
Robotica (2009) volume 27, pp. 259–268. © 2008 Cambridge University Press
doi:10.1017/S0263574708004657 Printed in the United Kingdom

Inverse dynamics of the 6-dof out-parallel manipulator by means
of the principle of virtual work
Yongjie Zhao∗ and Feng Gao
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

(Received in Final Form: April 17, 2008. First published online: May 23, 2008)

SUMMARY

In this paper, the inverse dynamics of the 6-dof out-parallel
manipulator is formulated by means of the principle of
virtual work and the concept of link Jacobian matrices. The
dynamical equations of motion include the rotation inertia of
motor–coupler–screw and the term caused by the external
force and moment exerted at the moving platform. The
approach described here leads to efficient algorithms since
the constraint forces and moments of the robot system have
been eliminated from the equations of motion and there is
no differential equation for the whole procedure. Numerical
simulation for the inverse dynamics of a 6-dof out-parallel
manipulator is illustrated. The whole actuating torques and
the torques caused by gravity, velocity, acceleration, moving
platform, strut, carriage, and the rotation inertia of the lead
screw, motor rotor and coupler have been computed.

KEYWORDS: Out-parallel manipulator; Robot dynamics;
Inverse dynamics; Principle of virtual work; Link Jacobian
matrices.

1. Introduction

Parallel manipulators have been successfully used in motion
simulators, robotic end-effectors, and in circumstances like
fast pick-and-place operation. Due to their potential advant-
ages, such as high accuracy, rigidity, and speed, many invest-
igations have been carried on the parallel manipulators since
the concept was introduced. In order to fully make use of the
inherent characteristic, such as better dynamic performance,
the dynamics must be investigated even though the kinemat-
ics of the parallel manipulator had been studied extensively
during the past two decades. The dynamics of a manipulator
can be used in the simulation, control, and dynamic optimum
design. It plays an important role in achieving better dynamic
performance. The dynamics of a parallel manipulator is very
complicated due to the existence of multiple closed-loop
chains. There are two types of dynamics problems for parallel
manipulators1−3: direct dynamics and inverse dynamics.
The direct dynamics problem is to find the trajectory,
velocity, and acceleration of the end-effector corresponding
to the actuated joint torques and/or forces. In general, it is
primarily applied to the simulations of a manipulator. So the
efficiency of the computation is not critical. While the inverse
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dynamics problem is to find the actuator torques and/or forces
required to generate the desired trajectory of the manipulator.
It is often used for real-time feed-forward control of a
manipulator. Hence, the efficiency of the computation for
the inverse dynamics is of paramount importance.

Many works1−50 can be found on the dynamics of parallel
manipulators. Several approaches have been applied to the
dynamics analysis of parallel manipulators. They can be
classified mainly into four categories:

1. The Newton–Euler method4−13 formulates the dynamic
equations of motion by using Newtonian mechanics.
In this approach, one first writes the force and moment
balances for all bodies separately and then uses the
kinematical relations and the constraint forces to reduce
the number of equations. This method usually requires a
long computation time since it needs the exact calculation
of all of the internal reactions of the constraints of
the system. Although the computation of the internal
reactions of constraints is useful for the purpose of
design, they are not employed in the control law of the
manipulator. Reference [13] presented a strategy for
efficient elimination of constraint reactions to reduce the
inverse dynamics computations of parallel manipulators.

2. The Lagrangian method14−20 formulates the dynamic
equations of motion by using Lagrangian functions. In this
approach, one considers the constraints and kinematics
of the problem first. Then, the equations of motion are
written, one for each degree of freedom. The bulk of
the work involved in Lagrangian mechanics is to find a
proper set of generalized coordinates and to express the
kinematics. Once this is done, the rest is straightforward.
The formulation may contain some unknown constraint
forces in Lagrangian multipliers when nonindependent
generalized variables are introduced. It is required to
solve the kinematic constraint equations, which leads to
the additional computations.

