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A P-MINIMAL STRUCTUREWITHOUT DEFINABLE
SKOLEM FUNCTIONS

PABLO CUBIDES KOVACSICS AND KIEN HUUNGUYEN

Abstract. We show there are intermediate P-minimal structures between the semialgebraic and suban-
alytic languages which do not have definable Skolem functions. As a consequence, by a result of Mourgues,
this shows there are P-minimal structures which do not admit classical cell decomposition.

In this article we provide an example of a P-minimal field without definable
Skolem functions. In Section 1, we give a general introduction to P-minimality
in which we explain the relevance of such an example within its study. The con-
struction of the example together with some final comments will be presented in
Section 2.

§1. Preliminaries. HereafterK will denote a p-adically closed field, that is, a field
elementarily equivalent to a finite extension of Qp in the language of rings Lring :=
(+,−, ·, 0, 1). We use the notation ΓK for the value group ofK , v : K → ΓK ∪{∞}
for the p-adic valuation and OK for the valuation ring of K . For a language L,
by L-definable sets we mean definable by an L-formula allowing parameters. We
sometimes drop the prefix L and say definablewhen the ambient languageL is clear
from the context.
Introduced by Haskell andMacpherson in [9], P-minimality is a model-theoretic
tameness notion forp-adically closed fields. It was inspired by o-minimality, a widely
known tameness notion which was initially developed for real-closed fields. As a
consequence of their work (see Theorem 2.2 in [9]), the following definition can be
taken as a variant of their original formulation.

Definition 1.1. Let L be a language extendingLring andK be a p-adically closed
field. The structure (K,L) is P-minimal if for every structure (K ′,L) elementarily
equivalent to (K,L), every L-definable subset X ⊆ K ′ is Lring-definable.
By results ofMacintyre in [12], which were later extended by Prestel andRoquette
in [15], p-adically closed fields in Lring are P-minimal. Another source of examples
of P-minimal fields comes from adding analytic structure to a given p-adically
closed field. Let us mention some of these examples.
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Recall that Macintyre’s language Lmac is Lring extended with unary predicates
Pn for each integer n > 0, which are interpreted in K by the sets of nth-powers
Pn := {yn ∈ K : y ∈ K×}. For K a finite extension of Qp, the subanalytic
language Lan onK is the languageLMac enriched with the field inverse −1 extended
to K by setting 0−1 = 0 and, for each convergent power series f : OnK → K , a
function symbol for the restricted analytic function

x ∈ Kn �→
{
f(x) if x ∈ OnK ,
0 otherwise.

By a result of Haskell, Macpherson, and van den Dries in [18], (K,Lan) is
P-minimal. Variants of Lan for nonstandard p-adically closed fields (i.e., K not
being a finite extension of Qp) were shown to be P-minimal by Cluckers and
Lipshitz in [3].
Something which all previously given examples have in common is that they all
satisfy a cell decomposition and cell preparation theorem. Before discussing how
these notions are related to the existence of definable Skolem functions, let us remind
the reader what cell decomposition and cell preparation mean for us in this article.
We will work relative to a given collection of functions F . The first step is to define
cells over F :
Definition 1.2 (Cells). Let F be a family of functions on K .
An F -cell A ⊆ K is a (nonempty) set of the form

{t ∈ K : v(α) �1 v(t − c) �2 v(�), t − c ∈ �Pn}
with �, c ∈ K , α, � ∈ K×, and �i either < or ∅ (i.e., ‘no condition’).
An F -cell A ⊆ Km+1, m ≥ 1, is a set of the form
{(x, t) ∈ Km ×K : x ∈ D, v(α(x)) �1 v(t − c(x)) �2 v(�(x)), t − c(x) ∈ �Pn},
with D = �(A) an F -cell (where � : Km+1 → Km denotes the projection onto the
firstm coordinates) and α, � : Km → K× and c : Km → K functions in F . We call
c the center and �Pn the coset of the F -cell A.
We can now give a definition of cell decomposition and cell preparation relative
to a family of functions F .
Definition 1.3. Let F be a collection of functions.
1. (K,L) has cell decomposition over F if every definable set can be partitioned
into finitely many F -cells.

