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Abstract

We derive the large-sample distribution of the number of species in a version of
Kingman’s Poisson–Dirichlet model constructed from an α-stable subordinator but with
an underlying negative binomial process instead of a Poisson process. Thus it depends on
parameters α ∈ (0, 1) from the subordinator and r > 0 from the negative binomial pro-
cess. The large-sample distribution of the number of species is derived as sample size
n → ∞. An important component in the derivation is the introduction of a two-parameter
version of the Dickman distribution, generalising the existing one-parameter version.
Our analysis adds to the range of Poisson–Dirichlet-related distributions available for
modeling purposes.
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1. Introduction

Kingman in [18] suggested a way of constructing random distributions on the unit simplex
by ranking the jumps of a subordinator up to a specified (possibly random) time, then nor-
malising them by the value of the subordinator at that time. Taking the subordinator to be a
driftless gamma subordinator generates his well known Poisson–Dirichlet distribution PD(θ ),
which was later shown to be intimately connected with the famous Ewens sampling formula
in genetics [6]. Another of Kingman’s distributions, denoted by PDα , arises when a driftless
α-stable subordinator with parameter α ∈ (0, 1) is used instead of the gamma subordinator.
These distributions and the methodologies associated with them have subsequently had an
enormous impact in many areas of application, ranging from the excursion theory of stochas-
tic processes to the theory of random partitions, random graphs and networks, probabilistic
number theory, machine learning, Bayesian statistics, and a variety of others.
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Generalised Dickman distribution and a negative binomial process model 371

Ipsen and Maller [12] generalised Kingman’s PDα class in another direction, namely, to
the two-parameter PD(r)

α class, defined for α ∈ (0, 1), and r > 0. Like PDα , the class PD(r)
α is

based on an α-stable subordinator, but the extra parameter r arises from a connection with
the negative binomial point process introduced by Gregoire [9] (whereas PDα is associated
with a Poisson point process). Ipsen, Maller and Shemehsavar [14] developed connections
between various Poisson–Dirichlet models by letting r → ∞ and α ↓ 0 in PD(r)

α , while Ipsen,
Shemehsavar and Maller [16] fitted PD(r)

α to gene and species sampling data, demonstrating
the utility of allowing the extra parameter r in a data analysis.

An aspect of particular interest in practice is the distribution of Kn(α, r), the number of
distinct species observed in a sample of size n from the PD(r)

α distribution. Herein we derive the
asymptotic distribution (as n → ∞) of Kn(α, r) for fixed α and r, and discuss how it depends
on the parameters α and r.

The relevance of the Dickman function [5] and the corresponding distribution to the the-
ory of the Poisson–Dirichlet distribution has been observed before (see, e.g., Arratia, Barbour
and Tavaré [1] (pp. xi, 14, 76), Watterson [28] (Equation (27) and the material above it), and
Watterson and Guess [29] (Equation (3.2.4)), but in our development a generalised version of
it plays a particularly significant role. More details are in Section 5.

2. Asymptotic distribution of the number of species

In a sample of size n from PD(r)
α , the blocks count vector is

Mn = Mn(α, r) = (M1(α, r), M2(α, r), . . . , Mn(α, r)),

where Mj(α, r) counts the number of allele types or species having j representatives in the
sample. The number of distinct species observed in the sample is Kn(α, r) := M1(α, r) + · · · +
Mn(α, r). In the Poisson–Dirichlet model PD(θ ), the probability of any particular realisation of
the blocks count vector is given by the Ewens sampling formula in [6].

For the PD(r)
α model, a formula is obtained in [14] for the distribution of the (n+1)-vector

(Mn(α, r), Kn(α, r)), where Mn(α, r) takes values among all n-vectors of nonnegative integers
m = (m1, . . . , mn) satisfying

∑n
j=1 jmj = n, while Kn(α, r) takes values k =∑n

j=1 mj ∈Nn :=
{1, 2, . . . , n}. Equation (5.11) of [14] gives the formula

P(Mn(α, r) = m, Kn(α, r) = k) = n
∫ ∞

0

r(k)λαk−1

�(λ)r+k

n∏
j=1

1

mj!
(
Fj(λ)

)mj dλ, (2.1)

where r(k) = r(r + 1) · · · (r + k − 1),

�(λ) = 1 + α

∫ 1

0
(1 − e−λz)z−α−1dz, (2.2)

and

Fj(λ) := α

j!
∫ λ

0
zj−α−1e−zdz, j ∈Nn, λ > 0. (2.3)

Both Mn(α, r) and Kn(α, r) depend on the two parameters α ∈ (0, 1) and r > 0. These are kept
fixed in the large-sample analysis (as n → ∞) which follows. Equation (2.1) can be compared
with an analogous formula, Equation (4.14) on page 81 of [23], which is based on a Poisson
rather than negative binomial construction.
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Defining

Ank :=
{

m = (m1, . . . , mn) : mj ≥ 0,

n∑
j=1

jmj = n,

n∑
j=1

mj = k

}
(2.4)

for k ∈Nn, n ∈N, and summing over the mj, we can reduce (2.1) to the following formula for

the distribution of Kn(α, r) in a sample of size n from PD(r)
α :

P(Kn(α, r) = k) = n
∫ ∞

0

r(k)λαk−1

�(λ)r+k

∑
m∈Ank

n∏
j=1

1

mj!
(
Fj(λ)

)mj dλ, k ∈Nn. (2.5)

Our aim herein is to derive the limiting large-sample distribution of Kn(α, r) in the PD(r)
α model,

working from (2.5).
To state the result, we need to introduce for each λ > 0 a subordinator (Yt(λ))t>0 having

Laplace transform

Ee−τYt(λ) = exp

(
− t

∫ 1

0

(
1 − e−τy)�λ(dy)

)
, t > 0, τ > 0, (2.6)

with Lévy measure

�λ(dy) := αy−α−1dy

�(1 − α)

(
1{0<y<λ≤1} + 1{0<y<1<λ}

)
. (2.7)

Theorem 2.1. Each Yt(λ), t > 0, λ > 0, has a continuous bounded density which we denote by
fYt(λ)(y), y > 0. The asymptotic distribution of n−αKn(α, r) as n → ∞ can be written in terms
of it as

lim
n→∞ P

⎛⎝0 <
Kn(α, r)

nα
≤ y

⎞⎠= 1

�(r)�r(1 − α)

×
∫ y

x=0

∫
λ>0

xr−1fYx(λ)(1) exp

(
− x(λ−α ∨ 1)

�(1 − α)

)
λ−αr−1dλ dx, y > 0.

(2.8)

Formula (2.8) looks rather forbidding, but as we will see in Section 6, it can be simplified and
written in a form amenable to numerical computation.

The proof of Theorem 2.1 proceeds by a number of steps as set out next.

2.1. Outline of the proof of Theorem 2.1

Deriving (2.8) from (2.5) requires an extensive analysis whose basic ingredients are as
follows:

• The formula (2.5) appears far from transparent but in fact possesses a lot of structure.
(It’s not even clear that (2.5) defines a proper probability mass function, i.e., sums to 1
over k ∈Nn. That this is so is demonstrated in [14].) A first step is to notice a Poissonian
component in (2.5) and observe that the term summed over m ∈ Ank can be interpreted
as giving rise to a joint Poisson probability (see (3.1) below). Conditioning on one of
the Poisson components then produces a multinomial probability ((3.2) below) and a
marginal Poisson probability.
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• The unpromising-looking first factor under the integral sign in (2.5) combines with the
marginal Poisson to produce a negative binomial probability, modulo a correction factor
((3.7) below).

• A useful trick, used also in [27], is to write the multinomial probability as a probabil-
ity involving a sum of independent and identically distributed (i.i.d.) random variables
(Xin(λ))i≥1 ((3.9) below), resulting in the representation (3.26) for the distribution of
Kn(α, r) as a product of this probability, the negative binomial probability, and the
correction factor, all functions of λ > 0, and integrated over λ > 0.

• The next step is to rescale Kn(α, r) and find the limits of the probabilities under the
integral sign in (3.26). None of the representations from (2.5)–(3.26) give much clue as
to an appropriate scaling for Kn(α, r), but we recall that for the corresponding quantity
(the number of species observed) in Kingman’s PDα model, the correct scaling is by
nα , and this results in a limiting Mittag-Leffler distribution for that quantity; see [23,
Theorem 3.8, p. 68]. So we are tempted to try this scaling for Kn(α, r) here. Less obvious
however is that to make this work, it’s necessary to change variable from λ to λn in the
integral in (3.26), thereby giving the integral in (3.27).

