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We consider non-negative solutions of the Cauchy problem for quasilinear parabolic
equations ut = ∆um + f(u), where m > 1 and f(ξ) is a positive function in ξ > 0
satisfying f(0) = 0 and a blow-up condition∫ ∞

1

1
f(ξ)

dξ < ∞.

We show that if ξm+2/N/(− log ξ)β = O(f(ξ)) as ξ ↓ 0 for some 0 < β < 2/(mN + 2),
one of the following holds: (i) all non-trivial solutions blow up in finite time;
(ii) every non-trivial solution with an initial datum u0 having compact support exists
globally in time and grows up to ∞ as t → ∞: limt→∞ inf|x|<R u(x, t) = ∞ for any
R > 0. Moreover, we give a condition on f such that (i) holds, and show the
existence of f such that (ii) holds.

1. Introduction

In this paper, we discuss the Cauchy problem of quasilinear parabolic equations

ut = ∆um + f(u), (x, t) ∈ R
N × (0, T ), (1.1)

u(x, 0) = u0(x), x ∈ R
N , (1.2)

where ut = ∂u/∂t, ∆ is the N -dimensional Laplacian and f(ξ) with ξ � 0 and u0(x)
with x ∈ R

N are non-negative functions. We consider only non-negative solutions.
Throughout this paper, we assume the following:

(A1) u0 ∈ BC(RN ) (bounded continuous functions) and u0(x) � 0 in R
N .

(A2) f ∈ C1[0,∞) ∩ C∞(0,∞) and f(ξ) > 0 in ξ > 0.

Under assumptions (A1) and (A2), a unique non-negative weak solution of (1.1),
(1.2) exists locally in time [1,2,4,6,21,29]. The definition of a weak solution is given
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in § 2. We know from the uniqueness of solutions and the existence theorem that if
the solution does not exist globally in time, it blows up in finite time, that is, for
some T ∈ (0,∞),

lim
t↑T

‖u(·, t)‖L∞(RN ) = ∞.

Moreover, we assume the following two conditions:

(A3)
∫ ∞

ξ

1
f(η)

dη < ∞ for ξ > 0.

(A4) f(0) = 0.

Conditions (A3) and (A4) restrict the behaviours of f(ξ) near ξ = ∞ and ξ = 0,
respectively. Condition (A3) is a necessary condition for a solution to blow up in
finite time. If (A3) fails, all solutions exist globally in time. Under condition (A3),
the solution u of (1.1), (1.2) blows up in finite time if u0(x) tends to ‖u0‖L∞(RN )
in some direction as |x| → ∞ (see [31, theorem 1.5] and [13–15] when m = 1).

Condition (A4) is a necessary condition for a solution to exist globally in time,
provided (A3) holds. If (A3) holds but (A4) does not, all solutions blow up in finite
time. Under condition (A4), u ≡ 0 is a global solution of (1.1), (1.2) in time.

However, for a general initial datum u0 �≡ 0 decaying as |x| → ∞, we do not
know whether the solution blows up in finite time or not. We are interested in the
conditions on f for which a solution blows up in finite time.

For this problem, when m = 1, we have the familiar result proposed by Kaplan
(in 1963) [17]: if f ′′(ξ) � 0 in ξ � 0, there exists an initial datum with compact
support such that the solution of (1.1), (1.2) with m = 1 blows up in finite time.
Kaplan showed this result for the Dirichlet problem in a bounded domain, and it
holds for the Cauchy problem, as confirmed by the comparison theorem.

When at least one solution with the initial datum having compact support blows
up in finite time, we call the phenomenon C0-blow-up and say that (1.1) causes
C0-blow-up. For (1.1), we are more interested in the conditions on f for which
C0-blow-up occurs.

For the special equation

ut = ∆um + up, (x, t) ∈ R
N × (0, T ), (1.3)

with m � 1 and p > 1, the blow-up problem has been studied by many authors (see
[5,24] for a review), following the pioneering work of Fujita in 1966. He showed [9]
that the number p∗

1 = 1 + 2/N (called the Fujita exponent) divides exponents p
into the following two cases when m = 1:

(i) if 1 < p < p∗
1, all non-trivial solutions of (1.2), (1.3) with m = 1 blow up

infinite time;

(ii) if p > p∗
1, there exists a global solution of (1.2), (1.3) with m = 1 when the

initial datum u0 is sufficiently small.

For the general equation (1.1), this result leads to the following question: under
what condition on f do all non-trivial solutions blow up in finite time? When all
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non-trivial solutions blow up in finite time, we call the phenomenon all-blow-up and
say that the equation causes all-blow-up.

Fujita’s result was covered by Hayakawa [16] and Kobayashi et al . [19] (see
also [32]) for the case m = 1 and p = p∗

1, and was extended to the case m > 1
by Galaktionov and co-workers [11, 12] (see also [18, 27]). We can summarize their
results as follows.

(a) Let 1 < p � m + 2/N . Then, all non-trivial solutions u(x, t) of (1.2), (1.3)
blow up in finite time, i.e. all-blow-up occurs.

(b) Let p > m+2/N . Then, there exists a global solution of (1.2), (1.3) when the
initial datum u0 is sufficiently small, i.e. all-blow-up does not occur.

Case (a), in which all-blow-up occurs, is called the blow-up case. Case (b), in which
all-blow-up does not occur, is called the global existence case. The cut-off number

p∗
m = m +

2
N

is called the critical exponent (or the Fujita exponent). We can say that f(u) = up

(1 < p � p∗
m) belongs to the blow-up case and f(u) = up (p > p∗

m) belongs to
the global existence case. We can also say that the function f(u) = up∗

m is a cut-off
function between the blow-up case and the global existence case.

Thus, as is said above, for the general equation (1.1), we are interested in the
conditions on f for which all non-trivial solutions blow up in finite time and the con-
ditions on f for which at least one solution with the initial datum having compact
support blows up in finite time. Thus, we consider

(i) what condition on f leads to C0-blow-up and

(ii) what condition on f leads to all-blow-up.

These problems have already been studied for the semilinear case m = 1 by
Kobayashi et al . [19]. In particular, problem (ii) for m = 1 has been completely
solved by them. Roughly speaking, they showed the following results, by assuming
(A1)–(A4).

(I) If ξ1+2/N/(− log ξ) = O(f(ξ)) as ξ ↓ 0, every non-trivial solution of (1.1), (1.2)
with m = 1 blows up in finite time or at t = ∞ (in other words, all global
solutions are unbounded in R

N × [0,∞)), i.e. limt↑T ‖u(·, t)‖L∞(RN ) = ∞ for
some T ∈ (0,∞]. In particular, in the case T = ∞, the solution grows up to
∞ as t → ∞, i.e. limt↑∞ inf |x|<R u(x, t) = ∞ for any R > 0. Moreover, if f(ξ)
is non-decreasing in ξ � ξ0 for some ξ0 > 0, all non-trivial solutions blow up
in finite time, i.e. all-blow-up occurs.

(II) If f(ξ) = O(ξ1+2/N/(− log ξ)β) as ξ ↓ 0 for some β > 1, there exists a global
solution of (1.1), (1.2) with m = 1 converging to 0 as t → ∞, when the initial
datum u0 is sufficiently small.

