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In this paper, we investigate the global boundedness, asymptotic stability and pattern formation
of predator–prey systems with density-dependent prey-taxis in a two-dimensional bounded domain
with Neumann boundary conditions, where the coefficients of motility (diffusiq‘dfdon) and mobility
(prey-taxis) of the predator are correlated through a prey density-dependent motility function. We
establish the existence of classical solutions with uniform-in time bound and the global stability of
the spatially homogeneous prey-only steady states and coexistence steady states under certain condi-
tions on parameters by constructing Lyapunov functionals. With numerical simulations, we further
demonstrate that spatially homogeneous time-periodic patterns, stationary spatially inhomogeneous
patterns and chaotic spatio-temporal patterns are all possible for the parameters outside the stability
regime. We also find from numerical simulations that the temporal dynamics between linearised sys-
tem and nonlinear systems are quite different, and the prey density-dependent motility function can
trigger the pattern formation.
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1 Introduction

The foraging is the searching for wild food resources by hunting, fishing, consuming or the gath-
ering of plant matter. It plays an important role in an organism’s ability to survive and reproduce.
The non-random foraging strategies in the predator–prey dynamics, such as the area-restricted
search, are often observed to result in populations of predators moving (or flowing) towards
regions of higher prey density (see Refs. [7, 30, 31]). Such movement is referred to as prey-
taxis which has important roles in biological control or ecological balance such as regulating
prey (pest) population to avoid incipient outbreaks of prey or forming large-scale aggregation
for survival (cf. Refs. [10, 30, 34]). To understand the dynamics of predator–prey systems with
prey-taxis, Karevia and Odell [16] put individual foraging behaviours into a biased random walk
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model which, upon passage to a continuum limit, leads to the following prey-taxis system (see
equations (55) and (56) in Ref. [16]):{

∂tu = ∇ · (d(v)∇u) − ∇ · (uχ (v)∇v) +F(u, v),

∂tv = D�v + G(u, v),
(1.1)

where u = u(x, t) and v= v(x, t) denote the population density of predators and preys at posi-
tion x and time t, respectively, and D> 0 is a constant denoting the diffusivity of preys. The
term ∇ · (d(v)∇u) describes the diffusion (motility) of predators with coefficient d(v), and
−∇ · (uχ (v)∇v) accounts for the prey-taxis (mobility) with coefficient χ (v), where both motil-
ity and mobility coefficients are related to individual foraging behaviours. The source terms
F(u, v) and G(u, v) represent the predator–prey interactions to be discussed below. By fitting
the abstract model (1.1) to field experiment data of area-restricted search behaviour exhibited
by individual ladybugs (predators) and aphids (prey) with appropriate predator–prey interactions
(see Ref. [16]), Karevia and Odell showed that the area-restricted non-random foraging yield
heterogeneous aggregative patterns observed in the field experiment.

In a special case χ (v) = −d′(v), the system (1.1) becomes{
∂tu =�(d(v)u) +F(u, v),

∂tv = D�v+ G(u, v),

where the diffusion term �(d(v)u) with d′(v)< 0 has been interpreted as ‘density-suppressed
motility’ in Refs. [9, 24] (see mathematical results in Refs. [13, 26, 35]), and d(v) is called the
motility function. This means that the predator will reduce its motility when encountering the
prey, which is a rather reasonable assumption and has very sound applications in the predator–
prey systems.

As mentioned in Ref. [16], the model (1.1) was tailored to study the non-random foraging
behaviour (or prey-taxis) not only for ladybugs and aphids but also for general organisms living
in the predator–prey system. Formally, the model (1.1) can be regarded as a variant of the Keller–
Segel chemotaxis model [17], where u(x, t) denotes the cell density and v(x, t) the chemical
concentration. However the prey-taxis model (1.1) has two striking features that the Keller–Segel
models have not considered yet. First the model (1.1) characterises the non-random population
dispersal and aggregation (i.e. both diffusion and prey-taxis coefficients depend on the prey den-
sity). Second, the source terms in (1.1) have the inter-specific interactions. These two features
distinguish the prey-taxis model from the Keller–Segel type chemotaxis models.

Ecological/biological interactions can be defined as either intra-specific or inter-specific. The
former occurs between individuals of the same species, while the latter between two or more
species. There are three types of basic interspecific interactions (see Refs. [8, 14, 23]): predator–
prey, competition and mutualism, which can be encapsulated in F(u, v) and G(u, v) by the
following typical form:

F(u, v) = c1uF(v) + h(u), G(u, v) = f (v) − c2uF(v), (1.2)

where h(u) and f (v) are functions representing the intra-specific interactions of predators and
preys, respectively. Parameters c1, c2 ∈R denote the coefficients of inter-specific interactions
between predators and preys, where F(v) is commonly called the functional response function
fulfilling F(0) = 0, F′(v)> 0. This paper is interested in the predator–prey interaction where
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c1 > 0, c2 > 0. The function forms given in (1.2) have represented most of ecologically mean-
ingful examples of predator–prey population interactions used in the literature by assigning
appropriate expressions to h(u), f (v) and F(v). Typically, the predator kinetics h(u) may include
density-dependent death h(u) = −u(θ + αu), θ > 0, α ≥ 0 , the prey kinetics f (v) could be lin-
ear, logistic or Allee effect (bistable) type and F(v) may be of Lotka–Volterra type [25, 41] or
Holling’s type [11]. We refer the readers to the excellent surveys [29, 40] for an exhaustive list
of h(u), f (v) and F(v). Hence, in this paper, we consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (d(v)∇u) − ∇ · (uχ (v)∇v) + γ uF(v) − θu − αu2, x ∈�, t> 0,

vt = D�v − uF(v) + f (v), x ∈�, t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�,

(1.3)

where D, γ > 0, θ > 0, α ≥ 0 are constants, and d(v), χ (v), F(v) and f (v) satisfy the following
conditions:

(H1) d(v), χ (v) ∈ C2([0, ∞)), d(v)> 0, χ (v) ≥ 0 and d′(v) ≤ 0 on [0, ∞).
(H2) F(v) ∈ C1([0, ∞)), F(0) = 0, F(v)> 0 in (0, ∞) and F′(v)> 0.
(H3) f : [0, ∞) →R is in C1 with f (0) = 0, and there exist two constants μ, K > 0 such that

f (v) ≤μv for any v ≥ 0, f (K) = 0 and f (v)< 0 for all v >K.

We remark that the above assumptions for F(v) and f (v) have covered a large class of interesting
and meaningful examples encountered in the literature as mentioned above. Our first result on
the global boundedness of solutions of (1.3) is the following.

Theorem 1.1 (Global boundedness) Assume (u0, v0) ∈ [W 1,p(�)]2 with p> 2 and u0,
v0 ≥ 0( 
≡ 0). Let �⊂R

2 be a bounded domain with smooth boundary and the hypotheses
(H1)–(H3) hold. If α > 0 or χ (v) = −d′(v), then there is a unique classical solution (u, v) ∈
[C([0, ∞) × �̄) ∩ C2,1((0, ∞) × �̄)]2 solving the problem (1.3). Moreover there is constant
C> 0 independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖W1,∞ ≤ C,

where in particular 0 ≤ v ≤ K0 with

K0 := max{‖v0‖L∞ , K}. (1.4)

Next, we will study the large time behaviour of solutions. One can easily compute that the
system (1.3) has three homogeneous steady states (us, vs):

(us, vs) =
⎧⎨⎩(0, 0) or (0, K), if γF(K) ≤ θ ,

(0, 0) or (0, K) or (u∗, v∗), if γF(K)> θ

with u∗, v∗ > 0 determined by the following algebraic equations:

u∗ = f (v∗)

F(v∗)
, γF(v∗) = θ + αu∗, (1.5)
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where (0, 0) is the extinction steady state, (0, K) is the prey-only steady state and (u∗, v∗) is
the coexistence steady state. As in Ref. [12], for the global stability, along with the hypotheses
(H1)–(H3), we need another condition for the following compound function:

φ(v) = f (v)

F(v)
,

as follows:

(H4) The function φ(v) is continuously differentiable on (0, ∞), φ(0) = lim
v→0

φ(v)> 0 and

φ′(v)< 0 for any v ≥ 0.

Then, the global stability results are given as follows:

Theorem 1.2 (Global stability) Let the hypotheses (H1)–(H4) and assumptions in Theorem 1.1
hold. Then, the solution (u, v) obtained in Theorem 1.1 has the following properties:

(1) If the parameters θ , γ , K satisfy γF(K) ≤ θ where ‘=’ holds iff α > 0, then

‖u‖L∞ + ‖v− K‖L∞ → 0 as t → ∞,

exponentially if γF(K)< θ or algebraically if γF(K) = θ , α > 0.
(2) If the parameters θ , γ , K satisfy γF(K)> θ and

D ≥ max
0≤v≤K0

u∗|F(v)|2|χ (v)|2
4γF(v∗)F′(v)d(v)

,

then

‖u − u∗‖L∞ + ‖v − v∗‖L∞ → 0 as t → ∞,

where the convergence is exponential if α > 0.

