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1. Introduction

For F a finite extension of Qp, the study of locally analytic principal series representations
of SL2(F ) was initiated by Morita [Mo1,Mo2], and has recently been taken up again by
Schneider and Teitelbaum [S-T1], for the group GL2. These representations are attached
to locally analytic characters of the diagonal torus in GL2(F ), and may therefore be
viewed as a sort of analytic interpolation of smooth principal series which are attached
to smooth characters. This is of course only a heuristic, since applying the locally analytic
construction to a smooth character does not give rise to a smooth representation.

In this paper, we introduce a new class of locally analytic representations of GL2(F ),
and certain related groups, which may be viewed as interpolating smooth supercuspidal
representations. To define these we consider a finite extension E/F , a locally E-analytic
character χ of the diagonal torus in GL2(E), and a locally F -analytic subgroup G of
GL2(E) such that

(i) the E-span of Lie(G) contains Lie(SL2(E));

(ii) if P ⊂ GL2(E) denotes the subgroup of upper triangular matrices, then G has an
open orbit H on P \ GL2(E).

Using these data we define a locally F -analytic representation Vχ,H of G. As the
notation suggests, it depends on the choice of an open orbit H. We prove that these
representations are topologically irreducible for a generic character χ. Although these
representations are not always admissible in the sense of [S-T3], they do satisfy a natural
condition, analogous to that of admissibility for smooth representations (see § 7.1.7). In
fact, it was pointed out to us by Schneider that, for SL2, a closely related construction
already appears in [Mo1] (but without a proof of the irreducibility).

The two conditions above put a strong restriction on the extension E/F . For example,
if G ⊂ GL2(F ), then [E : F ] � 3. If E = F and G = SL2(F ) or G = GL2(F ), we recover
the locally analytic principal series of Morita and Schneider–Teitelbaum.

If E/F has degree 2, then we obtain representations of GL2(F ) and SL2(F ), and also
of the groups of units D× of the quaternion algebra over F . These are the representations
which may be thought of as interpolating smooth supercuspidal representations. They are
not admissible in the sense of Schneider–Teitelbaum, except when G = D×. The theory
in this case bears a striking resemblance to that of the discrete series representations of
SL2(R) and GL2(R). For example, the representations of SL2(F ) thus obtained naturally
come in pairs, which may be thought of as ‘p-adic L-packets’.
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Moreover, there is a connection with finite-dimensional locally analytic representations
of Weil groups (these groups have a natural analytic structure), and there is a relation
between the representations constructed for GL2(F ) and D×. This may be the germ
of locally analytic analogues of the Langlands and Jacquet–Langlands correspondences.
Unfortunately, there is as yet no reasonable theory of traces which would allow one to
intrinsically characterize such correspondences. Thus they are, for now, defined by fiat.
We do however check that each of these correspondences is compatible with isomorphisms.
That is, their definitions are intrinsic, and depend only on the representation Vχ,H and
not on χ or H.

When E/F has degree 3 we again obtain representations of GL2(F ) and SL2(F ), and
we show that they are indeed different from the ones obtained in the cases of degree 1
and degree 2.∗ (In fact there are never any intertwiners between representations coming
from different extensions E, or attached to different orbits H.) These representations
present an enigma for the theory: they appear not to be in any way related to smooth
representations, and they do not seem to fit into the scheme of a locally analytic analogue
of the Langlands or Jacquet–Langlands correspondence. One might be tempted to dismiss
them as pathological, however from the purely function theoretic point of view, they are
as well behaved as the representations constructed in the cases of degree 2 or degree 3.

It is worth remarking that although we refer to the representations we construct as
cuspidal when [E : F ] > 1, this terminology should be regarded as provisional. We have
not given a formal definition of this notion as this seems premature given the early state
of development of the theory of locally analytic representations. Nevertheless, there is
some justification for this terminology. For example these representation have a trivial
Jacquet module (in the sense of § 5.1.7), and they admit no non-trivial intertwiners with
the principal series representations (i.e. those arising from the case E = F ). Moreover,
there is an obvious analogy with the smooth theory, where one attaches supercuspidal
representations of GL2(F ) to characters of quadratic extensions of F .

Notation

The ring of integers of a non-archimedean valued field L is denoted by oL, and its
maximal ideal by pL. When pL is a principal ideal, we let �L denote a generator. By
a p-adic field we will mean an extension K of Qp, which is complete with respect to
a non-archimedean valuation, which makes K into a Qp-Banach space. Throughout the
paper, K will denote such a field.

2. Preliminaries

2.1. Locally analytic representations

We begin by recalling some notions from the theory of topological vector spaces over non-
archimedean fields. A general reference for this theory is [S]. At the end of this section
we recall the key notion of a locally analytic representation.

∗ After we completed this paper, T. Finis pointed out that there is an even more general way to
construct representations using not necessarily open orbits of G on P1(E) and germs of locally E-analytic
functions along the orbit. This construction allows the extension E/F to be of arbitrary degree. We did
not pursue the investigation of such representations.
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The reader who is primarily interested in a description of the representations we are
going to study in this paper may skip this section. All topological K-vector spaces are
assumed to be Hausdorff.

