
Math. Struct. in Comp. Science (2001), vol. 11, pp. 541–554. Printed in the United Kingdom

c© 2001 Cambridge University Press

The Russell–Prawitz modality

P E T E R A C Z E L

Departments of Mathematics and Computer Science,

Manchester University, Manchester M13 9PL, England

Received 20 October 1999; revised 23 May 2000

In his 1903, Principles of Mathematics, Bertrand Russell mentioned possible definitions of

conjunction, disjunction, negation and existential quantification in terms of implication and

universal quantification, exploiting impredicative universal quantifiers over all propositions.

In his 1965 Ph.D. thesis Dag Prawitz showed that these definitions hold in intuitionistic

second order logic. More recently, these definitions have been used to represent logic in

various impredicative type theories. This treatment of logic is distinct from the more

standard Curry–Howard representation of logic in a dependent type theory.

The main aim of this paper is to compare, in a purely logical, non type-theoretic setting, this

Russell–Prawitz representation of intuitionistic logic with other possible representations. It

turns out that associated with the Russell–Prawitz representation is a lax modal operator,

which we call the Russell–Prawitz modality, and that any lax modal operator can be used to

give a translation of intuitionistic logic into itself that generalises both the double negation

interpretation, double negation being a paradigm example of a lax modality, and the

Russell–Prawitz representation.

1. Introduction

In Russell (1903) and Russell (1906), Bertrand Russell mentioned the following possible

definitions of conjunction, disjunction, negation and existential quantification in terms of

implication and universal quantification:

[φ1 ∧ φ2] ≡ ∀p[(φ1 → (φ2 → p))→ p]

[φ1 ∨ φ2] ≡ ∀p[(φ1 → p)→ ((φ2 → p)→ p)]

[¬φ] ≡ ∀p[φ→ p]

[∃xφ(x)] ≡ ∀p[∀x(φ(x)→ p)→ p]

In these definitions the variable p is intended to range over all propositions.

Dag Prawitz showed in Prawitz (1965) that the above equivalences can be proved in

second order intuitionistic logic, and even in ramified second order logic, provided that,

in each case the level of the bound proposition variable is suitably chosen.
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In fact it is also easy to see that the above equivalences can be used as definitions

in the →, ∀ fragment of second order intuitionistic logic, thereby reducing full second

order intuitionistic logic to this fragment. However, the argument does not carry over to

ramified second order logic.

The idea is also used to express logic in Girard’s system F (Girard 1971; Girard et al.

1990), and is the standard approach to representing logic in the calculus of constructions

(Coquand 1990), and its extensions. In particular, the standard approach to representing

logic in the type theory of Lego (Luo & Pollack 1992; Luo 1994), and also, sometimes, the

type theory of Coq (Barras et al. 1996), is to use the above Russell–Prawitz representation,

where the variable p ranges over the impredicative type called Prop in Lego.

In this representation propositions are represented as objects of type Prop. These

objects are themselves types (or are names of types in some treatments of the calculus of

constructions), and the logical operations are represented as operations on this type. The

central rule for the type Prop, which gives it its impredicative power, is the rule that gives

(Πx : A)B(x) : Prop

for any type A and any family B(x) : Prop for x : A. Writing (∀x : A)B(x)

for (Πx : A)B(x) and A → B for (Π : A)B † following the Curry–Howard corre-

spondence, we get universal quantification, over any type A, and implication as logical

operations on Prop.

The Lego and Coq systems implement versions of the calculus of constructions that also

include the type forming operations of Martin-Löf’s type theory such as strong Σ types,

other forms of inductive types and predicative type universes. The standard approach

to representing logic in Martin-Löf’s type theory (Martin-Löf 1984) is to represent

propositions as types in general, not only as types in Prop, and use the Curry–Howard

representation for all the logical operations.