• Following these manipulations, we need to find the limits as n → ∞ of the functions in
the integrand in (3.27). This is done in Proposition 3.2. The limit of the correction factor
is easily obtained in the form of an exponential, and the negative binomial probability
can be handled using Stirling’s formula (the limit in fact is a gamma distribution). For
the probability involving the i.i.d. random variables (Xin(λ)) we apply a classical limit
theorem for sums of a triangular array (the distribution of the Xin depends on n) and then
require a local version of this for i.i.d. discrete lattice random variables, which we derive
directly.

• Having found the limits of the functions in the integrand in (3.27), we formally take the
limit as n → ∞ under the integral sign, obtaining the right-hand side of (2.8). But rather
than try to justify this interchange of limit and integral, the approach we adopt is to
show that the limiting function is in fact a probability density function, i.e., integrates to
1. This suffices to give convergence in distribution in (2.8). Our route to showing it goes
by way of developing a kind of generalised Dickman distribution which is of interest in
itself. This is done in Section 5 and is used to complete the proof of Theorem 2.1.

• Finally we derive expressions for the moments of the distribution in (2.8), and some
computation-friendly formulae for it, and give some concluding comments, in Section 6.
Some tables of moments and plots of distributions are in an appendix.

3. Ingredients for the proof of Theorem 2.1

To initiate the programme outlined in the previous section, write the right-hand side of
(2.5) as

n
∫ ∞

0

r(k)λαk−1

�(λ)r+k

∑
m∈Ank

P
(
Nj(λ) = mj, j ∈Nn

)
exp

(
n∑

j=1

Fj(λ)

)
dλ, (3.1)
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where, for each λ > 0, the Nj(λ) are independent Poisson(Fj(λ)) random variables, j ∈Nn. In
Ank we add over integers mj ≥ 0 such that

∑n
j=1 jmj = n and

∑n
j=1 mj = k. For brevity, write

en(λ) := exp
(∑n

j=1 Fj(λ)
)
. Then from (3.1) we have

P(Kn(α, r) = k) = n
∫ ∞

0

r(k)λαk−1

�(λ)r+k
P

(
n∑

j=1

jNj(λ) = n,

n∑
j=1

Nj(λ) = k

)
en(λ) dλ

= n
∫ ∞

0

r(k)λαk−1

�(λ)r+k
P

(
n∑

j=1

jMnkj(λ) = n

)
P

(
n∑

j=1

Nj(λ) = k

)
en(λ) dλ. (3.2)

Here, for each λ > 0, n ∈N, k ∈Nn, Mnk(λ) := (Mnkj(λ))j∈Nn is a multinomial (k, pn(λ)) vector
with

pn(λ) = (pnj(λ))j∈Nn =
(

Fj(λ)∑n
	=1 F	(λ)

)
j∈Nn

, (3.3)

which results from conditioning on the sum
∑n

j=1 Nj(λ) of Poisson random variables in (3.2).
Specifically, the distribution of Mnk(λ) is given by

P
(
Mnk(λ) = (m1, . . . , mn)

)= k!
m1! · · · mn!pn,1(λ)m1 · · · pn,n(λ)mn,

for mj ≥ 0, j ∈Nn, with
∑n

j=1 mj = k. We can rewrite (3.2) as

P(Kn(α, r) = k) = n
∫ ∞

0

r(k)λαk−1

�(λ)r+k
P

(
n∑

j=1

jMnkj(λ) = n

)
P

(
Poiss

(
n∑

j=1

Fj(λ)

)
= k

)
en(λ) dλ.

(3.4)

In this expression, by (2.3),

n∑
j=1

Fj(λ) = α

∫ λ

0

n∑
j=1

zj

j! z−α−1e−zdz = λ−α(�n(λ) − 1),

where we define

�n(λ) := 1 + λα
n∑

j=1

Fj(λ) = 1 + αλα

∫ λ

0

n∑
j=1

zj

j! z−α−1e−zdz. (3.5)

Also define the ratio

	n(λ) := �n(λ) − 1

�(λ) − 1
=

∫ λ

0

∑n
j=1 (zj/j!)z−α−1e−zdz∫ λ

0 z−α−1(1 − e−z)dz
≤ 1, λ > 0. (3.6)
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In (3.4), recall en(λ) := exp
(∑n

j=1 Fj(λ)
)
, and consider the component

r(k)λαk−1

�(λ)r+k
P

(
Poiss

(
n∑

j=1

Fj(λ)

)
= k

)
en(λ)

= �(r + k)

�(r)

λ−1

�(λ)r+k

(
λα

∑n
j=1 Fj(λ)

)k

k! exp

(
−

n∑
j=1

Fj(λ)

)
× en(λ)

= �(r + k)

�(r) k!
λ−1

�(λ)r+k
(�n(λ) − 1)k

= �(r + k)

�(r) k!
λ−1

�(λ)r

(
�(λ) − 1

�(λ)

)k (
�n(λ) − 1

�(λ) − 1

)k

= 	n(λ)kλ−1
P

(
Negbin

(
r,

1

�(λ)

)
= k

)
.

Here Negbin
(
r, 1/�(λ)

)
is a negative binomial random variable with parameter r > 0 and

success probability 1/�(λ). So (3.4) can be written as

P(Kn(α, r) = k) = n
∫ ∞

0
	n(λ)k

P

(
n∑

j=1

jMnkj(λ) = n

)
P

(
Negbin

(
r,

1

�(λ)

)
= k

)
dλ

λ
.

(3.7)

The multinomial vector Mnk(λ) = (Mnkj(λ))j∈Nn has moment generating function

E

(
n∏

j=1

exp
(
θjMnkj(λ)

))=
(

n∑
j=1

eθj pnj(λ)

)k

,

where θj > 0, j ∈Nn. Set θj = θ × j, θ > 0, in this to get

E exp

(
θ

n∑
j=1

jMnkj(λ)
))=

(
n∑

j=1

eθ×jpnj(λ)

)k

=: E exp

(
θ

k∑
i=1

Xin(λ)

)
,

where (Xin(λ))1≤i≤k are i.i.d. with

P(X1n(λ) = j) = pnj(λ), j ∈Nn. (3.8)

So we see that

P

(
n∑

j=1

jMnkj(λ) = n

)
= P

(
k∑

i=1

Xin(λ) = n

)
. (3.9)

We need information on the limiting behaviour of the Xin(λ).
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Proposition 3.1. For each λ > 0 and h > 0, we have the following:

(a)

lim
n→∞ nα

P(X1n(λn) ≥ hn) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, λ < h < 1 or h > 1,

h−α − λ−α

�(1 − α)
, h < λ < 1,

h−α − 1

�(1 − α)
, h < 1 < λ;

(3.10)

(b)

lim
n→∞ nα−1

E
(
X1n(λn)1{X1n(λn)<hn}

)= α

�(2 − α)

(
λ1−α ∧ (h1−α ∧ 1)

)
; (3.11)

(c)

lim
n→∞ nα−2

E
(
(X2

1n(λn)1{X1n(λn)<hn}
)= α

(2 − α)�(1 − α)

(
λ1−α ∧ (h1−α ∧ 1)

)
. (3.12)

Proof of Proposition 3.1: Throughout, keep λ > 0 and h > 0. For Part (a) we can compute,
according to (3.8), for 0 < h ≤ 1,

nα
P(X1n(λn) ≥ hn) = nα

n∑
j=�hn�

pnj(λn) = nα
∑n

j=�hn� Fj(λn)∑n
j=1 Fj(λn)

(3.13)

(the left-hand side of (3.13) is 0 for h > 1). In the denominator of (3.13), by (2.3),

n∑
j=1

Fj(λn) = α

∫ λn

0

n∑
j=1

zj

j! z−α−1e−zdz ↑ α

∫ ∞

0
z−α−1(1 − e−z)dz = �(1 − α), (3.14)

as n → ∞. For the numerator of (3.13), consider

nα
n∑

j=�hn�
Fj(λn) = αnα

∫ λn

0

n∑
j=�hn�

zj

j! z−α−1e−zdz

= α

∫ λ

0

n∑
j=�hn�

(nz)j

j! e−nzz−α−1dz

= α

∫ λ

0
P
(�hn� ≤ Poiss(nz) ≤ n

)
z−α−1dz. (3.15)

When 0 < δ < h, by Chebyshev’s inequality,

α

∫ δ

0
P(Poiss(nz) > hn)z−α−1dz

= α

∫ δ

0
P(Poiss(nz) − nz > n(h − z))z−α−1dz

≤ α

∫ δ

0

(nz)z−α−1dz

(n(h − z))2
≤ δ1−α

n(h − δ)2
→ 0, as n → ∞.
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For each z > 0, Poiss(nz)/nz
P→1 as n → ∞ by the weak law of large numbers. Thus by

dominated convergence

α

∫ λ

δ

P

(
�hn�
nz

≤ Poiss(nz)

nz
≤ n

nz

)
z−α−1dz → α

∫ λ

δ

1{h<z<1}z−α−1dz.