We now give some notation. For two functions f(ξ) and g(ξ) in [0,∞), we say
that f(ξ) = O(g(ξ)) as ξ ↓ 0 if lim supξ↓0 |f(ξ)/g(ξ)| < ∞. Similarly, we define
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f(ξ) = O(g(ξ)) as ξ → ∞. Also, for two functions f(x) and g(x) in R
N , we define

f(x) = O(g(x)) as |x| → ∞.
We note that Kobayashi et al . also obtained more general results in which some

assumptions are given in the integral form [19, theorems 3.5 and 4.1].
Their results are interesting for several reasons. First, they showed that for the

general equation (1.1) with m = 1, the cut-off function (which divides the functions
f(u) into the blow-up case and the global-existence case) is not f(u) = up∗

1 .
Second, from their results, we can easily see the mechanism of all-blow-up, i.e. all-

blow-up is determined only by the behaviour of f(ξ) near ξ = 0. More precisely,
they showed that every non-trivial solution grows up by the behaviour of f(ξ)
near ξ = 0, and then we can see that if the function f(ξ) causes C0-blow-up, the
non-trivial solution blows up in finite time, i.e. all-blow-up occurs (otherwise, the
non-trivial solution exists globally in time and grows up to ∞ as t → ∞).

Third, they posed a new problem of under what condition on f every non-trivial
solution blows up in finite time or at t = ∞ (in other words, all global non-trivial
solutions are unbounded in R

N × (0,∞)).
Fourth, they relaxed the above mentioned C0-blow-up condition on f proposed

by Kaplan [17]. Specifically, they showed that if f(ξ) satisfies (A3) and is non-
decreasing in ξ � ξ0 for some ξ0 > 0, there exists an initial datum with compact
support such that the solution of (1.1), (1.2) with m = 1 blows up in finite time.

However, in result (I) of [19], the following problem was not solved: when

ξ1+2/N

− log ξ
= O(f(ξ)) as ξ ↓ 0

and for any ξ0 > 0, f(ξ) is not non-decreasing in ξ � ξ0, does any global non-trivial
solution (i.e. infinite-time blow-up solution) exist?

For m = 1, Fila et al . [7,8] recently obtained interesting results, and they essen-
tially answered the above question. They showed that assumption (A3) is not suf-
ficient for finite-time blow-up if, for any ξ0 > 0, f(ξ) is not non-decreasing in
ξ � ξ0. Specifically, they showed the following result: for p > 1, there exists a
function f satisfying (A2)–(A4) such that if u0(x) = O(|xi|−1/(p−1)) as |x| → ∞,
x = (x1, . . . , xN ), for some i ∈ (1, . . . , N), any solution of (1.1), (1.2) with m = 1
never blows up in finite time. We note that in this result the only condition on f
near ξ = 0 is the condition f(ξ) = O(ξp) (ξ ↓ 0). Combining this with the result
of [19], we can easily see that there exists a function f(ξ) satisfying (A2)–(A4) and
ξ1+2/N/(− log ξ) = O(f(ξ)) as ξ ↓ 0, such that every non-trivial solution with the
initial datum having compact support exists globally in time and grows up to ∞
as t → ∞. We note that such a function f is not non-decreasing in ξ � ξ0 for any
ξ0 > 0.

Our aim in this paper is to extend the results of [7, 8, 19] to the quasilinear case
m > 1. Specifically, we address the following three questions for the case m > 1,
assuming (A1)–(A4).

(i) Under what condition on f does every non-trivial solution blow up in finite
time or at t = ∞? In other words, under what condition on f are all global
non-trivial solutions unbounded in R

N × (0,∞)?
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(ii) Under what condition on f do all non-trivial solutions blow up in finite time?
In other words, under what condition on f does all-blow-up occur?

(iii) Under what condition on f does every non-trivial solution with the initial
datum having compact support exist globally in time and grow up to ∞ as
t → ∞?

Moreover, as in [19], our results include an answer to the following question, which
is first posed in our paper.

(iv) Under what condition on f do finite-time blow-up solutions with the initial
data having compact support exist? In other words, under what condition on
f does C0-blow-up occur?

The method of the proof in [19], especially in the blow-up case, cannot be applied
to the quasilinear case m > 1. It depends strongly on the integral expression of a
solution by the heat kernel, and it never uses the Jensen inequality and Kaplan’s
method.

To state our results exactly, we introduce the following class of functions f asso-
ciated with (1.1), where all functions f in the class lead to C0-blow-up:

M = {f ∈ C1[0,∞) ∩ C∞(0,∞) | f satisfies condition (A2)
and there exists an initial datum u0 having a compact support

such that the solution of (1.1), (1.2) blows up in finite time}.

We call this class the C0-blow-up class associated with (1.1). From the result of [19],
we can say that a non-decreasing function f satisfying (A3) belongs to the C0-
blow-up class associated with (1.1) when m = 1, and hence, we can also say that
such a function f leads to C0-blow-up. We note that if f ∈ M, f must satisfy
condition (A3).

Our results are as follows. Theorems 1.1, 1.3 and 1.4 attempt to answer ques-
tions (i), (ii), and (iii), respectively. Theorem 1.3 also tries to answer question (iv).
Theorem 1.8 is a counterpart of theorem 1.1.

Theorem 1.1. Let m > 1. Assume (A1), (A2) and (A4) hold. Let u0 �≡ 0. Suppose
that

(A5)
ξm+2/N

(− log ξ)β
= O(f(ξ)) as ξ ↓ 0 for some 0 < β <

2
mN + 2

.

Then, the solution u of (1.1), (1.2) blows up in finite time or at t = ∞, i.e. if
T ∈ (0,∞] is the maximal existence time of u,

lim
t↑T

‖u(·, t)‖L∞(RN ) = ∞.

Moreover, in the case T = ∞, the solution grows up to ∞ as t → ∞:

lim
t↑∞

inf
|x|<R

u(x, t) = ∞ for any R > 0. (1.4)
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Condition (A5) restricts the behaviour of f(ξ) near ξ = 0. In the above result,
we see that only the behaviour of f(ξ) near ξ = 0 leads to blow-up in finite time
or at t = ∞ for non-trivial solutions. This leads to the following corollary, in which
we can see that all-blow-up essentially occurs only by the behaviour of f(ξ) near
ξ = 0. We note that the blow-up condition (A3) is not assumed in theorem 1.1 but
is assumed in the next corollary.

Corollary 1.2. Let m > 1. Assume (A1)–(A5) hold. Then, the following hold.

(i) If f belongs to the C0-blow-up class associated with (1.1), all non-trivial solu-
tions of (1.1), (1.2) blow up in finite time.

(ii) If f does not belong to the C0-blow-up class associated with (1.1), every non-
trivial solution of (1.1), (1.2) with the initial datum u0 having compact support
exists globally in time and grows up to ∞ as t → ∞, i.e. (1.4) holds.

The existence of cases (i) and (ii) in corollary 1.2 is guaranteed by the next two
theorems. In addition, in theorem 1.3, we give a condition for f to belong to the
C0-blow-up class associated with (1.1) when m > 1 (see condition (A6), below).
We note that such a condition on f restricts the behaviour of f(ξ) near ξ = ∞.