3. Kane’s method21,22 derives the dynamic equations from
a geometrical interpretation of the algorithm in terms
of tangent vectors to the instantaneous configuration
manifold embedded in the space of nonconstrained motion
for the system. It is also straightforward for the forward
dynamics, which is the characteristic of this method.22

4. The virtual work principle23−34 develops dynamics equa-
tions by adopting D’Alembert’s principle to formulate
the equilibrium equations, which means that the work
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performed by the external impressed forces through virtual
displacements compatible with the system is zero. The
constraint forces and moments of the robot system have
been eliminated from the formulation. This method is used
mostly for the inverse dynamics of parallel manipulators.

The inverse dynamics of parallel manipulators involve
almost all of the mechanics principles. Along with
these mechanics principles, many mathematical methods
such as screw theory,35 Lie algebra,36 natural orthogonal
complement,37−39 motor algebra,40,41 group theory,42

symbolic programming,42,43 geometric approach,44 parallel
computational algorithms,45 and system identification46 have
also been adopted to the dynamics of parallel manipulators.
In fact, the results of actuator forces/torques computed by
different methods are equivalent.47 Theoretically, it can be
concluded that there is no trouble in modeling the dynamics
of parallel manipulators. Attention should be focused on
the model accuracy, computation efficiency, and practical
application. However, some minute drawbacks can be found
in existing papers, such as the rotation inertia of motor–
coupler–screw is usually omitted from the dynamic model
of parallel manipulators. This rotation inertia should be
included for the exact dynamic model used for the design of
the control law or the estimation of servomotor parameters
for the parallel manipulators.

This paper presents a systematic methodology for the
inverse dynamics, in which the rotation inertia of motor–
coupler–screw and the term caused by the external force and
moment exerted at the moving platform are included, of the
6-dof out-parallel manipulator by means of the principle of
virtual work. The approach described here leads to efficient
algorithms since the constraint forces and moments of the
robot system have been eliminated from the equations of

motion and there is no differential equation for the whole
procedure when the principle of virtual work is applied to
solve the inverse dynamics problem. Numerical simulation
for the inverse dynamics of the 6-dof out-parallel manipulator
is illustrated. The whole actuating torques and the torques
caused by gravity, velocity, acceleration, moving platform,
strut, carriage, and rotation inertia of the lead screw, rotation
inertia of motor rotor and coupler have been computed.
The paper is organized as follows: the description of the 6-
dof out-parallel manipulator and the inverse kinematics are
presented in Section 2; the velocity analysis and acceleration
analysis are carried out by using the concept of link
Jacobian matrix presented in ref. [28]. Then, the inverse
dynamics is formulated by virtue of the principle of virtual
work in Section 3. Investigations on the characteristic of
dynamics and conclusions are presented in Sections 4 and 5,
respectively.

2. Kinematics

2.1. 6-dof seismic simulator and platform and leg
displacement conventions
The schematic diagram of the 6-dof seismic simulator is
shown in Fig. 1. As shown in Fig. 1, the parallel seismic
simulator is a 6PSS parallel manipulator which consists of a
moving platform and six carriages. In each kinematic chain,
the platform and the carriage are connected via spherical ball
bearing joints by a strut of fixed length. Each carriage is
driven by DC motor via a linear ball screw. The lead screw of
B1, B2, and B3 are vertical to the ground. The lead screw of
B4, B5, and B6 are parallel with the ground and are orthogonal
to lead screw of B1, B2, and B3.

Fig. 1. Schematic diagram of the 6-dof parallel seismic simulator.
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Fig. 2. Vector diagram of a PSS kinematic chain.

For the purpose of analysis, the following coordinate
systems are defined. As shown in Fig. 2, the coordinate
system O − xyz is attached to the fixed base and another
moving coordinate frame O ′ − uvw is located at the center
of mass of the moving platform. The pose of the moving
platform can be described by a position vector, r , and a
rotation matrix, o Ro′ . Let the rotation matrix be defined by
the roll, pitch, and yaw angles, namely, a rotation of φx about
the fixed x-axis, followed by a rotation of φy about the fixed
y-axis, and a rotation of φz about the fixed z-axis. Thus, the
rotation matrix is
o Ro′ = Rot(z, φz)Rot(y, φy)Rot(x, φx)