Letting δ ↓ 0 we obtain the right-hand side of (3.10).
For Part (b) we calculate, from (3.3) and (3.8), that

nα−1
E(X1n(λn)1{X1n(λn)<hn}) = nα−1

�hn�∑
j=1

jpnj(λn) = nα−1 ∑�hn�
j=1 jFj(λn)∑n

j=1 Fj(λn)
. (3.16)

The denominator in (3.16) tends to �(1 − α), by (3.14). In the numerator, by (2.3),

nα−1
�hn�∑
j=1

jFj(λn) = αnα−1
∫ λn

0

�hn�∑
j=1

zj−1

( j − 1)! z−αe−zdz

= α

∫ λ

0

�hn�∑
j=1

(nz)j−1

( j − 1)! z−αe−nzdz

= α

∫ λ

0
P(Poiss(nz) ≤ �hn� − 1)z−αdz

= α

∫ λ

0
P

(
Poiss(nz)

nz
≤ �hn� − 1

nz

)
z−αdz. (3.17)

In this, consider values of h ≤ 1 and h > 1 separately. For h > 1 the sum on the left-hand side
of (3.17) should be replaced by the sum over 1 ≤ j ≤ n and h in (3.17) by 1. Then, again using

the fact that Poiss(nz)/nz
P→1 for each z > 0, along with dominated convergence, we get

lim
n→∞ nα−1

�n�∑
j=1

jFj(λn) = α

∫ λ

0
1{0<z<1}z−αdz = α

∫ λ∧1

0
z−αdz. (3.18)

For 0 ≤ h ≤ 1, similarly,

lim
n→∞ nα−1

�hn�∑
j=1

jFj(λn) = α

∫ λ

0
1{0<z<h}z−αdz = α

∫ λ∧h

0
z−αdz. (3.19)

Dividing by �(1 − α) (from (3.14)) gives the right-hand side of (3.11).
For Part (c), keep 0 < h < 1 at first. Then by (3.3) and (3.8),

nα−2
E
(
X2

1n(λn)1{X1n(λn)<hn}
) = nα−2

�hn�∑
j=1

j2pnj(λn) (3.20)

= nα−2 ∑�hn�
j=1 j2Fj(λn)∑n

j=1 Fj(λn)
∼ nα−2 ∑�hn�

j=1 j2Fj(λn)

�(1 − α)
, as n → ∞
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(using (3.14)). In the numerator of the last expression,

nα−2
�hn�∑
j=1

j2Fj(λn)= αnα−2
∫ λn

0

�hn�∑
j=1

j2zj

j! z−α−1e−zdz

= αn−2
∫ λ

0

�hn�∑
j=1

j2(nz)j

j! z−α−1e−nzdz

= αn−2
∫ λ

0

�hn�∑
j=1

j(nz)j

( j − 1)! z−α−1e−nzdz (keep n > 2)

= αn−2
∫ λ

0

( �hn�∑
j=2

j(nz)j

( j − 1)! + nz

)
z−α−1e−nzdz

= αn−2
∫ λ

0

( �hn�∑
j=2

(nz)j−2

( j − 2)! (nz)2 +
�hn�∑
j=2

(nz)j

( j − 1)! + nz

)
z−α−1e−nzdz.

Here again we see Poisson distributions and can write the last expression as

α

∫ λ

0
P(Poiss(nz) ≤ �hn� − 2)z1−αdz

+αn−2
∫ λ

0

�hn�∑
j=1

(nz)j−1

( j − 1)! (nz)z−α−1e−nzdz

= α

∫ λ

0
1{z<h}z1−αdz + o(1) + αn−1

∫ λ

0
P(Poiss(nz) ≤ �hn� − 1)z−αdz.

As n → ∞, this tends to

α

∫ λ

0
1{z<h}z1−αdz = α

2 − α
(λ2−α ∧ h2−α). (3.21)

Dividing this by �(1 − α) (from (3.14)) gives the right-hand side of (3.12) when 0 < h < 1.
For h > 1, similar analysis gives a limit of α/(2 − α)(λ2−α ∧ 1). Combining these gives the
right-hand side of (3.12) and completes the proof of Proposition 3.1. �

We next list some properties of the subordinator (Yt(λ))t>0 whose Laplace transform is in
(2.6) with the canonical measure in (2.7). From that measure we can calculate, for z > 0,

lim inf
z↓0

1

z2−α

∫ z

−z
y2�λ(dy) = α

1 − α
lim inf

z↓0

1

z2−α

∫ 1∨z

0
y1−αdy

= α

(1 − α)(2 − α)
> 0, (3.22)

so by a result of Orey (see [26, p. 190]), each Yt(λ) has a C∞ density all of whose derivatives
tend to 0 at ∞. Write

EeiθYt(λ) = exp

(
t
∫ 1

0

(
eiθy − 1

)kλ(y)

y
dy

)
, θ ∈R, (3.23)
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where

kλ(y) := αy−α

�(1 − α)
(1{0<y<λ≤1} + 1{0<y<1<λ}) (3.24)

is left-continuous and decreasing on (0, ∞). So by [26, Theorem 28.4, p. 191], (Yt(λ))t>0 is a
self-decomposable Lévy process for each λ > 0, and by a similar argument as in [26, Lemma
28.5, p. 191], we can deduce that∣∣EeiθYt(λ)

∣∣ = o
(|θ |−β

)
, uniformly in λ > 0, as |θ | → ∞, for all β > 0. (3.25)

Now proceeding with the main proof, from (3.7) and (3.9) we get

P(Kn(α, r) = k) = n
∫ ∞

0
	n(λ)k

P

(
k∑

i=1

Xin(λ) = n

)
P

(
Negbin

(
r,

1

�(λ)

)
= k

)
dλ

λ
.

(3.26)

Change variable from λ to λn to write this as

P(Kn = k) = n
∫ ∞

0
	n(λn)k

P

(
k∑

i=1

Xin(λn) = n

)
P

(
Negbin

(
r,

1

�(λn)

)
= k

)
dλ

λ

=: fn(k). (3.27)

Then for 0 < a < b,

P(anα < Kn(α, r) ≤ bnα) =
∑

anα<x≤bnα

P(Kn = �x�)

=
∫ �bnα�

�anα�
fn(�x�)dx = nα

∫ bn

an

fn(�xnα�)dx,

where an := �anα�/nα and bn := �bnα�/nα . Thus we can write

P(anα < Kn(α, r) ≤ bnα) = nα+1
∫ bn

an

dx
∫

λ>0
(	n(λn))�xnα�

× P

( �xnα�∑
i=1

Xin(λn) = n

)
P

(
Negbin

(
r,

1

�(λn)

)
= �xnα�

)
dλ

λ
.

(3.28)

We have an → a, bn → b, and we need to find the limits of the 	n term and the probabilities
in (3.28).

Proposition 3.2. Holding x > 0 and λ > 0 fixed, we have

(a)

lim
n→∞ nP

( �xnα�∑
i=1

Xin(λn) = n

)
= fYx(λ)(1); (3.29)

(b)

lim
n→∞ nα

P

(
Negbin

(
r,

1

�(λn)

)
= �xnα�

)
= xr−1λ−αr

�(r)�r(1 − α)
exp

(
− xλ−α

�(1 − α)

)
;

(3.30)
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(c)

lim
n→∞ (	n(λn))�xnα� = exp

(
− x(1 − λ−α)1{λ>1}

�(1 − α)

)
. (3.31)

Consequently,

(d)

lim
n→∞ nα(	n(λn))�xnα�

P

(
Negbin

(
r,

1

�(λn)

)
= �xnα�

)

= xr−1λ−αr

�(r)�r(1 − α)
exp

(
− x(λ−α ∨ 1)

�(1 − α)

)
.

(3.32)

Proof of Proposition 3.2: We keep x > 0 and λ > 0 fixed throughout this proof.
(a) We begin by finding the limiting distribution of the sum

n−1
�xnα�∑
i=1

Xin(λn)

as n → ∞, using a classical limit theorem for sums of a triangular array. Thus, we verify
Conditions (i), (ii), and (iii) of [17, Corollary 15.16, p. 297]. It suffices to set x = 1 for this.
Those conditions can be read from (3.10)–(3.12) of Proposition 3.1 as follows.

