. We say that φ is equivariantly Cuntz-subequivalent to ψ (in symbols φ �G ψ) if
there exists a G-invariant sequence {bn}n∈N

⊂ BG such that

lim
n→∞ ‖bnψ(a)b∗n − φ(a)‖ = 0

for any a ∈ A.

We observe that, in the separable case, the above definition has a standard localization.
Two c.p.c. order zero maps φ, ψ : A→ B satisfy φ �G ψ if and only if, for every finite
subset F � A and ε > 0 there is b ∈ BG such that ‖bψ(a)b∗ − φ(a)‖ < ε for any a ∈ F .

Let ∼G denote the relation arising from the antisymmetrization of the relation �G just
defined, that is φ ∼G ψ if φ �G ψ and ψ �G φ. Reflexivity follows trivially from the fact
that any G-algebra, with G compact, admits a G-invariant approximate unit.

Lemma 2.3. Let A and B be G-algebras. For any equivariant c.p.c. order zero
map φ : A→ B, finite subset F � A and ε > 0, there exists x ∈ C∗(φ(A))G such that
‖xφ(a)x∗ − φ(a)‖ < ε.
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Proof. Fix a finite subset F � A and ε > 0. By the existence of a G-invariant
approximate unit for A, there is e ∈ AG such that ‖eae∗ − a‖ < ε for any a ∈ F .
Let hφ and πφ be the positive element and the ∗-homomorphism coming from
Theorem 2.5 applied to φ. As h2/n

φ hφ converges to hφ in norm, there is m ∈ N such that

‖h1/m
φ φ(eae∗)h1/m

φ − φ(eae∗)‖ < ε for every a ∈ F . With x := h
1/m
φ πφ(e) = φ1/m(e) ∈

BG, we have the estimate

‖xφ(a)x∗ − φ(a)‖ =‖h1/m
φ φ(eae∗)h1/m

φ − φ(a)‖
≤‖h1/m

φ φ(eae∗)h1/m
φ − φ(eae∗)‖ + ‖φ(eae∗) − φ(a)‖

< 2ε

for any a ∈ F . �

If (A,G, α) is a G-algebra, we shall always assume that the tensor product A⊗KG is
equipped with the diagonal action α⊗ (λG ⊗ idK), where λG is the left-regular represen-
tation of G on L2(G). As an equivariant generalization of the bivariant Cuntz semigroup
Cu of [4] we then give the following definition.

Definition 2.4. Let A and B be G-algebras. The equivariant bivariant Cuntz
semigroup CuG(A,B) of A and B is the set of equivalence classes

CuG(A,B) := {φ : A⊗KG → B ⊗KG | φ equivariant c.p.c. order zero map}/ ∼G .

The above semigroup can be equipped with a positive order structure by requir-
ing [φ] ≤G [ψ] whenever φ �G ψ. Hence, (CuG(A,B),≤G) becomes a positively ordered
Abelian monoid.

As discussed in [16], given any two C∗-algebras A and B, there is a one-to-one corre-
spondence between c.p.c. order zero maps from A to B and ∗-homomorphisms from the
cone over A, i.e. C0((0, 1]) ⊗A, to B. This result generalizes to the equivariant setting
by equipping the cone over A with the diagonal action, as shown by [8, Corollary 2.10].

We now give an equivariant extension of the structure theorem for c.p.c. order zero
maps of [16].

Theorem 2.5. Let (A,G, α) and (B,G, β) be G-algebras and let φ : A→ B be an
equivariant c.p.c. order zero map. Set Cφ := C∗(φ(A)) and introduce a strictly continuous
action of G on M(Cφ) by restricting the bidual maps β∗∗

g , g ∈ G, onto it. Then there

exist a G-invariant positive element hφ ∈ M(Cφ)G+ ∩ C ′
φ, with ‖hφ‖ = ‖φ‖, and a non-

degenerate ∗-homomorphism πφ : A→ M(Cφ) ∩ {hφ}′ such that β∗∗
g ◦ πφ = πφ ◦ αg for

any g ∈ G, and

φ(a) = hφπφ(a), ∀a ∈ A.

Proof. By the structure theorem of [16], there are a positive element hφ ∈ M(Cφ)+ ∩
C ′
φ with ‖hφ‖ = ‖φ‖ and a non-degenerate ∗-homomorphism πφ : A→ M(Cφ) ∩ {hφ}′

such that φ(a) = hφπφ(a) for any a ∈ A. If {en}n∈N
⊂ A is an approximate unit, the
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equivariance of φ implies hφπφ(αg(en)) = βg(hφπφ(en)) for any n ∈ N, whence

0 = sot lim
n→∞[φ(αg(en)) − βg(φ(en))]

= hφ − β∗∗
g (hφ), ∀g ∈ G,

which shows that hφ is G-invariant in M(Cφ), with the strictly continuous action given by
the restriction of β∗∗ to this multiplier algebra. Since h1/n

φ is alsoG-invariant, equivariance

also implies h1/n
φ [πφ(αg(a)) − β∗∗

g (πφ(a))] = 0 for any n ∈ N and a ∈ A, whence

0 = sot lim
n→∞h

1/n
φ [πφ(αg(a)) − β∗∗

g (πφ(a))]

= πφ(αg(a)) − β∗∗
g (πφ(a)), ∀a ∈ A

i.e. πφ ◦ αg = β∗∗
g ◦ πφ, for any g ∈ G. �

The proof of the above result does not make use of the compactness of G and therefore
it applies to the non-compact case as well. Furthermore, separability is also not impor-
tant, as the same argument would work for the non-separable case as well, with the due
modifications.

The fact that such a result holds for the equivariant case allows us to give equivariant
generalizations of some of the results in [4].

Proposition 2.6. Let A, B and C be G-algebras, and let φ, ψ : A→ B, η, θ : B → C
be equivariant c.p.c. order zero maps such that φ �G ψ and η �G θ. Then η ◦ φ �G θ ◦ φ
and η ◦ φ �G η ◦ ψ.

Proof. The implication η �G θ ⇒ η ◦ φ �G θ ◦ φ is trivial. For the other implica-
tion, let hη and πη be the positive element and support ∗-homomorphism coming from
Theorem 2.5 applied to η. For a finite subset F � A and ε > 0, find b ∈ BG such that
‖bψ(a)b∗ − φ(a)‖ < ε for any a ∈ F . Since h2/n

η hη converges to hη in norm, there exists
n ∈ N such that

‖h1/n
η η(bψ(a)b∗)h1/n

η − η(bψ(a)b∗)‖ < ε,

for any a ∈ F . Therefore, with the element d := h
1/n
η πη(b) = η1/n(b) ∈ CG, we have

‖d(η ◦ ψ)(a)d∗ − (η ◦ φ)(a)‖ ≤ ‖h1/n
η η(bψ(a)b∗)h1/n

η − η(bψ(a)b∗)‖
+ ‖η(bψ(a)b∗) − (η ◦ φ)(a)‖

< ε+ ‖η‖ ‖bψ(a)b∗ − φ(a)‖
< 2ε.

Hence η ◦ φ �G η ◦ ψ. �

Observe that the C0((0, 1])+-functional calculus of [16] extends to the equivariant case.
Indeed, f(φ) := f(hφ)πφ is an equivariant c.p. map for every equivariant c.p.c. order zero
map φ and f ∈ C0((0, 1])+.
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Proposition 2.7. Let A and B be C∗-algebras, and let φ : A→ B be an equivariant
c.p.c. order zero map. For any pair of positive continuous functions f, g ∈ C0((0, 1])+ such
that supp f ⊆ supp g we have that f(φ) �G g(φ).

