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Effects of initial conditions in decaying
turbulence generated by passive grids
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(Received 7 April 2006 and in revised form 30 March 2007)

The effects of initial conditions on grid turbulence are investigated for low to moderate
Reynolds numbers. Four grid geometries are used to yield variations in initial
conditions and a secondary contraction is introduced to improve the isotropy of
the turbulence. The hot-wire measurements, believed to be the most detailed to date
for this flow, indicate that initial conditions have a persistent impact on the large-scale
organization of the flow over the length of the tunnel. The power-law coefficients,
determined via an improved method, also depend on the initial conditions. For
example, the power-law exponent m is affected by the various levels of large-scale
organization and anisotropy generated by the different grids and the shape of the
energy spectrum at low wavenumbers. However, the results show that these effects are
primarily related to deviations between the turbulence produced in the wind tunnel
and true decaying homogenous isotropic turbulence (HIT). Indeed, when isotropy is
improved and the intensity of the large-scale periodicity, which is primarily associated
with round-rod grids, is decreased, the importance of initial conditions on both
the character of the turbulence and m is diminished. However, even in the case
where the turbulence is nearly perfectly isotropic, m is not equal to −1, nor does it
show an asymptotic trend in x towards this value, as suggested by recent analysis.
Furthermore, the evolution of the second- and third-order velocity structure functions
satisfies equilibrium similarity only approximately.

1. Introduction
Homogeneous and isotropic turbulence (HIT), arguably the simplest type of

turbulence, is a fundamental flow in the study and development of turbulence
theory and models. In their seminal work, von Kármán & Howarth (1938) derived
the transport equation that relates the double (≡ Buu = 〈u (x + r) u (x)〉) and triple
(≡ Buuu = 〈u2 (x + r) u (x)〉) streamwise velocity correlation functions for temporally
decaying HIT:

∂Buu
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+ 2

(
∂Buuu
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)
= 2ν

(
∂2Buu

∂r2
+

4

r

∂Buu

∂r

)
. (1.1)

Under certain assumptions, (1.1) can yield predictions about the decay of the
turbulence. The most widely used technique to solve (1.1) has been to look for
the solutions for which the correlation functions remain self-preserving throughout
the decay, where self-preservation requires that the double and triple correlation
functions collapse when they are normalized using a single length scale and a single
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velocity scale. A number of authors (e.g. Dryden 1943; Batchelor 1948; Korneyev &
Sedov 1976) have investigated the solutions to (1.1) that admit a self-preserving form.
These yielded the prediction, which is now commonly accepted, that the turbulent
kinetic energy decays according to a power law of the form

〈q2〉 ∼ (t − t0)
m , (1.2)

where m is the power-law exponent and t0 the virtual origin. The value of m yielded
by any given analysis, however, depends on the assumptions used. The classical
solution for complete self-preservation at all scales (referred to herein simply as self-
preservation) in the initial period of decay was found by Dryden (1943), and later
derived in a more rigorous manner by Batchelor (1948). This solution requires Rλ to
remain constant throughout the decay, which leads to the prescription that m = −1,
and is linked to the classical result that the decay of HIT is universal, owing to the
conditions of homogeneity and isotropy.

Although early experimental work seems to support the prediction that m = −1
(e.g. Batchelor & Townsend 1948; Kistler & Vrebalovich 1966), later experiments,
mainly those of Comte-Bellot & Corrsin (1966) (see also Mohamed & LaRue (1990)
who reviewed much of the available data), have led to the present consensus that
m � −1. Values of m between −1 and −1.75 have been obtained experimentally
(e.g. Uberoi & Wallis 1967; Ling & Wan 1972; Gad-el-Hak & Corrsin 1974, and
references therein), whereas direct numerical simulation (DNS) of periodic three-
dimensional box turbulence, which provides better approximations of decaying HIT
than grid turbulence, has yielded a similar spread of values (e.g. de Bruyn Kops &
Riley 1998; Wray 1998; Huang & Leonard 1994; Antonia & Orlandi 2004; Burattini
et al. 2006). The origin of the large range of values found in both experiments and
simulations remains a debated issue. Mohamed & LaRue (1990) attribute the scatter
to inconsistencies in the methods used by different authors to determine the power-law
exponent, whereas George (1992) argues that this reflects the dependence of m on
initial conditions. (The term ‘initial conditions’ is used here to refer to the conditions
under which the turbulence was produced, either experimentally or numerically.) The
importance of this issue with respect to turbulence models has been highlighted by
George et al. (2001).

George’s (1992) argument is based on a re-evaluation of classical self-preservation
solutions, which have assumed from the outset that the same similarity scales should
apply to the double and triple correlation functions. The main feature of the approach
used by George is that the self-preservation assumption is relaxed so that the
similarity scales emerge from the governing equation rather than being the result
of ad hoc assumptions. George found that (1.1) admits different similarity scales
for the second- and third-order functions. We draw a formal distinction between
the approach described by George (1992), known as equilibrium similarity, and the
self-preservation hypothesis of Dryden (1943), although both theories become fully
equivalent for Rλ → ∞. For convenience, we briefly introduce equilibrium similarity
within the framework of the energy structure function equation as obtained by
Danaila, Anselmet & Antonia (2002), that is,

−〈(δu) (δq)2〉 + 2ν
d

dr
〈(δq)2〉 + Iq = 4

3
〈ε〉r , (1.3)

where 〈(δq)2〉 ≡ 〈(δu)2〉 + 〈(δv)2〉 + 〈(δw)2〉, 〈〉 denotes time averaging and 〈ε〉 is the
turbulent kinetic energy dissipation rate (here referred to as dissipation). Iq is the
non-stationary term equivalent to the first term on the left-hand side of (1.1), which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006763


Effects of initial conditions in decaying turbulence generated by passive grids 397

is given by

Iq ≡ −U

r2

∫ r

0

s2 ∂

∂x
〈(δq)2〉 ds, (1.4)

where U is the mean flow velocity and s is a dummy variable. The similarity scales
admitted by (1.3) are twice the turbulent kinetic energy 〈q2〉 (≡ 〈u2〉 + 〈v2〉 + 〈w2〉)
and the Taylor microscale λ, so that for equilibrium similarity (Antonia et al. 2003),

〈(δq̃)2〉 = f (r̃) , (1.5)

〈(δũ) (δq̃)2〉 = −3−1/2R−1
λ g(r̃) , (1.6)

where a tilde denotes normalization with 〈q2〉 or λ. We note that the general definitions
of λ and Rλ, which avoid the ambiguity that arises from the directional dependence
of 〈u2〉 and 〈(∂u/∂x)2〉 (see Fulachier & Antonia 1983), are used here, namely,

λ2 = 5ν
〈q2〉
〈ε〉 , (1.7)

Rλ =
〈q2〉1/2λ

31/2ν
. (1.8)

The most attractive consequences of equilibrium similarity are that Rλ is not required
to remain constant throughout the decay and that it does not exclude a possible
dependence on initial conditions, even for truly homogeneous and isotropic turbulence.
For equilibrium similarity, m < −1 is thus possible and the theory can apply at any Rλ.
Therefore, experimental and numerical results found in the literature would appear
to be consistent with equilibrium similarity. Indeed, some support for the theory
was drawn from previous experimental and numerical studies, although George
et al. (2001) emphasized the need for more detailed experiments to test the theory
adequately.

An alternative phenomenological picture was presented by Speziale & Bernard
(1992), which could also explain the results of experiments and simulations at finite
Reynolds numbers. Their analysis, based on a one-point formulation of the complete
self-preserving form of the governing equations, yielded a universal asymptotic
solution as t → ∞ with m = −1, consistent with Dryden’s (1943) theory. They explain
the experimentally determined values of m (i.e. m < −1) by the limited number of
eddy turnover times spanned by experiments and the use of measurements in the
region before the asymptotic state has been reached.