Theorem 1.3. Let m > 1. Assume (A1)–(A5) and

(A6) inf
ξ�1

ξf ′(ξ)
f(ξ)

> −∞ and lim
A→∞

inf
ξ�1

f(Aξ)
Af(ξ)

= ∞

hold.
Then, f belongs to the C0-blow-up class associated with (1.1), and hence all non-

trivial solutions of (1.1), (1.2) blow up in finite time.

Theorem 1.4. Let m > 1. Assume (A1) holds. Let m < p � p∗
m = m + 2/N . Let

g ∈ C1[0,∞) ∩ C∞(0,∞) satisfy (A4), (A5), and let g(ξ) = O(ξp) as ξ ↓ 0. Then,
there exists a function f satisfying (A2), (A3), and f(ξ) = g(ξ) in (0, 1) such that
if u0(x) = O(|xi|−1/(p−m)) as |x| → ∞, x = (x1, . . . , xN ), for some i ∈ {1, . . . , N},
the solution u of (1.1), (1.2) exists globally in time, and hence it grows up to ∞ as
t → ∞, i.e. (1.4) holds.

Remark 1.5. A wide class of functions would satisfy condition (A6). For example,
if f ∈ C1[0,∞) ∩ C∞(0,∞) satisfies f(ξ) = ξp/(log ξ)β in ξ > L for some p > 1,
β ∈ R, and L > 1, f satisfies (A6).

Remark 1.6. As is stated above, when m = 1, combining the results of [19]
and [7, 8], we can easily see that theorems 1.1, 1.3 and 1.4 and corollary 1.2
also hold, provided conditions (A5) and (A6) are replaced by the conditions that
ξ1+2/N/(− log ξ) = O(f(ξ)) as ξ ↓ 0 and f(ξ) is non-decreasing in ξ � ξ0 for some
ξ0 > 0, respectively.

Remark 1.7. In theorem 1.3, we can replace assumption (A6) by the condition
that f is estimated from below by a function satisfying (A6).
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The next theorem shows the existence of global solutions tending to 0 as t → ∞.

Theorem 1.8. Let m > 1. Assume (A1), (A2) and

(A7) f(ξ) = O

(
ξm+2/N

(− log ξ)β

)
as ξ ↓ 0 for some β > 1

hold. Then, there exists a global solution of (1.1), (1.2) in time, and it tends to 0
as t → ∞.

Remark 1.9. Our results are not complete, since we have no results for the case
where f(ξ) behaves like ξm+2/N/(− log ξ)β as ξ ↓ 0 with β ∈ [2/(mN + 2), 1].

In the proof of theorem 1.1, the following lemma, which will be given as lemma 3.2
below, plays a crucial role.

Lemma A. Let m > 1. Assume (A1), (A2) and (A5) hold. Suppose u0 �≡ 0. Let u
be a global solution of (1.1), (1.2). Then, there exists a constant δ > 0 independent
of u0 such that, for some T ∈ [0,∞) (depending on u0),

‖u(·, T )‖L∞(RN ) � δ.

This lemma says that if (A5) holds, for some δ > 0 independent of u0, any global
solution with ‖u0‖L∞(RN ) < δ must attain δ in finite time. We note that this lemma
does not require assumption (A3) (a blow-up condition). It leads to theorem 1.1
and hence corollary 1.2. We also note that this lemma was proved in [19] for m = 1
using the integral expression of a solution by the heat kernel. However, this method
cannot be applied to our quasilinear case m > 1, as explained above. Our method
relies on the test function method used in [22, 23, 25, 26] (see also the references
therein), which involves the judicious choice of a test function and the use of the
Jensen inequality. This method is useful for showing the non-existence of global
solutions to various problems (see, for example, [22, 23, 25]) and can be applied to
our problem, albeit not directly. We must develop this method together with the
Barenblatt solution (for m > 1) (see the proof of lemma 3.2).

To prove theorem 1.3, it suffices to show that the function f in theorem 1.3
belongs to the C0-blow-up class associated with (1.1). Specifically, we shall show
that if f satisfies (A3), (A4) and (A6), f belongs to the C0-blow-up class (see
proposition 4.1). This result is a generalization of the result of [12] (see also [20,
chap. IV, § 3]), which treats the special equation (1.3). Therefore, the method of
the proof is similar to that of [12].

Theorem 1.4 follows from corollary 1.2 if we show that the result of [7,8] can be
extended to the case m > 1 (see proposition 5.1). Theorem 1.8 is proved by the
usual method.

The rest of the paper is organized as follows. In § 2, we define a weak solution
of (1.1) and give several preliminary lemmas. In § 3, we prove theorem 1.1 and
corollary 1.2. In § 4, we prove theorem 1.3 and in § 5 we prove theorem 1.4. In § 6,
we prove theorem 1.8.
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2. Definitions and preliminaries

In this section, we define a weak solution of (1.1) and give several preliminary
lemmas used in the next section. We begin with the definition. Let G be a domain
in R

N with smooth boundary ∂G.

Definition 2.1. By a (weak) solution of (1.1) in G × (0, T ), we mean a function
u(x, t) in Ḡ × [0, T ) such that

(i) u(x, t) � 0 in Ḡ × [0, T ) and ∈ BC(Ḡ × [0, τ ]) for each 0 < τ < T ,

(ii) for any bounded domain Ω ⊂ G with a smooth boundary ∂Ω, 0 < τ < T and
non-negative ϕ ∈ C2,1(Ω̄ × [0, T )) which vanishes on the boundary ∂Ω,

∫
Ω

u(x, τ)ϕ(x, τ) dx −
∫

Ω

u(x, 0)ϕ(x, 0) dx

=
∫ τ

0

∫
Ω

{u∂tϕ + um∆ϕ + f(u)ϕ} dxdt −
∫ τ

0

∫
∂Ω

um∂νϕ dS dt, (2.1)

where ν denotes the outer unit normal to the boundary ∂Ω.

A supersolution (subsolution) is similarly defined with the equality of (2.1) replaced
by � (�).

For a supersolution and a subsolution, the usual comparison theorem holds (cf.
[31, proposition 2.3]).

We first show the following lemma: let {Rn} and {tn} be sequences of positive
numbers satisfying limn→∞ Rn = ∞.

Lemma 2.2. Assume (A1) and (A2) hold. Let u be a global solution of (1.1), (1.2).
Suppose that for some δ > 0

u(x, tn) � δ in |x| < Rn for n � 1. (2.2)

Then there exists a sequence of positive numbers {t′n} such that, for any R > 0,

lim
n→∞

inf
|x|<R

u(x, t′n) = ∞. (2.3)

Proof. Let u be a global solution of (1.1), (1.2) satisfying (2.2) for some δ > 0. Let
u0,n ∈ C∞

0 (RN ) (n � 1) be a non-negative function such that 0 � u0,n(x) � δ for
x ∈ R

N and

u0,n(x) =

{
δ in |x| < 1

2Rn,

0 in |x| > Rn,

and let un(x, t) (n � 1) be a solution of (1.1), (1.2) with the initial datum u0(x) =
u0,n(x). Then, it follows from the comparison theorem that u(x, t + tn) � un(x, t)
in R

N × (0,∞).
On the other hand, since u0,n(x) → δ as n → ∞ locally uniformly in R

N , one can
easily see that un(x, t) → v(t) as n → ∞ locally uniformly in R

N × [0, Tδ), where
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v(t) is a solution of the ordinary equation v′(t) = f(v(t)) in t > 0 with v(0) = δ,
and Tδ (� ∞) is the maximal existence time of v(t), i.e.

t =
∫ v(t)

δ

1
f(η)

dη and Tδ =
∫ ∞

δ

1
f(η)

dη < ∞.