2. (K,L) has cell preparation over F if given definable functions fj : X ⊆
Km+1 → K for j = 1, . . . , r, there exists a finite partition of X into F -cells
A, such that if A has center c : Km → K and coset �Pn with � 
= 0, for each
(x, t) ∈ A

v(fj(x, t)) = v(�j(x)) +
aj(v(t − c(x))− v(�))

n
for each j = 1, . . . , r,

with aj an integer, and �j : Km → K a function in F . If � = 0 we just have that
v(fj(x, t)) = v(fj(x, c(x))) = v(�j(x)). When m = 0, a function K0 → K is
assumed to be a single element of K .
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Clearly, if (K,L) has cell preparation overF it also has cell decomposition overF .
What is classically referred to as semialgebraic (resp. analytic) cell decomposition,
would, in our notation, correspond to cell preparation over the class of continuous
Lring-definable functions (resp. over the class of analytic functions which are defin-
able in Lan). Denef proved, in his foundational article [7], that p-adically closed
fields (K,Lring) have semialgebraic cell decomposition. Cluckers in [2], showed
that (K,Lan) has analytic cell decomposition. Similar results were proven in [3] by
Cluckers and Lipshitz for variants of p-adically closed fields with analytic structure.
It is therefore natural to ask whether similar theorems could be generalized to
P-minimal structures, a question which was already raised in [9]. A first (partial)
answer was given by Mourgues in [13], where she proved the following result:
Theorem 1.4 (Mourgues). Let (K,L) be a P-minimal field. The following are
equivalent:
1. K has definable Skolem functions.
2. K has cell decomposition over the class of continuous L-definable functions.
Let us now recall what definable Skolem functions are. A structureM has defin-
able Skolem functions if every definable set admits a definable section. A definable
set X ⊆Mn+1 has a definable section if there is a definable function g : �(X )→M
such that (x, g(x)) ∈ X for all x ∈ �(X ), where � denotes the projection ofMn+1
onto the first n coordinates.
Recently, Darnière andHalupczok [6] characterized P-minimal structures having
cell preparation over the class of continuous definable functions using an additional
condition called “the extreme value property.” This property requires that every
continuous definable function from a closed and bounded definable set X ⊆ K to
ΓK attains a maximal value. Their theorem can be stated as follows:
Theorem 1.5 (Darnière-Halupczok). Let (K,L) be a P-minimal field. The
following are equivalent:
1. K has definable Skolem functions and satisfies the extreme value property;
2. K has function preparation over the class of continuous definable functions.
The existence of P-minimal structures without definable Skolem functions was
left open in both [13] and [6]. In Section 2 we present a P-minimal field (K,LA)
whereK is a nonstandard p-adically closed field and the languageLA is Lring ∪{A}
with A a binary predicate interpreted in K by an Lan-definable subset. The result
confirms the intuition that the existence of definable Skolem functions inP-minimal
structures is not preserved under taking reducts. Despite this negative result, it is
worth noting that variants of cell decomposition results havebeen proven for general
P-minimal structures by widening the notion of cell (see for example [4,5]).

§2. The example. As stated in Section 1, (Qp,Lan) is P-minimal. Let (K,Lan)
be a nonstandard elementary extension of (Qp,Lan) and let � ∈ ΓK be such that
� > n for all n ∈ Z. Let f : Zp → Zp be a transcendental convergent power series
with coefficients in Zp. Consider the following set of O2K :

A := {(x, y) ∈ O2K : v(f(x)− y) > �}.
Abusing notation, let A be a new binary relation symbol and LA = Lring ∪ {A}. We
set (K,LA) as the expansion of (K,Lring) where A is interpreted as the set A defined
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above. Notice that every LA-definable set is in particular Lan-definable and, since
(K,Lan) is P-minimal, we trivially get:
Proposition 2.1. (K,LA) is P-minimal.
We will show that (K,LA) has no definable Skolem functions. To prove this we
use the following two lemmas whose proofs are postponed to the end of the section.
Lemma 2.2. For every a ∈ OK there are ã ∈ OK and b ∈ Qp such that a = ã + b
and v(ã) > n for every n ∈ Z.
Lemma 2.3. Let g : W ⊆ K → K be an LA-definable function. Then there is a
polynomial P(X,Y ) ∈ K [X,Y ] such that for all x ∈W , P(x, g(x)) = 0.
Theorem 2.4. The structure (K,LA) does not have definable Skolem functions.
Proof. Suppose for a contradiction that g : OK → K is a definable Skolem
function for A, that is, for all x ∈ OK , v(f(x) − g(x)) > �. Notice that since
v(f(x)) ≥ 0 and v(f(x) − g(x)) > � we must have that g(x) ∈ OK . By
Lemma 2.3, let P ∈ K [X,Y ] be such that P(x, g(x)) = 0 for all x ∈ OK with

P(X,Y ) =
∑
(i,j)

a(i, j)X iY j

for a(i, j) ∈ K and 0 ≤ i ≤ j ≤ N for some N ∈ N. Let (i0, j0) be such
that v(a(i0, j0)) = min(v(a(i, j))). Without loss of generality we may assume that
v(a(i0, j0)) = 0, since we can multiply P(X,Y ) by 1

a(i0,j0)
.