Although grid turbulence has been studied extensively since Batchelor & Townsend
(1947) and Comte-Bellot & Corrsin (1966), the above discussion shows that many
aspects of this flow remain unclear, particularly the observed variations in m, and that
new experiments are required to clarify these issues. The main focus of this study is on
grid-generated turbulence at low to moderate Reynolds numbers (i.e. 20<Rλ < 70).
In particular, we look at the impact of the large-scale anisotropy and how it can be
minimized in § 3, the character and evolution of the velocity structure functions in the
context of the large-scale organization and the validity of equilibrium similarity in § 4,
and the decay of the turbulence with respect to the power-law is discussed in § 5. The
primary motivation for the use of low Rλ relates to the expectation that the impact
of initial conditions should be more easily identifiable at low Reynolds numbers
and that equilibrium similarity is postulated to hold at such values. Furthermore, a
noteworthy advantage is that, for these flow conditions, the probe resolution relative
to the smallest (Kolmogorov) scales of the turbulence is tolerable. An important
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Bar M d η
Grid shape (mm) (mm) σ RM (mm) �x∗ �y∗ �z∗

� Sq35 Square 24.76 4.76 0.35 10 400 0.21–0.49 1.3–1.9 2.0–4.8 3.2–7.6
© Rd35 Round 24.76 4.76 0.35 10 400 0.24–0.58 1.4–1.9 1.7–4.2 2.8–6.7
⊗ Rd35b Round 24.76 4.76 0.35 19 700 0.15–0.36 2.1–3.2 2.8–6.7 4.4–10
� Rd44 Round 24.76 6.35 0.44 10 400 0.23–0.54 1.2–2.1 1.8–4.3 3.0–7.0
� Rd44w Round 24.76 6.35 0.44 10 400 0.23–0.56 1.2–2.0 1.8–4.3 2.8–7.0

Table 1. Details of the grid geometries and experimental conditions of decay experiments.

contribution of the present experiments, the details of which are given in § 2, is
that the decay of the turbulence is measured in much greater detail than has been
reported previously. In particular, much finer streamwise separations are used between
measuring locations to provide five to ten times the number of points typically used
in the literature to fit the power law. Furthermore, advancements made over the past
four decades in hot-wire anemometry, computer technology, and data acquisition
and analysis techniques are used to improve the accuracy relative to previous results.
The present measurements, in combination with an improved curve-fitting procedure,
improve significantly the reliability of the experimentally determined values for the
power-law exponent.

2. Experimental procedures
Approximately homogeneous and isotropic turbulence was generated by uniform

grids of various geometries. Four square-mesh biplane grids, all with the same mesh
size M = 24.76 mm, were used to generate different initial conditions. The geometric
details of the grids are given in table 1, where σ ≡ d/M (2 − d/M) is the grid solidity,
and general schematics of the grids are shown in figure 1. The geometry of the
square-mesh grids was varied by changing the shape (square or round) and diameter
d of the bars. In addition, a small helical wire (diameter dwd = 0.8 mm) was wound
around the bars of Rd44 at a pitch of one mesh length (Rd44w). The motivation for
the design of Rd44w was to reduce the intensity of the dominant frequency observed
by Lavoie et al. (2005) behind Rd44 by reducing the strength of the vortex streets
behind the bars of the grid.

An important limitation of grid turbulence is that it inevitably involves a certain
degree of anisotropy. In conventional working sections, 〈u2〉 is typically 20–50%
larger than 〈v2〉 and 〈w2〉 (e.g. Kistler & Vrebalovich 1966; Uberoi & Wallis 1967).
To address this, two working sections, with and without a secondary contraction
(WS-A and WS-B, respectively), are used downstream of the grids. Schematics of the
wind tunnel and working sections are shown in figure 2. The secondary contraction,
which had an area ratio c = 1.36 chosen on the basis of the data of Uberoi (1956)
and Comte-Bellot & Corrsin (1966), and was located 11M downstream of the grids.
Because the different turbulence intensities generated by the grids affect the growth
rate of the boundary layers at the walls, the floor of each working section was
carefully adjusted for each experiment to provide a zero pressure gradient (resulting
streamwise variations in U were less than ±0.4%).

For grid-generated turbulence, the turbulence kinetic energy decays in space.
Taylor’s frozen-flow hypothesis allows the time of decay in this case to be associated
with the time required for the turbulence to be convected downstream by the mean

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006763


Effects of initial conditions in decaying turbulence generated by passive grids 399

y
z

y
x

y
z

y
z

d

M

y
x

d

M
y

x

d

M

yy
z

d

M

M

(a) (b)

(c) (d)
dwd

Figure 1. Schematic of grid geometries. Dimensions are given in table 1, and dwd = 0.8 mm.
(a) Sq35; (b) Rd35; (c) Rd44; (d) Rd44w.
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Figure 2. Schematic of the wind tunnel and working sections: (b) WS-A and (c) WS-B. δ is
a small displacement required to achieve a zero pressure gradient along the working sections.
All dimensions in mm.

flow. The use of Taylor’s hypothesis is warranted in grid turbulence, given the low
turbulence intensity and negligibly small streamwise gradients (see Corrsin 1963).
Since the velocity is constant in a straight duct section, x remains proportional to
time throughout the length of the tunnel. However, the velocity is not constant in
WS-B because of the secondary contraction. It is thus more appropriate to define t ,
the time required for the turbulence to be convected from the grid to the downstream
location x, as (see also Comte-Bellot & Corrsin 1966)

t =

∫ x

0

ds

U (s)
. (2.1)
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This time is then normalized by U0, the velocity immediately upstream of the grid,
and M . The use of the convection time instead of the streamwise location allows for
a direct comparison of the results between the two working sections.

Two types of experiment were performed. In the first, measurements of the
turbulence decay were made for the four biplane grids along the centreline of the
tunnel for 20 � U0t/M � 80 in WS-A and 25 � U0t/M � 77 (30 � x/M � 100) in WS-
B. Measurements were taken at every mesh length along the working sections. A
mean velocity U0 = 6.4 m s−1 was used and yielded RM =U0M/ν ≈ 10 400 for all
grids. Since the various grid geometries produce different turbulence intensities, Rλ

also varies depending on the grid (e.g. Lavoie et al. 2005). Therefore, measurements
were also obtained for Rd35 with RM � 19 700 (or U0 � 12.1 m s−1) to reproduce
equivalent values of Rλ as those found for Sq35 at RM � 10 400. For the second type
of experiment, measurements were taken at a constant downstream location with
different U0. The measuring locations were U0t/M =60 for WS-A and U0t/M � 62
(x/M = 80) for WS-B.

The energy dissipation rate can be estimated indirectly and reliably from the
turbulent kinetic energy budget. In the context of spatially decaying grid turbulence,
the energy budget can be expressed as (e.g. Tennekes & Lumley 1972)

〈ε〉d = −U

2

d〈q2〉
dx

, (2.2)

where the subscript d is used to indicate that 〈ε〉 is obtained from the decay of
〈q2〉. While this method can be used to estimate 〈ε〉 for the decay measurements
described above, it is obtained from the similarity form of (1.3) for the single-location
experiments. By substituting (1.5) and (1.6) into (1.3), the transport equation can be
rewritten as

g + 2f ′ − [5Γ1/m − 10Γ2] r̃−2 = (20/3) r̃ , (2.3)

where the prime indicates differentiation with respect to r̃ , while Γ1 ≡
∫ r̃

0
s̃3f ′ ds̃ and

Γ2 ≡
∫ r̃

0
s̃2f ds̃. Lavoie et al. (2005) have shown that (2.3) is verified approximately

at all scales (see also figure 3) so that adequate estimates of 〈ε〉 can be obtained, as
is demonstrated below. The dissipation rate obtained with this method is denoted
by the subscript sb (for scale-by-scale budget) and is taken as the value of 〈ε〉 that
balances (2.3) at r̃ = 1 with the measured distributions for 〈(δq)2〉 and 〈(δu) (δq)2〉. The
selection of r̃ = 1 is based on the observation that (2.3) is nearly perfectly balanced
at this location. The estimate 〈ε〉sb offers the particular advantage that the smallest
scales need not be resolved to the same degree as that required if 〈ε〉 were obtained
from the velocity derivative statistics, e.g. 〈ε〉iso =15ν〈(∂u/∂x)2〉. A similar approach
has been used by Kang, Chester & Meneveau (2003) based on the transport equation
for 〈(δu)2〉, although it relied on Kolmogorov’s second similarity hypothesis (i.e.
〈(δu)2〉 ∼ 〈ε〉2/3r2/3) and the k–ε model to estimate the non-stationary term. Figure 4
compares the ratio 〈ε〉sb/〈ε〉d for some of the grids in both working sections. Even
for Rd44, for which equilibrium similarity is the least accurate (Lavoie et al. 2005,
see also § 4.2), the difference between 〈ε〉d and 〈ε〉sb remains typically within ±10%.
Also included in figure 4 are error bars on the estimate of 〈ε〉sb for Sq35, which
illustrate the insensitivity of 〈ε〉sb to uncertainties in m. These error bars represent an
uncertainty of ±15% on m, a grossly conservative estimate, which only translates to
an error of 3–4% in 〈ε〉sb.