Proof. Fix a finite subset F of A and an ε > 0. For a given pair of positive con-
tinuous functions f, g ∈ C0((0, 1])+ such that supp f ⊆ supp g, find k ∈ C0((0, 1])+ with
the property that ‖gk − f‖ < ε/M , where M := maxa∈F ‖a‖, e.g. like in the proof of
[2, Proposition 2.5]. Find e ∈ BG such that

‖eg(φ)(a)e∗ − (gk)(φ)(a)‖ < ε

for any a ∈ F . We then have the estimate

‖eg(φ)(a)e∗ − f(φ)(a)‖ ≤ ‖eg(φ)(a)e∗ − (gk)(φ)(a)‖ + ‖(gk)(φ)(a) − f(φ)(a)‖

< ε+
ε ‖a‖
M

≤ 2ε,

for any a ∈ F . �

2.1. Stability

We recall that for every ∗-isomorphism γ : K ⊗K → K and minimal projection e ∈ K
there exists an isometry v ∈ B(
2(N)) such that Adv ◦γ ◦ (idK ⊗e) = idK . Observe that,
inside the algebra KG there is a minimal G-invariant projection eG. This is given by
e⊗ e0, where e is any minimal projection of K and e0 is the projection in K(L2(G)) onto
the constant functions of L2(G). Furthermore, the flip a⊗ eG �→ eG ⊗ a is implemented
by a G-invariant unitary.

Proposition 2.8. The G-algebras KG ⊗KG and KG are equivariantly isomor-
phic. Furthermore, there exists a G-invariant isometry v ∈ B(L2(G) ⊗ 
2(N))G with the
property that Adv ◦γG ◦ (idKG

⊗eG) = idKG
.

Proof. To ease the notation in this proof, let Kλ
G = (K ⊗K(L2(G)), idK ⊗λG)

and KG = (K ⊗K(L2(G)), idK ⊗ idK(L2(G))). By Fell’s absorption principle, the G-
algebras Kλ

G ⊗Kλ
G and Kλ

G ⊗KG are equivariantly isomorphic by a map φ satisfying
φ ◦ (idKG

⊗eG) = idKG
⊗eG. By stability, there is an equivariant isomorphism γ between

Kλ
G ⊗KG and Kλ

G with the property that Adv ◦γ ◦ (idKG ⊗eG) = idKG
, for some G-

invariant isometry v ∈ M(KG). An equivariant isomorphism between Kλ
G ⊗Kλ

G and Kλ
G

is then given by γ ◦ σ, and

Adv ◦γ ◦ φ ◦ (idKG
⊗eG) = Adv ◦γ ◦ (idKG

⊗eG) = idKG
,

as it was to be shown. �

Lemma 2.9. Let A, B, C and D be G-algebras, and let φ, ψ : A→ B, η : C → D be
equivariant c.p.c. order zero maps such that φ �G ψ. Then η ⊗ φ �G η ⊗ ψ for any tensor
norms on A⊗ C and B ⊗D.
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Proof. If {bn}n∈N
⊂ BG is the sequence that witnesses φ �G ψ, then {dn ⊗ bn}n∈N,

where {dn}n∈N
⊂ DG is a G-invariant approximate unit for D, witnesses the sought

equivariant Cuntz subequivalence between η ⊗ φ and η ⊗ ψ. �

Corollary 2.10. Let A and B be G-algebras and let φ, ψ : A→ B be equivariant
c.p.c. order zero maps. Then φ �G ψ inB if and only if φ⊗ idKG

�G ψ ⊗ idKG
inB ⊗KG.

Proof. The implication φ �G ψ ⇒ φ⊗ idKG
�G ψ ⊗ idKG

follows from the previous
lemma. For the other implication observe that B embeds into B ⊗KG by means of
the injective map b

ι�→ b⊗ eG. If {bn}n∈N
⊂ (B ⊗KG)G is the sequence that witnesses

the relation φ⊗ idKG
�G ψ ⊗ idKG

then, with xn := (1B̃ ⊗ eG)bn(1B̃ ⊗ eG) ∈ B ⊗ {eG},
where 1B̃ is the unit of the minimal unitization B̃ of B, we have

‖x∗n(ψ(a) ⊗ eG)xn − φ(a) ⊗ eG‖ → 0, ∀a ∈ A

which can be pulled back to B through ι to give

∥∥ι−1(xn)∗ψ(a)ι−1(xn) − φ(a)
∥∥ → 0, ∀a ∈ A.

Since xn ∈ (B ⊗ {eG})G = BG ⊗ {eG}, it follows that ι−1(xn) ∈ BG, for any n ∈ N,
whence φ �G ψ. �

Thanks to the above proposition and the map γG of Proposition 2.8, the stability* of
CuG holds in the rather general form of the following result.

Theorem 2.11. For any pair of G-algebras A and B, the partially ordered Abelian
monoids CuG(A,B) and CuG(A⊗KG, B ⊗KG) are order-isomorphic.

Proof. Mutual inverses are given by the pair of semigroup homomorphisms

[φ] �→ [φ⊗ idKG
], [φ] ∈ CuG(A,B)

and

[Φ] �→ [(idB ⊗γG) ◦ Φ ◦ (idA⊗KG
⊗eG)],

where eG is the minimal G-invariant projection in KG mentioned at the beginning of this
section. Indeed, by making use of Proposition 2.6 and Lemma 2.9, we have

(idB ⊗γG) ◦ (φ⊗ idKG
) ◦ (idA⊗KG

⊗eG) =(idB ⊗γG) ◦ (φ⊗ eG)

=(idB ⊗γG) ◦ (idB ⊗ idKG
⊗eG) ◦ φ

∼G (idB ⊗ idKG
) ◦ φ

=φ

* We are here assuming that the action on the tensor factors KG is the inner one given by idK ⊗λG.
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and

((idB ⊗γG) ◦ Φ ◦ (idA⊗KG
⊗ eG)) ⊗ idKG

= (idB ⊗γG ⊗ idKG
) ◦ (Φ ⊗ idKG

) ◦ (idA⊗KG
⊗eG ⊗ idKG

)

∼G (idB ⊗γG ⊗ idKG
) ◦ (Φ ⊗ idKG

) ◦ (idA⊗KG
⊗ idKG

⊗eG)

= (idB ⊗γG ⊗ idKG
) ◦ (Φ ⊗ eG)

= (idB ⊗γG ⊗ idKG
) ◦ (idB ⊗ idKG

⊗ idKG
⊗eG) ◦ Φ

∼G (idB ⊗γG ⊗ idKG
) ◦ (idB ⊗ idKG

⊗eG ⊗ idKG
) ◦ Φ

∼G (idB ⊗ idKG
⊗ idKG

) ◦ Φ

= Φ,

which become equalities at the level of equivariant Cuntz classes. �

Corollary 2.12. Let A and B be G-algebras. For every Φ ∈ CuG(A,B) there exists
an equivariant c.p.c. order zero map φ : A→ B ⊗KG such that Φ = [(idB ⊗γG) ◦ (φ⊗
idKG

)].

Proof. Define a semigroup cuG(A,B) of Cuntz-equivalence classes of equivariant
c.p.c. order zero maps from A to B ⊗KG, equipped with the same binary operation
of CuG(A,B) and repeat the argument of the previous proof to show that they are
isomorphic. This amounts to replacing idA⊗KG

with idA. �

The following example shows that Definition 2.4 gives an equivariant extension of the
bivariant Cuntz semigroup defined in [4].

Example 2.13. Let G be the trivial group {e}. Then KG = C ⊗K ∼= K with the
trivial action and therefore CuG(A,B) ∼= Cu(A,B).

