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Abstract Let R be a domain contained in a rank-1 valuation ring of its quotient field. Let R[[X]] be
the ring of formal power series over R, and let F be the quotient field of R[[X]]. We prove that F is
Hilbertian. This resolves and generalizes an open problem of Jarden, and allows to generalize previous
Galois-theoretic results over fields of power series.
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Introduction

Field arithmetic studies the connection between the arithmetic properties of a field and
its Galois theoretic properties. A central conjecture in field arithmetic, which widely
generalizes the inverse Galois problem, was coined by Dèbes and Deschamps.

Conjecture A (Dèbes and Deschamps [2, §2.1.2]). If F is a Hilbertian field, then
every finite split embedding problem over F is solvable.

Conjecture A is proven in [17] in the case where F is ample (called ‘large’ in [17]).
In particular, this holds if F is complete with respect to a discrete valuation. Following
this came a series of works studying Galois theory over complete valued domains whose
quotient fields are not complete. The archetype of such a domain is A[[X]], where A is
some domain which is not a field. The first Galois theoretic result over such fields is
due to Lefcourt [10], who showed that if A is integrally closed and Noetherian, then
the inverse Galois problem has a positive solution over F = Quot(A[[X]]). We call the
field F the field of formal power series over A (note that F is usually smaller than
the field K((X)) = Quot(K[[X]]) of formal power series over K = Quot(A)). The next
result is due to Harbater and Stevenson [7], who showed that Conjecture A holds over
F , in the case where A is a complete discrete valuation ring (moreover, they showed that
each such problem has |F |-many distinct solutions). Then the author [14] showed that
Conjecture A holds in a more general situation.
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Theorem B. Let A be a Krull domain (e.g. an integrally closed Noetherian domain).
Then every finite split embedding problem over Quot(A[[X]]) is solvable.

In [18], Pop showed that the quotient field of a Henselian domain is ample. Using his
result, one can give a short proof of Theorem B: given a split embedding problem over
F , extend it to F (t), solve it there using the result of [17], then specialize the solution
into a solution over F . The second part of the proof, specialization, is possible since F is
Hilbertian by a theorem of Weissauer [21]. That theorem asserts that the quotient field
of a domain R of dimension exceeding 1 is Hilbertian, provided that R is a generalized
Krull domain. We recall the definition.

Definition C. A domain R is called a generalized Krull domain if there exists a non-
empty family F of non-trivial rank-1 valuations on K = Quot(R), satisfying the following
properties.

(a) Denoting the valuation ring of v by Rv for each v ∈ F , we have
⋂

v∈F Rv = R.

(b) For each a ∈ K×, v(a) = 0 for all but finitely many v ∈ F .

(c) For each v ∈ F , Rv is the localization of R with respect to the centre p(v) = {a ∈
R | v(a) > 0} of v on R.

If every v ∈ F is discrete, then R is called a Krull domain [22, § VI.13]. Note that by
assuming that F is non-empty, we do not consider fields as Krull domains.

It is well known [11, Theorem 12.4] that if A is a Krull domain (in particular, if A is
integrally closed and Noetherian) then so is R = A[[X]]. Applying Weissauer’s theorem
to R proves the Hilbertianity of F = Quot(R) in all of the above-mentioned works.

The first part in the above-mentioned proof of Theorem B, the ampleness of
Quot(A[[X]]), holds for an arbitrary A. However, the second part of the proof is limited
by the conditions of Weissauer’s theorem. One may ask whether Theorem B holds for
an arbitrary domain A (which is not a field). This leads to the question: is Quot(A[[X]])
Hilbertian? A special case of the question was posed as an open problem by Jarden
in [3, § 15]. That problem consisted of two parts. The first part is, assuming A is a gen-
eralized Krull domain, whether so is A[[X]]. The second part of the problem was whether
Quot(A[[X]]) is Hilbertian. A positive answer to the first part of Jarden’s problem would
have implied a positive answer to the second part as well, by Weissauer’s theorem. How-
ever, the work [15] showed that the answer for the first part of Jarden’s problem is
negative. In fact, the situation for generalized Krull domains is essentially opposite to
the situation for Krull domains. That is, if A is a generalized Krull domain which is not
a Krull domain, then A[[X]] is never a generalized Krull domain [15, Theorem 2.5].