A one-component vorticity probe (figure 5) consisting of two parallel wires and
an X-wire was used to measure the turbulence behind the grids. The dimensions of
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←
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[5Γ1/m – 10Γ2]/r̃–3

2f ′/r̃  →

g/r̃

← 20/3

Figure 3. Examples of the scale-by-scale budget described by (2.3) and compensated with r
for Rd35 (©) in WS-A at U0t/M = 60 and Sq35 (�) in WS-B at U0t/M � 47. The sum of the
left-hand side of (2.3) is represented by the dotted line.

20 30 40 50 60 70 80
0.90

0.95

1.00

1.05

1.10

1.15

U0t/M

�ε�sb——–
�ε�d

Figure 4. Ratio 〈ε〉sb/〈ε〉d for Sq35 (�), Rd35 (©) and Rd44 (�) in WS-A (open symbol) and
WS-B (filled symbols). Here and in the subsequent figures, only every second point is shown
to avoid crowding.

the probe are compared in table 1 to the values for the Kolmogorov length scale
η (≡ ν3/4/〈ε〉1/4) in both working sections. The asterisk denotes normalization with
η, while �x = U/fs , where fs is the sampling frequency. Since η grows during the
decay, the resolution of the probe improves as U0t/M increases. The dimensions of
the probe were chosen to meet the minimum separation criteria at U0t/M = 80 for
X- and parallel-wires, as outlined by Zhu & Antonia (1995) and Zhou et al. (2003)
to minimize errors due to wire interference and noise contamination. The spectral
correction equations for the X-wire and one-component vorticity probes outlined by
Zhu & Antonia (1996) were used to correct the measured values of the variance of
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z

∆y

∆z

z

x yU

Top view
( y direction into page)

Front view
( x direction out of page)

W1

β2

β1 W2

W3

W4

(a) (b)

Figure 5. One-component vorticity probe. �y � 1.0 mm, �z � 1.6 mm, β1 � β2 � 45◦. All wires
have a diameter of 2.5 µm and are etched from Wollaston (Pt–10% Rh) material to a length
of approximately 0.5 mm. (a) Top view (y-direction into page); (b) front view (x-direction out
of page).

the velocity and velocity derivative fluctuations for bias errors related to the limited
probe resolution.

The wires were operated with in-house constant temperature circuits at an overheat
ratio of 1.5. The signals were amplified and low-pass filtered at a cutoff frequency fc,
which was selected to correspond to the onset of electronic noise, and varied depending
on the grid, flow velocity and measurement location. The signals were sampled at a
frequency fs � 2fc and digitized with a 16 bit A/D converter. The record duration
for the turbulence decay experiments was optimized to yield a statistical convergence
of 〈q2〉 to within ±1% at each measuring station and ±5% on the negative peak
value of 〈(δu) (δq)2〉. The latter criterion was only met every 10 mesh lengths since
it required particularly long records (as long as 6 min at x/M = 80). The sampling
time for the single-point measurements met both criteria. The statistical convergence
of a given quantity was determined from the precision index of that quantity and the
number of independent samples obtained (see Benedict & Gould 1996).

The X-wire was calibrated using a look-up table, as described by Burattini &
Antonia (2005), with calibration angles at 2.5◦ intervals. The single wires were
calibrated with standard velocity calibrations to which third-order polynomials were
fitted. Seven to eight calibration velocities were used for both X- and single-wires.
Since the flow is axisymmetric for this configuration (see Lavoie et al. 2005), the v

and w statistics are assumed equal for the remainder of this paper. The w and mixed
u–w statistics were derived from the X-wire, while the statistics of u were obtained
from the average of the single wires since they provide a more accurate measurement
of u than the X-wire.

3. Isotropy of velocity and vorticity fluctuations
It is common to assess the isotropy of the energy-containing scales from the ratio

〈u2〉/〈w2〉 ( ≡ K), which is shown in figure 6 for the different grids used in both
working sections. The data for Rd35b are not included to minimize crowding since
these are nearly identical to the other round-rod grids. For WS-A, K remains nearly
constant with U0t/M for all grids. There are, however, some noticeable variations
for U0t/M < 30 for the round-rod grids; this reflects a slower development of the
turbulence behind these grids. We remark that K for the round-rod grids does not
show a significant dependence on σ or RM (the scatter is within the measurement
uncertainty and repeatability of the experiments). Experiments performed close to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006763


Effects of initial conditions in decaying turbulence generated by passive grids 403

20 30 40 50 60 70 80
0.9

1.0
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1.2
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1.4

1.5

U0t/M

�
u 2

�
/�
w

2�

Figure 6. Evolution of the isotropic parameter K behind grids in WS-A (open symbols) and
WS-B (filled symbols). Sq35 (�), Rd35 (©), Rd44 (�) and Rd44w (�). The isotropic value of
1 is marked by the dotted line and error bars are shown for Rd35.

1.0 1.1 1.2 1.3 1.4
1.0

1.2

1.4

1.6

c

Ki
–—
Kf

Figure 7. Effect of secondary contraction (c is the area ratio for the contraction) on isotropy.
Sq35 (�), Rd35 (©), Rd35b (⊗), Rd44 (�), Rd44w (�), and data from Comte-Bellot &
Corrsin (1966) (�), Uberoi & Wallis (1966) (�) and Bennett & Corrsin (1978) (�). The solid
line represents the predictions from Batchelor (1953), and the error bar for Rd35 is included.

grids (Lavoie, Djenidi & Antonia 2006) suggest that the phenomenology responsible
for the larger anisotropy for Sq35 in WS-A, compared to the round-rod grids, is related
to differences in the interaction of the wakes in the region immediately downstream
of each grid. As expected, the turbulence is more closely isotropic downstream of the
contraction, while it is relevant to highlight that Rd44w yields nearly perfect isotropy.

The ratio of the values of K before and after the contraction (subscripts i and f ,
respectively) for the present experiments are compared to other published results in
figure 7. Batchelor’s predictions on the effect of a sudden axisymmetric contraction
on HIT are also included in the figure as a reference (see Batchelor 1953, pp. 68–75).
It is expected that these predictions will overestimate the effect of the contraction
since it is not sudden enough for viscous, and more importantly, inertial effects to
be neglected (indeed, most contractions are not sudden enough because of practical
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considerations). We note that the uncertainty of this ratio is illustrated by the error
bar for Rd35 and also by the range of values spanned by the data of Comte-Bellot
& Corrsin (1966) and Uberoi & Wallis (1966). For the present range of Reynolds
numbers, the impact of the contraction on K does not vary with Rλ for a given
grid. Notwithstanding some scatter in the data, the amelioration in K shows some
dependence on grid geometry. As a result of this dependence, and since the grids
do not produce the same degree of anisotropy, different contraction ratios would be
required to produce K = 1 for all cases.

The velocity derivative and vorticity statistics are more representative of the small-
scale motions than the parameter K . For locally isotropic turbulence,〈(

∂u

∂z

)2 〉
= 2

〈 (
∂u

∂x

)2 〉
, (3.1a)

〈 (
∂w

∂x

)2 〉
= 2

〈 (
∂u

∂x

)2 〉
, (3.1b)

〈(
∂u

∂z

) (
∂w

∂x

)〉
= −1

2

〈 (
∂u

∂x

)2 〉
, (3.1c)

〈ω2
y〉 = 5

〈 (
∂u

∂x

)2 〉
. (3.1d)

A formal distinction is made between local homogeneity and isotropy, where the
assumptions of homogeneity and isotropy apply only for the small scales, and the
condition of homogeneity and isotropy that relates to the overall flow. Relations
(3.1a)–(3.1c) are shown in figure 8 for Sq35, Rd44 and Rd44w, while figure 9 displays
(3.1d) for the different grids. Also included in figure 8(a) are the data of Tsinober, Kit
& Dracos (1992), Mydlarski & Warhaft (1996) and Antonia, Zhou & Zhu (1998).