Let {sk} be a sequence of positive numbers satisfying sk ↑ Tδ as k → ∞. Then, for
any k � 1, there exists nk � 1 such that

unk
(x, sk) � 1

2v(sk) in |x| < Rk,

where Rn is as above. Therefore, since v(t) → ∞ as t ↑ Tδ, we see that

inf
|x|<Rk

u(x, sk + tnk
) � inf

|x|<Rk

unk
(x, sk) � 1

2v(sk) → ∞ as k → ∞.

Setting t′k = sk + tnk
, we get (2.3). The proof is complete.

The next lemma is a familiar result on the positivity of solutions, which is stated
with the (elementary) solution Em(x, t; L) (L > 0) to the initial-value problem

vt = ∆vm, (x, t) ∈ R
N × (0,∞),

v(x, 0) = Lδ(x), x ∈ R
N ,

}
(2.4)

where L > 0 and δ(x) is Dirac’s δ-function. Em(x, t; L) is expressed concretely by

Em(x, t; L) = L(Lm−1t)−�Gm(η) = L2�/N t−�Gm(η) (2.5)

with η = x/(Lm−1t)�/N , where


 =
N

N(m − 1) + 2
=

(
m − 1 +

2
N

)−1

= (p∗
m − 1)−1

and

Gm(η) =

{
(4π)−N/2e−|η|2/4, m = 1,

[Ã − B̃|η|2]1/(m−1)
+ , m > 1,

with [y]+ = max{0, y}, B̃ = (m − 1)
/2mN and Ã chosen to satisfy∫
RN

Gm(x) dx = 1.

Em(x, t; L) is the Barenblatt solution if m > 1 [30] and the usual heat kernel if
m = 1.

Lemma 2.3. Let m > 1. Assume (A1) and (A2) hold. Let u be a global solution
of (1.1), (1.2). Suppose u0(0) > 0. Then, there exist L1 > 0 and t1 > 0 such that

u(x, t) � Em(x, t + t1; L1) in (x, t) ∈ R
N × [0,∞).

Proof. See, for example, [27, lemma 3.4].

The following result follows from the above lemma.
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Lemma 2.4. Assume (A1) and (A2) hold. Let u be a global solution of (1.1), (1.2).
Let u0 �≡ 0. Then, for any R > 0, there exists t1 > 0 such that

u(x, t1) > 0 in x ∈ BR.

3. Proof of theorem 1.1 and corollary 1.2

In this section, we prove theorem 1.1 (and hence corollary 1.2). To do this, we need
the following proposition, which immediately follows from lemma 3.2, below. This
lemma plays a crucial role in the proof of the proposition and thus theorem 1.1. The
method of the proof of the lemma, as mentioned in § 1, relies on the test function
method used in [22,23,25,26], which involves the judicious choice of a test function
and the use of the Jensen inequality. However, we must develop it together with
the Barenblatt solution (when m > 1).

Proposition 3.1. Let m > 1. Assume (A1), (A2) and (A5) hold. Let u0 �≡ 0.
Let u be a global solution of (1.1), (1.2). There then exists a constant δ ∈ (0, 1

2 )
independent of u0 such that the following holds: for any R > 0, there exists tR > 0
(depending on u0) such that

u(x, tR) � δ in x ∈ BR.

Lemma 3.2. Let m > 1. Assume (A1), (A2) and (A5) hold. Suppose u0 �≡ 0.
Let u be a global solution of (1.1), (1.2). There then exists a constant δ ∈ (0, 1

2 )
independent of u0 such that, for some T ∈ [0,∞) (depending on u0),

‖u(·, T )‖L∞(RN ) � δ.

Proof. Without loss of generality, we may assume that u0(0) > 0. By (A5), there
exists c0 > 0 such that

f(ξ) � c0
ξm+2/N

(− log ξ)β
for ξ ∈ [0, 1

2 ),

where 0 < β < 2/(mN + 2).
It suffices to show this lemma in the case where f(ξ) satisfies

f(ξ) = c0
ξp∗

m

(− log ξ)β
in ξ ∈ (0, 1

2 ),

where p∗
m = m + 2/N .

We prove the lemma by contradiction. Assume that, for any δ ∈ (0, 1
2 ), there

exists a global solution u(x, t) of (1.1), (1.2) such that u never attains any value
greater than or equal to δ in R

N × (0,∞). Then

u(x, t) < δ < 1
2 in R

N × (0,∞). (3.1)

Set

f̃(ξ) = c0
ξp∗

m/m

(−(1/m) log ξ)β
in ξ ∈ (0, 1).

Clearly, f ′(ξ), f ′′(ξ), f̃ ′(ξ), f̃ ′′(ξ) � 0 in ξ > 0 and f̃(ξm) = f(ξ) in ξ ∈ (0, 1
2 ).
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Let η(t) ∈ C∞
0 [0,∞) and ϕ(x) ∈ C∞

0 (RN ) be non-negative functions satisfying

0 � η(t) � 1 in [0,∞), η(t) = 1 in 0 � t � 1
2 , η(t) = 0 in t � 1,

0 � ϕ(x) � 1 in R
N , ϕ(x) = 1 in |x| � 1

2 , ϕ(x) = 0 in |x| � 1,

and set, for R > 1,
ψR(x, t) = ϕR(x)ηR(t),

where ϕR(x) = ϕ(x/R) and ηR(t) = η(t/R2+N(m−1)). Then

ηR(t) = 1 in 0 � t � 1
2R2+N(m−1), ηR(t) = 0 in t � R2+N(m−1),

ϕR(x) = 1 in |x| � 1
2R, ϕR(x) = 0 in |x| � R,

and

|η′
R(t)| � C1

R2+N(m−1) in t � 0 and |∆ϕR(x)| � C1

R2 in R
N ,

where
C1 = sup

t�0
|η′(t)| + sup

x∈RN

|∆ϕ|.

Let q > 1 satisfy
1

p∗
m/m

+
1
q

= 1.