Due to the negative answer to the first part of Jarden’s problem, one cannot apply
Weissauer’s theorem to A[[X]] and deduce that Quot(A[[X]]) is Hilbertian. Despite this,
we prove that the answer to the second part of the problem is positive: such a field is
Hilbertian. In fact, we prove a more general result.

Main Theorem. Let A be a domain, contained in a rank-1 valuation ring of Quot(A).
Then Quot(A[[X]]) is Hilbertian.
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By definition, any generalized Krull domain is contained in a rank-1 valuation ring,
implying the positive answer to Jarden’s problem [3, Problem 15.5.9(b)].

The idea of the proof of the Main Theorem is to embed A[[X]] into the ring Av{X} of
convergent (with respect to the valuation v given in the hypothesis of the theorem) power
series over the valuation ring Av of v, and extend this to an embedding ϕ : Quot(A[[X]]) →
Quot(Av{X}). We then observe that Av{X} is a generalized Krull domain (which is
essentially a consequence of the Weierstrass division theorem), and consider the inverse
image S of Av{X} under ϕ. We show that S is an over-ring of A[[X]] of dimension
exceeding 1, and show that it is a generalized Krull domain. Then by applying Weissauer’s
theorem to S instead of A[[X]], we deduce that Quot(S) = Quot(A[[X]]) is Hilbertian. A
difficulty arises in establishing the fact that S is indeed a generalized Krull domain—the
ring S is the intersection of two generalized Krull domains, however, in general such an
intersection need not be a generalized Krull domain. In order to overcome this problem,
we develop in § 1 a theory concerning the characterization of generalized Krull domains
which generalizes the theory for Krull domains. Using our characterization we are able
to prove that S is a Krull domain.

As a Galois-theoretic consequence of the Main Theorem, we deduce a generalization
of Theorem B.

Corollary D. Let A be a domain, contained in a rank-1 valuation ring of Quot(A).
Then every finite split embedding problem over Quot(A[[X]]) is solvable.

1. Characterizing generalized Krull domains

In [9] Krull showed that a valuation ring R is completely integrally closed if and only
if rank(R) � 1, which led him to conjecture that a completely integrally closed domain
is an intersection of valuations rings of rank less than or equal to 1. This conjecture
was disproven by Nakayama [13]. Generalized Krull domains were defined by Ribenboim
in [19] and were shown in [12] to have a natural role in commutative algebra, as a class
of rings for which Krull’s conjecture holds. Their properties were then studied in several
works (see, for example, [1,12,15,16,20]).

The aim of this section is to establish an equivalent characterization of generalized
Krull domains which is easier to establish. It is well known [11, Theorem 12.3] that
in order to prove that a domain R is a Krull domain, it suffices to find a family F of
discrete valuations satisfying conditions (a) and (b) of Definition C (the idea of the proof
of [11, Theorem 12.3] is to show that there exists a subfamily of valuations satisfying
all three conditions). This allows one to give an alternative definition of a Krull domain,
which is easier to establish. This is useful, for example, to show that the intersection
of two Krull domains is a Krull domain (a property which is not immediate from the
definition, because of the difficulty in establishing condition (c)). Unfortunately, a similar
property for generalized Krull domains does not hold. In [4, § 4], an example is given of
a domain R and a family of rank-1 valuations on Quot(R) satisfying conditions (a)
and (b) of Definition C, while R is not a generalized Krull domain. Moreover, analysing
that example, one sees it also provides an example of two generalized Krull domains

https://doi.org/10.1017/S1474748011000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000144


354 E. Paran

whose intersection is not a generalized Krull domain. However, in this section we show
that one can at least give an equivalent definition of a generalized Krull domain where
condition (c) is weakened. Namely, it suffices that each v ∈ F satisfies v(Rv) = v(R) or
inf(v(p(v))) > 0.