First, recalling the definition of �λ in (2.7), we note that (3.10) implies

lim
n→∞ nα

P
(
n−1X1n(λn) ∈ dy

)= �λ(dy), y > 0, (3.33)

which is Condition (i) of [17, Corollary 15.16].
For Condition (ii), we can deduce from (3.11) and using the definition of �λ in (2.7) that

lim
n→∞ nα

E

(
X1n(λn)

n
1{X1n(λn)<hn}

)
=

∫
0<y≤h

y�λ(dy) = b −
∫

h<y≤1
y�λ(dy), (3.34)

where b = ∫
0<y≤1 y�λ(dy). The right-hand side of (3.34) is in the form required by Condition

(ii) of [17].
For Condition (iii) of [17, Corollary 15.16] we require

lim
n→∞ nα

E

(
X2

1n(λn)

n2
1{X1n(λn)<hn}

)
= a +

∫
0<y≤h

y2�λ(dy) (3.35)

for a finite constant a and all h > 0. That this holds, in fact with a = 0, can be deduced
from (3.12).

With these three conditions satisfied, [17, Corollary 15.16] then gives that the normed sum

n−1
�nα�∑
i=1

Xin(λn)
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converges in distribution to the infinitely divisible distribution id(a, b, �λ), in Kallenberg’s
notation. This distribution has characteristic exponent (see [17, Corollary 15.8, p. 291])
given by

iθb − 1
2θ2a +

∫
R\{0}

(
eiθy − 1 − iθy1{0<y<1

)
�λ(dy)

= iθ

(
b −

∫
0<y<1

y�λ(dy)

)
+

∫
R\{0}

(
eiθy − 1

)
�λ(dy) (3.36)

(since a = 0). Here b = ∫
0<y<1 y�λ(dy), so the first term on the right-hand side of (3.36)

equals 0. The limit distribution thus has characteristic exponent
∫
R\{0} (eiθy − 1)�λ(dy), and

hence is the distribution of Y1(λ) having Laplace transform (2.6) for t = 1.
Continuing with the proof of Part (a), we have that the characteristic function of the normed

sum n−1 ∑�nα�
i=1 Xin(λn) also converges, so we can write

lim
n→∞ φ

�nα�
λn (θ/n) = lim

n→∞ E exp

(
iθ

n

�nα�∑
i=1

Xin(λn)

)
=EeiθY1(λ). (3.37)

For (3.29) we need a local version of this convergence, given as Lemma 3.1.

Lemma 3.1. For each x > 0 and λ > 0, (3.29) holds.

We defer the proof of Lemma 3.1 to Appendix A. Assuming it, we have completed the proof
of Part (a) of Proposition 3.2.

(b) For (3.30) write

P

(
Negbin

(
r,

1

�(λn)

)
= �xnα�

)
= �(r + �xnα�)

�(r)�xnα�!
1

�(λn)r

(
1 − 1

�(λn)

)�xnα�
(3.38)

and use Stirling’s approximation to get

�(r + �xnα�)

�xnα�! ∼(xnα)r−1 as n → ∞.

Also, recalling (2.2),

n−α�(λn) = n−α

(
1 + α(λn)α

∫ λn

0
z−α−1(1 − e−z)dz

)

→αλα

∫ ∞

0
z−α−1(1 − e−z)dz = λα�(1 − α), as n → ∞. (3.39)

So from (3.38)

P

(
Negbin

(
r,

1

�(λn)

)
= �xnα�

)
∼ (xnα)r−1

�(r)

1

(nαλα�(1 − α))r

(
1 − 1

�(λn)

)�xnα�

∼ n−αxr−1λ−αr

�(r)�r(1 − α)
exp

(
− xλ−α

�(1 − α)

)
,
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Here we used (3.39) and

lim
n→∞

(
1 − 1

�(λn)

)�xnα�
= lim

n→∞

(
1 − x

(xnα)n−α�(λn)

)�xnα�

= exp

(
− xλ−α

�(1 − α)

)
.

Thus we have proved (3.30).
(c) From (3.6) we can write

	n(λn) =
∫ λn

0

∑n
j=1 (zj/j!)z−α−1e−zdz∫ λn

0 z−α−1(1 − e−z)dz

= 1 −
∫ λn

0

∑∞
j=n+1 (zj/j!)z−α−1e−zdz∫ λn

0 z−α−1(1 − e−z)dz
. (3.40)

The numerator here is

n−α

∫ λ

0

∞∑
j=n+1

(nz)j

j! e−nzz−α−1dz = n−α

∫ λ

0
P(Poiss(nz) > n)z−α−1dz. (3.41)

When 0 < λ < 1, the right-hand side is, by Chebyshev’s inequality,

n−α

∫ λ

0
P(Poiss(nz) − nz > n(1 − z))z−α−1dz

≤ n−α

∫ 1

0

(nz)z−α−1

(n(1 − z))2
dz = o(n−α), as n → ∞,

so the right-hand side of (3.41) is asymptotic to

n−α1{λ>1}
∫ λ

1
P

(
Poiss(nz)

nz
>

1

z

)
z−α−1dz ∼ n−α1{λ>1}

1 − λ−α

α
.

Since the denominator in (3.40) tends to �(1 − α)/α, we have

(	n(λn))�xnα� =
(

1 − x(1 − λ−α)1{λ>1}
xnα�(1 − α)(1 + o(1))

)�xnα�
,

and the right-hand side here tends to the right-hand side of (3.31).
Finally, to prove (3.32) simply multiply (3.30) and (3.31) together. �

Now to continue with the proof of Theorem 2.1, return to (3.28) and, formally, take the
limits in (3.29) and (3.32) through the integral in (3.28) to get the expression on the right-hand
side of (2.8).

Justifying this interchange directly by dominated convergence seems difficult, so we take
an indirect approach. The idea is to show that the right-hand side of (2.8) is in fact a proba-
bility density function, i.e., integrates to 1. This will complete the proof of the theorem by the
following argument.
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Take a = 0 and b = y > 0 in (3.27), and write, for y > 0,

P

(
Kn(α, r)

nα
≤ y

)
=

∫ y

0
P

(
Kn(α, r)

nα
∈ dx

)
=

∫ y

x=0

∫
λ>0

fn(x, λ)dx,

where fn(x, λ) is the integrand in (2.8). Then by Fatou’s lemma

lim inf
n→∞ P

(
Kn(α, r)

nα
≤ y

)
= lim inf

n→∞

∫ y

x=0

∫
λ>0

fn(x, λ)dx dλ

≥
∫ y

x=0

∫
λ>0

lim inf
n→∞ fn(x, λ)dx dλ =

∫ y

x=0

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ,

where the limit limn→∞ fn(x, λ) exists as the product of the limits (3.29) and (3.32) in
Proposition 3.2. Similarly

lim inf
n→∞ P

(
Kn(α, r)

nα
> y

)
= lim inf

n→∞

∫ ∞

x=y

∫
λ>0

fn(x, λ)dx dλ

≥
∫ ∞

x=y

∫
λ>0

lim inf
n→∞ fn(x, λ)dx dλ =

∫ ∞

x=y

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ.

Suppose we know ∫ ∞

x=0

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ = 1. (3.42)

Then

lim sup
n→∞

P

(
Kn(α, r)

nα
≤ y

)
= 1 − lim inf

n→∞ P

(
Kn(α, r)

nα
> y

)

= 1 − lim inf
n→∞

∫ ∞

x=y

∫
λ>0

fn(x, λ)dx dλ

≤ 1 −
∫ ∞

x=y

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ

=
∫ y

x=0

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ,

and from these we deduce

lim
n→∞ P

(
Kn(α, r)

nα
≤ y

)
=

∫ y

0

∫
λ>0

lim
n→∞ fn(x, λ)dx dλ.

Since limn→∞ fn(x, λ) is the integrand in (2.8), this completes the proof of (2.8) subject to
proving (3.42). This is done in the next two sections.

4. The negative binomial point process and its sum

We need some concepts concerning a negative binomial point process which are set out in
[14]. We refer to that paper for further background and details. The dependence of the various
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quantities on the parameters α and r is not always made explicit in that paper. Here we need to
make it explicit for clarity.

Let B(r) be a negative binomial point process with measure αx−α−1dx1{0<x≤1}, for r > 0,
α ∈ (0, 1), in the sense of Gregoire [9], and define (α,r)T to be the sum of the points in B

(r). The
variable (α,r)T has a density

gα,r(t) = P
((α,r)T ∈ dt

)
/dt, t > 0, (4.1)

and a Laplace transform

E
(
e−τ×(α,r)T)=

∫ ∞

0
e−τ tgα,r(t)dt =

(
1 + α

∫ 1

0
(1 − e−τx)x−α−1dx

)−r

, (4.2)

for τ > 0, r ∈N. This implies the convolution formula

(α,r)T ∗ (α,s)T
D= (α,r+s)T, r, s, > 0 (4.3)

(independent copies on the left-hand side). Let Gα,r(t) = ∫ t
0 gα,r(y)dy, t ≥ 0, be the cumula-

tive distribution function of (α,r)T . The next lemma connects these ideas with the result of
Theorem 2.1.