We remark if d(v) and χ (v) are constant, the system (1.3) has been studied from various
aspects (cf. Refs. [2, 6, 22, 23, 37, 46]), and in particular the global existence and stability
of solutions have been established in a previous work by the authors in Ref. [12]. The results
Theorems 1.1 and 1.2 extend the results of Ref. [12] to non-constant d(v) and χ (v). Moreover,
the proof of Theorem 1.2 uses a similar idea (method of Lyapunov functional) as in Ref. [12].
Except these analogies, we would like to stress some essential differences between the present
paper and [12] below.

• The method used in Ref. [12] to prove the global existence of solutions was based on a priori
estimate for the energy functional

∫
�

u ln udx to attain the L2-estimate of solutions. However,
such a priori estimates are attainable only for case where the motility function d(v) is con-
stant. Hence, the method of Ref. [12] is inapplicable to the model (1.3). In this paper, we
estimate L2-norm of solutions directly to obtain the global existence of solutions (see Section
3). With this new direct L2-estimate method, the concavity of F(v) required in Ref. [12] is no
longer needed. That is, we not only use a different method to prove the global boundedness of
solutions but also remove the condition F′′(v) ≤ 0 imposed in Ref. [12].

• If d(v) and χ (v) are non-constant as considered in this paper, we find that the system (1.3)
can generate pattern formation as shown in Section 5. This is different from Ref. [12] where
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no pattern formation can be founded for constant d(v) and χ (v). Our result indicates that the
density-dependent motility is a trigger for pattern formation, which is a new finding.

• In the proof of global stability shown in Section 4, we need the estimate of ‖∇u‖L4 which can
be easily obtained for constant d(v) and χ (v) but is not clear if d(v) and χ (v) are not constant.
Hence, we present a new proof in Lemma 4.2.

In Section 5, we shall detail the results of Theorems 1.1 and 1.2 for specific and often
used forms of F(v). In Theorem 1.2, the conditions on parameter values are identified to
ensure the global stability of homogeneous steady states. However, it is unknown whether
non-homogeneous (i.e. non-constant) steady states exist outside the stability regimes found in
Theorem 1.2. In the final Section 5, we shall use linear stability analysis to find the conditions
on parameters for the instability of equilibria of (1.3) and then perform numerical simulations to
illustrate that indeed spatially inhomogeneous patterns and time-periodic patterns can be found
under certain conditions. We also demonstrate that the non-constant motility function d(v) plays
an important role in generating the pattern formation.

2 Local existence and Preliminaries

In what follows, we shall use ci or Ci(i = 1, 2, 3, · · · ) to denote a generic constant which may
vary in the context. We first state the existence of local-in-time classical solutions of system
(1.3) by using the abstract theory of quasilinear parabolic systems in Ref. [5].

Lemma 2.1 (Local existence) Let � be a bounded domain in R
2 with smooth boundary and the

hypotheses (H1)–(H3) hold. Assume (u0, v0) ∈ [W 1,p(�)]2 with u0, v0 ≥ 0( 
≡ 0) and p> 2. Then
there exists Tmax ∈ (0, ∞] such that the problem (1.3) has a unique classical solution (u, v) ∈
[C([0, Tmax) × �̄) ∩ C2,1((0, Tmax) × �̄)]2 satisfying u, v ≥ 0 for all t> 0. Moreover, we have

either Tmax = ∞, or lim sup
t↗Tmax

(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ ) = ∞. (2.1)

Proof We shall apply the theory developed by Amann [5] to prove this lemma. With ω= (u, v),
the system (1.3) can be reformulated as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωt = ∇ · (A(ω)∇ω) +�(ω), x ∈�, t> 0,

∂ω

∂ν
= 0, x ∈ ∂�, t> 0,

ω(·, 0) = (u0, v0), x ∈�,

where

A(ω) =
[

d(v) −χ (v)u

0 1

]
and �(ω) =

[
γ uF(v) − θu − αu2

f (v) − uF(v)

]
.

Since the given initial conditions satisfy 0 ≤ (u0, v0) ∈ [W 1,p(�)]2 with p> 2 and hence the
matrix A(ω) is positively definite at t = 0. Hence, the system (1.3) is normally parabolic and
the local existence of solutions follows from Ref. [4, Theorem 7.3]. That is, there exists
a Tmax > 0 such that the system (1.3) admits a unique solution (u, v) ∈ [C([0, Tmax) × �̄) ∩
C2,1((0, Tmax) × �̄)]2.
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Next, we will use the maximum principle to prove that u, v ≥ 0. To this end, we rewrite the
first equation of (1.3) as

ut = d(v)�u + [d′(v)∇v− χ (v)∇v] · ∇u − χ ′(v)u|∇v|2 − χ (v)u�v+ γ uF(v) − θu − αu2.

(2.2)

Then applying the strong maximum principle to (2.2) with the Neumann boundary condition
asserts that u> 0 for all (x, t) ∈�× (0, Tmax) due to u0 
≡ 0. Similarly, we can show v > 0 for
any (x, t) ∈�× (0, Tmax) by applying the strong maximum principle to the second equation of
system (1.3). Since A(ω) is an upper triangular matrix, the assertion (2.1) follows from Ref. [3,
Theorem 5.2] directly. Then the proof of Lemma 2.1 is completed.

Lemma 2.2 ([12]) Under the conditions in Lemma 2.1, the solution (u, v) of (1.3) satisfies

0 ≤ v(x, t) ≤ K0, for all x ∈� and t ∈ (0, Tmax), (2.3)

where K0 is defined by (1.4).

Next, we present a basic boundedness property of the solutions to (1.3).

Lemma 2.3 Let (u, v) be a solution of system (1.3). Then there exists a constant C> 0 such that∫
�

udx ≤ C, for all t ∈ (0, Tmax). (2.4)

Moreover, if α > 0 or χ (v) = −d′(v), one has∫ t+τ

t

∫
�

u2dxds ≤ C, for all t ∈ (0, T̃max), (2.5)

where

τ := min
{

1,
1

2
Tmax

}
and T̃max :=

⎧⎨⎩Tmax − τ , if Tmax <∞,

∞, if Tmax = ∞.
(2.6)

Proof Multiplying the second equation (1.3) by γ and adding the resulting equation into the
first equation of (1.3), then integrating the result over �× (0, t), one has

d

dt

(∫
�

udx + γ

∫
�

vdx

)
+
∫
�

u(θ + αu)dx = γ

∫
�

f (v)dx,

which, along with the hypotheses (H2) and (H3) and the fact that 0 ≤ v ≤ K0, gives

d

dt

(∫
�

udx + γ

∫
�

vdx

)
+ θ

(∫
�

udx + γ

∫
�

vdx

)
+ α

∫
�

u2dx ≤ (γμ+ θγ )
∫
�

vdx

≤ (γμ+ θγ )K0|�|.
(2.7)

Then, the Gronwall’s inequality applied to (2.7) yields (2.4). If α > 0, then integrating (2.7) over
(t, t + τ ), we have (2.5) directly.

https://doi.org/10.1017/S0956792520000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000248


658 H.-Y. Jin and Z.-A. Wang

Next, we consider the case χ (v) = −d′(v). In this case, the first equation of system (1.3) can
be written as

ut =�(d(v)u) + γ uF(v) − θu − αu2. (2.8)

Let 0< δ < θ
d(0) and let A denote the self-adjoint realisation of −�+ δ under homogeneous

Neumann boundary conditions in L2(�). Since δ > 0, A possesses an order-preserving bounded
inverse A−1 on L2(�) and hence we can find a constant c1 > 0 such that

‖A−1ψ‖L2 ≤ c1‖ψ‖L2 for all ψ ∈ L2(�), (2.9)

and

‖A− 1
2ψ‖2

L2 =
∫
�

ψ ·A−1ψdx ≤ c1‖ψ‖2
L2 for all ψ ∈ L2(�). (2.10)

From the second equation of (1.3) with (2.8), we have

(u + γ v)t =�(d(v)u + Dγ v) − θu − αu2 + γ f (v),

which can be rewritten as

(u + γ v)t +A(d(v)u + Dγ v) = δ[d(v)u + Dγ v] − θu − αu2 + γ f (v)

= (δd(v) − θ − αu)u + γ f (v) + Dδγ v.
(2.11)

Noting the facts 0< δ < θ
d(0) and (2.3), one can derive that

(δd(v) − θ − αu)u + γ f (v) + Dδγ v ≤ (δd(0) − θ )u + c2 ≤ c2. (2.12)

Hence, multiplying (2.11) by A−1(u + γ v) ≥ 0, and using the fact (2.12), one has

1

2

d

dt

∫
�

|A− 1
2 (u + γ v)|2dx +

∫
�

(d(v)u + Dγ v)(u + γ v)dx ≤ c2

∫
�

A−1(u + γ v)dx,

which together with the fact 0< d(K0) ≤ d(v), gives a constant c3 := min{d(K0), D} such that

1

2

d

dt

∫
�

|A− 1
2 (u + γ v)|2dx + c3

∫
�

(u + γ v)2dx ≤ c2

∫
�

A−1(u + γ v)dx. (2.13)

Using (2.9) and (2.10), we can derive that

c3

4c1

∫
�

|A− 1
2 (u + γ v)|2dx + c2

∫
�

A−1(u + γ v)dx ≤ c3

4

∫
�

(u + γ v)2dx + c2|�| 1
2 ‖u + γ v‖L2

≤ c3

2

∫
�

(u + γ v)2dx + c2
2|�|
c3

. (2.14)

Adding (2.14) and (2.13), and letting y1(t) := ∫
�

|A− 1
2 (u + γ v)|2, one has

y′
1(t) + c3

2c1
y1(t) + c3

∫
�

(u + γ v)2dx ≤ 2c2
2|�|
c3

.
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Then one has y1(t) ≤ c4 and∫ t+τ

t

∫
�

u2dxds ≤
∫ t+τ

t

∫
�

(u + γ v)2dxds ≤ y1(t)

c3
+ 2c2

2|�|τ
c2

3

≤ c4

c3
+ 2c2

2|�|
c2

3

for all t ∈ (0, T̃max),

which gives (2.5). Then the proof of this lemma is completed.