Thus, for the Lego and the Coq type theories we have two distinctive ways of repre-

senting logic, the one that has here been called the Russell–Prawitz representation, where

propositions are represented as types in the type Prop, and the Curry–Howard repre-

sentation where propositions are represented as arbitrary types. What is the relationship

between these two ways of representing logic? The aim of the paper will be to explore this

relationship in a purely logical setting. It will be convenient to focus on standard theories

extending many-sorted minimal logic, allowing one of the sorts to be a sort π of proposi-

tions. There should be no difficulty in carrying over the discussion to other contexts like

type theory itself, but we leave that for another paper. The main contributions of this

paper are to highlight the notion of a lax modality, ¬¬ being the paradigm example, to

generalise the double negation interpretation to any lax modality and to characterize the

Russell–Prawitz reinterpretation of intuitionistic logic as a variant of this generalisation

for a lax modality P that we choose to call the Russell–Prawitz modality. This notion of

a lax modality is not an unfamiliar one, particularly in the context of locale (or cHa)

† Here the underscore indicates a dummy variable that does not occur in B.
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theory, where it was been called a J-operator in Fourman and Scott (1979) and a nucleus

in Simmons (1978). See also Johnstone (1982) and Section 3 for some more background.

After we have made precise in Section 2 what we will mean by a standard theory

our first aim in Section 3 will be to formulate the general notion of a lax modality for

a standard theory and give many examples. Given any lax modality J we define the

J-translation in Section 4. In Section 5 we consider the ‘A’-translation as a variant of

the J-translation for one of the simplest kinds of lax modality J. Section 6 is concerned

with the double negation translation and their variants. In Section 7 we at last introduce

the lax modality P and see how the Russell–Prawitz definitions give a variant of the

P-translation.

2. Standard theories

We assume that L is a language for many sorted intuitionistic predicate logic, having

as primitive logical constants the connectives ⊥, →, ∧, ∨ and the quantifiers ∀x : σ and

∃x : σ for each sort σ. The terms and formulae of L are defined in a standard way. We

write L− for the ⊥,→, ∀ fragment of the language L.

We assume given a standard axiomatisation of intuitionistic logic forL. To be specific,

we axiomatize it using the rules of inference:

(MP ) φ, (φ→ ψ)/ ψ (UG) φ/ (∀x : σ)φ

for each sort σ, and the axiom schemes

(K) φ→ ψ → φ (S) (φ→ ψ → θ)→ (φ→ ψ)→ φ→ θ

(∀E) (∀x : σ)φ→ φ[t/x] if t is a term of sort σ that is free for x in φ

(∀I) (∀x : σ)(θ → φ)→ θ → (∀x : σ)φ if x is not free in θ

(⊥) ⊥ → θ (∧) φ→ ψ → (φ ∧ ψ)

(∧El) (φ ∧ ψ)→ φ (∧Er) (φ ∧ ψ)→ ψ

(∨Il) φ→ (φ ∨ ψ) (∨Ir) ψ → (φ ∨ ψ)

(∨E) (φ→ θ)→ (ψ → θ)→ (φ ∨ ψ)→ θ

(∃E) φ[t/x]→ (∃x : σ)φ if t is a term of sort σ that is free for x in φ

(∃I) (∀x : σ)(φ→ θ)→ (∃x : σ)φ→ θ if x is not free in θ.

The logic mL is L with the axiom scheme (⊥) left out, and the logics L− and mL− are

obtained from L and mL, respectively, by leaving out all schemes involving the logical

operations ∧, ∨, ∃ that are not in L−. Thus mL is minimal logic and L− and mL− are the

fragments of intuitionistic logic and minimal logic that are in the language L−.

Finally Lc is L (or essentially equivalently mL−) with classical logic; that is, the scheme

¬¬φ→ φ is added to L, where ¬φ is defined to be φ→ ⊥ as usual.

By a standard theory for L (L−) we will mean a theory obtained from mL (mL−)

by adding a set of formulae as additional axioms. We will identify the standard theory
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with this set of additional axioms. For example, the standard theories L and Lc have

the additional axioms ⊥ → θ and ¬¬θ → θ, respectively, for all formulae θ. If T is a

standard theory, we will write T ` φ or `T φ if φ is a theorem of T and write φ |−−−|T ψ

if both T ` φ → ψ and T ` ψ → φ. Also, we will write T + Γ for the standard theory

obtained from T by adding the set Γ of formulae as extra axioms and often write Γ `T φ
for T + Γ ` φ.