The example that follows shows that Definition 2.4 can be regarded as an bivariant
extension of the equivariant Cuntz semigroup defined in [9].

Example 2.14. Let (A,G, α) and (B,G, β) be G-algebras. Theorem 2.11 implies that,
for every class Φ ∈ CuG(A,B), there exists a representative of the form* φ⊗ idKG

, where
φ : A→ B ⊗KG is an equivariant c.p.c. order zero map. When A = C with the trivial
action of G then

φ(z) = zhφ, ∀z ∈ C,

where hφ is a G-invariant positive element in B ⊗KG by Theorem 2.5. Hence, CuG(C, B)
can be identified with Cuntz-equivalence classes of G-invariant positive elements from
B ⊗KG, i.e.

CuG(C, B) ∼= CuG(B).

More generally, if G acts trivially on A, then any equivariant c.p.c. order zero map
φ : A→ B ⊗KG maps into the fixed point algebra (A⊗KG)G ∼= (A�G) ⊗K, whence

* Here we are tacitly dropping the map idB ⊗γG of Corollary 2.12 to ease the notation.
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the natural isomorphism

CuG(A,B) ∼= Cu(A,B �G).

2.2. Functoriality

We now investigate the functoriality of the equivariant bivariant Cuntz semigroup
CuG( · , · ).

Theorem 2.15. Let A and B be G-algebras. CuG( · , B) (respectively CuG(A, · )) is
a contravariant (respectively covariant) functor from the category of G-algebras to that
of ordered Abelian monoids.

Proof. Let A1, A2 be any G-algebras, and consider a homomorphism f : A1 → A2 and
an equivariant c.p.c. order zero map ψ : A2 ⊗KG → B ⊗KG. By defining f∗(ψ) as

f∗(ψ) := ψ ◦ (f ⊗ idKG
),

the following diagram

A1 ⊗KG f∗(ψ)

���������

f

��
B ⊗KG

A2 ⊗KG
ψ

���������

commutes. Hence f∗(ψ) is an equivariant c.p.c. order zero map and therefore f∗ defines
a pull-back which can be projected onto equivalence classes by setting

CuG(f,B)([ψ]) = [f∗(ψ)], ∀[ψ] ∈ CuG(A2, B).

It is easy to check that this yields a well-defined map.
Similarly for the second part, let B1 and B2 be any G-algebras, g : B1 → B2 an equiv-

ariant ∗-homomorphism and ψ : A⊗KG → B1 ⊗KG a c.p.c. order zero map, and define
g∗(ψ) as

g∗(ψ) := (g ⊗ idKG
) ◦ ψ.

Such map is clearly equivariant c.p.c. order zero and defines a push-forward between
c.p.c. order zero maps that gives rise to the well-defined semigroup homomorphism

CuG(A, g)([ψ]) = [g∗(ψ)], ∀[ψ] ∈ CuG(A,B),

since g(AG) ⊂ BG. �

Remark 2.16. The above theorem still holds if we consider equivariant c.p.c. order
zero maps instead of equivariant ∗-homomorphisms as arrows between G-algebras.
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2.3. Additivity

Let A1, A2 and B be G-algebras. We shall say that two equivariant c.p.c. order zero
maps φ : A1 → B and ψ : A2 → B are orthogonal, and we shall indicate this by φ ⊥ ψ,
if φ(A1)ψ(A2) = {0}. This implies, in particular, that the positive elements hφ, hψ ∈ B∗∗

coming from Theorem 2.5 applied to φ and ψ respectively are orthogonal, i.e. hφhψ = 0
in B∗∗.

Proposition 2.17. Let A1, A2 and B be G-algebras and let φ1 : A1 → B and φ2 :
A2 → B be c.p.c. order zero maps such that φ1 ⊥ φ2. Then φ1(A1) ∩ φ2(A2) = {0}.

Proof. Assume that there are a1 ∈ A1, a2 ∈ A2 such that b = φ1(a1) = φ2(a2). Then

‖b‖2 = ‖b∗b‖ = ‖φ1(a1)∗φ2(a2)‖ = ‖φ1(a∗1)φ2(a2)‖ = 0

by orthogonality of φ1 and φ2. Hence, b = 0. �

Let A1 and A2 be G-algebras. We observe that, given two equivariant c.p.c. order zero
maps φ1 : A1 → B and φ2 : A2 → B, their direct sum φ1 ⊕ φ2 is easily seen to be an
equivariant c.p.c. order zero map from A1 ⊕A2 to M2(B), where the action on A1 ⊕A2

is α1 ⊕ α2 and that on M2(B) ∼= M2 ⊗B is id2 ⊗β. For the converse of this property we
provide the following results.

Lemma 2.18. Let A1, A2, B be G-algebras. A map φ : A1 ⊕A2 → B is an equivariant
c.p.c. order zero if and only if there are equivariant c.p.c. order zero maps φ1 : A1 → B
and φ2 : A2 → B such that

(i) φ1(a1) + φ2(a2) = φ(a1, a2), for any a1 ∈ A1 and a2 ∈ A2;

(ii) φ1 ⊥ φ2.

Lemma 2.19. Let A1, A2 and B be G-algebras, and let φ1 : A1 → B and φ2 : A2 → B
be equivariant c.p.c. order zero maps such that φ1 ⊥ φ2. Then[

φ1 + φ2 0
0 0

]
∼G

[
φ1 0
0 φ2

]

in M2(B), where φ1 + φ2 is the equivariant c.p.c. order zero map from A1 ⊕A2 to B
given by (φ1 + φ2)(a1, a2) := φ1(a1) + φ2(a2).

Proof. By the previous lemma, the matrix on the left is a well-defined equivariant
c.p.c. order zero map from A1 ⊕A2 to M2(B). Fix a G-invariant approximate unit
{en}n∈N

for A, and introduce the G-invariant sequences of M2(B)

xn :=

[
φ

1/2
1 (en) 0
φ

1/2
2 (en) 0

]
, yn :=

[
φ

1/4
1 (en) φ

1/4
2 (en)

0 0

]
.

We can easily see from Theorem 2.5 and the definition of functional calculus for
equivariant c.p.c. order zero maps that

lim
n→∞

∥∥∥∥xn
[
(φ1 + φ2)(a) 0

0 0

]
x∗n −

[
φ2

1(a) 0
0 φ2

2(a)

]∥∥∥∥ = 0
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and

lim
n→∞

∥∥∥∥∥yn
[
φ

1/2
1 (a) 0

0 φ
1/2
2 (a)

]
y∗n −

[
(φ1 + φ2)(a) 0

0 0

]∥∥∥∥∥ = 0

for any a ∈ A1 ⊕A2, whence

[
φ2

1 0
0 φ2

2

]
�G

[
φ1 + φ2 0

0 0

]
and

[
φ1 + φ2 0

0 0

]
�G

[
φ

1/2
1 0
0 φ

1/2
2

]
.

By Proposition 2.7 we then have

[
φ2

1 0
0 φ2

2

]
∼G

[
φ

1/2
1 0
0 φ

1/2
2

]
∼G

[
φ1 0
0 φ2

]
,

which concludes the proof. �

Proposition 2.20. For any triple of G-algebras A1, A2 and B, the partially ordered
semigroup isomorphism

CuG(A1 ⊕A2, B) ∼= CuG(A1, B) ⊕ CuG(A2, B)

holds.

Proof. Let σ : CuG(A1, B) ⊕ CuG(A2, B) → CuG(A1 ⊕A2, B) be the map given by

σ([φ1] ⊕ [φ2]) = [φ1 ⊕ φ2].