Moreover, we can thereupon deduce the following result as a consequence of Lemma 2.3.

Lemma 2.4 Let (u, v) be the solution of system (1.3), then there exists a constant C> 0
independent of t such that

‖∇v‖L2 ≤ C, for all t ∈ (0, Tmax), (2.15)

and ∫ t+τ

t

∫
�

|�v|2dxds ≤ C, for all t ∈ (0, T̃max), (2.16)

where τ and T̃max are defined by (2.6).

Proof Multiplying the second equation of system (1.3) by −�v, integrating the result by
part and using the Cauchy–Schwarz inequality and the boundedness of v in (2.3), we end
up with

1

2

d

dt

∫
�

|∇v|2dx + D

∫
�

|�v|2dx =
∫
�

uF(v)�vdx −
∫
�

f (v)�vdx,

≤ D

2

∫
�

|�v|2dx + 1

D

∫
�

F2(v)u2dx + 1

D

∫
�

f 2(v)dx

≤ D

2

∫
�

|�v|2dx + F2(K0)

D

∫
�

u2dx + c1,

which yields

d

dt

∫
�

|∇v|2dx + D

∫
�

|�v|2dx ≤ 2F2(K0)

D

∫
�

u2dx + 2c1. (2.17)

Using the Gagliardo–Nirenberg inequality and noting the fact ‖v‖L2 ≤ K0|�| 1
2 , one has∫

�

|∇v|2dx = ‖∇v‖2
L2 ≤ c2(‖�v‖L2‖v‖L2 + ‖v‖2

L2 ) ≤ D

2
‖�v‖2

L2 + c3. (2.18)

Substituting (2.18) into (2.17), we get

d

dt

∫
�

|∇v|2dx +
∫
�

|∇v|2dx + D

2

∫
�

|�v|2dx ≤ 2F2(K0)

D

∫
�

u2dx + c4. (2.19)
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Denote y(t) := ∫
�

|∇v(·, t)|2dx, t ∈ [0, Tmax) and z(t) := 2F2(K0)
D

∫
�

u2dx + c4, from (2.19) we have

y′(t) + y(t) ≤ z(t) for all t ∈ (0, Tmax), (2.20)

which gives (2.15) by noting (2.5). On the other hand, integrating (2.19) over (t, t + τ ) along
with (2.5) and (2.15), we obtain (2.16).

3 Boundedness of solutions

We will derive the a priori L2-estimate of the solution component u.

Lemma 3.1 Let the conditions in Theorem 1.1 hold. Then, the solution of (1.3) satisfies

‖u(·, t)‖L2 ≤ C, for all t ∈ (0, Tmax), (3.1)

where C> 0 is a constant independent of t.

Proof Multiplying the first equation of (1.3) by 2u, integrating the result with respect to x over
�, one has

d

dt

∫
�

u2dx + 2
∫
�

d(v)|∇u|2dx + 2α
∫
�

u3dx + 2θ
∫
�

u2dx

= 2
∫
�

uχ (v)∇u · ∇vdx + 2γ
∫
�

u2F(v)dx.

(3.2)

With the assumptions in (H1)–(H2) and the fact (2.3), one has d(v) ≥ d(K0)> 0, 0< F(v) ≤
F(K0) and 0 ≤ χ (v) ≤ c1. Then using the Young’s inequality and Hölder inequality, we have
from (3.2) that

d

dt

∫
�

u2dx + 2d(K0)
∫
�

|∇u|2dx + 2α
∫
�

u3dx + 2θ
∫
�

u2dx

≤ 2c1

∫
�

u|∇u||∇v|dx + 2γF(K0)
∫
�

u2dx

≤ d(K0)
∫
�

|∇u|2dx + c2
1

d(K0)

∫
�

u2|∇v|2dx + 2γF(K0)
∫
�

u2dx

≤ d(K0)‖∇u‖2
L2 + c2

1

d(K0)
‖u‖2

L4‖∇v‖2
L4 + 2γF(K0)‖u‖2

L2 .

(3.3)

Using the Gagliardo–Nirenberg inequality, one has

‖u‖2
L4 ≤ c2

(‖∇u‖L2‖u‖L2 + ‖u‖2
L2

)
, (3.4)

and the following estimate (cf. Ref. [13, Lemma 2.5]):

‖∇v‖2
L4 ≤ c3

(‖�v‖L2‖∇v‖L2 + ‖∇v‖2
L2

)≤ c3c4(‖�v‖L2 + c4), (3.5)
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where the fact ‖∇v‖L2 ≤ c4 has been used. Combining (3.4)–(3.5) and using the Young’s
inequality, we obtain

c2
1

d(K0)
‖u‖2

L4‖∇v‖2
L4 ≤ c5

(‖∇u‖L2‖u‖L2 + ‖u‖2
L2

)
(‖�v‖L2 + c4)

≤ c5‖∇u‖L2‖u‖L2‖�v‖L2 + c4c5‖∇u‖L2‖u‖L2

+ c5‖u‖2
L2‖�v‖L2 + c4c5‖u‖2

L2

≤ d(K0)‖∇u‖2
L2 + c2

5

d(K0)
‖u‖2

L2‖�v‖2
L2 + c6‖u‖2

L2 ,

(3.6)

where c5 := c2
1c2c3c4
d(K0) and c6 := c2

4c2
5+d2(K0)+2c4c5d(K0)

2d(K0) . Then with (3.6), we update (3.3) as

d

dt
‖u‖2

L2 ≤ c2
5

d(K0)
‖u‖2

L2‖�v‖2
L2 + (2γF(K0) + c6)‖u‖2

L2 ≤ c7‖u‖2
L2 (‖�v‖2

L2 + 1), (3.7)

with c7 := c2
5

d(K0) + 2γF(K0) + c6. For any t ∈ (0, Tmax) and in the case of either t ∈ (0, τ ) or t ≥ τ
with τ = min

{
1, 1

2 Tmax

}
, from (2.5) we can find a t0 = t0(t) ∈ ((t − τ )+, t) such that t0 ≥ 0 and∫

�

u2(x, t0)dx ≤ c8. (3.8)

On the other hand, from (2.16) in Lemma 2.4, we can find a constant c9 > 0 such that∫ t0+τ

t0

∫
�

|�v(x, s)|2dxds ≤ c9 for all t0 ∈ (0, T̃max). (3.9)

Then integrating (3.7) over (t0, t), and using (3.8), (3.9) and the fact t ≤ t0 + τ ≤ t0 + 1, we derive

‖u(·, t)‖2
L2 ≤ ‖u(·, t0)‖2

L2 · e
c7
∫ t

t0
(‖�v(·,s)‖2

L2 +1)ds ≤ c8ec7(c9+1),

which yields (3.1) and completes the proof of Lemma 3.1.

Next, we will derive the boundedness of ‖u(·, t)‖L∞ by the Moser iteration.

Lemma 3.2 Let the conditions in Theorem 1.1 hold. Then the solution of system (1.3) satisfies

‖u(·, t)‖L∞ ≤ C for all t ∈ (0, Tmax), (3.10)

where the constant C> 0 independent of t.

Proof First, we claim that if ‖u(·, t)‖Lp ≤ M0(p ≥ 1), then it holds that

‖∇v(·, t)‖Lr ≤ c1, for all t ∈ (0, Tmax), (3.11)

with

r ∈

⎧⎪⎪⎨⎪⎪⎩
[1, np

n−p ), if p< n,

[1, ∞), if p = n,

[1, ∞], if p> n.

(3.12)
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In fact, from the second equation of system (1.3), we know that v solves the following
problem:

vt = D�v − v+ g(u, v) in �,
∂v

∂ν
= 0, (3.13)

where g(u, v) := v− uF(v) + f (v). Noting the properties of F(v), f (v) and the fact that 0 ≤
v(x, t) ≤ K0 in (2.3), one has

‖g(u, v)‖Lp ≤ c2(‖u‖Lp + 1) ≤ c2(M0 + 1) := c3. (3.14)

Then applying the results of Ref. [19, Lemma 1] (see also Ref. [39, Lemma 1.2]) to the problem
(3.13) with (3.14), we obtain (3.11) with (3.12).