3. Lax modalities

Let T be a standard theory. A lax modality of T is a certain kind of unary connective

defined in T . The terminology lax modality comes from Lax Logic, a somewhat peculiar

modal logic introduced in Fairtlough and Mendler (1997). Essentially that paper is a study

of the logic obtained by adding to intuitionistic propositional logic a primitive lax modality,

there written O. The logic was motivated by applications to hardware verification, where

the modality is used to formalise a notion of correctness up to constraints. The same logic,

but now called CL-logic, was also introduced in Benton et al. (1998) and was motivated

by the quite different considerations coming from Moggi’s computational lambda calculus

(Moggi 1989; Moggi 1991).

We first wish to formulate what we mean by a defined unary connective J of a language

L. To do so, let L(∗) be obtained from L by adding a new atomic sentence ∗. Let J

be any formula of L(∗). Then for any formula φ of L we let Jφ be the formula of L
obtained from J by replacing every occurrence of ∗ by φ, with relabelling of any bound

variables of J so as to avoid binding any free variables of φ. We can also define the

notion of a defined unary connective of L− in the obvious way.

Let T be a standard theory in the language L (L−). A defined unary connective J of

L (L−) is called a lax modality of T if the following formulae are theorems of T for all

formulae φ, φ′ of L (L−):

(J1) φ→ Jφ,

(J2) (φ→ Jφ′)→ (Jφ→ Jφ′).
In this definition the scheme (J2) can be replaced by the combination of the following

two schemes:

(J21) JJφ→ Jφ,

(J22) (φ→ φ′)→ (Jφ→ Jφ′).
Moreover, for any lax modality J the following scheme can be derived:

(J3) J(φ ∧ φ′)↔ (Jφ ∧ Jφ′).
If, also, T ` ¬J⊥, then we call J a strict lax modality of T .

This notion of lax modality is not at all new. In the context of topos theory a lax

modality in the local set theory of a topos has been called a ‘modality’ of the local set

theory in Bell (1988) and is used to generalise the notion of a Grothendieck topology for

presheaf toposes to all elementary toposes. Another concept from category theory that is

closely related to the notion of a lax modality is that of a strong monad on a category.

In particular, a strong monad on a cartesian closed category is a lax modality in the ∧,

→ fragment of intuitionistic propositional logic where ∧ and → are interpreted as the
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binary cartesian product and exponentiation operations on the objects of the category. In

the logic of a locale† a lax modality is what has been called a nucleus. See, for example,

Johnstone (1982, II 2.2).

3.1. Examples

There are many examples of lax modalities. Let us start with the trivial ones Jid = ∗
and Jtr = (∗ → ∗). Thus, Jidφ |−−−|T φ and `T Jtrφ for all formulae φ. More

interesting examples are obtained as follows. Given any formula α, let Jα = (α → ∗),
Bα = ((∗ → α)→ α), and Jα = (α ∨ ∗). The special case B⊥ (that is, ¬¬∗) is a particularly

important one, and we shall use the more familiar notation ¬¬ and call it the double

negation modality. New lax modalities can be obtained from old ones in various ways. For

example, if J and J′ are lax modalities, then so is (J ∧ J′). Also, if J(x) is a lax modality

that may have free occurrences of the variable x of sort σ, then (∀x : σ)J(x) is also a lax

modality. In general we may compose unary defined connectives J, J′ to obtain a defined

unary connective JJ′. The composition of two lax modalities need not always be a lax

modality, but we do have the following result. If J is a lax modality, then so are JαJ and

JJα. The notion of a lax modality is not of great interest when the logic is classical. In fact,

for any lax modality J of a classical theory every formula Jφ ↔ (J⊥ ∨ φ) is a theorem,

so J is extensionally the same as Jα where α is J⊥, and becomes extensionally the trivial

modality Jid if J is strict. In the context of cHa-theory these examples of lax modalities,

there called J-operators, can be found in Fourman and Scott (1979), along with formulae

relating ways to combine them.