2.1.1. Let V be a topological K-vector space. V is called locally convex if there is a
fundamental system of neighbourhoods of 0 consisting of oK-modules. An oK-submodule
of V is called a lattice if its K-span is V . V is called barrelled if any closed lattice in V

is open. A subspace U ⊂ V is called a BH-space for V , if there exists a Banach space
topology on U which is finer than (or equal to) the subspace topology. A subset B of V

is called bounded if for any open lattice L ⊂ V there is an a ∈ K× such that B ⊂ aL.
For a locally convex K-vector space V we denote by V ′

b the space V ′ of continuous K-
linear maps from V to K, equipped with the strong topology. This is the locally convex
topology having the lattices {

l ∈ V ′
∣∣∣ sup

v∈B
|l(v)| < ε

}
as a fundamental system of neighbourhoods of 0, where B runs over all bounded subsets
of V and ε over all positive real numbers. The strong topology is also called the topology
of convergence on bounded subsets.

A subset B of a locally convex K-vector space V is called compactoid if for any open
lattice A ⊂ V there are finitely many v1, . . . , vn ∈ V such that B ⊂ A+oKv1+· · ·+oKvn.
For a bounded oK-submodule D of V , the subspace 〈D〉K generated by D can be equipped
with the norm | · |D defined by |v|D = inf{|λ| | v ∈ λD}. If 〈D〉K is complete with respect
to | · |D, then D is called completing.

A continuous linear map f : W → V between locally convex spaces is called semi-
compact if there is a compactoid completing oK-module D ⊂ V such that f−1(D) is a
neighbourhood of 0 in W . A locally convex Hausdorff space V is called a semi-compact
inductive limit, if it is the locally convex inductive limit of a sequence V1 ↪→ V2 ↪→ V3 ↪→
· · · of locally convex K-vector spaces Vi with injective semi-compact maps Vi ↪→ Vi+1.
In this case, the spaces Vi can be taken to be Banach spaces. A semi-compact map
between Banach spaces is compact, which means that the image of an open ball is a
compactoid subset. As is shown in [GKPS, Theorem 3.1.7], semi-compact inductive
limits are Hausdorff, barrelled, complete and reflexive (in the sense that the canonical
map V → (V ′

b )′
b is a topological isomorphism), and the strong dual V ′

b of a semi-compact
inductive limit V is a Fréchet space. Moreover, a semi-compact inductive limit, as well as
its strong dual, is a Montel space (cf. [GKPS, p. 164]), which means in particular that
any bounded subset is compactoid. Examples of semi-compact maps and semi-compact
inductive limits will be given in Example 2.1.5.

2.1.2. Fix a subfield F ⊂ K, which is a finite extension of Qp. Let d be a positive integer.
For x ∈ F d, and r = (r1, . . . , rd) ∈ |F×|d denote by Br(x) ⊂ Ad

F the rigid-analytic ball
of multi-radius r centred at x. We let Br(x) = Br(x)(F ) denote the F -valued points of
Br(x). Let (V, ‖·‖) be a Banach space over K. Let O(Br(x)) be the space of rigid-analytic
functions on Br(x). If f̃ =

∑
i�0 ai ⊗ vi is an element of the completed tensor product
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O(Br(x))⊗̂F V , then evaluation at F -valued points gives a map

f : Br(x) → V, x �→
∑
i�0

ai(x) ⊗ vi.

The functions f which are obtained in this way are called V -valued rigid-analytic function
[S-T1, § 2]. Concretely this means that f is given by a convergent power series in x with
coefficients in V . We remark that f̃ is uniquely determined by f .

2.1.3. One can define the notion of locally analytic functions on any locally F -analytic
manifold M . (This is what Bourbaki calls an F -analytic manifold [Bou, § 5.1].) We
always assume that M is strictly paracompact: this means that any open covering of
M can be refined into a covering by disjoint open subsets. Let V be a Hausdorff locally
convex K-vector space. A V -index I on M is a family of triples {(Di, φi, Vi)}i∈I , where
the Di are pairwise disjoint open subsets of M which cover M , each φi : Di → F d is
a chart of the manifold M whose image is an affinoid ball, and Vi ↪→ V is a BH-space
for V . For i ∈ I denote by Fφi

(Vi) the K-vector space of functions f : Di → Vi such
that f ◦ φ−1

i : φi(Di) → Vi is a Vi-valued rigid-analytic function on the ball φi(Di), as
defined in the previous section. Fφi(Vi) carries the structure of a Banach space, and we
can define the locally convex direct product

FI(V ) :=
∏
i∈I

Fφi(Vi).

The set of V -indices is partially ordered by declaring that

I = (Di, φi, Vi)i∈I � J = (Dj , φj , Vj)j∈J

if {Dj}j∈J refines {Di}i∈I and whenever Dj ⊂ Di, then Vi ⊂ Vj and the composite

φj(Dj)
φ−1

j−−→ Dj ⊂ Di
φi−→ φi(Di) ⊂ F d

is an F d-valued rigid-analytic function on φj(Dj). If I � J then there is a natural map
FI(V ) → FJ (V ) obtained by restricting functions from Di to Dj , where Dj ⊂ Di.