Throughout this section, whenever R is a domain and v a valuation of Quot(R), we
denote by Rv the valuation ring of v in Quot(R), and by p(v) = {a ∈ R | v(a) > 0}
the centre of v on R. We recall some common convenient terminology (following [5],
for example). A family F of valuations on a field K is said to be of finite type if for
each x ∈ K× there exist only finitely many v ∈ F with v(x) �= 0. We say that the ring
R =

⋂
v∈F Rv is defined by F . If R is a domain and v a valuation of Quot(R) satisfying

Rv = Rp(v), we say that v is essential (for R). Thus a generalized Krull domain is a
domain R defined by a non-empty family of finite type F of valuations on Quot(R),
where each v ∈ F is essential and of rank 1. Lemma 1.3 and Remark 1.4 below show
that such a family is unique (up to equivalence of valuations) and consists of all rank-1
valuations on K which are essential for R. Thus we shall refer to F as the essential family
of R.

A rank-1 valuation v of a field K is said to be well-centred on a subring R, if v(Rv) =
v(R) (where v(Rv) is the non-negative part of the value group of v), and we say that a
valuation v of K is positive on R if inf(v(p(v))) > 0. In particular, any discrete rank-1
valuation of K is positive on any subring of K (note that by definition, a trivial valuation
of K is positive on each subring of K).

The rest of this section proves the equivalence detailed above (Proposition 1.6 below).
The proof is somewhat complicated technically speaking, and the reader may at first
prefer to read only the assertion of Proposition 1.6 and then skip to the next section,
which proves the Main Theorem.

We begin with some general lemmas.

Lemma 1.1. Let R be an integral domain, let v be a rank-1 valuation of Quot(R), and
p = p(v). If v is not positive on R, then v(p) is dense in (0,∞).

Proof. Let 0 < a < b ∈ R. We show that there exists x ∈ p with v(x) ∈ (a, b). Choose
some 1 < δ < b/a. Then b−aδ > 0, so for a sufficiently large n ∈ N we have b−aδ > 1/δn.
Since inf(v(p)) = 0, there exists y ∈ p with 0 < v(y) < 1/δn. We have

(
0,

1
δn

)
=

∞⋃
m=n

[
1

δm+1 ,
1

δm

)
,

hence there exists an integer n � m such that 1/δm+1 � v(y) < 1/δm. Since b − aδ >

1/δn � 1/δm, we have δmb − δm+1a > 1, hence there exists an integer k with δm+1a <

k < δmb. Then a < k/δm+1 � kv(y) < k/δm < b. Thus x = yk satisfies a < v(x) < b. �

Lemma 1.2. Let R be a local domain of dimension exceeding 1, defined by a family F
of rank-1 valuations. Then F is infinite.

Proof. Suppose F = {v1, . . . , vk} is finite, where v1, . . . , vk are distinct (i.e. inequivalent)
valuations. That is, the corresponding valuation rings R1, . . . , Rk are distinct. For each

https://doi.org/10.1017/S1474748011000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000144


Hilbertianity of fields of power series 355

1 � i � k let pi = p(vi). Then by [11, Theorem 12.2], each pi is a maximal ideal,
and Ri = Rpi

. Since R is local, we deduce that pi = pj and hence Ri = Rj for each
1 � i, j � k. Thus k = 1, and R =

⋂
v∈F Rv = R1 is a rank-1 valuation ring, hence it is

a maximal subring of K. But since R is of dimension exceeding 1, it is strictly contained
in its localization by some non-maximal prime ideal, a contradiction. �

Lemma 1.3. If R is a generalized Krull domain, then there is a unique family (up to
equivalence) F satisfying the conditions of Definition C. The corresponding family of
valuation rings is

{Rv | v ∈ F} = {Rp | p is a minimal non-zero prime ideal of R}.

Proof. Suppose R is a generalized Krull domain, and let F be a family of valuations on
K = Quot(R), satisfying the conditions of Definition C. Suppose Rv is a valuation ring
for some v ∈ F . Since Rv is a rank-1 valuation ring, Rv is a maximal subring of K. Since
Rv = Rp(v), p(v) is a minimal non-zero prime ideal. Thus each of the valuation rings Rv is
obtained by localizing R by some minimal prime ideal. Conversely, we show that for each
minimal non-zero prime ideal p, there exists v ∈ F such that Rv = Rp. Indeed, suppose
there exists no such v. Choose 0 �= a ∈ p. Let v1, . . . , vk be all valuations in F which are
positive at a. By our assumption, Rp(vi) �= Rp for each 1 � i � k, hence p(vi) �= p for each
1 � i � k. Since these are minimal non-zero primes, this implies that p(vi) �⊆ p, so we
may choose ai ∈ p(vi)�p, for each 1 � i � k. Choose sufficiently large integers e1, . . . , ek,
such that vi(aei