3.2. Some properties of a lax modality

Let J be a lax modality for a standard theory T . We state some easily proved properties

of J.

Proposition 1. The following are theorems of T for all formulae φ, ψ:

1 JJφ→ Jφ

2 J(φ→ ψ)→ Jφ→ Jψ

3 J(φ→ Jψ)→ φ→ Jψ

4 J(∀x : σ)Jψ → (∀x : σ)Jψ.

Corollary 2. If θ is a formula having one of the forms Jψ, θ → Jψ, (∀x : σ)Jψ, then

Jθ |−−−|T θ.

Proposition 3. If T is a standard theory for L, then J(φ ∧ ψ) |−−−|T (Jφ ∧ Jψ).

† Also called complete Heyting algebra or frame.
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3.3. Relating lax modalities

Let J, J′ be lax modalities of a standard theory T for L (L−). We define J 6T J′ if

`T (Jφ→ J′φ) for all formulae φ of L (L−), and if both J 6T J′ and J′ 6T J, we write

J ≡T J′.

Proposition 4. Let J be a lax modality for a standard theory T . Then Jid 6T J 6T Jtr and

J 6T ¬¬ iff J is a strict lax modality.

Proof. The first part is trivial. For the second part, if J 6T ¬¬, then, working informally

in T , J⊥ → ¬¬⊥ so that ¬J⊥. Conversely, assuming that (i) ¬J⊥ we show that

Jφ → ¬¬φ. So assume (ii) Jφ and (iii) ¬φ to get a contradiction. By (iii) φ → ⊥, and

hence Jφ→ J⊥. So, by (ii), J⊥, contradicting (i).

4. The J-translation

Any lax modality J of a standard theory T for L can be used to define a translation of

L into itself. This translation generalises the familiar double negation translation, which

has been used to represent classical logic in intuitionistic logic. There is also a version of

the translation when T is a standard theory in L−, but we will not spell it out.

Let J be a lax modality of a standard theory T for L. We define a translation ()J of

L into itself called the J-translation. First we associate with each logical constant of L
its J version. The J version of ⊥ is J⊥. The J version of → is the binary operation →J on

formulae of L given by

φ1 →J φ2 ≡ J(φ1 → φ2)

for all formulae φ1, φ2 of L. The J versions of ∧ and ∨ are defined similarly if they are

in L. Also, if Q is either ∀ or ∃, then the J version of Q is the unary operation QJ on

formulae of L given by

(QJx : σ)φ ≡ J(Qx : σ)φ

for all formulae φ of L.

Now φJ is defined by structural recursion on φ using the following table, where θ is any

atomic formula of L, ◦ is any binary connective and Q is either of the two quantifiers:

φ φJ

θ Jθ

⊥ J⊥
(φ1 ◦ φ2) (φ1 ◦J φ2)

(Qx : σ)φ0 (QJx : σ)φ0

We will now state some easily proved properties of the J-translation.
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Proposition 5. Let J be a lax modality for a standard theory T for L or L−. Then

1 (a) JφJ |−−−|T φJ,

(b) (φ→ ψ)J |−−−|T φJ → ψJ,

(c) ((∀x : σ)φ)J |−−−|T (∀x : σ)φJ.

2 Moreover, if T is a standard theory for L, then

(a) (φ ∧ ψ)J |−−−|T φJ ∧ ψJ,

(b) ((φ ∨ ψ)→ θ)J |−−−|T ((φJ ∨ ψJ)→ θJ),

(c) ((∃x : σ)φ→ θ)J |−−−|T (∃x : σ)φJ → θJ.

Note that in defining the ()J-translation, the J version of each logical constant was always

used. In fact, by this proposition, the ordinary version can be used for ∧, → and ∀, and

also for ⊥ when J is strict. The resulting formula will be equivalent in T to φJ.