By the above two lemmas it is clear that this map is surjective. To prove injectivity and
the order-isomorphism we show that φ1 ⊕ φ2 �G ψ1 ⊕ ψ2 implies φk �G ψk, k = 1, 2. By
assumption, there exists a sequence {bn}n∈N

⊂ (B ⊗KG)G such that

b∗n(ψ1(a1) ⊕ ψ2(a2))bn → φ1(a1) ⊕ φ2(a2)

in norm for every a1 ∈ A1, a2 ∈ A2. As M2(B ⊗KG) ∼= B ⊗KG equivariantly, there are
bn,ij ∈ (B ⊗KG)G, i, j = 1, 2 such that the sequence bn has the structure

bn =
2∑

i,j=1

bn,ij ⊗ eij ,

with {eij}i,j=1,2 denoting the standard basis of matrix units for M2. Thus, for a2 = 0,
we find that

lim
n→∞

∥∥b∗n,11ψ1(a1)bn,11 − φ1(a1)
∥∥ = 0

for any a1 ∈ A1, i.e. φ1 �G ψ1. A similar argument with a1 = 0 leads to the conclusion
that φ2 �G ψ2 as well. To check that σ preserves the semigroup operations it suffices to
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show that
(φ1 ⊕̂φ2) ⊕ (ψ1 ⊕̂ψ2) ∼G (φ1 ⊕ ψ1) ⊕̂(φ2 ⊕ ψ2).

A direct computation reveals that such equivalence is witnessed by the sequence
{bn}n∈N

⊂M4((B ⊗KG)G) given by

bn := un ⊗ (e11 + e44 + e23 + e32),

where {un}n∈N
⊂ (B ⊗KG)G is an approximate unit for B ⊗KG. �

As in the case of the bivariant Cuntz semigroup and of KK-theory, CuG( · , · ) is
countably additive in the first argument.

Lemma 2.21. Let A and B be G-algebras, φ : A→ B a countable sum of pair-wise
orthogonal equivariant c.p.c. order zero maps, that is

lim
n→∞

∥∥∥∥φ(a) −
n∑
k=1

φk(a)
∥∥∥∥ = 0, ∀a ∈ A,

where each φk is an equivariant c.p.c. order zero map and φk ⊥ φi for any i �= k in N,
and {λn}n∈N

⊂ R
+ a sequence that sums up to 1. Then

φ ∼G
∞∑
k=1

λkφk.

Proof. Fix a finite subset F of A and ε > 0. Find an n ∈ N such that∥∥∥∥
∞∑

k=n+1

φk(a) < ε

∥∥∥∥
for any a ∈ F . Define the C∗-subalgebras Bk := C∗(φk(A)) ⊂ B for any k ∈ N. By
Lemma 2.3, find ek ∈ BGk such that ‖ekφk(a)e∗k − φk(a)‖ < ε/n for any a ∈ F and
k = 1, . . . , n. Observe that the orthogonality of the maps φk implies that ei ⊥ ek for
any i �= k. With the element x ∈ BG defined as x :=

∑n
k=1 ek/

√
λk, we have the estimate∥∥∥∥x

( ∞∑
k=1

λkφk(a)
)
x∗ − φ(a)

∥∥∥∥ ≤
n∑
k=1

‖ekφk(a)e∗k − φk(a)‖ +
∥∥∥∥

∞∑
k=n+1

φk(a)
∥∥∥∥

<

n∑
k=1

ε

n
+ ε

≤ 2ε

for any a ∈ F . Hence, φ �G

∑∞
k=1 λkφk. For the converse subequivalence, find, if

necessary, a new n for which ∥∥∥∥
∞∑

k=n+1

λkφk(a)
∥∥∥∥ < ε
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for any a ∈ F , and new elements ek ∈ BGk , k = 1, . . . , n such that ‖ekφk(a)e∗k − φk(a)‖ <
ε/n. With the element y ∈ BG defined as y :=

∑n
k=1

√
λkek, we have the estimate∥∥∥∥yφ(a)y∗ −

∞∑
k=1

akφk(a)
∥∥∥∥ ≤

n∑
k=1

‖ekφk(a)e∗k − φk(a)‖ +
∥∥∥∥

∞∑
k=n+1

akφk(a)
∥∥∥∥

<

n∑
k=1

ε

n
+ ε

≤ 2ε,

for any a ∈ F , which implies that
∑∞
k=1 λkφk � φ. �

Lemma 2.22. Let {An}n∈N
∪ {B} be a countable family of G-algebras. Then any

equivariant c.p.c. order zero map φ : A :=
⊕∞

k=1Ak → B satisfies

φ⊗ e ∼ ψ :=
∞⊕
k=1

φ|Ak

2k

in B ⊗K, where e ∈ K is a minimal projection and φ|Ak
is defined as

φ|Ak
(ak) := φ(0, . . . , 0, ak, 0, . . .), ∀k ∈ N, ak ∈ Ak.

Proof. Assume, without loss of generality, that e = e11. Fix a G-invariant approximate
unit {en}n∈N

of A, set

ξk,n :=
φ1/2|Ak

(en)
2k/2

, ηk,n :=
φ1/4|Ak

(en)
2k/4

for any k, n ∈ N, and define the G-invariant sequences {xn}n∈N
, {yn}n∈N

∈ (B ⊗K)G by

xn :=
∞∑
k=1

ξk,n ⊗ ek1 =

⎡
⎢⎣
ξ1,n 0 · · ·
ξ2,n 0 · · ·

...
...

. . .

⎤
⎥⎦ , yn :=

∞∑
k=1

ηk,n ⊗ e1k =

⎡
⎢⎣
η1,n η2,n · · ·
0 0 · · ·
...

...
. . .

⎤
⎥⎦ .

By Theorem 2.5 we reach the conclusion that

lim
n→∞

∥∥xn(φ⊗ e)(a)x∗n − ψ2(a)
∥∥ = 0

and

lim
n→∞

∥∥∥∥ynψ1/2(a)y∗n −
( ∞∑
k=1

φ|Ak

2k
⊗ e

)
(a)

∥∥∥∥ = 0

for any a ∈ A. Since ψ ∼G ψ2 ∼G ψ1/2 by Proposition 2.7 and φ ∼G
∑∞
k=1 φ|Ak

/2k by
the previous lemma, the result now follows. �

Proposition 2.23. Let {An}n∈N
∪ {B} be a countable family of G-algebras. Then the

semigroups
∏
n∈N

CuG(An, B) and CuG
(⊕

n∈N
An, B

)
are order-isomorphic.
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Proof. Let σ :
∏
n∈N

CuG(An, B) → CuG
(⊕

n∈N
An, B

)
be the semigroup homomor-

phism defined by

σ ([φ1], [φ2], . . .) :=
[
(idB ⊗γ) ◦

⊕
n∈N

1
2n
φn

]
,

where γ : KG ⊗K → KG is any equivariant ∗-isomorphism. For any minimal projection
e ∈ K, γ ◦ (idKG

⊗e) is conjugate to idKG
by a G-invariant isometry w ∈ (B(L2(G)), λG)

and therefore* γ ◦ (idG⊗e) ∼G idKG
. The inverse of σ is provided by the semigroup

homomorphism ρ : CuG
(⊕

n∈N
An, B

) → ∏
n∈N

CuG(An, B) given by

ρ([φ]) := ([φ|A1 ], [φ|A2 ], . . .),

where φ|Ak
(ak) := φ(ak ⊗ ekk) for any k ∈ N and ak ∈ Ak. Indeed, by the previous lemma

(idB ⊗γ) ◦
⊕
n∈N

φ|An

2n
∼G (idB ⊗γ) ◦ (φ⊗ e) ∼G φ

and

γG ◦
(
φk
2k

⊗ ekk

)
∼G γG ◦ (φk ⊗ e) ∼G φk, ∀k ∈ N

since every minimal projection ekk is Cuntz-equivalent to e, and λφk ∼G φk for any
λ ∈ (0, 1). �

Proposition 2.24. For any triple of G-algebras A, B1 and B2, the partially ordered
semigroup isomorphism

CuG(A,B1 ⊕B2) ∼= CuG(A,B1) ⊕ CuG(A,B2)

holds.

