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Modeling and simulating the nerve axon as a
thin-film microstrip
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Since Hodgkin and Huxley described the nerve axon as a cable (H–H model), many efforts have been made to find more
approximated transmission line models representing the nerve axon. This paper describes a simple model that represents
the nerve axon in two parts: the internodal space as a lossy thin-film microstrip line and the node of Ranvier as an active
complex load. The complex load terminating the transmission line is given by the variable impedance of a tunnel diode.
First, the internodal space is circuitally analyzed and electromagnetically simulated as a lossy thin-film microstrip line
terminated on a complex fixed load. The transmission line circuit theory, the two-port network analysis, and a two-dimensional
finite difference time domain method are used for such a task by forcing a strip subatomic metallization. Then, the transfer func-
tion of the internodal space, cascaded with the node of Ranvier, is equated to the transfer function of a transmission line section
that includes a tunnel diode. This procedure is carried out in order to obtain the diode’s variable impedance. The diode was intro-
duced by Nagumo, Arimoto, and Yoshizawa for simulating the nerve axon as an active transmission line. The active transmission
line is represented by the FitzHugh simplified H–H model known as the Bonhoeffer–van der Pol model.
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I . I N T R O D U C T I O N

Owing to its geometry, the nerve axon has been traditionally
modeled with the R, L, G, and C equivalent circuit parameters
of a circular coaxial transmission line or cable [1–6]. These
parameters are, however, the general lumped-element rep-
resentation of any two-conductor transmission line, thereby
the model can be used not only for circular coaxial but also
for square and rectangular coaxial, two-wire and planar trans-
mission lines (as the parallel-plate waveguide, the stripline, the
thin-film and thick-film microstrip, and the coplanar wave-
guide geometries [7, 8]) among others. The R, L, G, and C
lumped-element circuital model of the circular coaxial trans-
mission line has no apparent range of validity, whereas each
one of the planar transmission lines has both, dimensional
and electrical limits. Realizing a circular micro-coaxial trans-
mission line is not an easy task because complicated layer depo-
sition forms circle geometries. Square and rectangular
micro-coaxial transmission lines have been, however, designed
and fabricated by using simple closed-form equations and
three-dimensional micromachining processes [9, 10].

On the other hand, the nerve axon dimensions are all
around in the micrometric and sub-micrometric range which
imposes not only size restrictions but also modeling limits.

Thus, considering the aforementioned characteristics and
limitations for different two-conductor transmission lines,
and the geometric size to be analyzed, it seems reasonable to
model and simulate the nerve axon as a thin-film microstrip.

I I . T H E I N T E R N O D A L S P A C E

The internodal space is first analyzed and simulated as a thin-
film microstrip terminated on a complex impedance fixed
load. The material parameters and dimensions for the thin-
film microstrip are as follows: microstrip substrate height
hS ¼ 4.022 mm, strip width Wstrip ¼ 6.2 mm, metallization
thickness (or height) t ¼ 6.62e 2 8 mm, carrier substrate
width wg ¼ 197.732 mm, microstrip substrate permittivity
(or relative dielectric constant) 1r ¼ 25.5, loss tangent
tand1 ¼ 4.0e 2 4, copper conductivity (k) sCu ¼ 5.813e7 S/
m and length of the line (internodal length) l ¼ 1 mm. On
the one hand, the analysis proves that the input impedance
tends to the load impedance with a drift of about 28 ohms
as the frequency grows from 0 to 3000 Hz (Fig. 1).

On the other hand, the simulation demonstrates that irre-
spective of the value of the load impedance, when the trans-
mission line reaches the steady state, the matching condition
is always achieved, i.e., the input impedance equals the load
impedance (Fig. 2). This is because of the very short electric
length of the internodal space in which the frequency and
the physical length have both small values. The electric
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length is given by

u = bl (1)

where b = 2p
l

= 2pf
vpax

is the phase constant, l is the wave-

length, f is the frequency, vpax is the axon impulse propagation
velocity (the action potential conduction velocity), and l is the
internodal length.

The techniques to analyze and simulate the thin-film
microstrip representing internodal space are all described in
[11]. Although the thin-film microstrip is indeed a miniatur-
ized traditional microstrip line located on the top of a carrier
substrate, its ground metallization shields the line from the
substrate effects and hence a typical microstrip simulation
can be performed provided the model parameters of [8] are
used.

The coincidences between the axon biological model given
in [5], and those of the axon thin-film microstrip model given
here, are worth noting. Two parameters showing these

concurrences are the conductance and the characteristic
impedance.