The deviations from isotropy of 〈(∂u/∂z)2〉 and 〈(∂w/∂x)2〉 in WS-A are similar to
those previously reported under comparable flow conditions (figure 8a). Nonetheless,
〈ω2

y〉 satisfies isotropy to a close approximation (figure 9), as was also found by
Antonia et al. (1998). This is to be expected since 〈(∂u/∂z)(∂w/∂x)〉 is nearly isotropic
and the small departure from local isotropy causes opposite deviations for (3.1a) and
(3.1b). The secondary contraction yields good isotropy for 〈(∂u/∂z)2〉 (figure 8b), while
〈(∂w/∂x)2〉 retains a similar deviation from (3.1b).

The approach used above to assess the level of isotropy is limited since ratios such
as K and 〈(∂w/∂x)2〉/〈(∂u/∂x)2〉 are representative of a range of scales. A more local
description of the scales affected by the anisotropy of the flow is provided in figure 10.
Here, the measured distribution of 〈(δw)2〉 is compared to that calculated (denoted
by the subscript cal) with the isotropic relation (e.g. Monin & Yaglom 1975)

〈(δw)2〉cal =
r

2

d〈(δu)2〉
dr

+ 〈(δu)2〉, (3.2)

where the measured distribution of 〈(δu)2〉 was used as input. The ratio W̃T , where
WT is the width of the tunnel, is included as an indication of the values of r̃ that
may be affected by the size of the tunnel. Also indicated in the figure are the

separations that correspond to the integral length scale L̃q ≡
∫ r̃0

0
B̃q,q(r̃) dr̃ , where r0

is the first zero-crossing of Bq,q(r) ≡ Bu,u(r) + Bv,v(r) + Bw,w(r). Since L̃q is slightly
different for each grid, this ratio corresponds to a short range of r̃ in figure 10. The
ratio 〈(δw)2〉cal/〈(δw)2〉 is constant and close to one at small separations for both
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Figure 8. Ratio of second-order velocity derivative moments for Sq35 (�), Rd44 (�) and
Rd44w (�). (a) WS-A; (b) WS-B. Also included in (a): ©, from Tsinober et al. (1992); �,
from Mydlarski & Warhaft (1996); 	, Antonia et al. (1998). α = 〈(∂w/∂x)2〉 (open symbols),
〈(∂u/∂z)2〉 (filled symbols) and −〈(∂u/∂z)(∂w/∂x)〉 (symbols with dots). Isotropic values, 2 for
the former two ratios and 0.5 for the latter, are indicated by dotted lines. Error bars shown
for Sq35.
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Figure 9. Streamwise evolution of 〈ω2
y〉/〈(∂u/∂x)2〉 in WS-A (left-hand axis) and WS-B

(right-hand axis). Sq35 (�), Rd35 (©), Rd35b (⊗), Rd44 (�) and Rd44w(�). Isotropic value
marked with dotted lines. Error bars shown for Rd44 (WS-A) and Rd35b (WS-B).

working sections. The small departure from the isotropic value of one at small r̃ is
related to the deviations of (3.1b) from isotropy (figure 8), since it can be shown that
limr → 0 d〈(δα)2〉/dr = 2〈(∂α/∂x)2〉r (e.g. Danaila et al. 2002). Because of the anisotropy
present in WS-A, the ratio 〈(δw)2〉cal/〈(δw)2〉 increases for separations of the order
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Figure 10. Ratio of calculated (subscript cal) and measured distributions of 〈(δw)2〉 in WS-A
(open symbols) and WS-B (closed symbols). Sq35 (�), Rd35 (©) and Rd44w (�). Isotropic
values are marked by dotted lines. The inset illustrates the dependence of this ratio on Rλ for
Sq35 in WS-A; Rλ simeq 43 (——), 51 (− − −) and 66 (− · −).

of Lq and higher. The improved isotropy at the large scales, owing to the secondary
contraction, yields nearly constant values close to 1 at all separations in WS-B, as
expected. The effect of Rλ on 〈(δw)2〉cal/〈(δw)2〉 in WS-A is illustrated for Sq35 in the
inset of figure 10. As Rλ increases, the smallest values of r̃ affected by the anisotropy
also increase, but remain roughly equal to L̃q . The results of figure 10 thus illustrate
that the anisotropy is mainly restricted to the large scales of the flow.

An important observation from figures 8–10 is that the grid geometry, with or
without the secondary contraction, has no clear effect on the isotropy of the small
scales in decaying grid turbulence. (Although there is a notable reduction in the scatter
of the data between grids in figures 8 and 9 for WS-B, this is within measurement
uncertainty.) This indicates that the anisotropic strain rate applied by the secondary
contraction, which is expected to disturb local isotropy in the contraction and shortly
thereafter (as shown experimentally by Uberoi 1956), does not have a persistent
effect on small-scale isotropy for the downstream locations investigated. Furthermore,
these results imply that the large-scale anisotropy is effectively damped by the energy
cascade, consistent with the postulate of local isotropy of Kolmogorov (1941). Thus,
for this particular flow, the directional information at the large scales (r >Lq) does not
significantly affect isotropy at the small scales. In previous studies of grid turbulence,
the small imbalance of (3.1b) was typically attributed to the large-scale anisotropy.
However, the present results do not support this belief since the imbalance remains
even when isotropy at the large scales is significantly improved. To the best of our
knowledge, the anisotropy of 〈(∂w/∂x)2〉 is consistently observed in grid turbulence
measured with multi-sensor hot-wire probes (e.g. Tsinober et al. 1992; Mydlarski
& Warhaft 1996; Antonia et al. 1998). On the other hand, the measurements of
Michelet et al. (1998), made via laser-Doppler anemometry, appear to satisfy (3.1b),
although their results contain significant scatter. This observation would suggest
that the measured anisotropy could be due to errors associated with the hot-wire
measurements and not necessarily a characteristic of grid turbulence. This point,
however, requires further investigation and is not considered here.
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WS-A WS-B

U0 λ η U0 λ η

Grid U0t/M (m s−1) 〈ε〉 Rλ (mm) (mm) U0t/M (m s−1) 〈ε〉 Rλ (mm) (mm)

Sq35 60 6.4 〈ε〉d 43 5.3 0.41 80 6.4 〈ε〉d 40 5.3 0.42
Rd35 40 12.1 〈ε〉d 42 4.5 0.35 80 12.2 〈ε〉d 39 3.8 0.31
Rd44 60 9.8 〈ε〉sb 40 4.1 0.33 40 6.4 〈ε〉d 36 3.7 0.31
Rd44w 54 9.7 〈ε〉sb 39 3.9 0.31 80 10.2 〈ε〉sb 40 4.0 0.32

Table 2. Basic turbulence quantities for experimental results of § 4.1 (figure 11). Also
indicated is the method used to estimate 〈ε〉.

4. Second- and third-order structure functions
4.1. Effects of initial conditions on structure functions

Lavoie et al. (2005) have reported that the shape of the bars used to build the grid
can have a significant effect on scales of the order of λ for a constant RM � 10 400.
However, the value of Rλ for the three grids used varies by as much as 45%. In order
to isolate the effect of initial conditions from those related to changes in Rλ, the focus
here is on measurements obtained for a constant Rλ. Details of the experimental
conditions for the data presented in this section are given in table 2.