2.4. Relation with crossed products

In KK-theory there is a group homomorphism between the equivariant KK-group and
the KK-group of the crossed product, [3, § 2.6]. We now provide an analogue of this result
within the framework of the equivariant extension of the bivariant Cuntz semigroup. First,
we record some intermediate results.

Proposition 2.25. Let A and B be G-algebras. Every equivariant c.p.c. order zero
map φ : A→ B induces a c.p.c. order zero map φ� : A�G→ B �G between the crossed
products.

For a proof of the above result we refer the reader to [7, Proposition 2.3].

Proposition 2.26. Let A and B be G-algebras and let φ, ψ : A→ B be equivariant
c.p.c. order zero maps such that φ �G ψ. Then φ� � ψ�.

* Observe that the element w in the multiplier algebra of KG yields a sequence in KG by multiplication
with a G-invariant approximate unit from KG, which ultimately witnesses Cuntz-subequivalence.
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Proof. Let {fn}n∈N
⊂ L1(G) be an approximate unit for L1(G). If {bn}n∈N

⊂ BG is
the sequence witnessing the subequivalence φ �G ψ, then a direct computation shows
that the sequence {dn}n∈N

⊂ L1(G,B) given by* dn := bn ⊗ fn satisfies

lim
n→∞ ‖dnψ�(a⊗ f)dn∗ − φ�(a⊗ f)‖ = 0, ∀a⊗ f ∈ L1(G,A),

whence φ� � ψ�. �

This last result shows that the assignment φ �→ φ� becomes well defined when consid-
ered at the level of classes. Furthermore, we can easily check that (idA)� = idA�G for
any G-algebra (A,G, α). Therefore, we reach the following conclusion.

Theorem 2.27. Let A and B be G-algebras. There is a natural semigroup homomor-
phism

jG : CuG(A,B) → Cu(A�G,B �G)

which is functorial in A and B and compatible with the composition product.

Proof. The sought map jG is defined as jG([φ]) := [φ�], which is well defined as a
consequence of the above proposition. �

2.5. Equivariant Cuntz homology

A notion of Cuntz homology for compact Hausdorff spaces has been introduced in [4].
Its definition follows the way K-homology is obtained from KK-theory, namely by fixing
the second argument to be the algebra of complex numbers C. More generally, we can
see that Cu(A,C) encodes information relative to the finite-dimensional representation
theory of the C∗-algebra A in the first argument. However, this topic will be touched
upon in detail elsewhere (see [15]).

We now proceed to define an equivariant version of Cuntz homology analogously to the
non-equivariant case of [4], and provide a concrete realization for compact group actions
on compact Hausdorff spaces.

Definition 2.28. A topological dynamical system is a triple (X,G,α) consisting of a
topological space X, a topological group and a continuous G-action α of G on X.

When the specification of the action is not necessary, we shall refer to the topological
space X to denote the topological dynamical system (X,G,α). A topological dynamical
system (X,G,α) is compact if its underlying topological space X and the group G are
compact.

Definition 2.29. Let (X,G,α) be a compact topological dynamical system. The
equivariant Cuntz homology of (X,G,α) is the partially ordered Abelian monoid

CuG(X) := CuG(C(X),C).

* For f ∈ L1(G) and b ∈ B, the tensor product b ⊗ f , sometimes also denoted simply by bf , can
be identified with the B-valued function of class L1 on G with respect to the Haar measure given by
g �→ f(g)b almost everywhere.
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We refer the reader to [4, § 5.3] for the terminology related to Cuntz homology, in
particular to the notion of the spectrum of a c.p.c. order zero map, and its decomposition
into the essential and isolated parts.

Theorem 2.30. For any compact topological dynamical system (X,G,α) there is a
natural monoid isomorphism

CuG(X) ∼= Cu(X/G).

Proof. Since K(L2(G)) ⊗K ∼= K, every equivariant representation π : C(X) → KG

is easily seen to decompose, up to equivariant unitary equivalence, into one of the form

π(f) =
∞∑
k=1

Mxk

f ⊗ ekk, ∀f ∈ C(X),

where {xn}n∈N
⊂ X and Mxk

f ∈ L∞(G) ⊂ B(L2(G)) is the multiplication operator
associated with the function

g �→ f(gxk), ∀g ∈ G, k ∈ N.

Hence, for every xk, its full orbit Gxk appears in this decomposition, and the multiplicity
of each of the points in Gxk is evidently constant. Therefore, the multiplicity functions
can be assumed to be defined on the orbit space X/G, whence the presentation of Cuntz
homology given in [4] applies. �

Corollary 2.31. Let G be a compact group and let (X,G,α) and (Y,G, β) be topo-
logical dynamical systems. The equivariant Cuntz homologies CuG(X) and CuG(Y ) are
isomorphic as partially ordered Abelian monoid if and only if the orbit spaces X/G and
Y/G are homeomorphic.

Proof. By results in [4] for the non-equivariant Cuntz homology theory, we have
CuG(X) ∼= Cu(X/G) ∼= Cu(Y/G) ∼= CuG(Y ). �

3. The equivariant Cuntz semigroup

Analogously to the ordinary Cuntz semigroup Cu(A) of a C∗-algebra A, which can be
obtained from the bivariant Cuntz semigroup as Cu(A) ∼= Cu(C, A), in Example 2.14 we
have defined the equivariant Cuntz semigroup of the G-algebra (A,G, α) as

CuG(A) := CuG(C, A).

We have also shown that this object has a natural identification with the set of Cuntz-
equivalence classes of G-invariant positive elements from A⊗KG, and therefore it turns
out to coincide with the equivariant Cuntz semigroup defined in [9].

In this section we propose an open projection picture for the equivariant theory of
the Cuntz semigroup. To do so, we shall generalize many of the results of [11] to the
equivariant setting first. Then the sought open projection picture will follow naturally.
For concreteness, we now give the explicit definition of the equivariant Cuntz semigroup
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that we will employ throughout this section. We also recall that we are still under the
assumption that every group we consider is compact and second countable.

Definition 3.1 (equivariant Cuntz semigroup). Let (A,G, α) be a G-algebra. Its
equivariant Cuntz semigroup is the set of classes

CuG(A) := (A⊗KG)G+/ ∼G,
where Cuntz comparison is now witnessed by G-invariant sequences; that is, if B is a
G-algebra and a, b ∈ BG+ , then

a �G b if ∃ {xn}n∈N
⊂ BG | ‖xnbx∗n − a‖ → 0,

where BG denotes the fixed point algebra of B with respect to the action of G. The
binary operation is still derived from the direct sum of positive elements, that is

[a] + [b] := [a⊕ b],

for any [a], [b] ∈ CuG(A).

The approach of [9] is different, closer in spirit to the original definition of equivariant
K-theory (cf. [9, Definition 2.4]). Finite-dimensional representations of G are replaced by
separable ones, i.e. those representations μ of G over a separable Hilbert space Hμ, and
Cuntz classes of G-invariant positive elements from the C∗-algebras K(Hμ ⊗A) are now
considered. Cuntz comparison is then implemented by G-invariant elements fromK(Hμ ⊗
A,Hν ⊗A), where ν is any other separable representation of G (cf. [9, Definition 2.6]).