=
⎡
⎣cφzcφy cφzsφysφx − sφzcφx cφzsφycφx + sφzsφx

sφzcφy sφzsφysφx + cφzcφx sφzsφycφx − cφzsφx

−sφy cφysφx cφycφx

⎤
⎦
(1)

where sφ denotes the sine of angle φ while cφ denotes
the cosine of angle φ. The angular velocity of the moving
platform is given by

ω = [ φ̇x φ̇y φ̇z ]T (2)

The orientation of each kinematic strut with respect to the
fixed base can be described by two Euler angles. As shown
in Fig. 3, the local coordinate system of the ith strut can be

Fig. 3. The local coordinate system of the ith strut.

thought of as a rotation of φi about the z-axis resulting in a
Ci − x ′

iy
′
iz

′
i system followed by another rotation of ϕi about

the rotated y ′
i-axis. So the rotation matrix of the ith strut can

be written as

oRi = Rot(z, φi)Rot(y ′
i , ϕi) =

⎡
⎣cφicϕi −sφi cφisϕi

sφicϕi cφi sφisϕi

−sϕi 0 cϕi

⎤
⎦
(3)

The unit vector along the lead screw in the coordinate system
O − xyz is

wi = oRi
iwi = oRi

⎡
⎢⎣

0

0

1

⎤
⎥⎦ =

⎡
⎢⎣

cφisϕi

sφisϕi

cϕi

⎤
⎥⎦ (4)

So the Euler angles φi and ϕi can be computed as follows:

cϕi = wiz

sϕi =
√

w2
ix + w2

iy, (0 ≤ ϕi < π)

sφi = wiy/sϕi (5)

cφi = wix/sϕi

if ϕi = 0, then φi = 0.

2.2. Position analysis
As shown in Fig. 2, the closed-loop position equation
associated with the ith kinematic chain can be written as

r + ai = liwi + bi + di + qiei (6)

where r , qi , ei , wi , ai , bi , and di denote the vector O O ′, the
joint variable, the unit vector along the lead screw, the unit
vector along strut CiAi , the vector O ′Ai , the vector O Bi ,
and the vector from the lead screw to the center point of the
joint Ci , respectively.

So the inverse position solution can be achieved

q1 = A1z −
√

l2
1 − (A1x − a)2 − (A1y + a − d1)2 (7a)

q2 = A2z −
√

l2
2 − (A2x)2 − (A2y − a − d2)2 (7b)

q3 = A3z −
√

l2
3 − (A3x + a)2 − (A3y + a − d3)2 (7c)

q4 = A4y + h1 −
√

l2
4 − (A4x − c)2 − (A4z − h2 − d4)2

(7d)

q5 = A5y + h1 −
√

l2
5 − (A5x + c)2 − (A5z − h2 − d5)2

(7e)

q6 = A6x + h1 −
√

l2
6 − (A6y)2 − (A6z − h2 − d6)2 (7f)

2.3. Velocity analysis
Taking the derivative of Eq. (6) with respect to time yields

q̇iei + ωi × liwi = v + ω × ai (8)
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where ωi and v denote the angular velocity of the strut CiAi

and the linear velocity of the moving platform, respectively.
Taking the dot product of both sides of Eq. (8) with wi

yields

q̇i =
[

wT
i

wT
i ei

(ai × wi)T

wT
i ei

] [
v

ω

]
(9)

Rewriting Eq. (9) in the matrix form yields

q̇ = J−1
q Jx Ẋ = J Ẋ (10)

where

q̇ = [ q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 ]T (11)

Ẋ =
[

v

ω

]
(12)

Jq = diag
(
wT

1 e1 wT
2 e2 wT

3 e3 wT
4 e4 wT

5 e5 wT
6 e6

)
(13)

Jx =[
w1 w2 w3 w4 w5 w6

a1 × w1 a2 × w2 a3 × w3 a4 × w4 a5 × w5 a6 × w6

]T

(14)

J = J−1
q Jx = [

JT
1 JT

2 JT
3 JT

4 JT
5 JT

6

]T
(15)

where J is the Jacobian matrix which maps the velocity
vector Ẋ into the joint velocity vector q̇.