i ) > vi(a) for each 1 � i � k, and define b = ae1
1 · · · · · aek

k ∈ R. Then
vi(b/a) > 0 for each 1 � i � k. For each v ∈ F � {v1, . . . , vk} we have v(b/a) = v(b) � 0.
Thus v(b/a) � 0 for each v ∈ F , hence b/a ∈ R. Since a ∈ p, b = (b/a) · a ∈ p. Since p is
prime, there exists 1 � i � k such that ai ∈ p, a contradiction. �

Remark 1.4. It follows from Lemma 1.3, that if R is a generalized Krull domain, then
the unique family given in the lemma consists of all rank-1 valuations on K = Quot(R)
that are essential for R. Indeed, if v is a rank-1 valuation on K which is essential for R,
then Rv = Rp(v) is a rank-1 valuation ring, hence a maximal subring of K, hence p(v) is
a minimal non-zero ideal of R.

The following technical lemma is the key ingredient in the proof of Proposition 1.6
below.

Lemma 1.5. Let R be a domain, v1, . . . , vr, v
′ rank-1 valuations on Quot(R) whose

valuation rings contain R, and with p(v′) ⊆ p(v1). Let a ∈ R such that v′(a) = 0. For
each 1 � i � r put qi = {c ∈ R | vi(c) � vi(a)} and suppose that q1 ∩ q2 ∩ · · · ∩ qr =
aR �= q2 ∩ · · · ∩ qr. Suppose that v1 is well-centred or positive on R. Then there exist d ∈
q2 ∩ · · · ∩ qr � aR and a real number δ > 0, such that p(v′) ⊆ {c ∈ R | v1(c) + v1(d) � δ}
and aR = {c ∈ R | v1(c) � δ} ∩ q2 ∩ · · · ∩ qr.

Proof. Define λ = v1(a) ∈ R, p1 = p(v1), p′ = p(v′), and for each α > 0 put aα =
{c ∈ R | v1(c) � α}. Then q1 = aλ. Define λ1 = inf(v1(p1)). Then λ1 � λ, and we
put µ = inf{α ∈ [λ1, λ] | aR = aα ∩ q2 ∩ · · · ∩ qr}. Clearly, λ1 � µ. We claim that
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µ > 0. Indeed, suppose µ = 0 and let b ∈ q2 ∩ · · · ∩ qr. If v1(b) < λ, choose c ∈ p1 with
0 < v1(c) < λ − v1(b) (since µ = 0 we have λ1 = 0, hence such a choice is possible).
Choose a real number 0 < α < v1(c) (so that c ∈ aα). Then bc ∈ aα ∩ q2 ∩ · · · ∩ qr = aR.
Thus v1(a) � v1(bc) < λ, a contradiction. Hence v1(b) � λ, so b ∈ aλ ∩ q2 ∩ · · · ∩ qr =
q1 ∩ · · · ∩ qr = aR. Thus q2 ∩ · · · ∩ qr = aR, a contradiction. This proves that µ > 0.