As in [22, 23, 25], we consider ψ(x, t) = ψR(x, t)q as a test function in the integral
identity satisfied by u (see (2.1)). A simple calculation gives

IR ≡
∫ ∞

0

∫
RN

f(u)ψq
R dxdt

= −
∫ ∞

0

∫
RN

u × qψq−1
R {ψR}t dxdt −

∫
RN

uψq
R dx

∣∣∣∣
t=0

−
∫ ∞

0

∫
RN

um{q(q − 1)ψq−2
R |∇ψR|2 + qψq−1

R ∆ψR} dxdt

� qC1

R2+N(m−1)

∫ R2+N(m−1)

0

∫
|x|<R

uψq−1
R dxdt

+
qC1

R2

∫ R2+N(m−1)

0

∫
|x|<R

umψq−1
R dxdt

= qc1C1R
N

∫ R2+N(m−1)

0

∫
|x|<R

uψq−1
R

k(R)
dxdt

+ qc1C1R
Nm

∫ R2+N(m−1)

0

∫
|x|<R

umψq−1
R

k(R)
dxdt,

where

k(R) = c1R
2+Nm and c1 =

∫ 1

0

∫
|x|<1

dxdt.
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Then, setting

JR =
∫ R2+N(m−1)

0

∫
|x|<R

uψq−1
R

k(R)
dxdt

and

KR =
∫ R2+N(m−1)

0

∫
|x|<R

umψq−1
R

k(R)
dxdt,

we get
IR � qc1C1R

NJR + qc1C1R
NmKR. (3.2)

Here, we note that ∫ R2+N(m−1)

0

∫
|x|<R

1
k(R)

dxdt = 1

and by (3.1),
JR < δ and KR < δm(< δ).

We estimate JR and KR in the following manner. Set

g(ξ) = ξ1/p∗
m{− log ξ}β/p∗

m and g̃(ξ) = ξm/p∗
m{− log ξ}mβ/p∗

m in ξ ∈ (0, e−β).

Then, g′(ξ), g̃′(ξ) � 0 in ξ > 0. Furthermore, choosing δ ∈ (0, min{ 1
2 , e−β}) to be

sufficiently small, we have

f(ξ) < e−β and f̃(ξ) < e−β in ξ ∈ (0, δ) (3.3)

and

ξ � C2 × (g ◦ f)(ξ) and ξ � C2 × (g̃ ◦ f̃)(ξ) in ξ ∈ (0, δ), (3.4)

where C2 > 0 is a positive constant. Hence, due to the Jensen inequality,

JR � C2g(f(JR)) � C2g

( ∫ R2+N(m−1)

0

∫
|x|<R

f(uψq−1
R )

k(R)
dxdt

)

and

KR � C2g̃(f̃(KR)) � C2g̃

( ∫ R2+N(m−1)

0

∫
|x|<R

f̃(umψq−1
R )

k(R)
dxdt

)
.

We note here that, by the relations p∗
m(q − 1) = mq � q and p∗

m(q − 1)/m = q,

f(uψq−1
R ) � f(u)ψq

R and f̃(umψq−1
R ) � f(u)ψq

R in ∈ R
N × (0, T ).

Thus, we have

JR � C2g

( ∫ R2+N(m−1)

0

∫
|x|<R

f(u)ψq
R

k(R)
dxdt

)
= C2g

(
IR

k(R)

)
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and

KR � C2g̃

( ∫ R2+N(m−1)

0

∫
|x|<R

f(u)ψq
R

k(R)
dxdt

)
= C2g̃

(
IR

k(R)

)
.

Therefore, by (3.2), we obtain

IR � qc1C1C2R
Ng

(
IR

k(R)

)
+ qc1C1C2R

Nmg̃

(
IR

k(R)

)

= C3I
1/p∗

m

R {− log IR + log c1 + (2 + Nm) log R}β/p∗
m

+ C4I
m/p∗

m

R {− log IR + log c1 + (2 + Nm) log R}mβ/p∗
m ,

where C3 = qc
1−1/p∗

m
1 C1C2 and C4 = qc

1−m/p∗
m

1 C1C2, and hence

IR � 1 + C(1 + log R)mβ/(p∗
m−m) = 1 + C(1 + log R)mβN/2 for all R > 1, (3.5)

where C is a positive constant.
On the other hand, by lemma 2.3 and u(0) > 0, we have for some t1 > 0 and

L1 > 0,

u(x, t) � Em(x, t + t1; L1) in (x, t) ∈ R
N × [0,∞).

Hence, by (3.1), we get

IR =
∫ ∞

0

∫
RN

f(u)ψq
R dxdt

� c0

∫ R2+N(m−1)/2

0

∫
|x|�R/2

um+2/N

(− log u)β
dxdt

� c0

∫ R2+N(m−1)/2

0

∫
|x|�R/2

Em(x, t + t1; L1)m+2/N

(− log Em(x, t + t1; L1))β
dxdt

� c0

∫ RN/�/2

0

∫
|η|�R/2(Lm−1

1 (t+t1))�/N

L
1+2/N
1 (t + t1)−1Gm(η)m+2/N

(− log(L2�/N
1 (t + t1)−�Gm(η)))β

dη dt

� c0

∫ RN/�/2

0

∫
|η|�1/2L

�(m−1)/N
1

L
1+2/N
1 (t + t1)−1Gm(η)m+2/N

(− log(L2�/N
1 (t + t1)−�Gm(η)))β

dη dt

� c0L
1+2/N
1

∫ RN/�/2

0

(t + t1)−1

(− log(L2�/N
1 (t + t1)−�Gm(R̃)))β

dt

∫
|η|�R̃

Gm(η)m+2/N dη,

where R > 1 and R̃ > 0 are taken to satisfy RN/� > 2t1, R̃ < 1/2L
�(m−1)/N
1 , and

R̃2 < Ã/B̃. Setting

c5 = c0L
1+2/N
1

∫
|η|�R̃

Gm(η)m+2/N dη (> 0) and c6 = − log L
2�/N
1 Gm(R̃)
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and setting s = log(t + t1), we have

IR � c5

∫ (N/�) log R−log 2

log t1

1
(
s + c6)β

ds

=
c5

(1 − β)

{(N log R − 
 log 2 + c6)1−β − c7}, (3.6)

where c7 = (
 log t1 + c6)1−β .
Combining (3.5) and (3.6), we get, for large R > 1,

1 + C(1 + log R)mβN/2 � c5

(1 − β)

{(N log R − 
 log 2 + c6)1−β − c7},

which implies mβN/2 � 1−β, i.e. β � 2/(mN+2). This contradicts the assumption
that β < 2/(mN + 2). Thus, we reach a contradiction if δ ∈ (0, min{ 1

2 , e−β}) is
chosen to satisfy (3.3) and (3.4), and hence, for such δ > 0, we see that

‖u(·, T )‖L∞(RN ) � δ

for some T ∈ [0,∞). The proof is complete.

Proof of proposition 3.1. Let u be a global solution of (1.1), (1.2). Assume u0 �≡ 0.
Then, by lemma 2.4, for any R > 0, there exists t1 > 0 such that

u(x, t1) > 0 in x ∈ BR+2,

where BR = {|x| < R}.
Hence, without loss of generality, we may assume that

u0(x) > 0 in x ∈ BR+2.

Set
ε0 = inf

x∈BR+1
u0(x) (> 0).