Lemma 4.1. The integral on the right-hand side of (2.8), taken with y = ∞, equals

1 + 1

αr
gα,r(1) − Gα,r(1). (4.4)

Proof of Lemma 4.1: Split the λ-integral on the right-hand side of (2.8) into two compo-
nents: one component over λ ∈ (0, 1] and the other over λ > 1. For the integral over λ ∈ (1, ∞)
we compute (with y = ∞ in (2.8))

1

�(r)�r(1 − α)

∫ ∞

x=0

∫ ∞

λ=1
xr−1fYx(λ)(1) exp

(
− x

�(1 − α)

)
λ−αr−1dλ dx

= 1

αr�(r)�r(1 − α)

∫ ∞

x=0
xr−1fYx(λ)(1) exp

(
− x

�(1 − α)

)
dx. (4.5)

By (2.6) and (2.7), each Yx(λ) has characteristic function

EeiθYx(λ) = exp

(
x

�(1 − α)

∫ λ∧1

0

(
eiθy − 1

)
αy−α−1dy)

)
, θ ∈R. (4.6)

Taking λ > 1 in (4.6), the right-hand side of (4.5) is, by Fourier inversion,

1

αr�(r)�r(1 − α)

∫ ∞

x=0
xr−1 exp

(
− x

�(1 − α)

)

× 1

2π

∫ ∞

θ=−∞
e−iθ exp

(
x

�(1 − α)

∫ 1

0

(
eiθy − 1

)
αy−α−1dy

)
dx dθ

= 1

2παr

∫ ∞

θ=−∞
e−iθ dθ(

1 − ∫ 1
0

(
eiθy − 1

)
αy−α−1dy

)r

= 1

αr
gα,r(1). (4.7)
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The last line follows from setting τ = −iθ in (4.2) and observing that we have the Fourier
inverse of gα,r at 1. For the integral over λ ∈ (0, 1] we compute

1

2π�(r)�r(1 − α)

∫ ∞

x=0

∫ 1

λ=0

∫ ∞

θ=−∞
e−iθ xr−1 exp

(
− xλ−α

�(1 − α)

)

× exp

(
x

�(1 − α)

∫ λ

0

(
eiθy − 1

)
αy−α−1dy

)
λ−αr−1dλ dxdθ

=
∫ 1

λ=0

1

2π

∫ ∞

θ=−∞
e−iθλ−αr−1dλ dθ(

λ−α − λ−α
∫ 1

0

(
eiθyλ − 1

)
αy−α−1dy

)r

=
∫ 1

λ=0

1

2π

∫ ∞

θ=−∞
e−iθ/λλ−2dλ dθ(

1 − ∫ 1
0

(
eiθy − 1

)
αy−α−1dy

)r

=
∫ 1

λ=0
λ−2gα,r(1/λ)dλ

=
∫ ∞

λ=1
gα,r(λ)dλ = 1 −

∫ 1

λ=0
gα,r(λ)dλ = 1 − Gα,r(1). (4.8)

Adding (4.7) and (4.8) gives (4.4). �

Thus to achieve our aim of showing that the right-hand side of (2.8) defines a proper dis-
tribution, we have to show that the expression in (4.4) equals 1. We do this by developing a
connection with the theory of Dickman functions.

5. Generalised Dickman functions

The generalised Dickman function, when normalised, occurs naturally as the density of the
infinitely divisible random variable Ya having Laplace transform

E(e−τYa ) = exp

(
− a

∫ 1

0

(
1 − e−τy)dy/y

)
, τ > 0, a > 0. (5.1)

(There should be no confusion with the Yt(λ) defined in (2.6).) The descriptor ‘generalised’ was
added by [22]; it signifies the inclusion of the parameter a > 0 in (5.1), where a = 1 defines the
Dickman distribution as usually understood. The process (Yt)t>0 is described as the Dickman
subordinator in [3].

Properties of the Dickman function (also known as the Dickman–de Bruijn function; see
[20] for a review) and of its associated distribution have been teased out over the years since
its original formulation in [5] in a number-theoretic context. The papers [21] and [22] provide
convenient summaries, for our purposes, of these properties, and of the generalised version. In
particular, they give the formula for the density fYa (y) of Ya as fYa(y) = e−aγ ρa(y)/�(a), y > 0,
where γ = 0.577... is Euler’s constant,

ρa(y) = ya−1 for 0 < y ≤ 1, (5.2)
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and ρa(y) satisfies a certain differential-delay equation for y > 1. There is also the
representation

YaD = U1/a(Ya + 1) (5.3)

(see [22, Proposition 5.1, p. 14]) where the Uniform [0, 1] random variable U and the Ya on
the right-hand side are independent. Notably, with FYa(y) := P(Ya ≤ y), we see from (5.2) that

1

a
fYa(1) = FYa (1), (5.4)

which can be compared with (4.4).
Suppose we were to let r → ∞ and α = αr ↓ 0 in such a way that αrr → a ∈ (0, ∞), and it

were the case that

lim
r→∞

1

αrr
gαr,r(x) = 1

a
fYa (x) for x > 0. (5.5)

That this is plausible is indicated by inspection of (4.2) and (5.1). Then from (5.4) and (5.5)
we would have

lim
r→∞

1

αrr
gαr,r(1) = 1

a
fYa(1) = FYa (1) = lim

r→∞ Gαr,r(1), (5.6)

suggesting perhaps that the identity

1

αr
gα,r(1) = Gα,r(1) (5.7)

is true for each α ∈ (0, 1) and r > 0, not just in the limit. This would prove that the expression
in (4.4) equals 1.

These heuristics could possibly be made to give a rigorous proof of (5.7), but we do not go
down that route; rather, we deal directly with gα,r(x) and show that (5.7) holds by generalising
the Dickman relationship, in the next subsection.

5.1. The function gα,r as an (α,r)-generalised Dickman distribution

We proceed by giving an analogue of (5.3) for the negative binomial sums (α,r)T , then show
that this implies (5.7).

Proposition 5.1.

(i) For each α ∈ (0, 1) and r > 0 we have

(α,r)T
D= U

1
αr
((α,r+1)T + 1

)
, (5.8)

where the Uniform [0, 1] random variable U and the (α,r+1)T on the right-hand side are
independent.

(ii) Consequently, (5.7) is true for each α ∈ (0, 1) and r > 0.

Proof of Proposition 5.1: First we prove Part (i). Throughout this proof we write a = αr
for the combination αr, which will occur frequently. With this in mind, we begin by noting that

d

d u

(
1 + α

∫ 1

0

(
1 − e−τu1/ay)y−α−1dy

)−r

= −τu1/a−1
∫ 1

0
e−τu1/ayy−αdy × 1(

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy

)r+1
,
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for 0 < u < 1. So, integrating by parts,∫ 1

u=0

τu1/a

u

∫ 1

y=0
e−τu1/ayy−αdy × u du(

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy

)r+1

= − 1(
1 + α

∫ 1
0

(
1 − e−τy

)
y−α−1dy

)r +
∫ 1

u=0

du(
1 + α

∫ 1
0

(
1 − e−τu1/ay

)
y−α−1dy

)r .

(5.9)

The first term on the right-hand side of (5.9) is −E(e−τ×(α,r)T ) (recall (4.2)). Rearranging (5.9)
gives

E(e−τ×(α,r)T ) =
∫ 1

0

1(
1 + α

∫ 1
0

(
1 − e−τu1/ay

)
y−α−1dy

)r

×
(

1 − τu1/a

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy

∫ 1

0
e−τu1/ayy−αdy

)
du.

(5.10)

The second term on the right-hand side, in parentheses, equals

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy − τu1/a

∫ 1
0 e−τu1/ayy−αdy

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy

,

and after an integration by parts in the numerator this equals

e−τu1/a

1 + α
∫ 1

0

(
1 − e−τu1/ay

)
y−α−1dy

= e−τu1/a ×E
(
e−τu1/a×(α,1)T).