The second- and third-order structure functions measured for the different grids in
WS-A and WS-B are shown normalized with 〈q2〉 and λ in figure 11. We note that
separations of the order of the tunnel width are well within the region where the
second- and third-order function reach their respective asymptotic values for r → ∞.
The turbulence is therefore not expected to have been affected by the finite width
of the tunnel, which is typically equal to 20–30Lq . In either working section, there

are negligible differences in 〈(δq̃)2〉 and 〈(δũ) (δq̃)2〉 owing to grid geometry for r̃ < 4.
This shows that the differences in 〈(δq̃)2〉 observed by Lavoie et al. (2005) for r̃ � 1
are primarily due to changes in Rλ. In WS-A, the grid geometry has an important
influence on the large scales of the flow, as is illustrated by the variations in the shapes
of 〈(δq̃)2〉 and 〈(δũ) (δq̃)2〉 between the various grids for r̃ > 4. In particular, 〈(δq̃)2〉
approaches the value of 2 monotonically from below for Sq35, whereas it overshoots
at large separation (r̃ ≈ 13) for the round-rod grids. This overshoot is due to the more
periodic nature of the large scales generated by the round-rod grids, particularly for
Rd44, compared to Sq35. The geometry of the grid has a persistent influence on the
character of the turbulence in the streamwise direction for the whole region spanned
by the present experiments.

The more periodic character of the turbulence behind the round-rod grids is
more readily ascertained from figure 12, where the one-dimensional spectra of the
transverse velocity φw(k1) measured behind the grids are shown. The Strouhal number
(St ≡ k1d/2π) of the sharp peak in the spectra, which is associated with strong periodic
motion in the flow, is independent of x and is roughly located at the wavenumber
k1 � (cM)−1. The disappearance of the sharp peak in the spectra for Rd44w compared
to Rd44 in figures 12(b) and 12(d) shows that the helical wire effectively reduces the
importance of the periodicity behind the latter grid, as expected. The strain rate
applied on the flow by the secondary contraction causes the significant periodic
motion produced by Rd35 and Rd35b to break down (figure 12c).
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Figure 11. Distributions of the second- and third-order structure functions for Sq35 (�),
Rd35 (©), Rd44 (�) and Rd44w (�) at Rλ � 40 in WS-A (open symbols, no offset) and WS-B
(filled symbols, with offset: (a) 0.5; (b) 4).
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Figure 12. (a, b) WS-A; (c, d) WS-B. Lateral velocity spectra, defined as
∫ ∞

0 φw(k1)dk1 = 〈w2〉,
measured at U0t/M = 20 in WS-A and U0t/M = 25 in WS-B behind all the grids.
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Figure 13. Distributions of the second-order structure function normalized with 〈q2〉 and λ
in WS-A and WS-B. Sq35 (no offset), Rd35b (offset 0.25), Rd35 (offset 0.5), Rd44 (offset
0.75) and Rd44w (offset 1.0). (a) WS-A: U0t/m= 40 (——); 60 (· · ·); 80 (− − −). (b) WS-B:
U0t/M � 40 (——); 55 (· · ·); 77 (− − −).

For WS-B, the shapes of 〈(δq̃)2〉 and 〈(δũ) (δq̃)2〉 are notably more uniform than in
WS-A. This would suggest that, in addition to the variations caused by the changes
in periodicity, the anisotropy can account for some of the differences in the structure
functions measured in WS-A. This point can be further highlighted if we note that
the scales most affected by the anisotropy in WS-A (figure 10) are also the scales that
display the strongest dependence on initial conditions. This is also supported by the
nearly identical distributions of 〈(δq̃)2〉 for the round-rod grids in WS-A – recall that
they all involved the same level of anisotropy (figure 6).

4.2. Similarity of structure functions

Distributions of f (r̃) are shown in figure 13 for both working sections. Three locations
in the range 40 � U0t/M � 80 are shown. In each case, the collapse is adequate,
although not complete. The collapse of f (r̃) is assessed in a more quantitative
manner in figure 14, where the difference between the distributions measured at two
locations is plotted as a function of r̃ . The two locations were selected to represent
comparable decay times in both working sections. Notwithstanding some variations
due to uncertainties, the maximum deviation is generally in the vicinity of r̃ = 3, with
a peak value between 2 and 5%. For the grids with a strong periodic component
in WS-A (i.e. Rd35, Rd35b and Rd44), there is a negative peak at r̃ � 25 with a
magnitude comparable to the peak at r̃ = 3. This feature is not present for Sq35 and
Rd44w, for which periodicity is not as important. As discussed in § 4.1, the location
of the peak in the spectra is constant with x. Therefore, the location of the dominant
frequency does not remain invariant when scaled with similarity variables since λ
grows in the streamwise direction. The periodicity associated with this peak in the
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Figure 14. Deviation from similarity. �fq is defined arbitrarily as the difference between fq

at U0t/M = 40 and 80 (WS-A) or U0t/M � 37 and 77 (WS-B). Sq35 (�), Rd35 (©), Rd35b
(⊗), Rd44 (�) and Rd44w (�).

spectra must then result in a deviation from similarity in the structure functions at
separations equivalent to the wavenumber of the peak.

Figure 15 shows 〈(δu) (δq)2〉 normalized according to equilibrium similarity. As for
the second-order structure function, the collapse is adequate though not perfect. The
most important deviations from the similarity hypothesis in WS-A are found for r̃ > 3,
whereas the collapse of g(r̃) in WS-B is generally better at these scales. Although
the results of figures 13–15 suggest that large-scale periodicity and anisotropy tend
to accentuate deviations from equilibrium similarity, the overall collapse on similarity
is not necessarily improved for the grids where periodicity is reduced and isotropy
satisfactory. This is particularly evident in figure 14, where Rd44w, the grid that
produces the most isotropic turbulence with minimal large-scale periodicity, displays
the largest deviations from similarity. We therefore conclude that grid turbulence does
not decay following equilibrium similarity.

Antonia & Orlandi (2004) demonstrated that Kolmogorov similarity is more
accurate than equilibrium similarity for the small scales where the non-stationary
term in the transport equation for 〈(δq)2〉 is negligible. It can be shown that Iq is not
relevant when r � Lq or Rλ → ∞ (Saffman 1968). For these conditions, (1.3) simplifies
to the general form of Kolmogorov’s equation (Antonia et al. 1997), namely,

−〈(δu) (δq)2〉 + 2ν
d

dr
〈(δq)2〉 = 4

3
〈ε〉r . (4.1)

Batchelor (1947) has shown that self-preservation of the structure functions on
Kolmogorov variables (η and UK ≡ ν1/4〈ε〉1/4) is satisfied by Kolmogorov’s equation.
However, this does not coincide with a complete self-preservation of the turbulence
unless Rλ → ∞ because the non-stationary term is not considered. As noted by
George (1992), self-preservation based on Kolmogorov variables is fully consistent
with equilibrium similarity for Rλ → ∞. For isotropic turbulence (e.g. Tennekes &
Lumley 1972), λ∗ =151/4R

1/2
λ and 〈q∗2〉 =(3/151/2)Rλ. Therefore, the difference between

equilibrium similarity and Kolmogorov normalization increases for experiments where
Rλ decays, since the relevant scales of the turbulence do not remain proportional to
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Figure 15. Distributions of the third-order structure function normalized according to
equilibrium similarity in WS-A and WS-B. Sq35 (no offset), Rd35b (offset 4), Rd35 (offset 8),
Rd44 (offset 12) and Rd44w (offset 16). (a) WS-A: U0t/M = 40 (——); 60 (· · ·); 80 (− − −).
(b) WS-B: U0t/M � 40 (——); 55 (· · ·); 77 (− − −).

each other. The importance of the Rλ decay can be assessed by substituting (1.2), (1.7)
and (2.2) into (1.8), then differentiating with respect to time to yield

1

Rλ

dRλ

dt
=

[
m + 1

2

](
U0t

M
− U0t0

M

)−1

. (4.2)

Hence, the decay of Rλ is more significant for values of m much lower than −1
(term in square brackets), although its importance decreases with U0t/M (term
in parentheses). Starting from the premise that Kolmogorov normalization is the
relevant normalization at small scales, the quality of the collapse based on equilibrium
similarity should be best for experiments where m is closest to −1. These arguments
are consistent with Batchelor’s (1948) expectation that complete similarity is only
possible for constant Rλ (i.e. m = − 1), and therefore, all turbulent scales remain
proportional. The values of m for grid turbulence do not deviate much from −1
(typically 10–35%) and the range of decay times spanned by nearly all experiments is
fairly short. This is also true for the present experiments, where the number of large-
eddy turnover times associated with the region where the turbulence is approximately
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homogeneous and isotropic is typically 4–6† and the variation in Rλ is less than
15%. These limitations prevent an unambiguous verification of the above discussion.
Nonetheless, the results of figure 14, particularly for WS-A, are in fair agreement with
the above discussion.