Using up−1 with p ≥ 2 as a test function for the first equation in (1.3), and integrating the
resulting equation by parts, we obtain

1

p

d

dt

∫
�

updx + (p − 1)
∫
�

d(v)up−2|∇u|2dx + α

∫
�

up+1dx + θ

∫
�

updx

= (p − 1)
∫
�

χ (v)up−1∇u · ∇vdx + γ

∫
�

F(v)updx.

(3.15)

Using the facts 0 ≤ χ (v) ≤ c4, d(v) ≥ d(K0)> 0, 0< F(v) ≤ F(K0), α ≥ 0 and applying the
Young’s inequality, from (3.15) we obtain

1

p

d

dt

∫
�

updx + (p − 1)d(K0)
∫
�

up−2|∇u|2dx + θ

∫
�

updx

≤ c4(p − 1)
∫
�

up−1|∇u||∇v|dx + γF(K0)
∫
�

updx

≤ (p − 1)d(K0)

2

∫
�

up−2|∇u|2dx + c2
4(p − 1)

2d(K0)

∫
�

up|∇v|2dx + γF(K0)
∫
�

updx,

which along with the fact

p(p − 1)d(K0)

2

∫
�

up−2|∇u|2dx = 2(p − 1)d(K0)

p

∫
�

|∇u
p
2 |2dx,

gives

d

dt

∫
�

updx + pθ

∫
�

updx + 2(p − 1)d(K0)

p

∫
�

|∇u
p
2 |2dx

≤ c2
4p(p − 1)

2d(K0)

∫
�

up|∇v|2dx + γF(K0)
∫
�

updx,

(3.16)

for all t ∈ (0, Tmax) and for all p ≥ 2. From Lemma 3.1, one has ‖u(·, t)‖L2 ≤ c5 and hence
‖∇v(·, t)‖L4 ≤ c6 by noting (3.11). Then using the Hölder inequality and the Gagliardo–

Nirenberg inequality with the fact ‖u
p
2 (·, t)‖

L
4
p

= ‖u(·, t)‖
p
2
L2 ≤ c

p
2
5 , one has for all t ∈ (0, Tmax)
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c2
4p(p − 1)

2d(K0)

∫
�

up|∇v|2dx ≤ c2
4p(p − 1)

2d(K0)

(∫
�

u2pdx

) 1
2
(∫

�

|∇v|4dx

) 1
2

≤ c2
4c2

6p(p − 1)

2d(K0)
‖u

p
2 ‖2

L4

≤ c7

(
‖∇u

p
2 ‖2

(
1− 1

p

)
L2 ‖u

p
2 ‖

2
p

L
4
p

+ ‖u
p
2 ‖2

L
4
p

)

≤ c7c5‖∇u
p
2 ‖2(1− 1

p )

L2 + c7cp
5

≤ (p − 1)d(K0)

p
‖∇u

p
2 ‖2

L2 + d(K0)

p

(
c7c5

d(K0)

)p

+ c7cp
5,

(3.17)

and

γF(K0)
∫
�

updx = γF(K0)‖u
p
2 ‖2

L2

≤ c8

(
‖∇u

p
2 ‖2

(
1− 2

p

)
L2 ‖u

p
2 ‖

4
p

L
4
p

+ ‖u
p
2 ‖2

L
4
p

)

≤ c8c2
5‖∇u

p
2 ‖2(1− 2

p )

L2 + c8cp
5

≤ (p − 1)d(K0)

p
‖∇u

p
2 ‖2

L2 + d(K0)

p

(
c8c2

5

d(K0)

)p

+ c8cp
5.

(3.18)

Substituting (3.17) and (3.18) into (3.16), and letting c9 := d(K0)
p

(
c7c5
d(K0)

)p + d(K0)
p

(
c8c2

5
d(K0)

)p

+
(c7 + c8)cp

5, we obtain

d

dt

∫
�

updx + pθ

∫
�

updx ≤ c9,

which, combined with the Gronwall’s inequality, yields

‖u(·, t)‖p
Lp ≤ e−pθ t‖u0‖p

Lp + c9

pθ
(1 − e−pθ t) ≤ ‖u0‖p

Lp + c9

pθ
. (3.19)

Then choosing p = 4 in (3.19) and using (3.11) again, one can find a constant c10 > 0 independent
of p such that ‖∇v(·, t)‖L∞ ≤ c7. Then using the Moser iteration procedure (cf. Ref. [1]), one has
(3.10). Hence, we complete the proof of Lemma 3.2.

Proof of Theorem 1.1 Theorem 1.1 is a consequence of Lemmas 2.1 and 3.2.

4 Globally asymptotic stability of solutions

Based on some ideas in Ref. [12], we shall prove the global stability results in Theorem 1.2 in
this section by the method of Lyapunov functionals with the help of LaSalle’s invariant prin-
ciple under the hypotheses (H1)–(H4). Here, we employ the same Lyapunov functionals as
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in Ref. [12] and hence will skip many similar computations. To proceed, we first derive some
regularity results for the solution (u, v) by using some ideas in Ref. [38].

Lemma 4.1 Let (u, v) be the non-negative global classical solution of system (1.3) obtained in
Theorem 1.1. Then there exist σ ∈ (0, 1) and C> 0 such that

‖v‖
C

2+σ ,1+ σ
2 (�̄×[t,t+1])

≤ C, for all t> 1. (4.1)

Proof From Theorem 1.1, we can find three positive constants c1, c2, c3 such that

0< u(x, t) ≤ c1, 0< v(x, t) ≤ c2 and |∇v(x, t)| ≤ c3 for all x ∈� and t> 0.

The first equation of system (1.3) can be rewritten as

ut = ∇ · A(x, t, ∇u) + B(x, t) for all x ∈� and t> 0,

where

A(x, t, ∇u) := d(v)∇u − χ (v)u∇v,

and

B(x, t) := (γF(v) − θ − αu)u.

By the assumptions in (H1)–(H3) and using the Young’s inequality, then for all x ∈� and t> 0,
we obtain that

A(x, t, ∇u) · ∇u = d(v)|∇u|2 − χ (v)u∇v · ∇u

≥ d(v)|∇u|2 − |χ (v)|u|∇v||∇u|

≥ d(v)

2
|∇u|2 − |χ (v)|2

2d(v)
u2|∇v|2

≥ d(c2)

2
|∇u|2 − c4,

(4.2)

and

|A(x, t, ∇u)| ≤ d(0)|∇u| + c5, (4.3)

as well as

|B(x, t)| ≤ c6. (4.4)

Then (4.2)–(4.4) allow us to apply the Hölder regularity for quasilinear parabolic equations [32,
Theorem 1.3 and Remark 1.4] to obtain ‖u‖

C
σ , σ2 (�̄×[t,t+1])

≤ c7 for all t> 1. Moreover, applying

the standard parabolic Schauder theory [20] to the second equation of (1.3), one has (4.1). Then
the proof of Lemma 4.1 is completed.

With the results in Lemma 4.1 in hand, we next derive the following results.
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Lemma 4.2 Suppose the conditions in Lemma 4.1 hold. Then we can find a constant C> 0 such
that

‖∇u‖L4 ≤ C for all t> 1. (4.5)

Proof From the first equation of system (1.3), we have

1

4

d

dt

∫
�

|∇u|4dx =
∫
�

|∇u|2∇u · ∇utdx

=
∫
�

|∇u|2∇u · ∇(∇ · (d(v)∇u))dx −
∫
�

|∇u|2∇u · ∇(∇ · (χ (v)u∇v))dx

+
∫
�

∇(γF(v)u − θu − αu2) · ∇u|∇u|2dx

=: I1 + I2 + I3.