Definition 6. If J is a lax modality for a standard theory T , the theory T is called

( )J-closed if `T φ implies `T φJ for all formulae φ. If T is a standard theory that is

( )J-closed for each of its lax modalities J, then we will call T a lax-closed standard theory.

The following theorem has a straightforward proof that generalises the familiar proof in

the special case for L when J is ¬¬.

Theorem 7. Each of the logics L, mL, L−, mL− and Lc is lax-closed.

There are other familiar examples of lax closed theories. For example, the theory HA

of Heyting Arithmetic is an example of a standard theory for the familiar single-sorted

language of Formal Arithmetic (that is, the language having the binary relation symbol

‘=’ the constant ‘0’, unary function symbol ‘S ’ and the binary function symbols ‘+, .’). It

is straightforward to show the following result.

Proposition 8. HA is lax-closed.

If Γ is a set of formulae of L (L−), let ΓJ = {φJ | φ ∈ Γ}. Also let ∆J = {Jφ → φ |
φ a formula of L(L−)}.
Theorem 9. Let J be a lax modality of a standard theory T that is J-closed. Then:

1 Γ `T φ implies ΓJ `T φJ.

2 If T ` (¬¬φ→ φ)J for all formulae φ, then Γ `Tc φ implies ΓJ `T φJ.

3 If T ` (Jφ→ φ)J for all formulae φ, then Γ `T+∆J
φ iff ΓJ `T φJ.

5. The ‘A’-translation

The simplest non-trivial examples of a lax modality are those of the form Jα (that is,

(α∨∗), for any formulae α). The Jα-translation is essentially the same as the ‘A’-translation,

which we will here call the α-translation. For any formula φ the formula φα is obtained

from φ by replacing every atomic formula θ by (α ∨ θ) and replacing ⊥ by α. In the case

when α is ⊥ this was first used in Prawitz and Malmnäs (1968) to interpret intuitionistic

logic in minimal logic. More recently the general α-translation has been introduced by
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Friedman (Friedman 1978) (and also by Dragalin) as a useful tool in connection with

proving closure under Markov’s rule. See also Leivant (1985) and Murthy (1991). We

have the following connection with the Jα-translation.

Proposition 10. If T is a standard theory for L and α is any formula such that

`T (⊥ → α), then φα |−−−|T φJα .

6. The double negation translation

Note that T + ∆¬¬ is the classical version Tc of T and, as `T (¬¬φ → φ)¬¬, part 3 of

Theorem 9 gives the following familiar result.

Proposition 11. If T is a ( )¬¬-closed standard theory, then Γ `Tc φ iff Γ¬¬ `T φ¬¬.

Part 2 of Theorem 9 can be applied in the case when J is Bα to get the following result.

Proposition 12. If T is a ( )Bα-closed standard theory such that `T ⊥ → α, then Γ `Tc φ

implies ΓBα `T φBα .

Note that the condition `T ⊥ → α holds automatically when T is at least an intuitionistic

theory rather than a theory of minimal logic. The key observation here is that

(¬¬φ)Bα |−−−|T ((⊥ → α)→ φBα).

6.1. The ( )N variant

This variant of the ¬¬-translation is defined as follows. For each formula φ of L the

formula φN of L− is defined by structural recursion on φ using the following table.

φ φN

θ ¬¬θ
⊥ ⊥

(φ1 → φ2) (φN1 → φN2 )

(φ1 ∧ φ2) ¬(φN1 → ¬φN2 )

(φ1 ∨ φ2) ¬φN1 → ¬¬φN2
(∀x : σ)φ0 (∀x : σ)φN0
(∃x : σ)φ0 ¬(∀x : σ)¬φN0

Proposition 13.

1 φ¬¬ |−−−|mL φN for all formulae φ,

2 If T is a ( )¬¬-closed standard theory of L−, such as mL−, then, for all formulae φ,

Γ `Tc φ iff ΓN `T φN .

https://doi.org/10.1017/S0960129501003309 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003309


The Russell–Prawitz modality 549

The definition of φN can be generalised to some extent by replacing ⊥ by an arbitrary

formula α ofL−. For each formula φ ofL the formula φαα ofL− is defined by structural

recursion on φ using the following table.