2.4. Link velocity analysis
The linear velocity of the point Ai in the Ci − x ′

iy
′
iz

′
i

coordinate system is

ivAi = q̇i
iei + iωi × li

iwi = iv + iω × i a. (16)

Since iωT
i

iwi = 0, cross-multiplying both sides of Eq. (16)
with iwi allows the angular velocity of the driven
parallelogram arm to be obtained as

iωi = 1

li

(
iwi × ivAi − iwi × q̇i

iei

)
= 1

li
(S(iwi)

ivAi − S(iwi)q̇i
iei) (17)

where

S(iwi) =
⎡
⎣ 0 −iwiz

iwiy
iwiz 0 −iwix

−iwiy
iwix 0

⎤
⎦ (18)

Substituting Eqs. (9) and (16) into Eq. (17) then yields

iωi = 1

li

{[
S(iwi)i Ro −S(iwi)S(i ai)i Ro

] − (iwi × iei)

[
wT

i

wT
i ei

(ai × wi)T

wT
i ei

]} [
v

ω

]
= J iω

[
v

ω

]
(19)

where

S(i ai) =
⎡
⎣ 0 −iaiz

iaiy
iaiz 0 −iaix

−iaiy
iaix 0

⎤
⎦ (20)

i Ro = oR−1
i = oRT

i (21)

The velocity of the center of the ith strut in the Ci − x ′
iy

′
iz

′
i

coordinate system is

ivi = ivAi − iωi × li

2
iwi (22)

Substituting Eqs. (9), (16), and (19) into Eq. (22) then yields

ivi =
{

[ iRo −S(i ai)i Ro ] + li

2
S(iwi) J iω

} [
v

ω

]

= J iv

[
v

ω

]
(23)

Rewriting the linear and angular velocity of the ith strut in
the matrix form yields

[
ivi
iωi

]
=

[
J iv

J iω

] [
v

ω

]
= J ivω

[
v

ω

]
(24)

where J ivω is the link Jacobian matrix which maps the
velocity of the moving platform in the task space into the
velocity of the ith strut in the Ci − x ′

iy
′
iz

′
i coordinate system.

2.5. Acceleration analysis
Taking the derivative of Eq. (8) with respect to time gives

v̇ = q̈iei − ω̇ × ai − ω × (ω × ai) + ω̇i × liwi + ωi

× (ωi × liwi) (25)

Taking dot product of both sides of Eq. (25) with wi and
simplifying yields

q̈i = 1

wT
i ei

(
wT

i v̇ + (ai × wi)
T ω̇ + wT

i (ω × (ω × ai))

− wT
i (ωi × (ωi × liwi))

)
(26)

= JT
i

[ v̇

ω̇

]
+ 1

wT
i ei

(
(wT

i ω)(aT
i ω) − (wT

i ai)(ω
T ω)

+ li |ωi × wi |2
)
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Rewriting Eq. (26) in the matrix form yields

q̈ = J Ẍ + V (27)

where

V = [V1 V2 V3 V4 V5 V6 ]T (28)

Vi = 1

wT
i ei

((
wT

i ω
)(

aT
i ω

) − (
wT

i ai

)
(ωT ω) + li |ωi × wi |2

)
(29)

2.6. Link acceleration analysis
Taking the derivative of Eq. (8) with respect to time in the
Ci − x ′

iy
′
iz

′
i coordinate system yields

i v̇ = q̈i
iei − iω̇ × i ai − iω × (iω × i ai)

+ iω̇i × li
iwi + iωi × (iωi × li

iwi) (30)

Cross-multiplying both sides of Eq. (30) with iwi yields

iω̇ = 1

li
(iwi × i v̇ − (iwi × iei)q̈i − iwi × (i ai × iω̇) + iwi

× (iω × (iω × i ai)) − iwi × (iωi × (iωi × iwi)))

(31)

Substituting Eq. (26) into Eq. (31) and simplifying yields

iω̇ = J iω

[
v̇

ω̇

]
+ 1

li
(Δ1 + Δ2) (32)

where

Δ1 = − (iwi × iei)

wT
i ei

((
wT

i ω
)(

aT
i ω

) − (
wT

i ai

)
(ωT ω)