Claim 2.5. For all x ∈ OK , v(P(x,f(x))) > �.
Since P(x, g(x)) = 0, we have that P(x,f(x)) = P(x,f(x))− P(x, g(x)), then

v(P(x, f(x))) = v

⎛
⎝∑
(i,j)

a(i, j)xi (f(x))j −
∑
(i,j)

a(i, j)xi (g(x))j

⎞
⎠

= v

⎛
⎝ ∑
(i,j) �=(0,0)

a(i, j)xi ((f(x))j − (g(x))j)
⎞
⎠

≥ min
(i,j) �=(0,0)

{v(a(i, j)xi((f(x))j − (g(x))j))}

= min
(i,j) �=(0,0)

{v(a(i, j)xi(f(x)− g(x))((f(x))j−1 + · · · + (g(x))j−1))}

> min
(i,j) �=(0,0)

{v(a(i, j)xi((f(x))j−1 + · · · + (g(x))j−1))}+ �

≥ �,
which completes the claim.

We will show that there is x ∈ Zp such that v(P(x,f(x))) ∈ Z, contradicting the
claim since by assumption � > n for all n ∈ Z. First split the set of indices (i, j) in
P as follows:

I := {(i, j) : ∃n ∈ Z, v(a(i, j)) < n}, and
J := {(i, j) : ∀n ∈ Z, v(a(i, j)) > n}.

By Lemma 2.2, for (i, j) ∈ I , let ã(i, j) ∈ K and b(i, j) ∈ Qp be such that
a(i, j) = ã(i, j) + b(i, j) and v(ã(i, j)) > n for every integer n.
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Claim 2.6. For all but finitely many x ∈ Qp

v(P(x,f(x))) = v

⎛
⎝ ∑
(i,j)∈I

b(i, j)xi (f(x))j

⎞
⎠ 
=∞.

First notice that for x ∈ Qp

v

⎛
⎝ ∑
(i,j)∈I

a(i, j)xi (f(x))j

⎞
⎠ = v

⎛
⎝ ∑
(i,j)∈I

ã(i, j)xi(f(x))j +
∑
(i,j)∈I

b(i, j)xi (f(x))j

⎞
⎠.

Since v(a(i0, j0)) = 0 we must have b(i0, j0) 
= 0. By definition of I and J we have
that either

∑
(i,j)∈I b(i, j)x

i (f(x))j = 0 or
∑
(i,j)∈I b(i, j)x

i(f(x))j 
= 0 and

v

⎛
⎝ ∑
(i,j)∈I

a(i, j)xi (f(x))j

⎞
⎠ = v

⎛
⎝ ∑
(i,j)∈I

b(i, j)xi (f(x))j

⎞
⎠

< v

⎛
⎝ ∑
(i,j)∈J

a(i, j)xi (f(x))j

⎞
⎠ .

Sincef is transcendental and b(i0, j0) 
= 0,we have that
∑
(i,j)∈I b(i, j)x

i(f(x))j =
0 occurs only for finitely many x ∈ Qp, which shows the claim.

Take x ∈ Zp such that
∑
(i,j)∈I b(i, j)x

i (f(x))j 
= 0. Then,

v(P(x,f(x))) = v

⎛
⎝ ∑
(i,j)∈I

b(i, j)xi (f(x))j

⎞
⎠ ∈ Z,

since both x and all b(i, j) are in Qp. �
We are now left with the proof of Lemmas 2.2 and 2.3. For Lemma 2.2 we use
pseudo-Cauchy sequences (pseudo-convergent in Kaplansky’s [10], to which we
refer the reader for definitions and basic properties).