As with the ordinary Murray–von Neumann and Cuntz semigroups, there are similar
connections between the equivariant versions of these objects. Let (A,G, α) be a G-
algebra and p ∈ (A⊗KG)G a projection. The map that sends the class of p in V G(A) to
the class of p in CuG(A) is a well-defined semigroup homomorphism, as a consequence
of the following result, which generalizes [2, Lemma 2.18] to the equivariant setting.
Here, �G denotes the equivariant Murray–von Neumann subequivalence relation between
projections.

Lemma 3.2. Let (A,G, α) be aG-algebra and let p, q ∈ AG beG-invariant projections.
Then p �G q if and only if p �G q.

Proof. Thanks to [9, Proposition 2.5], the same proof of [2, Lemma 2.18] applies
almost verbatim by taking all the elements to be G-invariant. �

The above result does not imply that Murray–von Neumann equivalence is equiva-
lent to Cuntz equivalence on projections. However, as in the non-equivariant theory,
there are special cases where the equivariant Murray–von Neumann semigroup embeds
into the equivariant Cuntz semigroup. A stably finite G-algebra (A,G, α) is a G-algebra
whose underlying C∗-algebra A is stably finite. The following result is an equivariant
generalization of [2, Lemma 2.20].

Lemma 3.3. Let (A,G, α) be a stably finite G-algebra. Then the natural map
V G(A) → CuG(A) is injective.
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Proof. Since the algebras are stably finite and G is compact, the fixed point algebras
and the crossed products are also stably finite. Hence, the same proof of [2, Lemma 2.20]
applies almost verbatim by taking all the elements to be G-invariant. �

The completed representation semiring Cu(G), or simply the representation semiring,
as defined in [9, Definition 3.1], is the semiring arising by considering separable rep-
resentations G rather than just the finite-dimensional ones. We choose to include the
word complete here because Cu(G) can be regarded as a sup-completion of the semiring
V G(C). However, we sometimes refrain from specifying this explicitly. As in the case of
K-theory, where R(G) ∼= KG

0 (C), it turns out that there is an ordered semigroup iso-
morphism between Cu(G) and CuG(C) [9, Theorem 3.4], which is then an object in the
category Cu.

Let (A,G, α) be a G-algebra. Definition 3.10 and Theorem 3.11 of [9] show that the
equivariant Cuntz semigroup CuG(A) has a natural Cu(G)-semimodule structure and, as
such, CuG(A) belongs to a subcategory of Cu, denoted CuG [9, Definition 3.7]. As we
are not particularly interested in this category, we refer the reader to the already cited
work of Gardella and Santiago for more details. Here we limit ourselves to observing that,
thanks to [9, Theorem 3.11], by equipping every equivariant Cuntz semigroup with this
Cu(G)-semimodule structure, CuG becomes a functor from the category of G-algebras to
the category CuG.

3.1. The open projection picture

A module picture for the equivariant Cuntz semigroup is introduced in § 4 of [9]. We
now introduce an open projection picture for the equivariant Cuntz semigroup as defined
in this section.

In [1], Akemann has given a generalization of the notion of open subsets to non-
commutative C∗-algebras by naturally replacing sets with projections.

Definition 3.4. Let A be any C∗-algebra. A projection p ∈ A∗∗ is open if it is the
strong limit of an increasing net of positive elements {ai}i∈I ⊆ A+.

Equivalently [1], a projection p ∈ A∗∗ is open if it belongs to the strong closure of the
hereditary subalgebra Ap ⊆ A, where

Ap := pA∗∗p ∩A = pAp ∩A.

Observe that, for any positive element a ∈ A+ that has p ∈ A∗∗ as support projection,
we have Ap = Aa, where Aa is the hereditary C∗-subalgebra of A generated by a, that
is, Aa := aAa.

Throughout, the set of all the open projections of A in A∗∗ will be denoted Po(A∗∗).
A projection p ∈ A∗∗ is said to be closed if its complement 1 − p ∈ A∗∗ is an open

projection. The supremum of an arbitrary set P ⊂ Po(A∗∗) of open projections in A∗∗

is still an open projection and, likewise, the infimum of an arbitrary family of closed
projections is still a closed projection, by the results in [1]. Therefore, the closure of an
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open projection p ∈ A∗∗ can be defined as

p := inf{q∗q = q ∈ A∗∗ | 1 − q ∈ Po(A∗∗) ∧ p ≤ q}.
Let B be a C∗-subalgebra of A. A closed projection p ∈ A∗∗ is said to be compact in B
if there exists a positive contraction a ∈ B+ such that pa = p.

For a positive contraction a of a C∗-algebra A, its support projection pa is the open
projection in A∗∗ given by

pa := sot lim
n→∞ a1/n.

Definition 3.5. Let A be a G-algebra. A G-invariant open projection is an open
projection in (AG)∗∗.

The above definition entails that every G-invariant open projection is the strong limit
of an increasing sequence of positive elements from the fixed point algebra.

Lemma 3.6. If (E, ρ) is an equivariant Hilbert A-module of the form aA for some
a ∈ A+, then there exists ā ∈ AG such that E ∼=G āA.

Proof. Clearly a ∈ E. Since the map g �→ ρg(a) is continuous, for every ε > 0 there
exists a neighbourhood N of the identity e of the group G such that ‖ρg(a) − a‖ < ε, for
any g ∈ N . Hence, ∫

G

ρg(a)dμ(g) ≥
∫
N

ρg(a) dμ(g)

≥
∫
N

(a− ε)+ dμ(g)

= μ(N)(a− ε)+,

with μ(N) > 0 by the regularity of the Haar measure μ on G. By setting

ā :=
∫
G

ρg(a) dμ(g)

we have ā ∈ A+ and pā ≥ p(a−ε)+ for any ε > 0, so that E ∼= āA, and ρg(ā) = ā for any
g ∈ G. For the inner product, we have

(ρg(āb), ρg(āc)) = ρg(āb)∗ρg(āc)

= αg(b)∗ā2αg(c)

= αg(b∗ā2c), ∀g ∈ G

and by taking approximate units for b and c, we then find ā2 = αg(ā2) for any g ∈ G,
whence ā ∈ AG. �

Let a ∈ AG be a G-invariant positive element and, like in the non-equivariant case, use
Ea to denote the equivariant Hilbert A-module generated by (aA, ρ), where the strongly

https://doi.org/10.1017/S0013091517000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000347


592 G. N. Tornetta

continuous action ρ is given by ρg(ab) := aαg(b) for any g ∈ G. We give the following
equivariant version of Blackadar equivalence.

Definition 3.7. Let A be a G-algebra. Two positive elements a, b ∈ AG are said to be
equivariantly Blackadar equivalent, in symbols a ∼G,s b, if there exists x ∈ AG such that
Aa = Ax∗x and Ab = Axx∗ .

We give the following equivariant version of Peligrad–Zsidó (PZ) equivalence.

Definition 3.8. Let A be a G-algebra. Two G-invariant open projections p, q ∈ (AG)∗∗

are said to be equivariantly PZ equivalent, in symbols p ∼G,PZ q, if there exists a partial
isometry v ∈ (AG)∗∗ such that

p = v∗v, q = vv∗,

and
v(AG)p ⊂ AG, v∗(AG)q ⊂ AG.

A direct application of the Kaplansky density theorem and the dominated convergence
theorem shows that we might as well use the notation AGp to denote either (AG)p or
(Ap)G, since both these hereditary subalgebras coincide.

Proposition 3.9. Let A be a G-algebra and let p be a G-invariant open projection.
Then (AG)p = (Ap)G.

The result that follows can be regarded as an equivariant extension of Proposition 4.3
of [11].