5. The power law
5.1. Determination of the power law

Historically, the determination of the power-law parameters has proved to be
problematic. In the context of grid turbulence, the power law expressed by (1.2)
becomes

〈q2〉 = A

(
U0t

M
− U0t0

M

)m

. (5.1)

As demonstrated by Mohamed & LaRue (1990), important uncertainties are involved
in fitting a power law to measured grid data owing mainly to the sensitivity of (5.1)
to parameter forcing (see also George et al. 2001). These problems arise because there
are three parameters in (5.1) that can be varied to fit usually fewer than 10 data points
that span a relatively short decay time. There is therefore a wide range of values for
the power-law parameters that can match the data to virtually the same accuracy. The
problem is further complicated by the need to identify the ‘power-law decay range’
(PLDR), which we define as the region where the turbulence decays in accordance
with a power law. Mohamed & LaRue (1990) associate the power-law decay to the
region where the turbulence is approximately homogeneous and isotropic. Although
common wisdom would suggest that this region overlaps significantly with the PLDR,
nothing in the equations suggest that they must be identical. In fact, the results of
Speziale & Bernard (1992) only reach a power-law decay asymptotically for t → ∞. It
is therefore possible that the power law will apply for a subset of the region where the
turbulence has reached an equilibrium where it is nearly homogeneous and isotropic.
Both Mohamed & LaRue (1990) and Speziale & Bernard (1992) show that significant
errors in the power-law parameters can arise if points outside the PLDR are used.
Clearly, a method is required to determine the presence of the power law and the
region within which it applies.

George et al. (2001) proposed an indirect means of obtaining the power law through
the Taylor microscale λ. Substituting (2.2) and (5.1) into (1.7) and taking the derivative
with respect to t , we obtain

dλ2

dt
= −10ν

m

U0

U
. (5.2)

Therefore, if 〈q2〉 decays according to (5.1), then the gradient dλ2/dt must be a
constant, which is inversely proportional to m in the PLDR. Therefore, in addition to
isolating one of the three parameters of the power law, this method also identifies if
and where the turbulence decays according to (5.1). Whether dλ2/dt becomes constant
is an important issue, particularly in view of the predictions of Speziale & Bernard
(1992), which suggest that most wind tunnels are too short to reach the asymptotic
power law yielded by their analysis.

† The number of large-eddy turnover times has been estimated here as 2t〈ε〉0/〈q2〉0 following the
suggestion by Speziale & Bernard (1992), where the initial values (subscript 0) for the dissipation
and turbulence energy were taken as the values measured at U0t/M = 20 and 25 for WS-A and
WS-B, respectively.
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This method has been applied to results obtained by DNS, which offer small
temporal increments between samples (e.g. George et al. 2001; Antonia & Orlandi
2004; Burattini et al. 2006). These authors show a region where dλ2/dt becomes
constant to a close approximation in the simulations, although m �= −1, which
contradicts the predictions of Speziale & Bernard (1992). In the case of experimental
data however, it is not practical to implement (5.2) owing to the significant noise
introduced by the numerical differentiation of the data and the relatively coarse
separation between measurement stations. An improved method to determine the
power law from experimental data is therefore proposed here.

The method is inspired by the work of Mohamed & LaRue (1990) and of George
et al. (2001), and hinges on two basic features. The first is that, if the turbulence
decays according to (5.1) for a given range of U0t/M (the PLDR), the parameters of
the power law fitted to a subset of that range should not change. The boundaries of
the PLDR can therefore be probed by fitting (5.1) to different ranges of U0t/M in a
manner similar to that used by Mohamed & LaRue (1990). Secondly, if the number
of unknown parameters in (5.1) is reduced, the uncertainty of the fit is greatly
diminished. For example, if the power law is fitted using a least-squares method with
and without a prescribed value for the virtual origin, the uncertainty on m is one
order of magnitude smaller for the former case.

The method proposed here seeks to determine the optimum value of the virtual
origin that yields a constant value for m over a substantial range of U0t/M . This
range is then identified with the PLDR. The procedure contains the following four
steps:

(a) Equation (5.1) is first fitted to 〈q2〉 over different ranges of U0t/M using
several values of U0t0/M to obtain mq , where the subscript of m identifies the
turbulent quantity from which m was estimated. The ranges for the fit extend over
U◦ti/M � U0t/M � U0tf /M , where ti and tf are the minimum and maximum decay
times of the range. (Since neither the intermediate nor the final stages of decay,
defined by Batchelor & Townsend (1948), are reached in the present experiments,
tf is kept equal to the maximum decay time available here in order to simplify the
presentation of the results.)

(b) Determine the optimum value of U0t0/M as the one that provides the best
(defined here as the widest) plateau in the plot of mq versus U◦ti/M .

(c) The minimum U0t/M location of the PLDR is equal to the smallest U◦ti/M
before mq deviates from the plateau by more than 0.5%.

(d) Once U0t0/M is obtained (step b) and the PLDR is identified (step c), the
power-law can be fitted to 〈q2〉 to yield mq with minimal ambiguity.

The power law is fitted here with a nonlinear least-squares regression algorithm (the
‘NLINFIT’ routine in MatLab) to the measured data without applying a logarithmic
transformation. We note that in the eventuality that the turbulence decays according
to (5.1) only for t → ∞, a plateau should not form over a significant range of U0t/M ,
unless large enough decay times are reached and m = −1.

The data for Sq35 in both working sections are used to demonstrate the effectiveness
of the method. Figure 16 illustrates step (b) with mq estimated using five different
values of U0t0/M . For Sq35 in WS-A, mq has a nearly constant value in the range
30 � U0t/M � 50 with U0t0/M = 7, while a range of nearly constant mq can be observed
for 34 � U0t/M � 55 when U0t0/M = 5 in WS-B. The deviations from a constant mq

observed around U◦ti/M 
 55 are due to the significant increase in the uncertainty of
mq when the span of the region used to fit (5.1) is too short (the region 50 � U0t/M � 80

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006763


414 P. Lavoie, L. Djenidi and R. A. Antonia

20 30 40 50 60
–1.25

–1.15

–1.05

–0.95

U0ti/M

mq

Figure 16. Value of mq for Sq35 in WS-A (open symbols) and WS-B (filled symbols)

determined by fitting (5.1) to 〈q2〉 for U0t/M � U◦ti/M with assumed values of U0t0/M .
WS-A: U0t0/M =5 (©); 6 (�); 7 (�); 8 (�); 9 (�). WS-B: U0t0/M = 3 (�); 4 (�); 5 (�); 6 (�);
7 (�).

WS-A Grid PLDR U0t0
M

mq mu mw mλ

[
U0t0
M

]LS

mLS
q

Sq35 30–80 7.0 −1.06 −1.06 −1.05 −1.05 7.4 ± 0.8 −1.04 ± 0.02
Rd35 32–80 6.0 −1.18 −1.20 −1.17 −1.19 5.7 ± 1.3 −1.19 ± 0.04
Rd35b 35–80 4.0 −1.21 −1.24 −1.18 −1.21 4.3 ± 1.2 −1.20 ± 0.03
Rd44 30–80 3.0 −1.23 −1.29 −1.19 −1.22 3.8 ± 1.0 −1.21 ± 0.03
Rd44w 29–80 6.0 −1.17 −1.18 −1.17 −1.18 5.9 ± 0.7 −1.18 ± 0.02

WS-B Grid PLDR U0t0
M

mq mu mw mλ

[
U0t0
M

]LS

mLS
q

Sq35 34–77 5.0 −1.19 −1.18 −1.20 −1.18 4.9 ± 1.0 −1.20 ± 0.03
Rd35 30–77 5.0 −1.23 −1.21 −1.24 −1.22 5.2 ± 0.7 −1.22 ± 0.02
Rd35b 25–77 6.0 −1.16 −1.14 −1.18 −1.15 6.0 ± 0.3 −1.16 ± 0.01
Rd44 25–77 4.0 −1.19 −1.14 −1.22 −1.20 3.1 ± 0.6 −1.22 ± 0.02
Rd44w 25–77 7.0 −1.10 −1.09 −1.10 −1.10 6.8 ± 0.5 −1.10 ± 0.02

Table 3. Estimates of the power-law parameters from different turbulence quantities.
Superscript LS identifies values that yield a least-squares fit to the data without U0t0/M

specified.

represents roughly 1.5 eddy turnover times), as observed from the growth of the error
bars with increasing U◦ti/M . The uncertainty of the values of U0t0/M and m estimated
from this method can be evaluated from the fact that the first curves above and below
the one for the optimum U0t0/M in figure 16 could also be argued to have a significant
plateau depending on the exact definition used for the ‘best’ plateau. This shows that
the uncertainty on U0t0/M is ±1, which results in a ±0.03 variation in the estimate
of m.