+ li |ωi × wi |2
)

(33)

Δ2 = (
iωT

i
i ai

)
(iwi × iωi) − (iωT iω)(iwi × i ai)

(34)

Taking the derivative of Eq. (22) with respect to time yields

i v̇i = i v̇Ai − li

2
iω̇i × iwi − iωi ×

(
iωi × li

2
iwi

)
(35)

= i v̇ − S(i ai)
iω̇ + S(iω)S(iω)i ai + li

2
S(iwi)

iω̇i

− li

2
S(iωi)S(iωi)

iwi

Substituting Eq. (32) into Eq. (35) and simplifying yields

i v̇i = J iv

[
v̇

ω̇

]
+ S(iωi)S(iωi)

i ai + 1

2
S(iwi)(Δ1 + Δ2)

− li

2
S(iωi)S(iωi)

iwi (36)

3. Dynamics

3.1. Applied and inertia wrenches
According to the D’Alembert’s principle, the force acting
on the center of mass of each link consists of two parts: the
inertial force and the gravity force. Similarly, the moment
acting on each rigid body is the inertial moment. Assume
there is no frictional force for the whole robot system. The
resultant of the applied and inertia forces exerted at the center
of mass of the moving platform is

QP =
[

f P

nP

]
=

[
f e + mp g − mpv̇

ne − o Ipω̇ − ω × (o Ipω)

]
(37)

where f e and ne are the external force and moment exerted
at the center of mass of the moving platform, respectively,
oIp = oRo′ o′

Ip
o′

Ro is the inertia matrix of the moving
platform taken about the center of mass expressed in the
O − xyz coordinate system and mp is its mass.

Assuming that the gravitational force is the only external
force, so the resultant of the applied and inertia forces exerted
at the center of mass of the ith strut can be expressed in the
Ci − x ′

iy
′
iz

′
i coordinate system as

i Qi =
[

i f i

ini

]
=

[
mi

i Ro g − mi
i v̇i

−i I i
iω̇i − iωi × (i I i

iωi)

]
(38)

where i I i is the inertia matrix of the ith cylindrical strut about
their respective centers of mass expressed in the Ci − x ′

iy
′
iz

′
i

coordinate system and mi is its mass.
There is pure translational motion for the carriage, so the

resultant of the applied and inertia forces exerted at the center
of mass of the carriage can be expressed in the O − xyz

coordinate system as

fqi = (mqi g − mqi q̈i)
T qi

‖qi‖
(39)

where mqi and q̈i are the mass and the acceleration of the
carriage, respectively, and ‖qi‖ is the Euclidean norm of qi .

There is pure rotation motion for the lead screw, coupler,
and motor rotor, so the resultant of the applied and inertia
forces exerted at the screw–coupler–rotor is

Ni = τi − (ILi + ICi + IMi)θ̈i (40)

where ILi , ICi , and IMi are the rotary inertia of the lead screw,
coupler, and motor rotor, respectively, τi is the input torque
actuated by the motor, and θ̈i is the angular acceleration of
the screw–coupler–rotor. The relationship between the lead
screw motion and the carriage motion is θ̈i = 2π

pi
q̈i , where

pi = 0.05 m−1 is the lead of the linear ball screw. Other than
the speed reduction caused by the pitch of the lead screws
there is no speed reducer for the out-parallel manipulator.
Otherwise the reduction ratio should be included in Eq. (40).

3.2. Equations of motion
According to the D’Alembert’s principle, the principle of the
virtual work can be extended from the static to the dynamic
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case. It can be stated as: The virtual work of the external
forces applied to the system must be zero. For this out-parallel
manipulator, it can be expressed in the formula

δxT
p Qp +

6∑
i=1

δi xT
i

i Qi + δqT f q + δθT N = 0 (41)

δq = [ δq1 δq2 δq3 δq4 δq5 δq6 ]T (42)

δθ = [ δθ1 δθ2 δθ3 δθ4 δθ5 δθ6 ]T

= diag

(
2π

p1

2π

p2

2π

p3

2π

p4

2π

p5

2π

p6

)
δq (43)

= Aδq

f q = [fq1 fq2 fq3 fq4 fq5 fq6 ]T (44)

N = [N1 N2 N3 N4 N5 N6 ]T (45)

In Eq. (41), the resultant of the applied and inertia
forces i Qi and its corresponding virtual displacement
δi xi are expressed in the Ci − x ′

iy
′
iz

′
i coordinate system.