(4.6)

With the integration by parts, the term I1 becomes

I1 = −
∫
�

(|∇u|2�u)∇ · (d(v)∇u)dx −
∫
�

(∇|∇u|2 · ∇u)∇ · (d(v)∇u)dx

=
∫
�

d(v)|∇u|2(∇�u · ∇u)dx −
∫
�

d′(v)(∇|∇u|2 · ∇u)(∇u · ∇v)dx,

which, combined with the fact ∇�u · ∇u = 1
2�|∇u|2 − |D2u|2 where D2u denotes the Hessian

matrix of u, gives

I1 = 1

2

∫
�

d(v)|∇u|2�|∇u|2dx −
∫
�

d(v)|∇u|2|D2u|2dx −
∫
�

d′(v)(∇|∇u|2 · ∇u)(∇u · ∇v)dx

= 1

2

∫
∂�

d(v)|∇u|2 ∂|∇u|2
∂ν

dS − 1

2

∫
�

d′(v)|∇u|2∇v · ∇|∇u|2dx − 1

2

∫
�

d(v)|∇|∇u|2|2dx

−
∫
�

d(v)|∇u|2|D2u|2dx −
∫
�

d′(v)(∇|∇u|2 · ∇u)(∇u · ∇v)dx

≤ 1

2

∫
∂�

d(v)|∇u|2 ∂|∇u|2
∂ν

dS − 1

2

∫
�

d(v)|∇|∇u|2|2dx −
∫
�

d(v)|∇u|2|D2u|2dx

+ 3

2

∫
�

|d′(v)|
∣∣∣∇|∇u|2

∣∣∣|∇u|2|∇v|dx. (4.7)

With the facts ‖u(·, t)‖L∞ + ‖v(·, t)‖W1,∞ ≤ c1 and (4.1), we have

∇ · (χ (v)u∇v) = χ ′(v)u|∇v|2 + χ (v)∇u · ∇v + χ (v)u�v

≤ c2(1 + |∇u|) for all t> 1,

which updates I2 as

I2 =
∫
�

∇|∇u|2 · ∇u∇ · (χ (v)u∇v)dx +
∫
�

|∇u|2�u∇ · (χ (v)u∇v)dx

≤ c2

∫
�

|∇u||∇|∇u|2|(1 + |∇u|)dx + c2

∫
�

|∇u|2|�u|(1 + |∇u|)dx.

(4.8)
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Moreover, the term I3 can be estimated as follows:

I3 =
∫
�

∇(γF(v)u − θu − αu2) · ∇u|∇u|2dx

=
∫
�

γF′(v)u∇v · ∇u|∇u|2dx + γ

∫
�

F(v)|∇u|4dx − θ

∫
�

|∇u|4dx − 2α
∫
�

u|∇u|4dx

≤ c3

∫
�

|∇u|4dx + c4.

(4.9)

Substituting (4.7)–(4.9) into (4.6), and using the fact 0< d(K0) ≤ d(v) ≤ d(0), we have

1

4

d

dt

∫
�

|∇u|4dx + d(K0)

2

∫
�

|∇|∇u|2|2dx + d(K0)
∫
�

|∇u|2|D2u|2dx

≤ 1

2

∫
∂�

d(v)|∇u|2 ∂|∇u|2
∂ν

dS + 3

2

∫
�

|d′(v)||∇|∇u|2||∇u|2|∇v|dx

+ c2

∫
�

|∇u||∇|∇u|2|(1 + |∇u|)dx + c2

∫
�

|∇u|2|�u|(1 + |∇u|)dx

+ c3

∫
�

|∇u|4dx + c4

� J1 + J2 + J3 + J4 + c3

∫
�

|∇u|4dx + c4.

(4.10)

With the inequality ∂|∇u|2
∂ν

≤ 2λ′|∇u|2 on ∂� (see Ref. [28, Lemma 4.2]) we derive

J1 ≤ d(0)

2

∣∣∣ ∫
∂�

|∇u|2 ∂|∇u|2
∂ν

dS
∣∣∣

≤ λ′d(0)‖|∇u|2‖2
L2(∂�) ≤ d(K0)

8

∫
�

|∇|∇u|2|2dx + c5

∫
�

|∇u|4dx,

(4.11)

where we have used the following trace inequality (cf. Ref. [36, Remark 52.9]):

‖ϕ‖L2(∂�) ≤ ε‖∇ϕ‖L2(�) + Cε‖ϕ‖L2(�), for any ε > 0.

By the boundedness of ‖∇v‖L∞ and Young’s inequality, one derives

J2 + J3 ≤ c6

∫
�

|∇|∇u|2||∇u|(1 + |∇u|)dx

≤ d(K0)

8

∫
�

|∇|∇u|2|2dx + c7

∫
�

|∇u|4dx + c7.

(4.12)

Since |�u| ≤ √
2|D2u|, one can estimate J4 as follows:

J4 ≤ c2

√
2
∫
�

|∇u|2|D2u|dx + c2

√
2
∫
�

|∇u|3|D2u|dx

≤ d(K0)

2

∫
�

|∇u|2|D2u|2dx + 2c2
2

d(K0)

∫
�

(|∇u|2 + |∇u|4)dx

≤ d(K0)

2

∫
�

|∇u|2|D2u|2dx + 4c2
2

d(K0)

∫
�

|∇u|4dx + c2
2|�|

2d(K0)
.

(4.13)
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Substituting (4.11)–(4.13) into (4.10), we end up with

d

dt

∫
�

|∇u|4dx + d(K0)
∫
�

|∇|∇u|2|2dx + 2d(K0)
∫
�

|∇u|2|D2u|2dx

≤ c8

∫
�

|∇u|4dx + c9,

(4.14)

where c8 := 4

(
c3 + c5 + c7 + 4c2

2
d(K0)

)
and c9 := 4

(
c4 + c7 + c2

2|�|
2d(K0)

)
. On the other hand, inte-

grating by parts, noting ‖u(·, t)‖L∞ ≤ c10 and using the Young’s inequality, one has

(c8 + 2)
∫
�

|∇u|4dx = c11

∫
�

|∇u|2∇u · ∇udx

= −c11

∫
�

u∇|∇u|2 · ∇udx − c11

∫
�

u|∇u|2�udx

≤ c10c11

∫
�

|∇|∇u|2||∇u|dx + c10c11

√
2
∫
�

|∇u|2|D2u|dx

≤ d(K0)
∫
�

|∇|∇u|2|2dx + 2d(K0)
∫
�

|∇u|2|D2u|2dx + c2
10c2

11

2

∫
�

|∇u|2dx

≤ d(K0)
∫
�

|∇|∇u|2|2dx + 2d(K0)
∫
�

|∇u|2|D2u|2dx

+
∫
�

|∇u|4dx + |�|c4
10c4

11

16
,

which updates (4.14) to

d

dt

∫
�

|∇u|4dx +
∫
�

|∇u|4dx ≤ c9 + c4
10c4

11|�|
16

. (4.15)

Applying the Gronwall’s inequality to (4.15) along with the fact ‖∇u(·, 1)‖L∞ ≤ c12, one obtains
(4.5). Thus the proof of Lemma 4.2 is finished.

Next, we state a basic result which will be used later.

Lemma 4.3 ([12]) Let F satisfy the conditions in (H2) and define a function for some constant
ω∗ > 0:

ζ (v) =
∫ v

ω∗

F(σ ) − F(ω∗)

F(σ )
dσ .

Then ζ (v) is a convex function such that ζ (v) ≥ 0. If (u, v) is a solution of (1.3) satisfying v→ω∗
as t → ∞, then there is a constant T0 > 0 such that for all t ≥ T0 it holds that

F′(ω∗)

4F(ω∗)
(v−ω∗)2 ≤ ζ (v) =

∫ v

ω∗

F(σ ) − F(ω∗)

F(σ )
dσ ≤ F′(ω∗)

F(ω∗)
(v−ω∗)2.
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4.1 Global stability of the prey-only steady state

In this subsection, we shall prove that (u, v) converges to (0, K) in L∞ as t → ∞ when
γF(K) ≤ θ and further show that the convergence rate is exponential if γF(K)< θ and algebraic
if γF(K) = θ and α > 0.

Lemma 4.4 Let the assumptions in Theorem 1.2 hold. If γF(K) ≤ θ , then the solution (u, v) of
(1.3) satisfies

‖u‖L∞ + ‖v− K‖L∞ → 0 as t → ∞,

where the convergence rate is exponential if γF(K)< θ and algebraic if γF(K) = θ and α > 0.

Proof We start with the following functional:

V1(u(t), v(t)) =: V1(t) = 1

γ

∫
�

udx +
∫
�

∫ v

K

F(σ ) − F(K)

F(σ )
dσdx, (4.16)

and show d
dt V1(u, v) = d

dt V1(t) ≤ 0 as well as d
dt V1(u, v) = 0 iff (u, v) = (0, K). Indeed dif-

ferentiating the functional (4.16) with respect to t and using the equations in (1.3), one
has

d

dt
V1(t) = 1

γ

∫
�

utdx +
∫
�

F(v) − F(K)

F(v)
vtdx

= 1

γ

∫
�

u(γF(v) − θ − αu)dx +
∫
�

(
1 − F(K)

F(v)

)
(D�v− uF(v) + f (v))dx.

(4.17)

For the second term on the right-hand side of (4.17), we use the integration by parts with some
calculations and cancelations to have

d

dt
V1(t) = 1

γ

∫
�

u(γF(K) − θ − αu)dx − DF(K)
∫
�

F′(v)

∣∣∣∣ ∇v
F(v)

∣∣∣∣2dx

+
∫
�

f (v)

F(v)
(F(v) − F(K))dx.