The conductance of the biological axon can be calculated
by means of [6]

Gaxon = 1
rap

( )
Aaxon

l

( )
(2)

where Aaxon is the transverse or cross-sectional area to the
direction of the current (the axoplasm area) and rap is the res-
istivity of the axoplasm.

Similarly, the conductance of the thin-film microstrip axon
can be calculated from

Gtfmsl = sCu
Atfmsl

l

( )
(3)

where Atfmsl is the cross-sectional area of the thin-film

Fig. 1. The input impedance of a thin-film microstrip transmission line
representing the nerve axon. Transmission line circuit theory analysis
(green-square trace). Two-port network analysis (red-circle trace).
(a) Terminated on a load impedance of 75.0V. (b) Terminated on a load
impedance of 75.0 + j75.0V.

Fig. 2. The electromagnetically simulated input impedance of a thin-film
microstrip transmission line representing the nerve axon. (a) Input
impedance at 1000 timesteps Zin = 2715.953 V (before reaching the steady
state). (b) Input impedance at 200 000 timesteps Zin = 75.116 V (when the
steady state has been reached). ZLoad = 75.0 V.
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conductor, i.e., the product of the width of the strip (which is
taken equal to the axon inner diameter) by the thickness of
metallization and sCu is the conductivity of copper.

For a circular biological axon, with a diameter of Daxon ¼

6.2 mm, axoplasm conductivity of sap ¼ 0.909 S/m (resistivity
of rap = 1.1Vcm) and internodal length of l ¼ 1 mm [12, 13],
the conductance will be of Gaxon ¼ 2.744e 2 8 Siemens.

For a planar thin-film microstrip axon, with a strip width
of Wstrip ¼ 6.2 mm, metallization thickness of t ¼ 6.62e 2

8 mm, copper conductivity of sCu ¼ 5.813e7 S/m, and inter-
nodal length of l ¼ 1 mm, the conductance will be of
Gtfmsl ¼ 2.386e 2 8 Siemens.

It is advisable to mention that this extremely thin metalli-
zation (only one order of magnitude greater than the classical
electron radius, 2.818e 2 15 m) is not an actual metallization
thickness but its value still remains within the range of validity
of the thin-film microstrip model [8].

In any case, the agreement between the biological conduc-
tance and the thin-film microstrip conductance is certainly
notable since the values are in the order of the nS.

The characteristic impedance of the biological axon can be
calculated by means of [5]

Z0 =
������������

R1

G1 + jvC1

√
, (4)

where

R1 =
4rap exp (1.0)

pD2
fiber

, (5)

G1 =
4pdm

am
, (6)

C1 = 4pdmCam, (7)

v ¼ 2pf is the radian frequency, Dfiber is the fiber diameter,
dm is the membrane thickness, am is the membrane
surface-resistance product at the internodal space, and Cam

is the membrane capacitance per unit surface at the internodal
space. The inductance per unit length (L1) has been disre-
garded because of its small value at the frequency band of
interest [5].

The characteristic impedance of the thin-film microstrip
axon can be calculated from the Schneider–Heinrich model [8].

Figure 3 shows the characteristic impedance for the afore-
mentioned circular biological [5, 13] and planar thin-film
microstrip axons in a bandwidth covering from 0 to 20
000 Hz. A perfect agreement between the biological and the
thin-film microstrip characteristic impedances (real and ima-
ginary parts) is found throughout the entire bandwidth. A
reasonably good agreement is found in all three traces of the
impedance modulus at frequencies larger than 10 kHz.

The other parameter showing a good concurrence between
the biological and the thin-film microstrip models is that of a
propagation velocity. The propagation velocity of the

biological axon can be calculated by means of [5]

vaxon =
������
2v

R1C1

√
. (8)

As mentioned in [6] the propagation velocity depends on
the species, the axon diameter, the temperature, etc., but
often the membrane resistivity is constant in any one nerve
bundle, and a compensatory thermal acclimation maintains
a constant relationship between conduction velocity and
temperature [14], then the propagation velocity ties more to
fiber diameter. The conduction velocity applies to electric cur-
rents on conductors and the propagation velocity to wave
propagation on dielectrics.

The propagation velocity (phase velocity) of the thin-film
microstrip axon can be calculated from [11]

vtfmsl =
v

b
. (9)

Either (8) or (9) can be used as the vpax for the electric
length in (1). The curves generated with these equations
have a similar behavior (Fig. 4), although a drift going from
1.351 to 19.102 m/s is found for the bandwidth of 20 kHz.