Substituting back in (5.10) gives

E
(
e−τ×(α,r)T)=

∫ 1

0
e−τu1/a ×E

(
e−τu1/a×(α,1)T)×E

(
e−τu1/a×(α,r)T)du

=
∫ 1

0
E
(
e−τu1/a((α,r+1)T+1))du, (5.11)

where the last equality follows from (4.3). So, recalling that a ≡ αr, we arrive at (5.8).
We now prove Part (ii). From (5.8) we can write, for t > 0,

Gα,r(t) = P
((α,r)

T ≤ t
)= P

(
U

1
αr
((α,r+1)

T + 1
)≤ t

)
=

∫ 1

0
P
((α,r+1)

T ≤ tu−1/a − 1
)
du

=
∫ 1

0
Gα,r+1

(
tu−1/a − 1

)
du

= ata
∫ ∞

t−1
Gα,r+1(v)(1 + v)−1−adv. (5.12)
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Now since Gα,r+1(v) = 0 for v < 0, we have for 0 < t ≤ 1∫ ∞

t−1
Gα,r+1(v)(1 + v)−1−adv =

∫ ∞

0
Gα,r+1(v)(1 + v)−1−adv =: cα,r+1.

It follows that Gα,r(t) = atacα,r+1 for 0 < t ≤ 1; hence

gα,r(t) = G′
α,r(t) = a2cα,r+1ta−1 = at−1Gα(t), (5.13)

for 0 < t ≤ 1. So, recalling that a ≡ αr, we have proved (5.7). �
With (5.7), we have completed the proof of Theorem 2.1. �

Remark 5.1. In (5.8), letting r → ∞ and α ↓ 0 so that rα → a ∈ (0, ∞), we recover (5.3),
and taking the same limit in (4.2) we recover (5.1). In this sense the negative binomial sums
(α,r)T can be thought of as a two-parameter generalisation of the Dickman random variable
Ya. (This is distinct from a two-parameter generalisation of the Dickman function due to
[11], and from the two-parameter generalisation of the Poisson–Dirichlet distribution in [24].
Another generalisation having application in polymer modelling occurs in [3] as a multivariate
Dickman–Gaussian combination.)

Differentiating (5.12) we obtain, for t > 1, the density in the form

tgα,r(t) = αr
(
Gα,r(t) − Gα,r+1(t − 1)

)
, (5.14)

and differentiating this further gives

tg′
α,r(t) + (1 − αr)gα,r+1(t) + αrgα,r+1(t − 1) = 0, t > 1. (5.15)

This can be compared with the corresponding differential-delay equation for the Dickman
function (see [22, Equation (5.10)]). See Section 6 of [22] for further interesting discussion.

6. Properties of the limiting distribution

Let K = K(α, r) be the limiting random variable of n−αKn(α, r) as n → ∞, whose dis-
tribution is given by the right-hand side of (2.8), and let fYt(λ)(y), y > 0, be the density of
the subordinator (Yt(λ))t>0 whose Laplace transform is in (2.6). In this section we derive
some properties of this distribution, first getting it in a form more amenable to numerical
computation, then, in Subsection 6.2, deriving formulae for the moments of the distribution.

6.1. The limiting distribution as a gamma mixture and subordinated truncated
stable process

As before, consider the λ-integral on the right-hand side of (2.8) in two components: one
over λ ∈ (0, 1] and the other over λ > 1. From (2.6), when 0 < λ ≤ 1, x > 0, θ ∈R,

E
(
eiθYx(λ))= exp

(
x
∫ λ

0

(
eiθy − 1

)
αy−α−1dy/�(1 − α)

)

= exp

(
xλ−α

∫ 1

0

(
eiθλy − 1

)
αy−α−1dy/�(1 − α)

)

=E
(
eiθλYxλ−α (1)), (6.1)
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so by the inversion formula for absolutely continuous distributions [26, p. 9],

fYx(λ)(1) = 1

2π

∫ ∞

−∞
e−iθ

E
(
eiθYx(λ))dθ

= 1

2π

∫ ∞

−∞
e−iθ

E
(
eiθλYxλ−α (1))dθ

= 1

2πλ

∫ ∞

−∞
e−iθ/λ

E
(
eiθYxλ−α (1))dθ

= λ−1fYxλ−α (1)(λ
−1). (6.2)

Substituting in (2.8) and changing variable from x/�(1 − α) to x, we obtain

1

�(r)

∫ y/�(1−α)

x=0
xr−1

∫ 1

λ=0
fỸxλ−α

(λ−1)e−xλ−α

λ−αr−2dλ dx, (6.3)

where now
(
Ỹt
)

t>0 = (
Yt�(1−α)(1)

)
t>0 is a subordinator with Laplace transform

E
(
e−τ Ỹt

)= exp

(
− t

∫ 1

0

(
1 − e−τy)αy−α−1dy

)
, τ > 0, t ≥ 0, (6.4)

not depending on λ. To avoid carrying the factor �(1 − α) along, we replace y/�(1 − α) by y in
(6.3), so that we are now dealing with the cumulative distribution function of K(α, r)�(1 − α).
After a change of variable from xλ−α to x, the expression in (6.3), with this replacement,
equals

1

�(r)

∫ 1

λ=0

∫ yλ−α

x=0
xr−1fỸx

(λ−1)e−xλ−2dλ dx

= 1

�(r)

[∫ y

x=0

∫ 1

λ=0
+

∫ ∞

x=y

∫ (y/x)1/α

λ=0

]
xr−1fỸx

(λ−1)e−xλ−2dλ dx, (6.5)

after an interchange of integration order. Let �r be a Gamma(r) random variable with density

f�r (x) = xr−1e−x

�(r)
, x > 0.

Changing variable from λ−1 to λ, we can write the right-hand side of (6.5) as[∫ y

x=0

∫ ∞

λ=1
+

∫ ∞

x=y

∫ ∞

λ=(x/y)1/α

]
fỸx

(λ)f�r (x)dλ dx

=
∫ y

x=0
(1 − FỸx

(1))f�r (x)dx +
∫ ∞

x=y
(1 − FỸx

((x/y)1/α)f�r (x)dx, (6.6)

where FỸx
is the cumulative distribution function of Ỹx. This is for the component over

0 < λ ≤ 1.
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For the integral over λ ∈ (1, ∞) in (2.8) (with y replaced by y/�(1 − α)), we compute

1

�(r)

∫ y

x=0

∫ ∞

λ=1
xr−1fỸx

(1)e−xλ−αr−1dλ dx

= 1

αr�(r)

∫ y

x=0
xr−1fỸx

(1)e−xdx = 1

αr

∫ y

x=0
fỸx

(1)f�r (x)dx. (6.7)

Adding (6.6) and (6.7) gives an expression for the cumulative distribution function of
K(α, r)�(1 − α) as a kind of gamma mixture:

P(K(α, r)�(1 − α) ≤ y) =
∫ y

x=0

(
1 − FỸx

(1) + 1

αr
fỸx

(1)

)
f�r (x)dx

+
∫ ∞

x=y

(
1 − FỸx

(x

y

)1/α)
f�r (x)dx. (6.8)

This can also be written in terms of the subordinated variable Ỹ�r , where now (̃Yt)t>0 and
�r are taken to be independent. The standardised process (̃Yt)t>0 has the Laplace transform in
(6.4). which is that of a truncated stable process. Notice that the effects of the parameters α and
r are well separated in (6.8), which is helpful for numerical computation purposes. Equation
(6.8) and the subordinated representation Ỹ�r are also useful for simulating versions of the
distribution.

Some further reductions are helpful for numerical computations. The Gil-Pelaez [8] inver-
sion formula gives for the cumulative distribution function of the subordinator (̃Yt) the
expression

FỸt
(x) = 1

2
− 1

π

∫ ∞

0
I
[
e−iθx

E

(
e−iθ Ỹt

)]dθ

θ

= 1

2
+ 1

π

∫ ∞

0
sin

(
θx − tθα

∫ θ

0
αz−α−1 sin zdz

)
e−tθα

∫ θ
0 (1−cos z)αz−α−1dz dθ

θ
. (6.9)

6.2. Moments of the limiting distribution

An advantage of the limiting random variable K(α, r) in (6.8) is that it has finite moments
of all orders, whereas the Mittag-Leffler distribution of order α (the analogous limiting
distribution for PDα) has finite moments only of order less than α.

Proposition 6.1.