The power-law parameters obtained with the proposed procedure are summarized
in table 3 for the different grids. The agreement between the power laws found with
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20 30 40 50 60 70 80

10–3

�q2�
——
U2

0

U0t/M

Figure 17. Streamwise variation of 〈q2〉 in WS-B. The solid lines are the power-laws fitted to
the data. Sq35 (�), Rd35 (©), Rd35b (⊗), Rd44 (�) and Rd44w (�).

20 40 60 80
–1.25

–1.20

–1.15

–1.10

–1.05

–1.00

U0t/M

mλ

← Sq 35

← Sq 35

← Rd 35

Figure 18. Ratio −10ν (t − t0) /λ
2 (≡ mλ) for four girds (——). The dotted horizontal lines

correspond to mq for Sq35 (�), Rd35b (©) and Rd44 (�), where open and filled symbols
represent data from WS-A and WS-B, respectively. Also included are the values of mλ

obtained with an offset of 1.5 added to the optimum U0t0/M (− · −).

the above procedure and measured values of 〈q2〉 for all the grids is excellent over
the PLDR (figure 17). Only the data for WS-B are shown in the figure since those
for WS-A are virtually identical.

Figure 18 compares mq with the ratio −10ν (t − t0) /λ2 (≡ mλ) for four different
experimental conditions. Here, λ was calculated with 〈ε〉d obtained with the power-
law fit found above. The local estimates of mλ are found to be approximately
independent of U0t/M and equal to mq for the PLDR, as required for the data to
be self-consistent. Also included in figure 18 are the estimates of mλ obtained if the
optimum value of U0t0/M is offset by 1.5. For these cases, mλ is clearly not constant.
We conclude that, although using the power law to estimate 〈ε〉d has a tendency to
predispose λ2 to grow linearly, the constancy of mλ is not forced and can be used
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to cross-check the results. In addition, we note that the variation of m with U0t/M

suggested by Speziale & Bernard (1992) is not supported by the results of figures 16
and 18.

As further verification that the proposed procedure provides reliable results, the
values for the power-law parameters are compared to those that produce a least-
squares deviation for 〈q2〉 over the PLDR without U0t0/M being specified. These
results are denoted by the superscript LS in table 3. Clearly, the present procedure
yields a power law in good agreement with the least-squares fit. Also included in
table 3 are the decay exponents obtained by fitting the power law to 〈u2〉 and 〈w2〉
with the optimum U0t0/M . The different estimates of m are well within measurement
uncertainty and are therefore self-consistent.

Finally, we note that the proposed procedure was also applied to the decay
measurements of Comte-Bellot & Corrsin (1966), Kistler & Vrebalovich (1966),
Uberoi & Wallis (1967), Gad-el-Hak & Corrsin (1974) and Mohamed & LaRue (1990).
Unfortunately, the small number of measurement stations for these experiments and
significant scatter prevented the power law from being determined unambiguously
with our method. This, of course, demonstrates the main drawback of the procedure,
which is the requirement for more measurements taken at small streamwise intervals.
Nonetheless, such detailed measurements are essential if accurate and reliable
estimates of the power-law parameters are required.

5.2. Effects of initial conditions on the power law

The values of U0t0/M in table 3 are noticeably different from zero for all grid types in
each working section, which does not support the suggestion of Mohamed & LaRue
(1990) that U0t/M � 0 for all square-mesh biplane grids. In addition, the values of
m for the present study are, in general, different from the previously accepted values
of m = −1.25 (Comte-Bellot & Corrsin 1966) and −1.3 (Mohamed & LaRue 1990).
They remain, however, quite distinct from the value of −1 predicted by complete
self-preservation (e.g. Dryden 1943).

The variation in m with grid geometry is significant for WS-A, particularly between
Sq35 and the round-rod grids. For WS-B, m is nearly the same for Sq35, Rd35 and
Rd44, while the magnitude of m for Rd44w is perceptibly lower (m = −1.09 compared
to m � − 1.2; the difference cannot be accounted for by the uncertainty levels). This
suggests that the anisotropy of the flow tends to increase the magnitude of m, since
Rd44w generates the most isotropic turbulence. A similar trend is observed for the
results of Comte-Bellot & Corrsin (1966) with and without a secondary contraction
(see their tables 1 and 3), although these authors did not consider the differences
in their data to be meaningful. Furthermore, a comparison between the results for
Rd44 and Rd44w suggests that the strong periodicity present for the former leads
to more negative values of m. This is supported by a comparison of the power-
law exponents of Rd35 and Rd35b. Since RM is larger for the former, m would be
expected to be closer to the value of −1, given the expectation that m tends to −1
for increasing RM (George 1992; Burattini et al. 2006). However, the presence of a
more significant peak in φw(k1) for Rd35b compared to Rd35 in WS-A (figure 12a),
highlights the stronger periodic component at the large scales for the former. Because
of this difference in periodicity, the magnitude of m is larger for Rb35b in this case.
For WS-B, similar degrees of large-scale periodicity are involved for both Rd35 and
Rd35b (figure 12c), and thus the value of m for the latter is closer to −1 since RM is
larger.
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0
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–0.1

0
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Figure 19. Normalized distribution of φq (k1) in WS-A at U0t/M = 20 and WS-B at
U0t/M � 25 for Sq35 (——), Rd35 (− − −), Rd44 (− · −) and Rd44w (· · ·).

There is a substantial body of evidence in the literature to suggest that the shape
of E(k) at low wavenumbers can determine the value of the power-law exponent at
low to moderate Rλ (e.g. Ling & Wan 1972; Chasnov 1993; Mansour & Wray 1994).
This is related to the possibility that the three-dimensional spectrum (not normalized)
remains invariant at the lowest wavenumbers (i.e. the spectrum retains its shape)
throughout the decay for low Reynolds number, and thus, would determine the value
of m (e.g. Batchelor 1948). George (1992) has shown that if the three-dimensional
spectrum takes the form

E(k, t) = Cαk
α (5.3)

at small k and that it is invariant throughout the decay (i.e. the constant Cα does not
change with time), then

m = −(α + 1)/2. (5.4)

Although there is no evidence to suggest that E (k) should be described by (5.3) for
arbitrary implementations of HIT (George & Davidson 2004), this type of analysis
highlights the connection between the energy distribution at low wavenumbers and
the power-law decay.

It is difficult to determine the shape of E(k) accurately from experimental
measurements, particularly at low wavenumbers. However, the relative character of
E(k) for each grid can be assessed from figure 19, where the one-dimensional energy
spectrum φq(k1) ( ≡ φu + φv + φw) is plotted for each grid. The compensated semi-log
plot keeps the area under the curve equal to 〈q2〉 so as to provide a true representation
of the distribution of the energy over the relevant scales. For Sq35 in WS-A, φ̃q(k̃1) is

indeed higher for k̃1 � 0.1 compared to the round-rod grids. Since a lower value of α

in (5.3) results in a high distribution of TKE at the low wavenumbers, the value of m

for Sq35, which is closer to −1 than the round-rod grids, is therefore consistent with
(5.4) and the above discussion. The spectra for the round-rod grids are nearly identical
for k̃1 � 0.1, which would account for the similarity between the values of m for these
grids. Furthermore, the secondary contraction yields more uniformity between each
grid in both the shape and magnitude of φq(k1) at low wavenumbers, which shows
that the contraction reduces the impact of initial conditions in grid turbulence. It is
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therefore not surprising to find that the measured values of m in WS-B are nearly all
equal.