φ φαα

θ (θ → α)→ α

⊥ α

(φ1 → φ2) (φαα1 → φαα2 )

(φ1 ∧ φ2) (φαα1 → φαα2 → α)→ α

(φ1 ∨ φ2) (φαα1 → α)→ (φαα2 → α)→ α

(∀x : σ)φ0 (∀x : σ)φαα0
(∃x : σ)φ0 ((∀x : σ)(φαα0 → α))→ α

The next two propositions have easy direct proofs.

Proposition 14. If α is a formula of L−, then Γ `Lc φ implies Γαα `mL− φαα.
Proposition 15. If α is a formula of L, then for all formulae φ of L:

1 If `T ⊥ → α, then φαα |−−−|mL φBα;

2 φαα |−−−|mL (φ¬¬)α.

7. The Russell–Prawitz translation

Given a language L we let Lπ be the language obtained from L by adding a new

sort π and a new unary relation symbol true taking one argument of sort π. We will

use p, q, r, etc . . . as variables of sort π and these will be the only terms of sort π. For

each π-variable p the atomic formula true(p) will be abbreviated to just p and the sorted

quantifiers ∀p : π and ∃p : π will be abbreviated to just ∀p and ∃p, respectively.

For any set F of formulae of Lπ , let (∀F) be the set of formulae of Lπ having the

form

((∀p)ξp)→ ξφ

for all formulae ξ of Lπ(∗) and all formulae φ ∈ F. Similarly, we can define (∃F) to be

the set of formulae of Lπ having the form

ξφ→ (∃p)ξp
for all ξ and φ, as before. Also, let (CF) be the set of formulae having the form

(∃p)(p↔ φ)

for all formulae φ ∈ F. Finally, when F is a set of formulae of L−π we let (∀−F) be the

set of all formulae of L− having the form

((∀p)ξp)→ ξφ

for all formulae ξ of L−π (∗) and all formulae φ ∈ F.
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Proposition 16. The standard theories mLπ + (∀F), mLπ + (∃F) and mLπ + (CF) are

equivalent in the sense that they all have the same theorems.

Proof. If φ ∈ F, then, as ∀q(ξq → ∃pξp) is a theorem of mLπ , ξφ→ ∃pξp is a theorem

of mLπ + (∀F). Thus every formula in (∃F) is a theorem of mLπ + (∀F).

If φ ∈ F, then (φ ↔ φ) → ∃p(p ↔ φ) is a formula in (∃F). Thus every formula in

(CF) is a theorem of mLπ + (∃F).

Finally, to complete the circle, it remains to prove that every formula in (∀F) can be

proved in mLπ + (CF). This is a consequence of the following result.

Lemma 17. For all formulae ξ of Lπ(∗) and φ of Lπ the formula

∃p(p↔ φ)→ ((∀pξp)→ ξφ)

is a theorem of mLπ .

Proof. We work informally in mLπ . First observe that by an easy induction on formulae

ξ we get

(p↔ φ)→ (ξp→ ξφ).

It follows that

(∀pξp)→ ∀p((p↔ φ)→ ξφ).

As ∀p((p↔ φ)→ ξφ)→ (∃p(p↔ φ)→ ξφ), we get

(∀pξp)→ (∃p(p↔ φ)→ ξφ),

and hence the desired result ∃p(p↔ φ)→ ((∀pξp)→ ξφ).

When working in these theories it is natural to consider the elements of F as the ‘terms’

of sort π so that the formulae in (∀F) and (∃F) become natural quantifier axioms for π.

Of course (CF) is a kind of ‘comprehension axiom scheme’ for π.

For any language L let form(L) and form(L−) be the sets of all the formulae of L
and L−, respectively. Let L2 and L2− be the standard theories Lπ + (∀form(Lπ)) and

L−π + (∀−form(L−π )), respectively. Similarly, we can define mL2 and mL2−.