I I I . T H E N O D E O F R A N V I E R

In 1952, Hodgkin and Huxley [1] presented a model of the
nerve axon as a transmission line or cable (the H–H model).
Almost a decade later, in 1961, FitzHugh [2] obtained a gen-
eralized equation for the relaxation oscillator of Van der Pol
(B. Van der Pol designed the oscillator for the Philips
Company by using vacuum tubes [15]) to produce a model
with a pair of non-linear differential equations. The resulting
model named the “Bonhoeffer–van der Pol model” (BVP
model) resembled Bonhoeffer’s theoretical model for the
iron wire model of nerve [16]. The BVP model is a simple rep-
resentation of a class of excitable–oscillatory systems such as

Fig. 3. The characteristic impedance of the circular biological and planar
thin-film microstrip axons. Biological (green-square trace) [5]. Thin-film
microstrip (red-circle trace). The correspondence is excellent along the
bandwidth of interest. Biological (blue-triangle trace) [13].
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the one represented by the H–H model, thereby there is a
relationship between the two models manifested in similar
physiological state diagrams. The next year, in 1962,
Nagumo et al. [3] made an electronic simulator of the BVP
model by using a tunnel diode (Fig. 5).

By cascading the two-port network of Fig. 5 through inter-
stage coupling resistances, Nagumo et al. obtained the active
transmission line shown in Fig. 6.

In this context, it will be reasonable to consider that the
transfer function of Nagumo’s active transmission line
section can be directly equated to the transfer function of
the internodal space, cascaded with the node of Ranvier (i.e.,
the distributed element transmission line, cascaded with the
lumped element active complex load, given by the variable
impedance of a tunnel diode), since the former, represented

by the BVP model, is very similar to the latter, represented
by the H–H model.

Now, the tunnel diode of Figs 5 and 6 can be replaced by a
voltage-controlled current source Id (the diode current), by
using a modified polynomial representation of its current–
voltage characteristics given by the sum of three current com-
ponents, the tunneling current It, the excess current Ix, and the
thermal current Ith, which is expressed as [17, 18]

Id = It + Ix + Ith,

= Ip
Vd

Vp

( )
exp 1 − Vd

Vp

( )
+ Iv exp Vd − Vv( )

+ Ip exp
−Vpp

VT1

( )
exp

Vd

VT1
− 1

( )
,

(10)

where Vd is the diode voltage, Vp ¼ 50 mV and Ip ¼ 4.2 mA
are the peak voltage and current, Vv ¼ 370 mV and Iv ¼ 370
mA are the valley voltage and current, Vpp ¼ 525 mV is the
projected peak voltage, and VT1 ¼ 0.26 mV is the thermal
voltage at room temperature, as in [18].

In this way, Nagumo’s active transmission line section,
with frequency domain elements, can be arranged as the
network of Fig. 7, since the voltage controlled current
source is shunt connected. Thus, by shunting the three
branches and applying voltage division, the network transfer
function can be expressed as follows:

TFBVP = Vout

Vin
=

XC
Zd + R0( ) R + XL( )

Zd + R0( ) + R + XL( )

XC + Zd + R0( ) R + XL( )
Zd + R0( ) + R + XL( )

r +
XC

Zd + R0( ) R + XL( )
Zd + R0( ) + R + XL( )

XC + Zd + R0( ) R + XL( )
Zd + R0( ) + R + XL( )

, (11)

Fig. 5. Tunnel diode electronic simulator of the BVP model [3].

Fig. 4. The propagation velocity of the circular biological and planar thin-film
microstrip axons. Biological (green-square trace). Thin-film microstrip
(red-circle trace).

Fig. 6. Active transmission line simulating the nerve axon [3].

Fig. 7. Nagumo’s active transmission line section with frequency domain
elements (Vd = Vout − E0, Zd = Vd/Id). (a) A model with a
voltage-controlled current source and a membrane resting potential (E0). (b)
A model with a variable impedance and a parametric resistance (R0).
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where Zd is the diode variable impedance, R0 is the parametric
resistance of the dc source representing the membrane resting
potential (E0), XC = 1/vC, XL ¼ vL, and r ¼ 500 V, C ¼
0.01 mF, L ¼ 4 mH, R ¼ 70 V, are the elements used in one
of the experiments presented in [3].