We now distinguish between two cases. First suppose that λ1 = 0. Then by our assump-
tions we must have v1(Rv1) = v1(R). Choose some 0 < ε < µ. If λ > µ choose a real
number µ < δ < λ, and if λ = µ put δ = µ. Either way we have aδ ∩ q2 ∩ · · · ∩ qr = aR.
Moreover, by the definition of µ, aR is strictly contained in aε ∩ q2 ∩ · · · ∩ qr. Let
d ∈ (aε ∩ q2 ∩ · · · ∩ qr) � aR. Then ε � v1(d) � µ, and if λ = µ then v1(d) < µ.
Thus either way ε′ = δ − v1(d) is positive. Put a′ = {c ∈ R | v1(c) � ε′}, and we show
that p′ ⊆ a′. Indeed, suppose there exists c1 ∈ p′ with v1(c1) < ε′. Since δ � λ we have
λ − v1(d) − v1(c1) > 0. If µ = δ = λ then v1(a/c1d) = δ − v1(d) − v1(c1) > 0, and since
v1(R) = v1(Rv1) we may choose c2 ∈ R with v1(c2) = δ−v1(d)−v1(c1). If µ < δ < λ apply
Lemma 1.1 to choose c2 ∈ R with δ − v1(d) − v1(c1) < v1(c2) < λ − v1(d) − v1(c1). Then
either way, c = c1c2 ∈ p′ satisfies ε′ � v1(c) � λ−v1(d). Thus cd ∈ aδ ∩q2∩· · ·∩qr, hence
cd/a ∈ R. Moreover, v′(cd/a) = v′(cd) > 0, thus cd/a ∈ p′ ⊆ p1, hence v1(cd/a) > 0.
But v1(cd/a) = v1(c) + v1(d) − λ � 0, a contradiction. Thus p′ ⊆ a′.

Next, suppose that λ1 > 0. Choose some max{µ − 2λ1, 0} < ε < µ. If λ > µ put
δ = min{2λ1 + ε, λ} (so µ < δ), and if λ = µ put δ = µ. Either way we have δ − ε � 2λ1,
and aδ ∩ q2 ∩ · · · ∩ qr = aR. Moreover, aR is strictly contained in aε ∩ q2 ∩ · · · ∩ qr. Let
d ∈ (aε ∩ q2 ∩ · · · ∩ qr) � aR. Then ε � v1(d) � µ, and if λ = µ then v1(d) < µ. Thus
ε′ = δ − v1(d) is positive. Put a′ = {c ∈ R | v1(c) � ε′}. We show that p′ ⊆ a′. Indeed,
suppose there exists c1 ∈ p′ with v1(c1) < ε′. Since δ � λ we have λ− v1(d)− v1(c1) > 0.
Since λ1 = inf(v1(p1)) we may choose c2 ∈ R with λ1 � v1(c2) < λ1 +λ − v1(d)− v1(c1).
Then

ε′ − v1(c1) � ε′ − λ1 = δ − v1(d) − λ1 � δ − ε − λ1 � 2λ1 + ε − ε − λ1 = λ1 � v1(c2).

Hence c = c1c2 ∈ p′ satisfies ε′ � v1(c) < λ+λ1−v1(d). Thus cd ∈ aδ ∩q2∩· · ·∩qr, hence
cd/a ∈ R. Moreover, v′(cd/a) = v′(cd) > 0, thus cd/a ∈ p′ ⊆ p1, hence v1(cd/a) � λ1.
But v1(cd/a) = v1(c) + v1(d) − λ < λ + λ1 − λ = λ1, a contradiction. Thus p′ ⊆ a′. �

We now prove our result concerning generalized Krull domains. The proof strategy is
similar to the proof of [11, Theorem 12.4], where an analogues claim (using a slightly
different terminology) is proven for Krull domains. We note that for discrete valuations,
Lemma 1.5 is trivial and has no counterpart in [11, § 12].

Proposition 1.6. Let F be a non-empty family of finite type of rank-1 valuations on a
field K, and let R be the ring defined by F . Suppose that each v ∈ F is positive on R

or well-centred on R. Then R is a generalized Krull domain, and its essential family is
contained in F .

Proof. Define F ′ = {v ∈ F | Rv = Rp(v)}. Then F ′ is of finite type, and each v ∈ F
is essential for R. It remains to show that F ′ defines R. Let b/a ∈

⋂
v∈F ′ Rv, with
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0 �= a, b ∈ R. Let v1, . . . , vt be all the valuations in F which are positive at a, and for
each 1 � i � t define pi = p(vi), qi = {c ∈ R | vi(c) � vi(a)}. Then aR = q1 ∩ · · · ∩ qt,
by condition (a). Discard finitely many of the qi and reorder them, to assume that
{q1, . . . , qr} is a minimal subset of {q1, . . . , qt} satisfying aR = q1 ∩· · ·∩qr. We will show
that v1, . . . , vr ∈ F ′, and hence vi(x) � 0 for each 1 � i � r. This then implies that
b ∈ q1 ∩ · · · ∩ qr, so b/a ∈ R.