The rest of the proof only depends on the assumption (H2)–(H4) and hence we can follow the
exact procedures in the proof of Ref. [12, Lemma 4.2] along with the LaSalle’s invariant principle
(cf. Refs. [18, 21]) (or the compact method together with the Lyapunov functional as in Refs.
[43, 45]) to prove that (0, K) is globally asymptotically stable if γF(K) ≤ θ and the following
convergence: ⎧⎨⎩‖u‖L1 + ‖v − K‖2

L2 ≤ c1e−c1t, if γF(K)< θ ,

‖u‖L1 + ‖v − K‖2
L2 ≤ c2(1 + t)−1, if γF(K) = θ , α > 0

(4.18)

hold for t> t0 with some t0 > 1. Furthermore, the Gagliardo–Nirenberg inequality and the result
‖∇u‖L4 ≤ c3 for t> t0 (cf. Lemma 4.2 ) entail that

‖u‖L∞ ≤ c4‖∇u‖ 4
5
L4‖u‖ 1

5
L1 + c4‖u‖L1 ≤ c4c

4
5
3 ‖u‖ 1

5
L1 + c4‖u‖L1 , (4.19)
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which together with (4.18) yields the decay rate of u. Similarly, with ‖∇v‖L4 ≤ c5 (cf. (3.11)),
we obtain

‖v − K‖L∞ ≤ c6‖∇v‖
2
3
L4‖v − K‖

1
3
L2 + c6‖v − K‖L2

≤ c6c
2
3
5 ‖v− K‖

1
3
L2 + c6‖v − K‖L2 ,

(4.20)

which combined with (4.18) gives the decay rate of v. This completes the proof of
Lemma 4.4.

4.2 Global stability of the coexistence steady state

Now we turn to the case γF(K)> θ and prove the homogeneous coexistence steady state (u∗, v∗)
is globally asymptotically stable under certain conditions. We shall prove our result based on the
following Lyapunov functional as in Ref. [12]:

V2(u(t), v(t)) =: V2(t) = 1

γ

∫
�

(
u − u∗ − u∗ ln

u

u∗

)
dx +

∫
�

∫ v

v∗

F(σ ) − F(v∗)

F(σ )
dσdx.

Lemma 4.5 Assume the assumptions in Theorem 1.2 hold. If γF(K)> θ and

D ≥ max
0≤v≤K0

u∗|F(v)|2|χ (v)|2
4γF(v∗)F′(v)d(v)

where u∗ and v∗ are determined by (1.5) and independent of D, then the solution (u, v) of (1.3)
satisfies

‖u − u∗‖L∞ + ‖v − v∗‖L∞ → 0 as t → ∞
where the convergence is exponential when α > 0.

Proof First by the same argument as the proof of Ref. [12, Lemma 4.3], we have that V2(t) ≥ 0
for all u, v ≥ 0. Next we differentiate V2(t) with respect to t and use the equations of (1.3) to
obtain that

d

dt
V2(t) = 1

γ

∫
�

(
1 − u∗

u

)
utdx +

∫
�

F(v) − F(v∗)

F(v)
vtdx

= −u∗
γ

∫
�

d(v)|∇u|2
u2

dx − DF(v∗)
∫
�

F′(v)

∣∣∣∣ ∇v
F(v)

∣∣∣∣2dx + u∗
γ

∫
�

χ (v)∇u · ∇v
u

dx︸ ︷︷ ︸
I1

+ 1

γ

∫
�

(
1 − u∗

u

)
(γ uF(v) − θu − αu2)dx +

∫
�

(F(v) − F(v∗))

(
f (v)

F(v)
− u

)
dx︸ ︷︷ ︸

I2

.

I1 can be rewritten as

I1 = −
∫
�

�T A�, �=
[∇u

∇v

]
, A =

⎡⎢⎢⎢⎣
u∗d(v)

γ u2
−χ (v)u∗

2γ u

−χ (v)u∗
2γ u

DF(v∗)F′(v)

|F(v)|2

⎤⎥⎥⎥⎦ .
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where �T denotes the transpose of �. Then, it can be easily checked with Sylvesters criterion
that the matrix A is non-negative definite (and hence I1 ≤ 0) if and only if

DF(v∗)F′(v)u∗d(v)

γ |F(v)|2u2
≥ |χ (v)|2u2∗

4γ 2u2
or D ≥ u∗|F(v)|2|χ (v)|2

4γF(v∗)F′(v)d(v)
,

where u∗ and v∗ do not depend on D, see (1.5). Note that the above I2 is exactly the same as
the I2 in the proof of Ref. [12, Lemma 4.3]. Hence, we can follow the same procedure for the
proof of Ref. [12, Lemma 4.3] to show the homogeneous coexistence state (u∗, v∗) is globally
asymptotically stable and satisfies

‖u − u∗‖L2 + ‖v − v∗‖L2 ≤ c1e−c2t for t> t0, (4.21)

with some t0 > 1 for α > 0. Using the Gagliardo–Nirenberg inequality and the boundedness of
‖∇u‖L4 and ‖∇v‖L∞ (see Lemmas 4.1 and 4.2), we use a similar procedure as for (4.19)–(4.20)
to finally obtain the exponential decay rate in L∞-norm from (4.21).

4.3 Proof of Theorem 1.2

Theorem 1.2 is directly obtained from Lemmas 4.4 and 4.5.

5 Applications and spatio-temporal patterns

The first purpose of this section is to apply our general results obtained in Theorems 1.1 and
1.2 to two most widely used predator–prey interactions: Lotka–Volterra type (i.e. F(v) = v) and
Rosenzweig–MacArthur type (i.e. F(v) = v

λ+v and α = 0) [33]. Note that these results only give
the global existence of solutions (by Theorem 1.1) and global stability of constant steady states
(by Theorem 1.2), the distribution of the predator and the prey in space and the time-asymptotic
dynamics of the population outside the parameter regimes found in Theorem 1.2 are unclear, but
indeed they are more interesting from the application point of view in ecology though hard to
study analytically. Hence, the second purpose of this section is to numerically exploit the spatio-
temporal patterns generated by the Lotka–Volterra and Rosenzweig–MacArthur predator–prey
systems, which not only display the distribution patterns of the predator and the prey in space or
evolution of population in time but also provide useful sources for the future research.

5.1 Application of our results

In this subsection, we shall give some examples to illustrate the applications of Theorems 1.1
and 1.2. The first example is the Lotka–Volterra predator–prey system [25] with prey-taxis⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (d(v)∇u) − ∇ · (uχ (v)∇v) + γ uv − θu − αu2, x ∈�, t> 0,

vt = D�v − uv +μv(1 − v
K ), x ∈�, t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�.

(5.1)
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Then, the application of the results in Theorems 1.1 and 1.2 yields the following results on the
system (5.1).

Proposition 5.1 Let �⊂R
2 be a bounded domain with smooth boundary and assume (u0, v0) ∈

[W 1,p(�)]2 with u0, v0 ≥ 0( 
≡ 0) and p> 2. Assume α > 0, then the problem (5.1) has a unique
global classical solution (u, v) ∈ [C([0, ∞) × �̄) ∩ C2,1((0, ∞) × �̄)]2 such that:

• If γK ≤ θ , then

‖u‖L∞ + ‖v − K‖L∞ → 0 as t → ∞,

where the convergence is exponential if γK < θ and algebraic if γK = θ .
• If γK > θ and

4DγK(μα + θ )

μ(γK − θ )K2
0

≥ M0,

with M0 = max
0≤v≤K0

|χ(v)|2
d(v) , then

‖u − u∗‖L∞ + ‖v − v∗‖L∞ → 0 exponentially as t → ∞,

where

(u∗, v∗) =
(
μ(γK − θ )

γK +μα
,

K(μα + θ )

γK +μα

)
. (5.2)

The second example is the Rosenzweig–MacArthur type predator–prey interaction. From
Theorem 1.1 with α= 0, we only have the results for the special case χ (v) = −d′(v) (density
suppressed motility) which leads to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =�(d(v)u) + γ uv

λ+ v
− θu, x ∈�, t> 0,

vt = D�v − uv

λ+ v
+μv

(
1 − v

K

)
, x ∈�, t> 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t> 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈�.

(5.3)

In this case, the hypothesis (H4) is satisfied by requiring λ>K. Then, the interpretation of our
results of Theorems 1.1 and 1.2 into (5.3) yields the following results.

Proposition 5.2 Assume (u0, v0) ∈ [W 1,p(�)]2 with u0, v0 ≥ 0( 
≡ 0) and p> 2. If λ>K, then the
problem (5.3) has a unique global classical solution in �⊂R

2 such that

• If γK
λ+K < θ , then

‖u‖L∞ + ‖v − K‖L∞ → 0 exponentially as t → ∞.

• If γK
λ+K > θ and 4Dθλ

K2
0 u∗

≥ M1 with M1 = max
0≤v≤K0

|d′(v)|2
d(v) , it follows that

‖u − u∗‖L∞ + ‖v − v∗‖L∞ → 0 as t → ∞,
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where

(u∗, v∗) =
(
γ λμ[(γ − θ )K − θλ]

(γ − θ )2K
,
θλ

γ − θ

)
.