(a) For q > 0

E(Kq(α, r)) = �(r + q)�q(1 − α)

�(r)
E
(((α,r+q)

T
)−αq)

, (6.10)

where
(b)

E
(((α,r+q)

T
)−αq)= 1

�(αq)

∫ ∞

0

λαq−1dλ(
1 + α

∫ 1
0 (1 − e−λx)x−α−1dx

)r+q . (6.11)
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Proof of Proposition 6.1: (a) This is a modification of the proof of Lemma 4.1. From (2.8)
we can compute

E(Kq(α, r)) = 1

�(r)�r(1 − α)
×

×
∫ ∞

x=0

∫
λ>0

xr+q−1fYx(λ)(1) exp

(
−x(λ−α ∨ 1)

�(1 − α)

)
λ−αr−1dλ dx. (6.12)

Then, following a similar path as in the proof of Lemma 4.1, we split the λ-integral in (6.12)
into two components: one over λ ∈ (0, 1] and the other over λ > 1. For the component over
λ > 1, the λ-integral gives 1/αr, as before. The x-integral for this component can again be
computed in terms of gamma functions. The result is

�(r + q)�q(1 − α)

αr�(r)
× gα,r+q(1) = �(r + q)�q(1 − α)

�(r)
× αr × cα,r+q+1, (6.13)

where (5.13) was used in the last equality.
For the component over λ ∈ (0, 1], using similar computations as in the proof of Lemma

4.1, we arrive at the expression

�(r + q)�q(1 − α)

�(r)

∫ ∞

1
λ−αqgα,r+q(λ)dλ.

We can write this as

�(r + q)�q(1 − α)

�(r)
E
((α,r+q)

T
)−αq − �(r + q)�q(1 − α)

�(r)

∫ 1

0
λ−αqgα,r+q(λ)dλ, (6.14)

in which the second component is, by (5.13),

�(r + q)�q(1 − α)

�(r)

∫ 1

0
λ−αq × (αr)2 × cα,r+q+1 × λα(r+q)−1dλ

= �(r + q)�q(1 − α)

�(r)
× (αr)2 × cα,r+q+1 × 1

αr
.

This equals the right-hand side of (6.13), so we have cancellation in (6.14), thereby proving
(6.10).

For (6.11), we use (4.2) and the identity

E
(((α,r)T

)−s)= 1

�(s)

∫ ∞

τ=0
τ s−1

∫ ∞

x=0
e−τxgα,r(x)dx dτ .

This completes the proof of Proposition 6.1. �

Tables 1 and 2 in Appendix B show the mean and variance of K(α, r) calculated from (6.10)
for some values of α, r using the R package [25]. Some graphs of the density corresponding to
(6.9) are also in Appendix B.
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6.3. Concluding comments and some related literature

(i) Zhou, Favaro and Walker in [30] consider a different generalised negative binomial
process model constructed from a gamma mixture of Poisson processes. Their emphasis
is on fitting it to an observed ‘frequency of frequencies’ sample (i.e., the observed Mn,
in our notation).

(ii) The (generalised) Dickman function occurs in the calculation and simulation of perpe-
tuities [7], and thereby with sorting routines in computer science [4], [19]. See also [1,
Chapter 4] and [2] for relationships with size-biased random variables. In a recent paper
[15] we considered size-biased sampling from the Dickman subordinator.

Appendix A. Proof of Lemma 3.1

Proof of Lemma 3.1: The inversion formula for the characteristic function of a discrete
random variable [10, p. 233] gives

nP

( �xnα�∑
i=1

X1n(λn) = n

)
= n

2π

∫ π

−π

e−inθφ
�xnα�
λn (θ )dθ

= 1

2π

∫ nπ

−nπ

e−iθφ
�xnα�
λn (θ/n)dθ . (A.1)

Formally taking the limit under the integral and using (3.37), we can write

lim
n→∞ nP

( �xnα�∑
i=1

X1n(λn) = n

)
= 1

2π

∫ ∞

−∞
e−iθ (

EeiθY1(λ))xdθ

= 1

2π

∫ ∞

−∞
e−iθ

EeiθYx(λ)dθ . (A.2)

The last integral is absolutely convergent for each x > 0 and λ > 0, which can be checked as
follows. By (4.6)

∣∣EeiθYx(λ)
∣∣= exp

(
− x

�(1 − α)

∫ λ∧1

0

(
1 − cos θy

)
αy−α−1dy)

)
.

For a given λ > 0 choose |θ | > 1/(λ ∧ 1) = 1/λ ∨ 1. Then since 1 − cos y ≥ y2/4 for |y| ≤ 1,
we get

x

�(1 − α)

∫ λ∧1

0

(
1 − cos θy

) αdy

yα+1
≥ xθ2

4�(1 − α)

∫ 1/|θ |

0
αy1−αdy = αx|θ |α

4(2 − α)
.

When |θ | ≤ 1/λ ∨ 1, we have
∣∣EeiθYx(λ)

∣∣≤ 1. Hence for some cα > 0,∫ ∞

−∞
∣∣EeiθYx(λ)

∣∣dθ ≤
∫ ∞

−∞

(
1{|θ |≤1/λ∨1} + e−cαx|θ |α 1{|θ |>1/λ∨1}

)
dθ < ∞,

thus establishing the absolute convergence in (A.2). It follows that the right-hand side of (A.2)
is the inverse to the characteristic function of a random variable Yx(λ) with a continuous
bounded density and thus equals the right-hand side of (3.29).
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To justify the limiting procedure which produces (A.2) we need a bound on the characteris-
tic function in (A.1). For this, split the integral into three components,

I1 =
∫

|θ |≤A
, I2 =

∫
A<|θ |≤εn

, I3 =
∫

εn<|θ |≤πn
,

where A > 0 and 0 < ε < 1/4 will be chosen large and small, respectively, later. The first
component is, by (3.37),

I1 = 1

2π

∫ A

−A
e−iθφ

�xnα�
λn (θ/n)dθ,

and by dominated convergence it has limit

1

2π

∫ A

−A
e−iθ

EeiθYx(λ)dθ .

This is arbitrarily close to the integral on the right-hand side of (A.2) once A is large enough,
depending on x and λ.

To deal with I2, we use an inequality of the form

|φ|nα = e
1
2 nα log |φ|2 = e

1
2 nα log (1−(1−|φ|2)) ≤ e− 1

2 nα(1−|φ|2). (A.3)

We see that we need a lower bound for 1 − |φ�nα�
λn (θ/n)|2. Let Xs

1n(λ) denote a symmetrised
version of X1n(λ), obtained by subtracting an independent copy, and having probability mass
function ps

nj(λ), −n ≤ j ≤ n. Then, for θ �= 0,

1 − |φ�nα�
λn (θ/n)|2 =E

(
1 − cos (θXs

1n(λn)/n)
)

=
n∑

j=−n

(1 − cos (θ j/n)ps
nj(λn) ≥ θ2

4n2

∑
|θ j/n|≤1

j2ps
nj(λn)

= θ2

4n2
E
(
(Xs

1n(λn))21{|Xs
1n|(λn)<n/|θ |}

)
. (A.4)

To replace Xs
1n by X1n in this we use the inequality

E
(
(Xs

1n(λn))21{|Xs
1n|(λn)<n/|θ |}

≥ 2E
(
(X1n(λn))21{X1n(λn)<n/|θ |}

)
P(X1n(λn) < n/|θ |)

−2E2(X1n(λn)1{X1n(λn)<n/|θ |}
)
. (A.5)

This follows from a general inequality proved as follows:∫
|X−X′|≤a

(X − X′)2dP ≥
∫

X≤a,X′≤a
(X2 − 2XX′ + (X′)2)dP

= 2E(X21{X<a})P(X < a) − 2E2(X1{X<a}),

where X and X′ are any two nonnegative i.i.d. random variables. (Here a > 0, and in the
inequality we used that 0 < X ≤ a and 0 < X′ ≤ a imply X − X′ ≤ a and X − X′ ≥ −a, so that
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|X − X′| ≤ a.) Applying this to Xs
1n(λn) and X1n(λn) with a = n/|θ | we get (A.5). Referring to

(A.4) and (A.5), we need a lower bound for

θ2

n2
E
(
(X1n(λn))21{X1n(λn)<n/|θ |}

)= θ2

n2

�n/|θ |�∑
j=1

j2pnj(λn)

≥ αθ2

n2�(1 − α)

∫ λn

0

�n/|θ |�∑
j=1

j2zj

j! z−α−1e−zdz

≥ αθ2

nα�(1 − α)

∫ λ

0

�n/|θ |�∑
j=2

(nz)j−2

(j − 2)! z1−αe−nzdz. (A.6)

The first inequality in (A.6) follows because the denominator of pnj(λn), by (3.13) and (3.14), is
less than �(1 − α), and the second inequality follows just because j2 ≥ j( j − 1). The right-hand
side of (A.6) equals

αθ2

nα�(1 − α)

∫ λ

0

(
1 − P

(
Poiss(nz) ≥ n

|θ | − 2

))
z1−αdz, (A.7)

in which, by Markov’s inequality, and because |θ | ≤ εn in I2,

P

(
Poiss(nz) ≥ n

|θ | − 2

)
≤ nz

n/|θ | − 2
≤ z|θ |

1 − 2ε
.