To show that for each 1 � i � r we have vi ∈ F ′, we must show that Rpi
is the

valuation ring Rvi
. That is, Rpi

is a maximal subring of Quot(R), or equivalently, pi is
a minimal non-zero prime ideal. Suppose that, say, p1 is a non-minimal prime. Define
R1 = Rp1 and F1 = {w ∈ F | R1 ⊆ Rw}. In particular, v1 ∈ F1.

Note that
⋂

w∈F1
Rw = R1. Indeed, suppose y ∈

⋂
w∈F1

Rw, and let w′
1, . . . , w

′
m be all

the valuations in F that are negative at y. Then for each 1 � j � m we have w′
j /∈ F1,

hence (R � p1) ∩ p(w′
j) �= ∅. Thus by taking a sufficiently large power of a non-zero

element in (R � p1) ∩ p(w′
j), we may choose aj ∈ R such that w′

j(aj) > −w′
j(y) and

v1(aj) = 0. Then y · a1 · · · · · am ∈
⋂

v∈F Rv = R, hence y ∈ Rp1 = R1.
Next, since p1 is non-minimal, R1 is a local ring of dimension exceeding 1. By

Lemma 1.2, F1 is infinite. Choose v′ ∈ F1 such that v′(a) = 0, and let p′ = p(v′).
Then a /∈ p′ and since R1 ⊆ Rv′ we have p′ ⊆ p1. By our assumptions, aR is strictly
contained in q2 ∩ · · · ∩ qr. Also, v1 ∈ F is well-centred or positive on R. Thus all the
conditions of Lemma 1.5 hold, so we may choose d ∈ q2 ∩ · · · ∩ qr � aR and δ > 0
such that aR = aδ ∩ q2 · · · ∩ qr and p′ ⊆ a′, where aδ = {c ∈ R | v1(a) � δ} and
a′ = {c ∈ R | v1(c) � δ − v1(d)}.

Choose 0 �= c ∈ p′ ∩ q2 ∩ · · · ∩ qr. In particular c ∈ a′. We claim that for each n � 0,
(d/a)nc ∈ p′ ∩ q2 ∩ · · · ∩ qr. Suppose by induction that we have proven this for some
n � 0. In particular, (d/a)nc ∈ a′, hence v1(dn+1c/an) � δ − v1(d) + v1(d) = δ. Hence
dn+1c/an ∈ aδ ∩ q2 ∩ · · · ∩ qr = aR. Thus (d/a)n+1c ∈ R. Since c, d ∈ q2 ∩ · · · ∩ qr, we
have vj((d/a)n+1c) � vj(a) for each 2 � j � r, hence (d/a)n+1c ∈ q2 ∩ · · · ∩ qr. Finally,

v′
((

d

a

)n+1

c

)
= v′

(
d

a

)
+ v′

((
d

a

)n

c

)
= v′(d) − 0 + v′

((
d

a

)n

c

)
� v′

((
d

a

)n

c

)
> 0,

hence (d/a)n+1c ∈ p′. This concludes the induction.
In particular, (d/a)nc ∈ R for each n � 0. For each v ∈ F , Rv is a rank-1 valuation

ring, hence it is a completely integrally closed domain (see [11, Exercise 9.5]), hence so
is the intersection R. Thus d/a ∈ R, a contradiction. �

2. Power series and Hilbertianity

We are almost ready to prove the Main Theorem. We first recall some properties of rings
of convergent power series.

Remark 2.1 (convergent power series). Let R be an integral domain, and let R[[X]]
be the ring of formal power series over R. Let v be a rank-1 valuation on Quot(R), and
define

R{X} =
{ ∞∑

i=0

fiX
i ∈ R[[X]]

∣∣∣∣ v(fi) → ∞
}

.
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Then clearly R{X} is a subring of R[[X]], called the ring of convergent power series over
R. The ring Rv is naturally contained in Rv{X}, and v extends to a rank-1 valuation v∗

on Quot(R{X}), given on R{X} by

v∗
( ∞∑

i=0

fiX
i

)
= min

i�0
v(fi).