By structural recursion on φ we assign to each formula φ of Lπ a formula φw of L−π
using the following table.

φ φw

θ (∀p)((θ → p)→ p)

⊥ (∀p)p
(φ1 → φ2) (φw

1 → φw
2 )

(φ1 ∧ φ2) (∀p)((φw
1 → φw

2 → p)→ p)

(φ1 ∨ φ2) (∀p)((φw
1 → p)→ (φw

2 → p)→ p)

(∀x : σ)φ0 (∀x : σ)φw
0

(∃x : σ)φ0 (∀p)((∀x : σ)(φw
0 → p)→ p)

In this table σ can be any sort of Lπ including π itself.

https://doi.org/10.1017/S0960129501003309 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129501003309


The Russell–Prawitz modality 551

Proposition 18. For any formula φ of Lπ , φw |−−−|L2 φ, and for any set Γ of formulae

of Lπ ,

Γ `L2 φ iff Γw `mL2− φw.

7.1. The Russell–Prawitz modality

Let P be the defined unary connective of L−π given by the formula ∀p((∗ → p) → p) of

L−π (∗).
Proposition 19. P is a lax modality of mLπ and of mL−π .

Let formw(Lπ) be the set of internal formulae of Lπ (that is, the smallest set F of

formulae of Lπ such that every variable p of sort π is in F and if φ is in F, then so is

(ψ → φ) for every formula ψ of Lπ and so is (∀x : σ)φ for every variable x of any sort

σ of Lπ , including π). Note that for any formula φ of Lπ both φw and φP are internal

formulae.

Let L2w and mL2w be the standard theories Lπ+(∀formw(Lπ)) and mLπ+(∀formw(Lπ)),

respectively.

Theorem 20. For any formula φ of Lπ , φP |−−−|mLπ+(⊥→∀pp) φw, and for any set Γ of

formulae of Lπ ,

Γ `L2 φ iff ΓP `mL2w φP.

Proposition 21. Let T be a standard theory. Then:

1 P 6T ¬¬ iff `T ¬∀pp, if `T ⊥ → ∀pp;
2 ¬¬ 6T P iff `T ∀p(¬¬p→ p);

3 ¬¬ ≡T P iff `T (¬∀pp) ∧ ∀p(¬¬p→ p).

Proof.

1 By Proposition 3.3, P 6T ¬¬ iff `T ¬P⊥. But if `T ⊥ → ∀pp, then P⊥ ↔ ∀pp.
The result follows.

2 First assume that ¬¬ 6T P. Then ¬¬p → Pp, so ¬¬p → p, as Pp → p. Thus

∀p(¬¬p → p). Conversely, assume that (i) ∀p(¬¬p → p), (ii) ¬¬φ and (iii) φ → p.

Then, by (ii) and (iii), we get ¬¬p, and thus p by (i). Thus ¬¬φ→ ∀p((φ→ p)→ p).

3 Use 1 and 2 and the fact that ∀p(¬¬p→ p) implies (⊥ → ∀pp).
Proposition 22. Let J be a lax modality of a standard theory T .

1 If `T ∀p(Jp→ p), then J 6T P.

2 If `T (∀pξp) → ξ(Jφ) for every defined unary connective ξ and all formulae φ, then

P 6T J.

3 If T is a standard theory of L and for all formulae φ of L
∃p(p↔ φ) |−−−|T (Jφ→ φ),

then J ≡T P.
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Proof.

1 Let (i) ∀p(J → p), (ii) Jφ and (iii) φ → p. Then, by (iii), Jφ → Jp, so , by (ii), Jp and

thus, by (i), p. Thus, from (i),(ii), we have shown ∀p((φ→ p)→ p) (that is, Pφ).

2 If Pφ (that is, ∀p((φ → p) → p)), then by the assumption, (φ → Jφ) → Jφ, so, as

φ→ Jφ, we have Jφ. Thus Pφ→ Jφ.