Now choose A > 1/λ for the given λ > 0. Then since A < |θ | ≤ εn in I2, we have 1/|θ | < λ. It
follows that the integral in (A.7) is no smaller than

αθ2

nα�(1 − α)

∫ 1/2|θ |

0

(
1 − z|θ |

1 − 2ε

)
z1−αdz

≥ 1 − 4ε

2(1 − 2ε)
× α|θ |α

(2 − α)22−αnα�(1 − α)
=:

C1(ε, α)|θ |α
nα

.

Returning to (A.5), we also need a lower bound for the probability term. By (3.13) and
(3.14),

P(X1n(λn) < n/|θ |) ≥ α

�(1 − α)

∫ λn

0

�n/|θ |�∑
j=1

zj

j! z−α−1e−zdz

= α

nα�(1 − α)

∫ λ

0

�n/|θ |�∑
j=1

(nz)j

j! e−nzz−α−1dz

= α

nα�(1 − α)

∫ λ

0
P

(
1 ≤ Poiss(nz) ≤ n

|θ |
)

z−α−1dz. (A.8)

Again since A > 1/λ and A < |θ | ≤ εn in I2, we have 1/|θ | < λ, so the last expression is no
smaller than

α

nα�(1 − α)

∫ 1/2|θ |

1/n
P

(
1 ≤ Poiss(nz) ≤ n

|θ |
)

z−α−1dz. (A.9)
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The probability in the integrand is, by Markov’s inequality,

1 − P

(
Poiss(nz) >

n

|θ |
)

− P
(
Poiss(nz) = 0

)≥ 1 − nz|θ |
n

− e−nz ≥ 1

10
,

so we obtain

P

(
X1n(λn) <

n

|θ |
)

≥ nα − (2|θ |)α
10nα�(1 − α)

= 1

10�(1 − α)

(
1 − (2|θ |)α

nα

)
. (A.10)

Since |θ | < εn, the term in brackets is no smaller than (1 − (2ε)α) > 0 for a small enough
choice of ε. So for the first term on the right-hand side of (A.5) we have the lower bound

2E
(
(X1n(λn))21{X1n(λn)<n/|θ |}

)
P(X1n(λn) < n/|θ |) ≥ C2(ε, α)|θ |α

nα
, (A.11)

where C2(ε, α) := 2C1(1 − (2ε)α)/10�(1 − α).
For the E

2 term on the right-hand side of (A.5), use the formula

E(X1n(λn)1{X1n(λn)<n/|θ |}) =
�n/|θ |�∑

j=1

jpnj(λn) =
∑�n/|θ |�

j=1 jFj(λn)∑n
j=1 Fj(λn)

(A.12)

(cf. (3.16)), and for the denominator, use the lower bound
n∑

j=1

Fj(λn) =α

∫ λn

0

n∑
j=1

zj

j! z−α−1e−zdz

≥ α

∫ 1/ε

0

n∑
j=1

zj

j! z−α−1e−zdz

→ α

∫ 1/ε

0
z−α−1(1 − e−z)dz (as n → ∞)

≥ 1
2�(1 − α) (A.13)

(for ε small enough). Thus the lower bound
∑n

j=1 Fj(λn) ≥ �(1 − α)/2 holds for λ > 1/|θ |,
|θ | ≤ εn, n greater than or equal to some n0(ε, α), and ε less than or equal to some ε0(α) > 0.
To deal with the numerator in the E

2 term, write, as in (3.17),

nα−1
�n/|θ |�∑

j=1

jFj(λn) = αnα−1
∫ λn

0

�n/|θ |�∑
j=1

zj−1

( j − 1)! z−αe−zdz

= α

∫ λ

0

�n/|θ |�∑
j=1

(nz)j−1

( j − 1)! z−αe−nzdz

≤ α

∫ λ

0
P
(
Poiss(nz) ≤ n/|θ |)z−αdz. (A.14)

This time we keep |θ | > 2/λ and upper-bound the right-hand side of (A.14) by

α

(∫ 2/|θ |

0
+

∫ λ

2/|θ |

)
P
(
Poiss(nz) ≤ n/|θ |)z−αdz

≤ α

∫ 2/|θ |

0
z−αdz +

∫ λ

2/|θ |
P
(
Poiss(nz) ≤ n/|θ |)z−αdz.
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Here the first integral equals

C3(α)|θ |α−1, where C3(α) := α21−α/(1 − α).

The second integral can be bounded using Chebyshev’s inequality as

α

∫ λ

2/|θ |
P
(
Poiss(nz) − nz ≤ −n/(z − 1/|θ |))z−αdz

≤ α

∫ λ

2/|θ |
nz1−α

n2(z − 1/|θ |)2
dz

≤ α|θ |α
n

∫ ∞

2

y1−α

(y − 1)2
dy ≤ εC4(α)|θ |α−1 ≤ C4(α)|θ |α−1,

using |θ | ≤ εn, n ≥ |θ |/ε, and ε ≤ 1 in the last inequality. Combining this with the first integral,
we now have a bound for the left-hand side of (A.14) of the form C5(α)|θ |α−1, where C5(α) =
C3(α) + C4(α). This leads to the bound

θ2

n2
E

2(X1n(λn)1{X1n(λn)<n/|θ |}
)≤ 4θ2

n2�(1 − α)

(
C5(α)n1−α|θ |α−1)2

= C6(α)

n2α
|θ |2α ≤ εαC6(α)

nα
|θ |α

for the E
2 term on the right-hand side of (A.5). This is smaller than the first term on the right-

hand side of (A.5), which is bounded below in (A.11), giving a lower bound for the left-hand
side of (A.4) as C7(ε, α)|θ |α/nα , where C7(ε, α) = 2(C2(ε, α) − εC6(ε, α)). Going back to
(A.4), we now have a lower bound for

1 − |φ�nα�
λn (θ/n)|2

of the form C7(ε, α)|θ |α/nα . Then from (A.3),

|φλn(θ/n)|nα ≤ e− 1
2 C7(ε,α)|θ |α (A.15)

is integrable on (0, ∞) and provides the required upper bound for I2.
Finally, to deal with I3, we use the fact that X1n(λn) is a lattice variable with span 1 (it takes

values j = 1, 2, . . . , n with probabilities pnj(λ) > 0,
∑n

j=1 pnj(λ) = 1.) Thus by Corollary 2 to
Theorem 5 in Section 14 of [10], for all ε > 0 there is a c = c(ε, λ) such that for ε < |θ | <
2π − ε we have |φλn(θ )| < e−c. Thus

|φλn(θ/n)|nα

< e−cnα

for εn < |θ | < nπ , and so

|I3| ≤ 1

2π

∫
εn<|θ |<nπ

|φ�xnα�
λn (θ/n)|dθ ≤ ne−xcnα → 0 as n → ∞.

This completes the proof of Lemma 3.1. �
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TABLE 1. Expected value of K(α, r).

α = 0.3 α = 0.5 α = 0.7 α = 0.9

r = 0.5 1.62 1.56 1.42 1.19
r = 1 2.10 1.94 1.66 1.28
r = 2 2.99 2.58 2.01 1.39
r = 4 4.58 3.57 2.48 1.50
r = 8 7.27 5.02 3.07 1.61
r = 16 11.73 7.09 3.79 1.73
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FIGURE 1: Densities of the subordinator Ỹt for values of α = 0.3, 0.5, 0.7, 0.9 and values of t being (left
to right) 1 (blue), 2 (red), 5 (green), and 7 (black). The horizontal axis shows values of x; the vertical axis
shows values of f̃Yt

(x). Ỹt tends to 0 in probability as t ↓ 0, for large t, and tends to normality with mean
and variance proportional to t as t → ∞.

Appendix B. Mean and variance of K(α, r), and density of ˜Yt

Tables 1 and 2 show the mean and variance of K(α, r) for various values of α and r
calculated from (6.10) using the R package [25].

The tables show that the expected value of K(α, r) increases with r for each α ∈ (0, 1),
while the variance of K(α, r) increases with r for α ≤ 1/2 but, curiously, decreases with r for
α > 1/2, eventually tending to 0 as α ↑ 1 or r → ∞.

Figure 1 shows plots of the density of the subordinator Ỹt having Laplace transform (6.4)
for various values of α and t. The functions were calculated in the package R by evaluating the
cumulative distribution function in (6.9), then using R’s numerical differentiation routine.
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TABLE 2. Variance of K(α, r).

α = 0.3 α = 0.5 α = 0.7 α = 0.9

r = 0.5 1.35 0.85 0.37 0.06
r = 1 1.65 0.92 0.34 0.04
r = 2 2.13 0.98 0.28 0.02
r = 4 2.80 1.02 0.22 0.01
r = 8 3.70 1.03 0.16 0.01
r = 16 4.89 1.04 0.12 0.00
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