6. Conclusions
In this study, we assessed the effects of initial conditions on the characteristics of

decaying turbulence using classical grids of various geometries with and without a
secondary contraction. The anisotropy of the turbulence is not the same downstream
of each grid and is mainly contained in the large-scale motions (r̃ > L̃q). However,
the directional preference at the large scales does not significantly affect velocity
derivative moments and vorticity fluctuations, which remain close to isotropy with no
perceivable variations due to initial conditions. The secondary contraction effectively
reduces the anisotropy at the large scales, while it does not adversely affect isotropy
at the small scales. Although the contraction does not produce perfect isotropy, the
improvement is significant and 〈u2〉/〈w2〉 is nearly equal to one for Rd44w. The
turbulence in WS-B is therefore considered a better approximation of HIT, and
differences in the turbulence with and without the contraction highlight the effects of
anisotropy at the large scales.

The collapse of the second- and third-order structure functions on equilibrium
similarity variables is adequate, but not perfect. The improved isotropy in WS-B did
not, in general, lead to an improvement in the collapse of the second- and third-order
structure functions on equilibrium similarity variables. We conclude that, although
the equations of motion are consistent with equilibrium similarity, the decay of grid
turbulence only approximately supports this theory. More specifically, the present
measurements corroborate the DNS results of Antonia & Orlandi (2004), who noted
that the postulate of similarity at all scales is overly restrictive. Implicit in the postulate
of equilibrium similarity is the assumption that the normalized structure functions
are independent of Rλ throughout the decay (for a given set of initial conditions).
However, the characteristic length scales of the turbulence (η, λ and L) do not
remain proportional to each other as Rλ decays, and therefore a perfect collapse is
not possible unless m = −1, which is not found in either experiments or the DNS
implementations of finite Reynolds number HIT.

Notwithstanding the low values of Rλ ( � 40) for the present experiments, the
impact of initial conditions on the second- and third-order structure functions is
mainly felt at the large scales, where departures from isotropy and different levels of
organization at the large scales (e.g. more or less periodicity) are most pronounced.
When isotropy is improved with the use of a secondary contraction, the importance of
initial conditions on the structure functions is significantly diminished. Similarly, the
dependence of the power-law exponent m on initial conditions, as observed in WS-A,
is significantly reduced. As a whole, the current results indicate that deviations from
isotropy and the presence of large-scale periodicity tend to increase the magnitude of
m, while decay exponents closer to −1 are associated with turbulence where more of
the energy is distributed at low wavenumbers. Based on the present results, it appears
unlikely that the decay exponent for ‘true’ HIT would depend on initial conditions
other than the dependence of m on Rλ, which has been demonstrated by George
(1992) and Burattini et al. (2006). As additional support, we note that the recent
DNS data for decaying HIT by Antonia & Orlandi (2004), at comparable Rλ to the
present study, indicate that m � −1.1. This value is close to that found for the almost
perfect isotropic turbulence downstream of Rd44w in WS-B. This agreement between
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the decay exponent found experimentally and numerically suggests that m = −1.1 is
the appropriate decay exponent for decaying HIT at Rλ ∼ 40.

The support of the Australian Research Council is acknowledged. P.L. is grateful
to Dr Burattini for many stimulating discussions and Mr Ken Sayce for the care with
which he constructed the secondary contraction.

REFERENCES

Antonia, R. A. & Orlandi, P. 2004 Similarity of decaying isotropic turbulence with a passive
scalar. J. Fluid Mech. 505, 123–151.

Antonia, R. A., Ould-Rouis, M., Anselmet, F. & Zhu, Y. 1997 Analogy between predictions of
Kolmogorov and Yaglom. J. Fluid Mech. 332, 395–409.

Antonia, R. A., Zhou, T. & Zhu, Y. 1998 Three-component vorticity measurements in a turbulent
grid flow. J. Fluid Mech. 374, 29–57.

Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy
structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245–
269.

Batchelor, G. K. 1947 Kolmogoroff theory of locally isotropic turbulence. Proc. Camb. Phil. Soc.
43, 533–559.

Batchelor, G. K. 1948 Energy decay and self-preserving correlation functions in isotropic
turbulence. Q. Appl. Maths 6, 97–116.

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.

Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R.
Soc. Lond. A 190, 534–550.

Batchelor, G. K. & Townsend, A. A. 1948 Decay of isotropic turbulence in the initial period.
Proc. R. Soc. Lond. A 193, 539–558.

Benedict, L. H. & Gould, R. D. 1996 Towards better uncertainty estimates for turbulence statistics.
Exps. Fluids 22, 129–136.

Bennett, J. C. & Corrsin, S. 1978 Small Reynolds number nearly isotropic turbulence in a straight
duct and a contraction. Phys. Fluids 21, 2129–2140.

de Bruyn Kops, S. M. & Riley, J. J. 1998 Direct numerical simulation of laboratory experiments
in isotropic turbulence. Phys. Fluids 10, 2125–2127.

Burattini, P. & Antonia, R. A. 2005 The effect of different X-wire calibration schemes on some
turbulence statistics. Exps Fluids 38, 80–89.

Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006 On the power law
of decaying homogeneous isotropic turbulence at low Reynolds number. Phys. Rev. E 73,
066304.

Chasnov, J. R. 1993 Similarity states of passive scalar transport in isotropic turbulence. Phys. Fluids
6 (2), 1036–1051.

Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of
grid-generated turbulence. J. Fluid Mech. 25, 657–682.

Corrsin, S. 1963 Turbulence: experimental methods. In Handbuch der Physik (ed. S. Flügge &
C. A. Truesdell), pp. 524–589. Springer.

Danaila, L., Anselmet, F. & Antonia, R. A. 2002 An overview of the effect of large-scale
inhomogeneities on small-scale turbulence. Phys. Fluids 14 (7), 2475–2484.

Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths 1, 7–42.

Fulachier, L. & Antonia, R. A. 1983 Turbulent Reynolds and Péclet numbers re-defined. Intl
Commun. Heat Mass Transfer 10, 435–439.

Gad-el-Hak, M. & Corrsin, S. 1974 Measurements of the nearly isotropic turbulence behind a
uniform jet grid. J. Fluid Mech. 62, 115–143.

George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 1492–
1509.

George, W. K. & Davidson, L. 2004 Role of initial conditions in establishing asymptotic flow
behavior. AIAA J. 42, 438–446.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

67
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006763


420 P. Lavoie, L. Djenidi and R. A. Antonia

George, W. K., Wang, H., Wollbald, C. & Johansson, T. G. 2001 Homogeneous turbulence and
its relation to realizable flows. In 14th Australasian Fluid Mechanics Conference, pp. 41–48.
Adelaide University.

Huang, M.-J. & Leonard, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds
numbers. Phys. Fluids 6 (11), 3765–3775.

Kang, S. H., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid-generated
flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129–160.

von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R.
Soc. Lond. A 164, 192–215.

Kistler, A. L. & Vrebalovich, T. 1966 Grid turbulence at large Reynolds numbers. J. Fluid Mech.
26, 37–47.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very
large Reynolds number. C. R. Acad. Sci. URSS 30, 301–305.

Korneyev, A. I. & Sedov, L. I. 1976 Theory of isotropic turbulence and its comparison with
experimental data. Fluid Mech. Sov. Res. 5 (5), 37–48.

Lavoie, P., Burattini, P., Djenidi, L. & Antonia, R. A. 2005 Effect of initial conditions on decaying
grid turbulence at low Rλ. Exps. Fluids 39, 865–874.

Lavoie, P., Djenidi, L. & Antonia, R. A. 2006 Effect of initial conditions on the generation
of coherent structures in grid turbulence. In Whither Turbulence Prediction and Control
Conference (ed. H. Choi). Seoul National University.

Ling, S. C. & Wan, C. A. 1972 Decay of isotropic turbulence generated by a mechanically agitated
grid. Phys. Fluids 15 (8), 1363–1369.

Mansour, N. N. & Wray, A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys.
Fluids 6 (2), 808–814.

Michelet, S., Antoine, Y., Lemoine, F. & Mahouast, M. 1998 Mesure directe du taux de dissipation
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