From Eq. (24), the relationship between the above virtual
displacement δi xi and the virtual displacement δxp is
determined by

δi xT
i = δxT

p JT
ivω (46)

The relationship between the virtual displacement δq and
δxp is

δqT = δxT
p JT (47)

Substituting Eqs. (43), (46), and (47) into Eq. (41) yields

δxT
p Qp+

6∑
i=1

δxT
p JT

ivω
i Qi + δxT

p JT f q + δxT
p JT AT N = 0

(48)
Since Eq. (48) is always valid for any δxp, it must follow

that

Qp +
6∑

i=1

JT
ivω

i Qi + JT f q + JT AT N = 0 (49)

So when the manipulator is not in a singular configuration, the
input torque can be determined by the inverse transformation
of Eq. (49)

τ = −A−T J−T

(
Qp +

6∑
i=1

JT
ivω

i Qi + JT f q

)
+ ILCMθ̈

= −A−T J−T

(
Qp +

6∑
i=1

JT
ivω

i Qi + JT f q

)
+ ILCM Aq̈

(50)

where

ILCM

= diag( ILCM1 ILCM2 ILCM3 ILCM4 ILCM5 ILCM6 )

ILCMi = ILi + ICi + IMi (51)

Substituting Eqs. (37)–(40) into Eq. (50) yields

τ = −A−T J−T

[
f e

ne

]
− A−T J−T

{[
mp g

0

]

+
6∑

i=1

JT
ivω

[
mi

i Ro g

0

]

+ JT

[
(mq1 g)T

q1

‖q1‖
(mq2 g)T

q2

‖q2‖
(mq3 g)T

q3

‖q3‖

× (mq4 g)T
q4

‖q4‖
(mq5 g)T

q5

‖q5‖
(mq6 g)T

q6

‖q6‖
]T

}

+ A−T J−T

{[
mpv̇
o Ipω̇

]
+

6∑
i=1

JT
ivω

[
mi

i v̇i

i I i
iω̇i

]
(52)

+ JT[mq1q̈1 mq2q̈2 mq3q̈3 mq4q̈4 mq5q̈5 mq6q̈6 ]T
}

+ ILCM Aq̈ + A−T J−T

{[
0

ω × (o Ipω)

]

+
6∑

i=1

JT
ivω

[
0

iωi × (i I i
iωi)

]}

where 0 = [ 0 0 0 ]T .
From Eq. (52), it is shown that the input torques

are determined by the structure parameters, the position
parameters, the kinematics parameters (including the
velocity and the acceleration), the gravity term and the term
caused by the external force, and moment exerted at the
moving platform. Substituting Eqs. (24), (31), and (36) into
Eq. (52) and simplifying, the inverse dynamics model of the
out-parallel manipulator is achieved

τ = D(q)q̈ + h(q, q̇) + G(q) − A−T J−T

[
f e

ne

]
(53)

where D(q) is the inertia matrix of the manipulator, h(q, q̇) is
the velocity term, and G(q) is the gravity term of the inverse
dynamic equations. It can be seen that Eq. (53) changes into
the static equation when the manipulator is stationary.

The constraint forces and interacting forces between
particles are eliminated from the procedure when using the
principle of virtual work to formulate the inverse dynamics
of the parallel manipulator. The elimination of the need to
consider the constraint and interacting forces is the advantage
of using the principle of virtual work over the Newtonian
approach.

Table I. The parameters of the base platform (m).

1 2 3 4 5 6

xBi 0.300 0.000 −0.300 0.300 −0.300 −1.607
yBi −0.300 0.300 −0.300 −1.607 −1.607 0.000
zBi 0.000 0.000 0.000 1.437 1.437 1.437
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Table II. The parameters of the moving platform which are
measured in the coordinate frame O ′ − uvw (m).