Proof of Lemma 2.2. Let a be an element of K . If v(a) > n for all n ∈ Z set
b = 0. Suppose v(a) ∈ Z. Let (bi)i∈N be a pseudo-Cauchy sequence of elements
in Qp such that a is a pseudo-limit. By completeness of Qp there is b ∈ Qp which
is also a pseudo-limit of that sequence. Set ã := a − b. By definition of pseudo-
Cauchy sequence, for every n ∈ Z there is i ∈ N such that both v(a − ai) > n and
v(b − ai) > n, which shows v(a − b) > n. �
The proof of Lemma 2.3 is a bitmore involved. It is based on resplendent quantifier
elimination, a notion coined by Scanlon (see [17]) which can be traced back to the
work of Pas on relative quantifier elimination for henselian valued fields (see [14]).
Let us informally explain what this notion means. For a formal exposition we refer
the reader to [16].
We will work in a multisorted extensionLKRV∗ ofLring (which will be defined later)
for which the theory T = Th(K,LKRV∗) will relatively eliminate valued field quanti-
fiers. Denote byVF the valued field sort. ForT to relatively eliminate VF-quantifiers
means that every LKRV∗ -formula is equivalent modulo T to a VF-quantifier free
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LKRV∗ -formula (which might still have quantifiers for variables in sorts different
from VF). We say a language L extends LKRV∗ resplendently over VF if only new
relation and function symbols are added whenever they do not involve the sort
VF. Finally, T eliminates VF-quantifiers resplendently over VF, if the elimination
of VF-quantifiers also holds for any language L extending LKRV∗ resplendently
over VF. This will be the content of Proposition 2.7. Let us now introduce the
language LKRV∗ . We will use the notation choice from [8].
Given � ≥ 0 in ΓK , let M� denote the ideal {x ∈ K : v(x) > �}. The RV�
structure is the quotient group

RV� := K×/(1 +M�),

and rv� : K× → RV� is the quotient map. We include an element ∞ in RV� and
extend rv� toK setting rv�(0) =∞. Given �, � ∈ ΓK such that � ≤ �, we also denote
by rv� the natural map rv� : RV� → RV� . A partial sum is induced in RV� as the
following ternary relation:

⊕(a1, a2, a3)⇔ ∃x1, x2, x3 ∈ K
(
3∧
i=1

rv�(xi) = ai ∧ x1 + x2 = x3
)
.

Let L0 be the language {×,⊕}. The multisorted language LKRV∗ is given by

LKRV∗ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(VF,Lring),
(RV�,L0) for each � ≥ 0 in ΓK ,
rv� : VF → RV� for each � ≥ 0 in ΓK ,
rv� : RV� → RV� for all 0 ≤ � ≤ � in ΓK .

We use the notation (K,LKRV∗) for the whole LKRV∗ -structure on K . Notice that the
set of sorts is fixed by ΓK . Resplendent relative elimination of VF-quantifiers for the
theory of (K,LKRV∗) is based on relative quantifier elimination results by Basarab [1],
Kuhlmann [11] and a more recent accounts by Flenner [8] and Rideau [16].

Proposition 2.7. LetL be a language extendingLKRV∗ resplendently overVF. Then
anyL-formula is equivalentmoduloTh(K,L) to anL-formulawithoutVF-quantifiers.
Proof. This natural extension of Proposition 4.3 in [8] follows from a careful
analysis of the proof given in [8]. Alternatively, one can follow the classical tech-
niques from Pas and Denef [7,14] (which were inspired by methods of Cohen) and
iteratively apply semialgebraic preparation to the polynomials involved in a given
L-formula in order to eliminate VF-quantifiers. Finally, the result also follows from
recent techniques introduced in [16], which we omit since they will require a much
longer exposition. �
In our case, we use this resplendence to have a better control of LA-definable
functions in one variable. Consider the image of A by rv�, that is,

rv�(A) = {(a, b) ∈ RV 2� : ∃x, y ∈ K(rv�(x) = a ∧ rv�(y) = b ∧ (x, y) ∈ A}.
For H a new binary symbol let LH := L0 ∪ {H}. Finally let L be the extension
of LKRV∗ in which for � we replace L0 by LH in the sort RV�. We set (K,L) as the
expansion of (K,LKRV∗) in which H is interpreted as rv�(A). The two structures are
related as follows:
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Lemma 2.8. For every n, every LA-definable subset of Kn is also L-definable.
Proof. Let X be a subset of Kn. If X is defined by an LA-formula φ, the