If R is complete with respect to v, then R{X} is complete with respect to v∗ [6,
Lemma 1.3(ii)]. If R is also a field, then by [6, Theorem 1.10], R{X} is a unique factor-
ization domain, hence it is a Krull domain [22, § VI.13].

A proof of the following lemma appears in the proof of [8, Theorem 2.3.3], in the case
where O is complete.

Lemma 2.2. Let O be a rank-1 valuation ring, and v the corresponding valuation on
K = Quot(O). Extend v to a rank-1 valuation v∗ on Quot(K{X}) as in Remark 2.1. Then
O{X} is a generalized Krull domain with quotient field Quot(K{X}) = Quot(O{X}).
Moreover, if F is the essential family (Remark 1.4) of O{X}, then v∗ ∈ F , and all
valuations in F � {v∗} are discrete.

Proof. Let K̂ be the completion of K = Quot(O) with respect to v. The ring K[[X]]
is a discrete valuation ring, and in particular a Krull domain. By Remark 2.1, so is
K̂{X}. Hence the intersection K{X} = K[[X]] ∩ K̂{X} (taken inside K̂[[X]]) is also a
Krull domain, and let F0 be its essential family (Remark 1.4). By the uniqueness of the
essential family, each w ∈ F0 is discrete.

Put F = Quot(K{X}) and D = O{X}. Each element of K{X} can be written in
the form af(X), with a ∈ K and f(X) ∈ K{X} with v∗(f(X)) = 0 (by dividing by a
coefficient of minimal value). Thus K{X} = K ·D, hence F = Quot(K{X}) = Quot(D).
Let O′ be the valuation ring of v∗ in F . Then O′ ∩ K{X} = D, by the definition of v∗.
Let p be the maximal ideal of O. Then

p
∗ =

{ ∞∑
i=0

fiX
i ∈ D

∣∣∣∣ fi ∈ p for all i � 0
}

is the centre of v∗ on D. Put F ′ = F0 ∪ {v∗}. For each w ∈ F ′, let Dw be the valuation
ring of w in F . Then

⋂
w∈F ′

Dw =
( ⋂

w∈F0

Dw

)
∩ O′ = K{X} ∩ O′ = D.

Since F0 is of finite type, so is F ′. Each w ∈ F0 is discrete, hence positive on D.
Note that Dp∗ = O′. Indeed, if f(X)/g(X) ∈ O′, where 0 �= g(X), f(X) ∈ D and
v∗(f(X)) � v∗(g(X)), then (by dividing both f(X) and g(X) by a coefficient of minimal
value) we have f(X)/g(X) = a(f1(X)/g1(X)) with a ∈ O, f1(X), g1(X) ∈ D � p∗. Thus
f(X)/g(X) = (a · f1(X))/g1(X) ∈ Dp∗ . In particular, v∗ is well-centred on D. We have
shown that each w ∈ F ′ is positive or well-centred on D, hence by Proposition 1.6, D is
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a generalized Krull domain, with an essential family F contained in F ′. Since Dp∗ = O′,
we have v∗ ∈ F , by Lemma 1.3. Thus F � {v∗} ⊆ F ′ � {v∗} = F0, hence each valuation
in F � {v∗} is discrete. �

Remark 2.3. In the proof of Lemma 2.2, one can show that in fact F = F ′, but we
shall not need this.

Theorem 2.4. Let R be a domain contained in a rank-1 valuation ring Rv of K =
Quot(R). Then Quot(R[[X]]) is Hilbertian.

Proof. Let v be the valuation that corresponds to Rv. If v(a) = 0 for each 0 �= a ∈ R,
then Rv = K, a contradiction. Thus we may choose 0 �= a ∈ R with v(a) > 0. We have
a monomorphism ϕ : R[[X]] → Rv{X} given by

ϕ

( ∞∑
i=0

fiX
i

)
=

∞∑
i=0

fia
iXi.