Correspondingly, the transfer function of the distributed
element transmission line, cascaded with the lumped
element active complex load can be written as [4, 5]

TFH−H = 1
A + (B/Z′

0)
, (12)

where

Z′
0 = A − D +

�����������������
A − D( )2+4BC

√

2C
, (13)

A = cosh gl
( )

+ Z0Ynsinh gl
( )

, (14)

B = Z0sinh gl
( )

, (15)

C =
sinh gl

( )
Z0

+ Yncosh gl
( )

, (16)

D = cosh gl
( )

, (17)

which become from the matrix product given by

A B
C D

[ ]
=

cosh gl
( )

Z0sinh gl
( )

sinh gl
( )

Z0
cosh gl

( )
⎡
⎢⎣

⎤
⎥⎦ 1 0

Yn 1

[ ]
(18)

and where

Yn = Gn + jvCn

= p��������
exp (1)

√ Dfiber ln
am

+ p��������
exp (1)

√ Dfiber lnCnm, (19)

ln is the node length, and Cnm is the membrane capacitance
per unit surface at the node. Z′

0 is the iterative impedance
corresponding to infinite sections of the internodal space cas-
caded with the node of Ranvier [4] and Z0 is the characteristic
impedance of the distributed element transmission line.

In (18), the first factor corresponds to the chain or [ABCD]
matrix of a lossy transmission line (the internodal space),
whereas the second corresponds to the [ABCD] matrix of a
lumped element active complex load given by the variable
impedance of a tunnel diode and represented by a nodal
admittance (the node of Ranvier).

Thus, by equating (11) with (12), the diode variable impe-
dance Zd can be obtained in terms of the elements used in one
of Nagumo’s experiments as will be expressed in the next
section.

I V . T H E D I O D E V A R I A B L E
I M P E D A N C E

Since the internodal space is physically a lossy and dispersive
(non distortionless) transmission line, the node of Ranvier
should effectuate a balancing function to compensate for the
losses and eliminate the distortion. In order to do a good
description of this function, the tunnel diode representing
the node of Ranvier will be better modeled by its variable
impedance rather than a voltage controlled current source.
The diode variable impedance Zd in terms of a parametric
R0 resistance and depending on the frequency, can be
expressed as

Zd =

TFH−H(R0v
2 + 2175e2R0v+ 28.5e9R0 + 100e6v

+ 1750e9) − R0 200e3v+ 3500e6( )
TFH−H v2 + 2175e2v+ 28.5e9( ) − 200e3v− 3500e6

.

(20)

The inverse discrete Fourier transform of this equation (a
continuous non-periodic function suffering from the Gibbs
phenomenon [19]) can be used to obtain a direct value of
the time-domain load impedance, which should be useful
for comparison purposes when diode loaded microstrip inter-
connects simulations, by means of a convolution procedure
[20] or through a two-dimensional finite-difference time-
domain method, are performed.

As an active device, the tunnel diode can oscillate spon-
taneously [3] and compensate for the losses generated in the
thin-film microstrip transmission line (the internodal space).
Unfortunately, in the case of distortion, instead of reducing
it, the diode contributes to augmenting it, since this active
device generates noise and hence distortion. One important
contribution to diode noise is thermal noise [17].

The other form to attempt a reduction of the distortion is
avoiding it in the thin-film microstrip transmission line repre-
senting internodal space. This can be done by way of the well-
known Oliver Heaviside’s distortionless line theory [21]. To
do this, series compensation inductances (LC), periodically
spaced through the entire active transmission line (the
entire nerve axon), have to be inserted in order to compensate
for the capacitive effect of the line. This procedure, however,
also increases the losses. In any case, the final objective is to
obtain a constant propagation velocity by generating an
inverse function that compensates for the curves of Fig. 4 so
as to attain flat traces.

V . C O N C L U S I O N

A thin-film microstrip model to describe the nerve axon has
been presented. The circuit analysis demonstrated that the
transmission line input impedance tends to the load impe-
dance, whereas the electromagnetic simulation confirmed
that, because of the very short electric length of internodal
space, the transmission line matching condition in the perma-
nent regime is achieved every time. The correspondence
between the calculated characteristic impedances for the cir-
cular biological axon, and for the planar thin-film microstrip
axon, is very good. Also, the curve behavior for propagation
velocity is very similar to both, the biological and the thin-film
microstrip axons. In addition, a frequency-dependent
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function representing the variable diode impedance, has been
generated so as to be used instead of the voltage controlled
current source, in the analysis and simulation of high-speed
interconnects where the pursuit of low distortion and losses
is of major importance to improve signal integrity.
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que Fédérale de Lausanne, Lausanne, Vaud, Switzerland.
From 2001 to 2002, he was a Guest Researcher with the Na-
tional Institute of Standards and Technology, Department of
Commerce, Boulder, CO., U S A. He is currently a Professor
with the Departamento de Electrónica, Universidad de Gua-
dalajara. His research interests include microwave network
analysis and synthesis, high-frequency instrumentation and
measurement, and mathematical modeling for microwave
teaching.

Ricardo Magallanes Gómez was born
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