1 2 3 4 5 6

xAi 0.300 0.000 −0.300 0.300 −0.300 −0.581
yAi −0.300 0.300 −0.300 −0.581 −0.581 0.000
zAi −0.266 −0.266 −0.266 −0.0375 −0.0375 −0.0375

Table III. The length of the strut CiAi (m).

1 2 3 4 5 6

li 0.382 0.362 0.382 0.382 0.382 0.362

Table IV. The mass parameters of the manipulator (kg).

1 2 3 4 5 6

mi 20 20 20 20 20 20
mqi 50 100 50 50 50 100

4. Numerical Simulation

In this section, a numerical example for the inverse
dynamics computation of the 6-dof out-parallel manipulator

is presented. The program based on the algorithm is
developed by using the MATLAB software. The parameters
of the manipulator used for the simulation are given in
Tables I through IV.

The mass of the moving platform is mp = 200 kg.
The inertia parameters used in the simulation are given
as

o′
Ip =

⎡
⎢⎢⎢⎣

17.33 0 0

0 17.33 0

0 0 33.33

⎤
⎥⎥⎥⎦ kg · m2, i I i

=

⎡
⎢⎢⎢⎣

0.50 0 0

0 0.50 0

0 0 0.01

⎤
⎥⎥⎥⎦ kg · m2

ILi = 10.5 × 10−4 kg · m2,

ICi + IMi = 248 × 10−4 kg · m2.

Another parameter used in the simulation is given as di =
0.244 m.

Fig. 4. Variations of carriage position (a), velocity (b), and acceleration (c) vs. time.
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Fig. 5. Variations of whole actuating torques (a), torques caused by acceleration term (b), torques caused by the velocity term (c), and
torques caused by the gravity term (d) vs. time.

The motion of the moving platform used in the numerical
simulation is expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = −0.081 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

y = −0.081 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

z = 1.6 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

φx = −0.081 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

φy = −0.081 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

φz = −0.081 + amaxT
2

5.7735
(10τ 3 − 15τ 4 + 6τ 5)

(54)

where amax = 9.816 m/s2, τ = t
T

, T = √
5.7735S/amax s,

and S = 0.162 m.
The position, velocity, and acceleration of the carriages are

shown in Fig. 4.
According to Eq. (52), the whole actuating torques and

the torques caused by the gravity, the velocity, and the
acceleration term can be computed. The results shown in
Fig. 5 imply that for this simulation the torques caused by
the acceleration terms are larger than the other two terms.

According to Eq. (52), the torques caused by the moving
platform, strut, carriage, and rotation inertia of the lead screw,
motor rotor, and coupler are computed. They are shown in
Fig. 6.

The results shown in Fig. 6 show that for this simulation,
the torques caused by the rotation inertia of the motor–
coupler–screw should be included for the exact dynamic
model used for the design of the control law or the estimation
of servomotor parameters for the parallel manipulators.

5. Conclusions

The inverse dynamics of the 6-dof out-parallel manipulator
have been formulated by means of the principle of virtual
work and the concept of link Jacobian matrices. The
dynamical equations of motion include the rotation inertia
of motor–coupler–screw and the term caused by the external
force and moment exerted at the moving platform. The
approach described here leads to efficient algorithms since
the constraint forces and moments of the robot system have
been eliminated from the equations of motion and there is
no differential equation for the whole procedure. The whole
actuating torques and the torques caused by gravity, velocity,
acceleration, moving platform, strut, carriage, and rotation
inertia of the lead screw, motor rotor, and coupler have been
computed in the numerical simulation. The results shown
in the simulation demonstrate that torques caused by the
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Fig. 6. Variations of torques caused by the moving platform (a), torques caused by the strut (b), torques caused by the carriage (c), torques
caused by the lead screw (d), and torques caused by the motor rotor and couple (e) vs. time.

rotation inertia of motor–coupler–screw should be included
for the exact dynamic model used for the design of the
control law or the estimation of servomotor parameters for the
parallel manipulators. The procedure described in this paper
can be applied to other types of out-parallel manipulators.
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