Put E = Quot(R[[X]]), F = Quot(Rv{X}), and extend ϕ (in the unique possible way) to
an embedding ϕ : E → F . By Lemma 2.2, Rv{X} is a generalized Krull domain, where
its essential family F consists of v∗ and discrete valuations. Put D = Rv{X} ∩ ϕ(E).
Then F ′ = Quot(D) is a subfield of F , and F induces a family of finite type F ′ of
rank-1 valuations on F ′, by restriction (throwing away valuations that are trivial on F ′).
For each w ∈ F ′, denote the valuation ring of w in F ′ by Dw. Then D ⊆

⋂
w∈F Dw ⊆

Rv{X} ∩ F ′ ⊆ Rv{X} ∩ ϕ(E) = D, hence D is defined by F ′. Each v ∈ F ′ � {v∗|F ′} is
discrete, hence positive on D.

Note that ϕ is a K-embedding, hence Rv ⊆ ϕ(E). Also, Rv ⊆ Rv{X}, hence Rv ⊆ D.
This implies that v∗ is not trivial on F ′, and that v∗(Rv) ⊆ v∗(D) ⊆ v∗(Rv{X}). On
the other hand, by the definition of v∗ we have v(Rv) = v∗(Rv) = v∗(Rv{X}), hence
v∗(D) = v∗(Rv{X}) = v(Rv). Let O′ be the valuation ring of v∗ in F ′. Since v∗ belongs to
the essential family of Rv{X}, its valuation ring in F is Rv{X}p∗ , where p∗ is the centre
of v∗ on Rv{X}. Thus O′ is contained in Rv{X}p∗ . Hence v∗(O′) ⊆ v∗(Rv{X}) = v∗(D),
and since D ⊆ O′ we have v∗(O′) = v∗(D). That is, v∗ is well-centred on D. Thus each
valuation in F ′ is positive or well-centred on D. Since F ′ is not empty (for example since
v∗ is not trivial on F ′), Proposition 1.6 implies that D is a generalized Krull domain.

Note that S = ϕ−1(Rv{X}) maps isomorphically onto D via ϕ, hence S is a generalized
Krull domain:

E
∼ �� ϕ(E) F

F ′

S
∼ �� D R{X}

R[[X]]

We now claim that dimS > 1. Indeed, we have an epimorphism ψ : Rv{X} → Rv given
by ψ(

∑∞
i=0 fiX

i) = f0. Composing ϕ|S with ψ, we get a homomorphism ψ ◦ ϕ : S → Rv.
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Note that the restriction of ψ ◦ ϕ to Rv is the identity map, so in particular ψ ◦ ϕ is an
epimorphism, but not an isomorphism (since (ψ ◦ ϕ)(X) = 0). Since Rv is a domain but
not a field, Ker(ψ ◦ ϕ) is a (non-zero) prime ideal in S, but not a maximal ideal. Hence
dim S > 1.

Thus S is a generalized Krull domain of dimension exceeding 1, hence by Weis-
sauer’s theorem [3, Theorem 15.4.6], Quot(S) is Hilbertian. But R[[X]] ⊆ S ⊆ E, hence
Quot(R[[X]]) = Quot(S) = E is Hilbertian. �

The immediate Galois-theoretic consequence of Theorem 2.4 is the following corollary
(Corollary D of the introduction).

Corollary 2.5. Let R be a domain, contained in a rank-1 valuation ring of Quot(R).
Then every finite split embedding problem over F = Quot(R[[X]]) is solvable.

Proof. Since R[[X]] is complete with respect to 〈X〉, F is ample by [18] and Hilbertian
by Theorem 2.4. Thus the result follows by the main theorem of [17]. �

A special case of Theorem 2.4 is where R is a generalized Krull domain. Thus Theo-
rem 2.4 provides a positive answer to [3, Problem 15.5.9(b)]. Together with [15, Theo-
rem 2.4], this gives a complete answer to [3, Problem 15.5.9].
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19. P. Ribenboim, Anneaux normaux réels à charctère fini, Summa Brasiliensis Math. 3

(1956), 213–253.
20. S. Singh and R. Kumar, (KE)-domains and their generalizations, Arch. Math. 23 (1972),

390–397.
21. R. Weissauer, Der Hilbertsche Irreduzibilitätssatz, J. Reine Angew. Math. 334 (1982),

203–220.
22. O. Zariski and P. Samuel, Commutative algebra, Volume II (van Nostrand Reinhold,

New York, 1960).

https://doi.org/10.1017/S1474748011000144 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000144