L-formula 
 which arises from replacing uniformly the predicate A by rv−1� (H )
also defines X . Indeed, A = rv−1� (H ). The left-to-right inclusion is trivial. For
the converse, let (z,w) ∈ rv−1� (H ) and (x, y) ∈ A such that rv�(x) = rv�(z) and
rv�(y) = rv�(w). This implies that v(z − x) > � and v(y − w) > �, so in par-
ticular (z,w) ∈ O2K . It remains to show that v(f(z) − w) > �. By definition of
A, we have that v(f(x)− y) > �, which by the ultrametric inequality implies that
v(f(x) − w) > �. Again, by the ultrametric inequality, it suffices to show that
v(f(x)− f(z)) > �. Since f (in Zp) is defined by a convergent power series with
coefficients in Zp, it is easy to see that v(x − z) ≤ v(f(x)−f(z)) for all x, z ∈ Zp,
and hence such statement also holds in K . Thus, since v(x − z) > � we have that
v(f(x)− f(z)) > �. Therefore (z,w) ∈ A. �
The final ingredient in the proof of Lemma 2.3 is the well-behavior of dimension
for definable sets in P-minimal fields. The dimension of a definable set X ⊆ Kn is
the maximal nonnegative integer k ≤ n such that there is a projection � : Kn → Kk
for which �(X ) has nonempty interior. For X = ∅ we set its dimension as −∞.
Notice that a definable set is finite if and only if it has dimension less or equal
than 0. Given definable sets X1, . . . , Xn, it was proven in [9] that

dim(X1 ∪ · · · ∪ Xn) = max(dim(Xi) : 1 ≤ i ≤ n).
It also follows from the results in [9] that the dimension is additive: given definable
sets S ⊆ Kn and X ⊆ S × Km such that the projection of X onto the first
n-coordinates equals S, and such that fibers have fixed dimension dim(Xs ) = l ≤ m
for all s ∈ S, one has that dim(X ) = dim(S) + l (see [5]). In particular, the
graph of a function f : X ⊆ Kn → K must have dimension less than n + 1. For
X1, . . . , Xn opendefinable sets inKn , the ultrametric inequality imposes furthermore
that dim(X1 ∩ · · · ∩ Xn) is either n or −∞. We have now all ingredients to prove
Lemma 2.3:

Proof of Lemma 2.3. Let G be the graph of g. By Lemma 2.8, G is definable
by an L-formula φ(x, y). By Proposition 2.7, φ is equivalent to an L-formula of
the form

�(x, y) :=
∨
i∈I

∧
j∈J
Pw(x, y) = 0 ∧Qw(x, y) 
= 0 ∧ �w(tw1 , . . . , twnw ),

where w ∈ I × J , Pw,Qw ∈ K [X,Y ], �w(x1, . . . , xnw ) is an L-formula where all
variables range over RV sorts and each term twl is of the form

twl = rv�w,l (Fw,l (x, y)), with �w,l ∈ ΓK and Fw,l ∈ K [X,Y ].
Notice the result follows if for each i ∈ I there exists j ∈ J such that P(i,j) 
= 0.
For any polynomial F ∈ K [X,Y ] and any � ≥ 0 in ΓK , we have that

rv�(F (x, y)) =∞ ⇔ F (x, y) = 0.
Hence, possibly by replacing the formula �(x, y) by an equivalent formula, we may
assume that �w(tw1 , . . . , t

w
nw ) defines a set of dimension 2 or −∞ in K2. Indeed, if
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�w(tw1 , . . . , t
w
nw ) defines a set of dimension 1, such a set is already contained in the

union of the zero sets of the polynomials Fw,l .
Let i ∈ I be such that the formula,
�i(x, y) :=

∧
j

P(i,j)(x, y) = 0 ∧Q(i,j)(x, y) 
= 0 ∧ �(i,j)(t(i,j)1 , . . . , t(i,j)n(i,j)
),

defines a nonempty subset of K2. Suppose for a contradiction that for all j ∈ J ,
the polynomial P(i,j) is the zero polynomial. By our assumption, every formula
�(i,j) defines a subset of either dimension 2 or dimension −∞ in K2. Formulas of
the form Q(i,j)(x, y) 
= 0 always define a subset of dimension 2 in K2. Therefore
�i(x, y) defines a subset of dimension 2 or−∞. Since �i defines a nonempty set, its
dimension must be 2. This implies G has dimension 2, but since G is the graph of a
function, by additivity it must have dimension 1, a contradiction. So for each i ∈ I ,
there exists j ∈ J with P(i,j) not the zero polynomial. �
Let us finish with a remark and two questions. Our proofs used essentially that the
p-adically closed field (K,LA) of Theorem 2.4 is nonstandard. Moreover, despite
such structure does not have Skolem functions, it has a P-minimal expansion that
does have, namely (K,Lan). This two facts naturally induce the following questions:
Question 2.9. Does any P-minimal expansion of Qp (or a finite extension) has
definable Skolem functions?

Question 2.10. Does every P-minimal field has an expansion with definable
Skolem functions?
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