Let 0 < ε < min{ε0, δ}, where δ ∈ (0, 1
2 ) is as in lemma 3.2. Let hε(x) = hε(r) ∈

C∞
0 (B1) (r = |x|) be a radially symmetric non-negative function in x ∈ R

N such
that hε(r) is non-increasing in r � 0 and hε(0) = ε, where B1 = {|x| < 1}. We
extend hε in B1 to R

N \ B1 as hε = 0. Let uε be a solution of (1.1), (1.2) with the
initial datum u0(x) = hε(x). Then, for each t > 0, uε(x, t) = uε(r, t) (r = |x|) is
also radially symmetric in x ∈ R

N and is non-increasing in r � 0; hence, uε(x, t)
in x ∈ R

N has maximum value at x = 0 for each t > 0. It follows from lemma 3.2
that, for some tR ∈ (0,∞),

uε(0, tR) = δ.

Let x0 ∈ BR. Since u0(x + x0) � hε(x) in R
N , by the comparison theorem, we

have
u(x + x0, t) � uε(x, t) in R

N × (0,∞),

and thus,
u(x0, tR) � uε(0, tR) = δ.

This is the assertion of proposition 3.1, since x0 ∈ BR can be chosen arbitrarily.
The proof is complete.
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For the proof of theorem 1.1, we also need the next lemma.

Lemma 3.3. Let δ > 0. Let u0 ∈ C(RN ) be a non-negative function such that, for
some R > 0,

u0(x) � δ in BR.

If R > 0 is sufficiently large, there exists a non-negative function v0 (�≡ 0) ∈ C0(RN )
with vm

0 ∈ C∞(RN ) such that

v0(x) � u0(x) in R
N (3.7)

and
∆vm

0 + f(v0) � 0 in R
N . (3.8)

Proof. It is not difficult to find a function h(x) such that h(x) = h(r) ∈ C∞
0 [0,∞)

(r = |x|) is a radially symmetric non-negative function in x ∈ R
N , h(r) is non-

increasing in r � 0 and

h(r) = 1 in r < 1
2 , h(r) > 0 in 1

2 � r < 1 and h(r) = 0 in r � 1,

h′′(r) +
N − 1

r
h′(r) � 0 in 3

4 � r < 1.

Set

hR(x) =
{

δh

(
x

R

)}1/m

.

Then, hm
R (x) ∈ C∞

0 (RN ), 0 � hR(x) � hR(0) = δ1/m in R
N , hR(x) > 0 in |x| < R

and hR(x) = 0 in |x| � R. Furthermore,

∆hm
R (x) =

δ

R2 ∆h

(
x

R

)

=
δ

R2

{
h′′

(
|x|
R

)
+

N − 1
|x/R| h′

(
|x|
R

)}
� 0 in 3

4R < |x| < R.

If R > 0 is sufficiently large,

∆hm
R (x) + f(hR(x)) � − δ

R2 sup
x∈RN

|∆h(x)| + inf
δh(3/4)�ξm�δ

f(ξ) � 0 in |x| � 3
4R.

Setting v0(x) = hR(x) for large R > 0, we have (3.7) and (3.8). The proof is
complete.

Proof of theorem 1.1. Let u0 �≡ 0 and let u be a global solution of (1.1), (1.2). By
proposition 3.1 and lemma 3.3, we may assume, without loss of generality, that
um

0 (x) ∈ C∞(RN ) and
∆um

0 + f(u0) � 0 in R
N .

Since u0(x) is a subsolution of (1.1), as in [3] (see also [10]), we see that u(x, t) is non-
decreasing with t > 0 for each x ∈ R

N . Combining lemma 2.2 and proposition 3.1,
we can find a sequence of positive numbers {tn} such that

inf
t�tn

inf
|x|<R

u(x, tn) � inf
|x|<R

u(x, tn) → ∞ as n → ∞ for each R > 0.

The proof is complete.
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Proof of corollary 1.2. Corollary 1.2 follows from theorem 1.1.

4. Proof of theorem 1.3

In this section, we prove theorem 1.3. It suffices to show the next proposition, which
gives a condition for f to belong to the C0-blow-up class associated with (1.1) when
m > 1.

Proposition 4.1. Assume m > 1. Assume (A2)–(A4) and (A6) hold. Then, f
belongs to the C0-blow-up class associated with (1.1). Specifically, there exists an
initial datum u0 having compact support such that the solution of (1.1), (1.2) blows
up in finite time.

As noted in § 1, this proposition is a generalization of the result of [12] (see
also [20, chap. IV, § 3]) and the method of the proof of this proposition is similar
to that of [12].

Proof. We construct a blow-up subsolution of (1.1) in the form

w(x, t) = Ah(t)Θ1/(m−1)

with

Θ(x, t) =
[
1 − (m − 1)

ξ(t)
a2 |x|2

]
+
, (4.1)

where [a]+ = max{a, 0}, h(t) is a solution of the ordinary differential equation

h′ = f(h), t > 0, h(0) = 1, (4.2)

ξ(t) =
f(h(t))
hm(t)

, (4.3)

and A > 0 and a > 0 will be specified later. We note that w blows up at

T =
∫ ∞

1

1
f(ξ)

dξ < ∞,

if (A3) holds.
We calculate

J(w) = ∆wm + f(w) − wt

in the domain D = {(x, t) ∈ R
N ×(0, T )‖x|2 < a2/(m−1)ξ(t)}. Note that Θ(x, t) >

0 in D. Since

∆wm = 4mAmhm × ξ2

a4 |x|2Θ(−m+2)/(m−1) − 2mNAmhm × ξ

a2 Θ1/(m−1)

and

wt = Ah′Θ1/(m−1) − Ah|x|2 ξ′

a2 Θ(−m+2)/(m−1),
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by (4.1), we have

J(w) =
(

4m

m − 1
Am

a2 hmξ +
Ah

m − 1
ξ′

ξ

)
× (m − 1)

ξ

a2 |x|2Θ(−m+2)/(m−1)

+
(

− 2mN
Am

a2 hmξ − Ah′
)

Θ1/(m−1) + f(AhΘ1/(m−1))

= Θ(−m+2)/(m−1)
{(

4m

m − 1
Am

a2 hmξ +
Ah

m − 1
ξ′

ξ

)

−
(

4m

m − 1
Am

a2 hmξ +
Ah

m − 1
ξ′

ξ
+ 2mN

Am

a2 hmξ + Ah′
)

Θ

+ f(AhΘ1/(m−1))Θ(m−2)/(m−1)
}

.