Proposition 3.10. Let A be a G-algebra and let a and b be G-invariant positive
elements of A. The following are equivalent:

(i) a ∼G,s b
(ii) Ea and Eb are equivariantly isomorphic

(iii) there exists x ∈ AG such that Ea = Ex∗x and Eb = Exx∗

(iv) pa ∼G,PZ pb.
Proof. (i) ⇒ (iv). As a direct consequence of [12, Theorem 1.4], we have px∗x ∼G,PZ

pxx∗ , since this is true for px∗x ∼PZ pxx∗ in AG. Furthermore, Aa = Ab, with a, b ∈ AG,
implies that pa = pb, with pa and pb in (AG)∗∗.

(iv) ⇒ (i). By the arguments of [11, Proposition 4.3], we can see that, if v denotes the
partial isometry that witnesses the PZ equivalence of pa and pb, then vav∗ ∈ AG has the
same support projection of b, i.e. pb, in AG.

(ii) ⇒ (iii). Let u be the map that implements the equivariant isomorphism and set
x := ua. Then Exx∗ = xA = uaA = Eb and

σg(x) = (σg ◦ u ◦ ρ−1
g ◦ ρg)(a) = uρg(a) = ua = x, ∀g ∈ G,

therefore x ∈ AG. Furthermore, x∗x = a2 since u is isometric, so that Ea = Ex∗x.
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(iii) ⇒ (ii). Let x = v|x| be the polar decomposition of x, with v ∈ (AG)∗∗. Then

vρg(|x|b) = v|x|αg(b)
= |x∗|vαg(b)
= σg(|x∗|v)αg(xb)
= σg(|x∗|vb)
= σg(v|x|b)

for any b ∈ A, whence v ∈ B(Ex∗x, Exx∗)G is the sought equivariant isomorphism.
(i) ⇔ (iii). This is a restatement of the definitions involved and based on the one-to-one

correspondence between hereditary subalgebras and right ideals. �

The following is an equivariant version of the compact containment relation for open
projections.

Definition 3.11. Let A be a G-algebra, and let p, q ∈ (AG)∗∗ be G-invariant open
projections. We say that q is compactly contained in p (in symbols q ⊂⊂G p) if there
exists e ∈ AGp such that q̄e = q̄, where q̄ denotes the closure of q.

With both Definitions 3.8 and 3.11, we can define the Cuntz comparison of two
G-invariant open projections in the usual way of [5] and [11].

Definition 3.12. Let (A,G, α) be a G-algebra and let p, q be G-invariant open projec-
tions from (AG)∗∗. We shall say that p is equivariantly Cuntz-subequivalent to q (p �G q
in symbols) if

∀p′ ⊂⊂G p ∃q′ ⊂⊂G q | p′ ∼G,PZ q
′.

Hence, two G-invariant open projections p and q are said to be Cuntz-equivalent if both
p �G q and q �G p hold.

The proposition below can be regarded as an equivariant extension of part of the results
established in [11, Proposition 4.10].

Proposition 3.13. Let A be a G-algebra and let a, b be G-invariant positive elements.
Then Ea ⊂⊂G Eb if and only if pa ⊂⊂G pb.

Proof. Identify K(Eb) with Ab and observe that the rank-1 operator θbd,bc is sent
to the element bdc∗b for any c, d ∈ A. Hence, the action Adρg

on K(Eb) coincides with
the action of αg on Ab. Therefore, if e ∈ K(Eb)G is such that e|Ea

= idEa
, then e ∈ AGb

satisfies pae = pa. �

Theorem 3.14. Let G be a second countable compact group. Then CuG(A) ∼=
Po(((A⊗KG)G)∗∗)/ ∼G.

Proof. By Proposition 3.10, equivariant isomorphism of modules coincides with equiv-
ariant PZ equivalence of the corresponding G-invariant open projections, while by
Proposition 3.13 compact containment of equivariant modules corresponds to compact
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containment of G-invariant open projections. Hence, it is enough to show that there
exists a bijection between E⊂⊂G

a := {X | X ⊂⊂G Ea} and p⊂⊂G
a := {p | p ⊂⊂G pa} for any

positive element a ∈ (A⊗KG)G. To this end, suppose that X ⊂⊂G Ea. Since A⊗KG

is a stable C∗-algebra, there exists a′ ∈ (A⊗KG)+ such that X = a′(A⊗KG), and by
Lemma 3.6, we can assume that a′ is G-invariant. By Proposition 3.13, Ea′ ⊂⊂G Ea is
equivalent to pa′ ⊂⊂G pa, so that we can associate the G-invariant projection pa′ to the
equivariant module X. To see that this correspondence is well-defined and independent
from the choice of a′, observe that, if a′′ ∈ A⊗KG is another G-invariant positive element
such that X = a′′(A⊗KG), then the hereditary subalgebra generated by a′′ is the same
as that generated by a′, and therefore pa′′ = pa′ . Conversely, for every p ⊂⊂G pa, there
exists a′ ∈ (A⊗KG)G such that p = pa′ , and by Proposition 3.13, again this implies that
Ea′ ⊂⊂G Ea. Any other choice of a positive element that gives the same open projection
leads to the same hereditary subalgebra and hence to the same module, whence it follows
that the correspondence p �→ Ea′ is well-defined and independent from the choice of a′.
It is now easy to verify that this correspondence is the inverse of the one above, and
therefore it provides a bijection between p⊂⊂G

a and E⊂⊂G
a . �

4. Classification of actions

In this section, we show how to use the equivariant extension of the bivariant Cuntz
semigroup, defined in this paper, to establish classification results for actions by compact
groups on C∗-algebras. In particular, we show how to rephrase the classical result of
Handelman and Rossmann [10], and the more recent one of Gardella and Santiago [9] in
the language of the new theory proposed in this paper.

Definition 4.1. Let A and B be G-algebras. An element Φ ∈ CuG(A,B) is said to
be strictly invertible if there exist equivariant c.p.c. order zero maps φ : A→ B and
ψ : B → A such that

(i) [φ⊗ idKG
] = Φ;

(ii) ψ ◦ φ ∼G idA and φ ◦ ψ ∼G idB .

As in the case of the non-equivariant theory of the bivariant Cuntz semigroup of [4],
we can regard strictly invertible elements as invertible elements of CuG(A,B), with the
obvious meaning of invertibility, that come from the scale of CuG(A,B), where the latter
is defined as follows.

Definition 4.2. Let A and B be G-algebras. The scale of CuG(A,B) is the set of
classes

Σ(CuG(A,B)) := {[φ⊗ idKG
] ∈ CuG(A,B) | φ : A→ B equiv. c.p.c. order zero}.

An isomorphism criterion for crossed products follows from the following result about
the map jG of § 2.4.

Proposition 4.3. Let A and B be G-algebras. If Φ ∈ CuG(A,B) is a strictly invertible
element then so is jG(Φ) ∈ Cu(A�G,B �G), in the sense of [4].
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Proof. Observe that (φ⊗ idKG
)
�

can be identified with φ� ⊗ idK for any equivariant
c.p.c. order zero map φ : A→ B. Since Φ is strictly invertible in CuG(A,B), there are
equivariant c.p.c. order zero maps φ : A→ B and ψ : B → A such that [φ⊗ idKG

] = Φ
and ψ ◦ ψ ∼G idA, φ ◦ ψ ∼G idB . From Theorem 2.27 it follows that

jG(Φ) = [(φ⊗ idKG
)
�

]

whereas from Proposition 2.26, we have ψ� ◦ φ� ∼ idA�G and φ� ◦ ψ� ∼ idB�G. Hence,
jG(Φ) ∈ Cu(A�G,B �G) is a strictly invertible element. �

For any pair of G-algebras A and B, it is easy to see that there is a well-defined map
σG from the scale of CuG(A,B) to the scale of Cu(AG, BG), which is given by

σG([φ⊗ idKG
]) := [φ|AG ⊗ idK ].

