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Estimating the Strength of a General Factor:
Coefficient Omega Hierarchical
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Relying on work described by Jackson (2003), Ree, Carretta, and Tea-
chout (2015) recommended researchers use the first unrotated principal
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Figure 1. The two most common models used to estimate general factor
variance in structural equation modeling (Model 1 = higher order model;
Model 2 = bifactor model). F = factor; R = residual; g = general factor; a, b,
and c = observed indicators.

component associated with a principal components analysis (PCA) to es-
timate the strength of a general factor. Arguably, such a recommendation is
based on rather old work. Furthermore, it is not a method that can be relied
on to yield an accurate solution. For example, it is well known that the first
component extracted from a correlation matrix of the Wechsler intelligence
subtests is biased toward the verbal comprehension subtests (Ashton, Lee, &
Vernon, 2001).

In contrast to the first unrotated principal component, it is arguably im-
portant for industrial–organizational researchers to be aware of the options
of estimating the strength of a general factor via structural equation model-
ing (SEM). Within the context of multidimensional models, a general factor
can be specified within a higher order model (see Model 1, Figure 1) or as a
first-order breadth factor represented within a bifactor model (see Model 2,
Figure 1). Based on either a higher order model or a bifactor model solution,
the strength of a general factor can be estimated via an attractive coefficient
known as omega hierarchical (ωh; Zinbarg, Revelle, Yovel, & Li, 2005). Coef-
ficientωh represents the strength of a general factor on a standardizedmetric
and ranges from .00 to 1.0. It is essentially the ratio of common variance to
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total variance and can be estimated relatively easily in most SEM programs
(see Gignac, 2014b, for step-by-step instructions). A coefficient ωh of .80,
for example, would imply that the general factor accounts for 80% of the
total variance in the data. Gignac andWatkins (2013) found that the general
factor associated with the Wechsler Adult Intelligence Scale–IV (Wechsler,
2008) was associated with a very largeωh of .86. Thus, Ree et al. are correct to
contend that there are some very large general factors that can be found in the
literature. I suspect the general factor of personality discussed by Ree et al.
would be very weak by comparison, however, when modeled and estimated
appropriately via ωh (see Revelle & Wilt, 2013, for example).

What makes a model-based coefficient such as ωh particularly attractive
is that it is derived from either a higher order model or a bifactor model,
both of which partition the various sources of common variance into sepa-
rate terms. For example, in the context of the Wechsler scales, the substan-
tial common variance associated with verbal subtests can be “controlled”
through the specification of a nested factor in a bifactor model (say, the
“F1” term in Model 2). Alternatively, a higher order model would specify
the unique common variance associated with the verbal subtests as a first-
order factor residual (say, the “R1” term inModel 1).1 As the verbal common
variance is associated with its own term, it does not contaminate the general
factor. Consequently, the strength of the general factor can be estimated ac-
curately via ωh.

Although the higher order model and the bifactor model have some
similarities, there are at least two key differences. First, the higher order
model imposes a proportionality constraint on the association between the
observed variables and the latent variables2 (Schmiedek & Li, 2004). For this
reason, the bifactor model tends to fit better than does the competing higher
order model (Gignac, 2008; Reise, 2012). Second, because of issues relevant
to identification, only the bifactor allows for the simultaneous estimation of
effects associated with all of the latent variables (general factor and nested
factors) and a dependent variable of interest (Schmiedek & Li, 2004). Across
a number of considerations, the bifactor model may be considered prefer-
able in the context of estimating the effects of a general factor and compet-
ing specific factors on a dependent variable (Brunner, 2008). Whether one
prefers a higher order or a breadth conceptualization of a general factor is ir-
relevant, as omega hierarchical can be applied to both. A similar coefficient,
omega specific (ωs; Reise, 2012), can also be used to estimate the strength of

1 The addition of correlated uniqueness between common subtest residuals is another model
from which coefficient ωh could be estimated (i.e., the single-trait correlated uniqueness
model; Gignac, 2006).

2 I use the term “latent variables” in this context to refer to both the higher order factors and
the residuals associated with the lower order factors.
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secondary factors independently of the effects of the general factor (see
Gignac, 2014b, for an accessible demonstration).

The estimation of the strength of a general factor is not a purely statisti-
cal or psychometric consideration, as interesting theories can be tested with
such information. For example, Gignac (2014a) tested the dynamic mutu-
alism theory of general intelligence by plotting the strength of the general
factor (ωh) across the ages of 2.5 to 90 years. The results suggested that the
strength of the general factor (g) is largely constant across age, which was
considered a failure to support the dynamic mutualism theory of g (van der
Maas et al., 2006). Almost undoubtedly, manymore useful hypotheses could
be tested with ωh across many disciplines in psychology. Thus, in line with
Ree et al., researchers are encouraged to consider the strength of a general
factor in their data. However, I would urge all researchers to decline the op-
tion of the first component derived from a PCA, in favor of a sophisticated
method such as ωh.
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How Data Analysis Can Dominate Interpretations
of Dominant General Factors

Brenton M. Wiernik, Michael P. Wilmot, and Jack W. Kostal
University of Minnesota

A dominant general factor (DGF) is present when a single factor accounts
for the majority of reliable variance across a set of measures (Ree, Car-
retta, & Teachout, 2015). In the presence of a DGF, dimension scores
necessarily reflect a blend of both general and specific factors. For some con-
structs, specific factors contain little unique reliable variance after control-
ling for the general factor (Reise, 2012), whereas for others, specific factors
contribute a more substantial proportion of variance (e.g., Kinicki, McKee-
Ryan, Schriesheim, & Carson, 2002). We agree with Ree et al. that the pres-
ence of a DGF has implications for interpreting scores. However, we argue
that the conflation of general and specific factor variances has the strongest
implications for understanding how constructs relate to external variables.
When dimension scales contain substantial general and specific factor vari-
ance, traditional methods of data analysis will produce ambiguous or even
misleading results. In this commentary, we show how several common data
analytic methods, when used with data sets containing a DGF, will substan-
tively alter conclusions.

Job satisfaction is a quintessential multidimensional construct with a
DGF. It comprises several dimensions, each of which reflects attitudes to-
ward different components of the job and all of which are simultaneously
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