Thus, if we use the relations ξ′/ξ = f ′(h) − mf(h)/h and ξhm = f(h) from (4.2)
and (4.3), we get

J(w) =
1

m − 1
Af(h)Θ(−m+2)/(m−1)

×
{

4m
Am−1

a2 − m + (1 − Θ)
hf ′(h)
f(h)

−
(

2m(2 + mN − N)
Am−1

a2 − 1
)

Θ

+ (m − 1)Θ(m−2)/(m−1) f(AhΘ1/(m−1))
Af(h)

}

� 1
m − 1

Af(h)Θ(−m+2)/(m−1)I(w),

where

I(w) =
{

4m
Am−1

a2 − m − c0

−
(

2m(2 + mN − N)
Am−1

a2 − 1
)

Θ + (m − 1)Θ
f(AΘ1/(m−1)h)
AΘ1/(m−1)f(h)

}

and

c0 =
∣∣∣ inf

ξ�1

ξf ′(ξ)
f(ξ)

∣∣∣ < ∞

(see condition (A6)).
Therefore, we shall estimate I(w). Setting, for A > 0,

a = a(A) =
√

2m

m + c0
Am−1,

we have

I(w) = m + c0 − ((m + c0)(2 + mN − N) − 1)Θ + (m − 1)Θ
f(AΘ1/(m−1)h)
AΘ1/(m−1)f(h)

.
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Setting

Θ0 =
m + c0

(m + c0)(2 + mN − N) − 1
∈ (0, 1)

and choosing A > 0 sufficiently large to satisfy

(m + c0)(1 + mN − N) − 1 < (m − 1)Θ0 inf
Θ0�Θ�1

inf
ξ�1

f(AΘ1/(m−1)ξ)
AΘ1/(m−1)f(ξ)

(see condition (A6)), we get I(w) � 0 and thus J(w) � 0 in D. We can clearly see
that w(x, t) is a subsolution of (1.1) in R

N × (0, T ) [20, chap. IV, § 3].
Now, let u be a solution of (1.1), (1.2). If u0(x) � w(x, 0) in R

N , u � w in
R

N × (0, T ), and therefore u blows up in finite time. The proof is complete.

Proof of theorem 1.3. Theorem 1.3 follows from corollary 1.2 and proposition 4.1.

5. Proof of theorem 1.4

In this section, we prove theorem 1.4. It suffices to show the next proposition.

Proposition 5.1. Let m > 1. Assume (A1) holds. Let g(ξ) = c0ξ
p for some p > m

and c0 > 0. Then, there exists a function f satisfying (A2), (A3), f(ξ) = g(ξ) in
(0, 1) and f(ξ) � g(ξ) in (0,∞) such that if u0(x) = O(|xi|−1/(p−m)) as |x| → ∞,
x = (x1, . . . , xN ), for some i ∈ {1, . . . , N}, the solution u of (1.1), (1.2) exists
globally in time.

We shall prove this proposition only for c0 = 1, when m > 1. The method of the
proof is similar to that of [7, 8]. We first prove this proposition for N = 1. For this
purpose, we need several lemmas. The next two lemmas are given by [7, 8].

Lemma 5.2. Let p > m (> 1). Let λ > (p − m)/6m. Let βn be positive numbers
such that

∞∑
n=1

βn < ∞,

and let {an} be an increasing sequence such that a1 > max{1, β
−1/2λ
1 } and an >

max{2an−1, β
−1/2λ
n } for n � 2. Set

bn = an + (1 − exp(−a4λ
n ))a(p/m)−6λ

n (< 2an < an+1). (5.1)

Then, there exists a positive function h(η) ∈ C1[0,∞) ∩ C∞(0,∞) satisfying∫ ∞

1

1
h(η)

dη < ∞,

h(η) = ηp/m in (0, 1) and h(η) � ηp/m in (0,∞), and there exist functions vn ∈
C2(−aλ

n, aλ
n) (n � 1) such that

vn,xx + h(vn) = 0 in − aλ
n < x < aλ

n,

vn(0) = bn, vn,x(0) = 0, vn(x) � an for − aλ
n < x < aλ

n.

https://doi.org/10.1017/S0308210510000375 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000375


Blow-up of solutions of a quasilinear parabolic equation 443

Proof. See the proofs of [7, lemma 5.2] and [8, lemma 2]. We use g(s) = sp/m in
the proof of [7, lemma 5.2].

The next lemma is a result about a travelling-wave solution u(x, t) = w(ξ) of

1
m

ut = uxx + up/m in (x, t) ∈ R × (0,∞) (5.2)

with ξ = x − t.

Lemma 5.3. Let p > m (> 1). Then, there exist ξ0 > 0 and a solution w(ξ) ∈
C2[−ξ0,∞) of

− 1
m

wξ = wξξ + wp/m in [−ξ0,∞)

such that
w(−ξ0) = 0, w(ξ) > 0 in ξ > −ξ0,

w(0) < 1, wξ(ξ) < 0 in ξ � 0,

lim
ξ→∞

ξm/(p−m)w(ξ) = (p − m)−m/(p−m).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

Proof. See the proof of [8, lemma 3].

Hence, w(x, t) = w(x − t) is a travelling solution of (5.2), and thus, we can see
that u(x, t) = w̃(x, t) ≡ w1/m(x, t) is a supersolution of

ut = {um}xx + up (5.4)

in {(x, t) ∈ R
N × (0,∞) | x � t > 0}. This is a key tool for proving proposition 5.1

and is stated in the next lemma.

Lemma 5.4. Let w̃(ξ) = w1/m(ξ) and let w̃(x, t) = w̃(x − t), where w(ξ) is as in
lemma 5.3. Then, w̃(x, t) is a supersolution of (5.4) in {(x, t) ∈ R × (0,∞) | x �
t > 0}, i.e.

w̃t � {w̃m}xx + w̃p in {(x, t) ∈ R × (0,∞) | x � t > 0}. (5.5)

Moreover, it satisfies

w̃(−ξ0) = 0, w̃(ξ) > 0 in ξ > −ξ0,

w̃(0) < 1, w̃ξ(ξ) < 0 in ξ � 0,

lim
ξ→∞

ξ1/(p−m)w̃(ξ) = (p − m)−1/(p−m).

⎫⎪⎪⎬
⎪⎪⎭ (5.6)

Proof. We prove only (5.5). Since 0 < w(ξ) < 1 and wξ(ξ) < 0 in ξ � 0 by (5.3),
we have

w̃t − {w̃m}xx − w̃p = − 1
m

w−(m−1)/mwξ(ξ) − wξξ(ξ) − wp/m(ξ)

� − 1
m

wξ(ξ) − wξξ(ξ) − wp/m(ξ) = 0 in ξ = x − t � 0.
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Proof of proposition 5.1 for N = 1. See the proof of [8, theorem 2]. Let λ, an, bn,
h(η) and vn be as in lemma 5.2. Let w̃ be as in lemma 5.4. Set un = v

1/m
n and

f(ξ) = h(ξm). Then, we see that f(ξ) = ξp in (0, 1), f(ξ) � ξp in (0,∞) and∫ ∞

1

1
f(ξ)

dξ =
1
m

∫ ∞

1

η−(m−1)/m

h(η)
dη � 1

m

∫ ∞

1

1
h(η)

dη < ∞. (5.7)

Furthermore,

{um
n }xx + f(un) = 0 in − aλ

n < x < aλ
n,

un(0) = b1/m
n , un,x(0) = 0, un(x) � a1/m

n for − aλ
n < x < aλ

n.

}
(5.8)

In the following manner, we shall construct a supersolution ψn(x, t) (n � 1)
of (1.1) with N = 1 whose existence time goes to ∞ as n → ∞. To do this, we use
w̃ in lemma 5.4 to construct a supersolution of (1.1) with N = 1 outside [−aλ

n, aλ
n].

First, let k > 0 and let

w̃k(x, t) = k2/(p−m)w̃(kx, k2(p−1)/(p−m)t) = k2/(p−m)w̃(k(x − k(p+m−2)/(p−m)t)).