3 Putting p for φ in the assumption, we get that `T (Jp → p), so, by 1, we have

J 6T P. As `T JJφ→ Jφ, by the assumption, `T ∃p(p↔ Jφ). Thus every theorem of
mLπ + (CF) is a theorem of T when F is the set of all formulae of Lπ of the form

Jφ. So, by Proposition 16, every theorem of mLπ + (CF) is a theorem of T , and hence

by 2 we have J 6T P.

Theorem 23. Let T be a standard theory forLπ that includes mL2w. Then P is the unique,

up to ≡T , lax modality J of T such that (i) `T ∀p(Jp → p) and (ii) for every formula φ

of Lπ there is an internal formula ψ of Lπ such that Jφ |−−−|T ψ.

Proof. As `T ∀p(Pp → p) and Pφ is an internal formula of Lπ , P is a lax modality

J satisfying (i) and (ii). Conversely, suppose that J is a lax modality satisfying (i) and

(ii). Then, by (i) and part 1 of the previous proposition, J 6T P. It remains to show that

P 6T J, which will be done by applying part 2 of the previous proposition. So let ξ be

a defined unary connective of Lπ and let φ be a formula of Lπ . Then, by (ii), there

is an internal formula ψ of Lπ such that Jφ |−−−|T ψ. As T includes mL2w, we have

`T (∀pξp)→ ξψ. As `T Jφ↔ ψ, we have `T ξ(Jφ)↔ ξψ, so `T (∀pξp)→ ξ(Jφ).

By combining this theorem with Proposition 21 we get the following result.

Theorem 24. Let T be a standard theory forLπ that includes mL2w+¬∀pp+∀p(¬¬p→ p).

Then ¬¬ is the unique, up to ≡T , lax modality J of T such that (i) and (ii) of the previous

theorem hold.

8. Conclusion

Recall the Russell–Prawitz definitions. These make sense in any standard theory T for

Lπ or L−π and define what we will call the weak logical operations:

[φ1 ∧w φ2] ≡ ∀p[(φ1 → (φ2 → p))→ p]

[φ1 ∨w φ2] ≡ ∀p[(φ1 → p)→ ((φ2 → p)→ p)]

[¬wφ] ≡ ∀p[φ→ p]

[∃wx : σφ(x)] ≡ ∀p[∀x : σ(φ(x)→ p)→ p].

There are several interesting cases to consider, depending on what is considered to be the

intended interpretation of the sort π.
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8.1. π is the impredicative sort of all propositions

We let T be the theory L2. All the formulae of Lπ represent propositions of sort π and

the weak logical operations are equivalent to the standard ones.

8.2. π is the impredicative sort of all internal propositions

The internal propositions are those represented by internal formulae of Lπ and we let T

be the theory mL2w. This is the case that is most relevant to the type theories of Lego and

Coq, where the impredicative type Prop corresponds to the sort π. Here the weak logical

operations are equivalent to the P versions of ∧, ∨, ¬ and ∃ that are used in defining the

P-translation.

8.3. π is the sort of all decidable propositions

The decidable propositions can be represented by the two formulae ⊥ and ⊥ → ⊥, and

we let T be the theory mLπ + (∀{⊥, (⊥ → ⊥)}) + ∀p(p ∨ ¬p). The weak logical operations

can here be characterised as those used in defining the translation ( )N:

[φ1 ∧w φ2] |−−−|T [(φ1 → (φ2 → ⊥))→ ⊥]

[φ1 ∨w φ2] |−−−|T [(φ1 → ⊥)→ ((φ2 → ⊥)→ ⊥)]

[¬wφ] |−−−|T [φ→ ⊥]

[∃wx : σφ(x)] |−−−|T [∀x : σ(φ(x)→ ⊥)→ ⊥].

8.4. π is the sort of all J-stable propositions

We assume that T is a standard theory for Lπ and that J is a lax modality of T that has

the property that for all formulae φ of Lπ

∃p(p↔ φ) |−−−|T (Jφ→ φ).

The J-stable propositions are those propositions represented by formulae of the form Jφ.

Here the weak logical operations are simply the J-versions of ∧, ∨, ¬ and ∃.
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