5.2 Linear instability analysis

In this section, we will study the possible pattern formation generated by the system (1.3)
under the assumptions (H1)–(H3). We begin with the space-absent ordinary differential equation
(ODE) system of (1.3): {

ut = γ uF(v) − θu − αu2,

vt = −uF(v) + f (v),
(5.4)

which has three possible equilibria: (0, 0), (0, K) and (u∗, v∗). One can easily check that the
steady state (0, 0) is linearly unstable and (0, K) is linearly stable for both Lotka–Volterra and
Rosenzweig–MacArthur type predator–prey interactions. For the homogeneous coexistence
steady state (u∗, v∗), it is linearly stable for the Lotka–Volterra type interaction. While for the
Rosenzweig–MacArthur type interaction, one can easily find that all the eigenvalues of the lin-
earised system of (5.4) at (u∗, v∗) have negative real part (hence (u∗, v∗) is stable) if v∗ > K−λ

2 ,
and are complex with zero real part if v∗ = K−λ

2 , and are complex with positive real part (hence
(u∗, v∗) is unstable) if 0< v∗ < K−λ

2 .
Next we proceed to consider the stability of equilibria (0, K) and (u∗, v∗) in the presence of

spatial structure. To this end, we first linearise the system (1.3) at an equilibrium (us, vs) and
write the linearised system as⎧⎪⎪⎨⎪⎪⎩

�t =A��+B�, x ∈�, t> 0,

(ν · ∇)�= 0, x ∈ ∂�, t> 0,

�(x, 0) = (u0 − us, v0 − vs)T , x ∈�,

(5.5)

where T denotes the transpose and

�=
(

u − us

v− vs

)
, A=

(
d(vs) −usχ (vs)

0 D

)
,

as well as

B =
( −αus γ usF′(vs)

−F(vs) −usF′(vs) + f ′(vs)

)
=
(

B1 B2

B3 B4

)
.

Let Wk(x) denote the eigenfunction of the following eigenvalue problem:

�Wk(x) + k2Wk(x) = 0,
∂Wk(x)

∂ν
= 0,

where k is called the wavenumber. Since the system (5.5) is linear, the solution �(x, t) has the
form of

�(x, t) =
∑
k≥0

ckeρtWk(x), (5.6)
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where the constants ck are determined by the Fourier expansion of the initial conditions in terms
of Wk(x) and ρ is the temporal eigenvalue. Substituting (5.6) into (5.5), one has

ρWk(x) = −k2AWk(x) + BWk(x),

which implies ρ is the eigenvalue of the following matrix:

Mk =
(−d(vs)k2 − αus usχ (vs)k2 + γ usF′(vs)

−F(vs) −Dk2 − usF′(vs) + f ′(vs)

)
,

=
(−d(vs)k2 + B1 usχ (vs)k2 + B2

B3 −Dk2 + B4

)
.

Calculating the eigenvalue of matrix Mk , we get the eigenvalues ρ(k2) as functions of the
wavenumber k as the roots of

ρ2 + a(D, k2)ρ + b(D, k2) = 0,

where

a(D, k2) = (d(vs) + D)k2 + (α+ F′(vs))us − f ′(vs),

= (d(vs) + D)k2 − (B1 + B4),

and

b(D, k2) = d(vs)Dk4 − (d(vs)B4 + usχ (vs)B3 + B1D)k2 + B1B4 − B2B3.

Then, it can be easily verified that the eigenvalue ρ for the prey-only steady state (0, K) has
negative real part for both Lotka–Volterra and Rosenzweig–MacArthur type predator–prey
interactions and hence (0, K) is linearly stable. Thus, the pattern (if any) can only arise from
the homogeneous coexistence steady state (u∗, v∗). In the following results, we first show
that the Lotka–Volterra type predator–prey system (5.1) indeed has no pattern bifurcated from
(u∗, v∗).

Lemma 5.3 The homogeneous coexistence steady state (u∗, v∗) of system (5.1) is linearly stable
if γK > θ .

Proof Since F(v) = v and f (v) =μv(1 − v/K), we can easily check that

B1 = −αu∗ < 0, B2 = γ u∗ > 0, B3 = −v∗ < 0, B4 = −μ
K
v∗ < 0.

Hence, B1 + B4 < 0 and B1B4 − B2B3 > 0 as well as

d(v∗)B4 + u∗χ (v∗)B3 + B1D< 0,

which imply a(D, k2)> 0 and b(D, k2)> 0. Then, the corresponding characteristic equation only
has eigenvalue with negative real part. Hence, (u∗, v∗) is linearly stable for all γK > θ .
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Therefore, we are left to consider the possibility of the patterns bifurcated from (u∗, v∗) for
the Rosenzweig–MacArthur type predator–prey system (5.3) and hence hereafter α = 0. In this
case, the corresponding characteristic equation is

ρ2 + a(D, k2)ρ + b(D, k2) = 0, (5.7)

with

a(D, k2) = (d(v∗) + D)k2 − β1, b(D, k2) = d(v∗)Dk4 − β2k2 + β3, (5.8)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = μv∗(K − λ− 2v∗)

K(λ+ v∗)
,

β2 = μv∗(K − λ− 2v∗)d(v∗)

K(λ+ v∗)
− μv∗(K − v∗)χ (v∗)

K
,

β3 = λθμ(K − v∗)

K(λ+ v∗)
.

(5.9)

If K > v∗ > K−λ
2 , one has K − λ− 2v∗ < 0 which yields a(D, k2)> 0 and b(D, k2)> 0 for all

k ≥ 0. Hence, all the eigenvalues have negative real parts and the homogeneous coexistence
steady state (u∗, v∗) is linearly stable. This implies that the pattern formation is possible only
when

0< v∗ ≤ K − λ

2
. (5.10)

First, if v∗ = K−λ
2 , one has a(D, 0) = 0 and b(D, 0) = β3 > 0, which corresponds to the spatially

homogeneous periodic solutions. Moreover, for any k > 0, one has a(D, k)> 0 and b(D, k)> 0,
which indicates that all the eigenvalues of (5.7) have negative real part and hence no spa-
tially inhomogeneous patterns arise in this case. Next, we shall exploit whether the spatially
inhomogeneous patterns may arise in the case 0< v∗ < K−λ

2 .
Define the set

H= {(D, η) ∈R
2
+ : a(D, η) = 0},

as the Hopf bifurcation curve, and

S = {(D, η) ∈R
2
+ : b(D, η) = 0},

as the steady-state bifurcation curve, where the linearised system around the homogeneous coex-
istence steady state has an eigenvalue with zero real part on the curves S or H. Furthermore, if
we define

DH(η) = μv∗(K − λ− 2v∗)

K(λ+ v∗)η
− d(v∗), (5.11)

and

DS (η) =
(
μv∗(K − λ− 2v∗)

K(λ+ v∗)
− μv∗(K − v∗)χ (v∗)

d(v∗)K

)
1

η
− λθμ(K − v∗)

Kd(v∗)(λ+ v∗)

1

η2
, (5.12)

then, we have the following stability results for the coexistence steady state (u∗.v∗).
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Lemma 5.4 Assume the parameters θ , γ ,μ, λ and K >λ are fixed. Let DH(η) and DS (η)
be defined in (5.11) and (5.12). Then, the homogeneous coexistence steady state is locally
asymptotically stable provided the parameter D satisfies

D>max
η≥0

{DH(η), DS (η)}. (5.13)

Remark 5.1 In one dimension, say�= [0, �], η= k2 = ( nπ
�

)2 where n = 0, 1, 2, · · · , and � is the
length of the domain. For fixed D> 0, the condition (5.13) can be satisfied if � is small enough.
Hence, no pattern formation will develop if � is sufficient small.

Next we explore the possible (local) bifurcation by treating D as a bifurcation parameter.
Under (5.10), we see that the sign of a(D, k2) and b(D, k2) could be generic and different type
bifurcation may arise. In particular, the discriminant of (5.7)�= |a(D, k2)|2 − 4b(D, k2) has not
determined sign. Therefore, there are two possibilities: �< 0 and �≥ 0, where the former will
lead to a Hopf bifurcation (periodic patterns) and the latter may lead to a steady-state bifurcation
(aggregation patterns). Note the allowable wavenumbers k are discrete in a bounded domain, for
instance, if �= (0, �), then k = nπ

�
(n = 0, 1, 2, · · · . It can be easily verified that

�= |a(D, k2)|2 − 4b(D, k2) = (D − d(v∗))2k4 − 2[(D + d(v∗))β1 − 2β2]k2 + β2
1 − 4β3.

Hence, the Hopf bifurcation may occur (i.e. �< 0) if [(D + d(v∗))β1 − 2β2]2 − (β2
1 − 4β3)

(D − d(v∗))2 > 0 and there is allowable wavenumber k such that

k−
1 < k2 < k+

1 ,

where k±
1 = (D+d(v∗))β1−2β2±2

√
[(D+d(v∗))β1−2β2]2−(β2

1 −4β3)(D−d(v∗))2

(D−d(v∗))2 if D 
= d(v∗).
If�> 0, steady-state bifurcation may occur but the possibility can be generic. Indeed one can

readily verify that the steady-state bifurcation will occur if there is allowable wavenumber k such
that one of the following cases holds:

(i) b
(
D, k2

)
< 0;

(ii) b
(
D, k2

)= 0, a
(
D, k2

)
< 0;

(iii) b
(
D, k2

)
> 0, a

(
D, k2

)
< 0 and |a (D, k2

) |2 − 4b
(
D, k2

)
> 0.