We then see that w̃k is a supersolution of (5.4) in

{(x, t) | x � k(p+m−2)/(p−m)t, t > 0}

and w̃k(k(p+m−2)/(p−m)t, t) = k2/(p−m)w̃(0) for t � 0. We note by (5.6) that, for
some ξ̃0 > 0,

ξ1/(p−m)w̃(ξ) � 1
2c∗ for ξ � ξ̃0,

where c∗ = (p − m)−1/(p−m). Therefore, we have

w̃k(x, 0) = k2/(p−m)w̃(kx) � 1
2c∗k

1/(p−m)|x|−1/(p−m) for x � ξ̃0

k
. (5.9)

Next, to consider w̃kn and un in {(x, t) | k
(p+m−2)/(p−m)
n t � x � aλ

n, 0 � t � tn},
we can choose kn > 0 (n � 1) and tn > 0 (n � 1) to satisfy, for large n,

k(p+m−2)/(p−m)
n t < aλ

n in 0 � t � tn, (5.10)

w̃kn(k(p+m−2)/(p−m)
n t, t) � un(k(p+m−2)/(p−m)

n t) in 0 � t � tn, (5.11)

w̃kn
(aλ

n, t) < un(aλ
n) in 0 � t � tn, (5.12)

and
tn → ∞ as n → ∞. (5.13)

In fact, choosing

kn =
(

b
1/m
n

w̃(0)

)(p−m)/2

, (5.14)

we have

w̃kn(k(p+m−2)/(p−m)
n t, t) = b1/m

n = un(0) � un(k(p+m−2)/(p−m)
n t) for t � 0.
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Since w̃(ξ) is non-increasing in ξ > 0 and converges to 0 as ξ → ∞, there are
positive constants ξn > 0 (n � 1) such that

w̃(knξn) =
w̃(0)(a1/m

n − 1)

b
1/m
n

(< w̃(0)). (5.15)

We note that

knξn → 0 as n → ∞ and so ξn → 0 as n → ∞,

since limn→∞ an/bn = 1 by (5.1) and λ > (p − m)/6m.
Set

tn =
aλ

n − ξn

k
(p+m−2)/(p−m)
n

and choose λ to satisfy λ > (p+m− 2)/2m (� (p−m)/6m). Then, we have tn > 0
for large n � 1 and

tn =
w̃(0)(p+m−2)/2

b
(p+m−2)/2m
n

aλ
n − ξn

k
(p+m−2)/2m
n

= w̃(0)(p+m−2)/2
(

an

bn

)(p+m−2)/2m

aλ−(p+m−2)/2m
n

− ξn

k
(p+m−2)/(p−m)
n

→ ∞ as n → ∞.

Moreover, due to (5.14) and (5.15),

w̃kn
(aλ

n, tn) = k2/(p−m)
n w̃(knξn)

=
b
1/m
n

w̃(0)
w̃(0)(a1/m

n − 1)

b
1/m
n

= a1/m
n − 1

< un(aλ
n) in 0 � t � tn.

Therefore, these kn and tn satisfy (5.10)–(5.13).
Thus, setting, for t ∈ [0, tn],

xn(t) = inf{x | k(p+m−2)/(p−m)
n t � x � aλ

n, w̃kn
(y, t) � un(y) for y ∈ [x, aλ

n]}

and taking, for t ∈ [0, tn],

ψn(x, t) =

⎧⎪⎨
⎪⎩

w̃kn
(−x, t) for x � −xn(t),

un(x, t) for − xn(t) < x < xn(t),
w̃kn

(x, t) for xn(t) � x,

we can consider ψn a supersolution of (1.1) with N = 1. In fact, assume u0(x) =
O(|x|−1/(p−m)) as |x| → ∞, and let u be a solution of (5.4), (1.2) in R × (0, T ). If
n is sufficiently large, by (5.8) and (5.9), we have

u0(x) < ψn(x, 0) in R.
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Hence, if we use the comparison theorem and the strong maximum principle, it is
not difficult to see that, for large n � 1 [8],

u(x, t) � ψn(x, t) in R × [0, tn].

Since tn → ∞ as n → ∞, we see that u exists globally in time.

Proof of proposition 5.1 for N > 1. For the higher-dimensional case N > 1, we can
obtain the same result as for N = 1 with ψn(x, t) replaced by ψn(xi, t).

Proof of theorem 1.4. The theorem follows from corollary 1.2 and proposition 5.1.

6. Proof of theorem 1.8

In this section, we show the existence of global solutions of (1.1), (1.2) tending to
0 as t → ∞, by assuming (A7) holds.

Proposition 6.1. Assume (A1), (A2) and (A7) hold. Then, there exists a global
solution of (1.1), (1.2) in time such that it tends to 0 as t → ∞.

Proof. We prove this proposition only when

f(ξ) =
ξm+2/N

(− log ξ)β
in 0 < ξ < 1

2 for some β > 1.

The method of the proof is similar to that of [28]. For the proof, we use the ele-
mentary solution E(x, t) = Em(x, t; 1) of (2.4) with L = 1, which is represented by
(2.5) with L = 1. We note that, for large t1 > 0,

E(x, t + t1) � M(t + t1)−� � Mt−�
1 � 1

4 for (x, t) ∈ R
N × (0, T ),

where M = supη∈R
Gm(η), and hence

E(x, t + t1)m−1+2/N

(− log E(x, t + t1))β
=

E(x, t + t1)1/�

(− log E(x, t + t1))β
� k(t; t1) in R

N × (0, T ), (6.1)

where

k(t; t1) =
M1/�(t + t1)−1

(− log M(t + t1)−�)β
for t � 0.

Let α(t) be a solution of the ordinary equation α′(t) = k(t; t1)α(t)(2/N)+1 in t > 0
with the initial datum α(0) = 1

2 , that is,

α(t) =
{

22/N − 2
N

∫ t

0
k(t; t1) dt

}−N/2

.

Then, if we choose t1 > 0 sufficiently large to satisfy∫ ∞

0
k(t; t1) dt =

M1/�

(β − 1)

(− log Mt−�

1 )−β+1 � N

2
(22/N − 1),

α(t) exists in (0,∞) and
1
2 � α(t) � 1 for t > 0. (6.2)
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Let b(t) (� 0) be the solution of the ordinary equation

b′(t) = {α(b(t))}m−1, b(0) = 0,

and set
w(x, t) = α(b(t))E(x, b(t) + t1) (� 1

4 ).

Then, by (6.1) and (6.2),

wt − ∆wm = k(b(t); t1)α(b(t))m+2/NE(x, b(t) + t1)

� E(x, b(t) + t1)m+2/N

(− log E(x, b(t) + t1))β
α(b(t))m+2/N

� wm+2/N

(− log w)β

= f(w)

in {(x, t) ∈ R
N × (0,∞) | |x| <

√
Ã/B̃(b(t) + t1)�/N} (when m > 1). It is apparent

that w is a supersolution of (1.1) in R
N × (0,∞), as in the proof of proposition 4.1.

Therefore, if u0(x) � w(x, 0), there is a global solution u of (1.1), (1.2) and u(x, t) �
w(x, t) in R

N × (0,∞). The proof is complete.
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