In particular, it follows that any strictly invertible element of CuG(A,B) yields a strictly
invertible element of Cu(AG, BG). Hence

Theorem 4.4. Let A and B be unital and stably finite G-algebras. If there is a strictly
invertible element in CuG(A,B) then the fixed point algebras AG and BG are isomorphic.
Furthermore, if G finite, then the crossed products A�G and B �G are isomorphic.

Proof. By the above considerations, if Φ ∈ CuG(A,B) is strictly invertible, then so is
σG(Φ) ∈ Cu(AG, BG). Since A and B are unital, AG and BG are unital and stably finite,
and the classification theorem of [4] applies. For the second part, if Φ ∈ CuG(A,B) is
a strictly invertible element, then jG(Φ) is strictly invertible in Cu(A�G,B �G). Fur-
thermore, A�G and B �G are unital and stably finite, and therefore the classification
theorem of [4] applies. �

As in the standard theory of the bivariant Cuntz semigroup, we have the following
result for the equivariant setting.

Proposition 4.5. Let A,B be unital and stably finiteG-algebras. If φ : A→ B and ψ :
B → A are two equivariant c.p.c. order zero maps such that ψ ◦ φ ∼G idA and φ ◦ ψ ∼G
idB then there are equivariant unital ∗-homomorphisms πφ : A→ B and πψ : B → A such
that

(i) [πφ] = [φ] and [πψ] = [ψ];

(ii) πψ ◦ πφ ∼G idA and πφ ◦ πψ ∼G idB .

Proof. By Theorem 2.5 we can find G-invariant positive elements hφ, hψ and equiv-
ariant ∗-homomorphisms πφ, πψ such that φ = hφπφ and ψ = hψπψ. Evaluating on the
unit of A and B respectively we get

h
1/2
ψ πψ(hφ)h

1/2
ψ ∼G 1A and h

1/2
φ πφ(hψ)h1/2

φ ∼G 1B ,

where by ∼G we mean that the sequences that witness the Cuntz equivalences are
taken from the fixed point algebras. Hence, there exists {xn}n∈N

⊂ AG such that
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xnh
1/2
ψ πψ(hφ)h

1/2
ψ x∗n converges to 1A, and therefore xnh

1/2
ψ πψ(hφ)h

1/2
ψ x∗n is eventually

invertible. From this we conclude that, for large enough values of n, there exist cn ∈ A
such that

xnh
1/2
ψ πψ(hφ)h

1/2
ψ x∗ncn = 1A,

which shows that xn is eventually right invertible. Since A is stably finite, it follows that
the sequence {xn}n∈N

is eventually invertible, and therefore

h
1/2
ψ πψ(hφ)h

1/2
ψ x∗ncxn = 1A,

which shows that hψ is also right invertible, hence invertible. Similarly, we also deduce
the invertibility of hφ, and so πφ and πψ satisfy (i) and (ii). Now set p = πφ(1A) and
q = πψ(1B). Since πψ(p) ∼G 1A and πφ(q) ∼G 1B , stable finiteness of A and B implies
πφ(q) = 1B and πψ(p) = 1A. Now 1A − πψ(q) is a positive element in AG, but

πφ(1A − πψ(q)) = p− 1B ≤ 0,

which is possible only if p = 1B . Similarly, we find that q = 1A, and therefore πφ and πψ
are unital. Finally, observe that the invertibility of hφ and hψ implies that the ranges of
πφ and πψ are B and A respectively. �

The completed representation semiring Cu(G), or simply the representation semir-
ing, as defined in [9, Definition 3.1], is the semiring arising by considering separable
representations G rather than just the finite-dimensional ones.

Theorem 4.6. Let A and B be unital and stably finite G-algebras. Every
strictly invertible element Φ ∈ CuG(A,B) induces a Cu(G)-semimodule isomorphism
ρ : CuG(A) → CuG(B) such that ρ([1A]) = [1B ] and ρ([1A ⊗ eG]) = [1B ⊗ eG].

Proof. Thanks to Proposition 4.5, if Φ ∈ CuG(A,B) is a strictly invertible element,
there are equivariant c.p.c. order zero maps φ : A→ B and ψ : B → A such that ψ ◦ φ ∼G
idA and φ ◦ ψ ∼G idB , which can then be replaced by their support ∗-homomorphisms πφ
and πψ respectively. Then ρ := CuG(πφ) is a Cu(G)-semimodule isomorphism that clearly
satisfies ρ([1A]) = [1B ] and ρ([1A ⊗ eG]) = [1B ⊗ eG]. �

Definition 4.7. Let (A,G, α) be a G-algebra. The action α on A is said to be rep-
resentable if there exists a strongly continuous group homomorphism u : G→ U(M(A))
such that αg = Ad(ug) for any g ∈ G. The action α is said to be locally representable if
there exists an increasing sequence {An}n∈N

of α-invariant C∗-subalgebras of A such that⋃
n∈N

An is dense in A and α|An
is representable for every n ∈ N.

For the following corollary, we borrow the definition of the class of algebras R and
that of locally representable actions from [9] (see the discussion that precedes [9,
Theorem 8.4]).

Corollary 4.8. Let G be a finite Abelian group and let (A,G, α) and (B,G, β) be
unital G-algebras in the class R with locally representable actions α and β along given
inductive sequences for A and B respectively, that lie in the class R. Then (A,G, α) and
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(B,G, β) are equivariantly isomorphic if and only if there is a strictly invertible element
in CuG(A,B).

Proof. It follows directly from the above theorem, together with the classification
results of [9]. �

Locally representable actions for the larger class of compact groups have been consid-
ered by Handelman and Rossmann. Their definition of local representability is restricted
to AF algebras, and it is assumed that an action α over an AF algebra A is locally
representable if it is representable along a given inductive sequence of finite-dimensional
C∗-algebras whose limit is A. We shall say that a G-algebra (A,G, α) is AF if the underly-
ing C∗-algebra A is. Their main classification result [10, Theorem III.1], for the purposes
of this paper, can be stated in the following way.

Definition 4.9. The equivariant Murray–von Neumann semigroup V G(A) of a uni-
tal G-algebra (A,G, α) is the set of isomorphism classes of finitely generated projective
(A,G, α) modules equipped with the operation + derived from the direct sum of modules.

Theorem 4.10 (Handelman–Rossmann). Let G be a compact group and let
(A,G, α) and (B,G, β) be unital AF G-algebras, with α and β locally representable
actions along given inductive sequences for A and B respectively. Then A and B are
equivariantly isomorphic if and only if there exists a V G(C)-semimodule isomorphism
ρ : V G(A) → V G(B) such that ρ([1A]) = [1B ].

This classification result can be restated within the theory of the equivariant bivariant
Cuntz semigroup as a corollary to Theorem 4.6, as it is now shown.

Corollary 4.11. Let G be a compact group and let (A,G, α) and (B,G, β) be unital
AF G-algebras, with α and β locally representable actions along given inductive sequences
for A and B respectively. Then A and B are equivariantly isomorphic if and only if there
exists a strictly invertible element in CuG(A,B).

Proof. Recall that, by Lemma 3.3, V G(A) injects in CuG(A) for any stably finite
C∗-algebra A. By Theorem 4.6, every strictly invertible element is represented by an
equivariant ∗-homomorphism, which maps G-invariant projections to G-invariant projec-
tions, and therefore induces a V G(C)-semimodule homomorphism between V G(A) and
V G(B) that satisfies all the hypotheses of Theorem 4.10. �
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