(5.14)

The corresponding parameter regime guaranteeing each of (i), (ii) and (iii) can be found with easy
calculations. For example, under (5.10), it follows that β3 > 0. Hence, condition (i) is ensured if

β2 > 0, namely
K − λ− 2v∗

(λ+ v∗)(K − v∗)
>
χ (v∗)

d(v∗)
, (5.15)

and the allowable wavenumber k satisfies

k−
2 < k2 < k+

2 , k±
2 = β2 ± √

�

2Dd(v∗)
with �= β2

2 − 4β3Dd(v∗). (5.16)

Conditions of ensuring (ii) or (iii) can be derived similarly and will not be detailed here since
these conditions can be easily inspected when the parameter values and the motility function
d(v), χ (v) are specified, as shown in the next subsection.
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5.3 Spatio-temporal patterns

In this subsection, we shall present some examples to illustrate the periodic and steady-state
patterns. As discussed in the previous section, the Lotka–Volterra type predator–prey system
(5.1) does not generate any spatially inhomogeneous patterns while the Rosenzweig–MacArthur
type predator–prey system (5.3) with χ (v) = −d′(v) may generate periodic or steady-state pat-
terns in appropriate parameter regimes. Therefore, we only consider the Rosenzweig–MacArthur
type predator–prey system (5.3) with χ (v) = −d′(v). We fix the value of the parameters in all
simulations as follows:

K = 4, γ = 2, θ = 1, λ= 1,μ= 1. (5.17)

Then, it can be checked from (5.2) that the coexistence steady state (u∗, v∗) = (3/2, 1).
Furthermore, it can be verified from (5.9) that

β1 = 1

8
, β3 = 3

8
,

where the value of β2 depends on the specific form of d(v). In this paper, we shall test three-
motility function d(v) as follows:

d1(v) = 1

1 + e2(v−1)
, d2(v) = 1

1 + e
1
10 (v−1)

, d3(v) = 1

9 + e2(v−1)
. (5.18)

Hence, d1(v∗) = d2(v∗) = 1/2, d3(v∗) = 1
10 and χ1(v∗) = −d′

1(v∗) = 1
2 , χ2(v∗) = −d′

2(v∗) = 1
40 ,

χ3(v∗) = −d′
3(v∗) = 1

50 . Next we shall numerically explore the possible patterns for different
choices of d(v) given in (5.18).

Case 1: d(v) = d1(v). In this case, under the parameters chosen in (5.17), one can verify that

a(D, k2) =
(

1

2
+ D

)
k2 − 1

8
. (5.19)

One also can verify from (5.8) that b(D, k2) = D
2 k4 + 5

16 k2 + 3
8 > 0, β2 = − 5

16 and

�= |a(D, k2)|2 − 4b(D, k2) =
(1

2
− D

)2
k4 − 1

4

(11

2
+ D

)
k2 − 95

64
.

This indicates that as long as D is close to 1/2, then �< 0 and Hopf bifurcation will certainly
arise. One is concerned whether the steady-state bifurcation will occur in this case. Indeed it
can be readily checked a(D, k2)< 0 and |a(D, k2)|2 − 4b(D, k2)> 0 cannot be fulfilled simul-
taneously. Hence from (5.14), we know that the steady-state bifurcation is impossible in this
case. However, the Hopf bifurcation will develop if D is suitably chosen so that �< 0 for
some k. For simulation, we choose D = 1/10 such that �< 0 and a(D, k2)< 0 with allowable
wavenumber satisfying k2 < 5

24 which, under the facts k2 = ( nπ
�

)2, n = 0, 1, 2, · · · with �= 8π ,
gives n = 0, 1, 2, 3. The numerical simulations of patterns are then shown in Figure 1(a) and (b)
where we observe the spatially homogeneous time-periodic patterns. In principle, there will be
three spatial modes arising from the homogeneous coexistence steady state (3/2, 1), but we do
not obverse the spatial inhomogeneity. This implies from the plot in Figure 1(c) that as the solu-
tion amplitude become large as time increases, the nonlinearity will play a dominant role and the
linearised dynamics is insufficient to explain the nonlinear behaviour.
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(c)

FIGURE 1. Numerical simulation of spatially homogeneous time-periodic patterns generated by (5.3) with
χ (v) = −d′(v) in the interval [0, 8π ], where d(v) = d1(v) given in (5.18) and parameter values are: K =
4, γ = 2, θ = 1, λ= 1,μ= 1, D = 1/10. The initial datum (u0, v0) is set as a small random perturbation of
the homogeneous coexistence steady state (3/2, 1). The simulation illustrates a spatially homogeneous
time-periodic coexistence patterns for the predator and the prey.

Case 2: d(v) = d2(v). For this case, β2 = 7
160 > 0 and a(D, k2) is still given by (5.19). Hence, the

condition (5.15) is verified and

�= β2
2 − 4β3Dd(v∗) =

(
7

160

)2

− 3

4
D.

Clearly �> 0 if D< 49
19200 and �≤ 0 if D ≥ 49

19200 , which indicates from (5.16) that the steady-
state bifurcation will occur if 0<D< 49

19200 . This is confirmed by numerical simulations shown
in Figure 2 where we take D = 1

4800 and observe the development of spatially inhomogeneous
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FIGURE 2. Numerical simulation of spatio-temporal patterns generated by (5.3) with χ (v) = −d′(v) in
the interval [0, 4π ], where d(v) = d2(v) given in (5.18) and parameter values are: K = 4, γ = 2, θ = 1,
λ= 1,μ= 1, D = 1/4800. The initial datum (u0, v0) is set as a small random perturbation of the homo-
geneous coexistence steady state (3/2, 1).

stationary patterns (see Figure 2(a) and (b)). Furthermore, both the predator and the prey reach
a perfect inhomogeneous coexistence state in space (see Figure 2(c)) but remain oscillations in
time (see Figure 2(d)). It has been proved that if d(v) is constant, the diffusive Rosenzweig–
MacArthur predator–prey system (5.3) will not admit spatial patterns (cf. Refs. [47, 48]). The
spatially inhomogeneous stationary patterns shown in Figure 2 imply that density-dependent
nonlinear motility (i.e. function d(v)), which leads to a cross-diffusion motion, is a trigger for
pattern formation. This is a new observation although it is not justified in the paper. When d(v)
is constant, the spatial patterns and time-periodic patterns have been obtained for prey-taxis
systems with different predator–prey interactions or mobility coefficient χ (v), see Refs. [42, 44].
We also refer to Refs. [15, 27] for some other types of cross-diffusion which cause the emergence
of spatial patterns.

Case 3: d(v) = d3(v). In this case, one has d(v∗) = 1
10 and χ (v∗) = 1

50 . Furthermore,

a(D, k2) =
(

1

10
+ D

)
k2 − 1

8
, b(D, k2) = D

10
k4 + 1

400
k2 + 3

8
,
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Time evolution of (u,v) at x=8
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FIGURE 3. Numerical simulation of spatio-temporal patterns generated by (5.3) with χ (v) = −d′(v) in
the interval [0, 8π ], where d(v) = d3(v) given in (5.18) and parameter values are: K = 4, γ = 2, θ = 1,
λ= 1,μ= 1, D = 1/10. The initial datum (u0, v0) is set as a small random perturbation of the coexistence
steady state (3/2, 1).

and hence

�= |a(D, k2)|2 − 4b(D, k2) =
(

1

10
− D

)2

k4 − 1

4

(
7

50
+ D

)
k2 − 95

64
.

Choosing D = 1
10 , then �< 0 and a(D, k2)< 0 with allowable wavenumber k2 < 5

8 . Hence,
allowable wave modes are n = 0, 1, 2, 3, 4, 5, 6 by noticing that k = n

8 and Hopf bifurcation (with
positive real part in the temporal eigenvalue) will arise. We show the numerical simulation in
Figure 3, where we observe the development of chaotic spatio-temporal patterns, which are dif-
ferent from the patterns shown in Figures 1 and 2. They are not the periodic patterns either (see
the lower panel of Figure 3) as we expect from the linear stability analysis, which indicates again
that the dynamics between nonlinear and linearised systems are quite different. We also note
that the simulations in Figures 1 and 3 demonstrate that the Hopf bifurcation arising from the
time-periodic orbits can develop into spatially homogeneous time-periodic patterns (Figure 1) or
chaotic spatio-temporal patterns (Figure 3). The difference in the simulations shown in Figures
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1 and 3 lies in the choice of motility function d(v). This observation hints us that the motility
function d(v) of the predator plays an important role in determining the spatial distribution of
the predator and the prey. In particular, the random motion (d(v) is constant) and non-random
motion (d(v) is non-constant) will result in different patterns (i.e. spatial distribution of the preda-
tor and the prey). Hence, how does the motility function d(v) affects the dynamics of nonlinear
predator–prey systems launches an interesting question for the future.
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