The space of V -valued locally analytic functions on M is defined as

Can(M, V ) := lim−→
I

FI(V ),

equipped with the locally convex inductive limit topology. We remark that the definitions
of an F -analytic manifold, and of a V -index imply that the above direct limit is filtering.

When we want to emphasize that M is considered as a locally analytic manifold over
F (and not over Qp, for instance), then we write Can

F (M, K) instead of Can(M, K).

2.1.4. The topological vector space of compactly supported locally analytic functions
with values in V is defined as follows. A compact V -index I on M is a family of triples
{(Di, φi, Vi)}i∈I , where the Di are pairwise disjoint open subsets of M such that

⋃
i∈I Di

is compact, each φi : Di → F d is a chart of the manifold M whose image is an affinoid
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ball, and Vi ↪→ V is a BH-space of V . Note that the index set I is finite. For i ∈ I denote
by Fφi

(Vi) the K-vector space of functions f : Di → Vi such that f ◦φ−1
i : φi(Di) → Vi is

a Vi-valued rigid-analytic function on the ball φi(Di), and define FI(V ) to be the product
of the Fφi(Vi). Extend any function in FI(V ) by zero to a function on M . As in 2.1.3,
the set of compact V -indices is partially ordered, and we can form the inductive limit of
the Banach spaces FI(V ), equipped with the locally convex inductive limit topology:

Can
F,c(M, V ) := lim−→

I
FI(V ).

There is a canonical continuous inclusion Can
F,c(M, V ) → Can

F (M, V ), but the topology on
Can

F,c(M, V ) is in general finer than the subspace topology. That is, the inclusion is not a
homeomorphism onto its image.

Example 2.1.5. Here we give two examples of semi-compact inductive limits.

(1) Let M = oF , and denote by pF the maximal ideal of oF . For each m � 0 define
the K-index Im as (a + pm

F , φa, K)a∈oF /pm
F

, where φa : a + pm
F → F is the tautolog-

ical inclusion. Then the canonical map FIm(K) ↪→ FIm+1(K) is compact (cf. the
example after Proposition 16.10 in [S]). Therefore, Can

F (M, K) is a semi-compact
inductive limit.

(2) More generally, for any locally F -analytic manifold M which can be written as a
countable union of compact-open subsets, the space Can

F,c(M, K) is a semi-compact
inductive limit. To see this, take a sequence {(Dm,i, φm,i, K)}i∈Im of compact
K-indices of M , such that

⋃
i∈Im

Dm,i ⊂
⋃

i∈Im+1
Dm+1,i, and such that any

φm,j(Dm,j) is the union of certain φm+1,i(Dm+1,i), as in the first example.

2.1.6. The strong dual Can(M, K)′
b of Can(M, K), is called the space of K-valued distri-

butions on M and is denoted by D(M, K). The second example shows that for a compact
manifold M the space Can(M, K) is a semi-compact inductive limit, and D(M, K) is then
a Fréchet space. We write DF (M, K) for D(M, K) if we want to make it clear that M is
considered as a locally F -analytic manifold.

2.1.7. We recall the definition of a locally analytic representation (cf. [S-T1, § 3]). Con-
sider a locally F -analytic group G. Let V be a barrelled locally convex Hausdorff K-vector
space, and let ρ : G → (Endcont

K (V ))× be a homomorphism from G into the group of
invertible continuous K-linear endomorphisms of V .

Definition 2.1.8. (V, ρ) is called locally F -analytic if for each v ∈ V the orbit map

G → V, g �→ ρ(g)(v)

is a V -valued locally F -analytic function on G. When there is no risk of confusion, we
sometimes omit the field F , and refer to these representations as locally analytic.

The prototypical example of a locally F -analytic representation of G is the space
Can(G, K) equipped with a G-action by

(g.f)(g′) = f(g′g), g, g′ ∈ G, f ∈ Can(G, K).
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2.1.9. Given a locally analytic representation (V, ρ) of the locally F -analytic group G,
we have bilinear maps

V ′
b × D(G, K) → V ′

b , (λ, δ) �→ λ · δ = (v �→ δ(g �→ λ(ρ(g)v))), (2.1.10)

and

D(G, K) × V ′
b → V ′

b , (δ, λ) �→ δ · λ = (v �→ δ(g �→ λ(ρ(g−1)v))). (2.1.11)

If we apply this to V = Can(G, K), then this gives two ways to define δ1 · δ2 for
δ1, δ2 ∈ D(G, K). We will use the first of these. That is, we define δ1 · δ2 by taking
λ = δ1 and δ = δ2 in (2.1.10) above. This gives D(G, K) the structure of a K-algebra
(which agrees with the one defined in [S-T1]), with the product of two distributions
δ1, δ2 ∈ D(G, K) given by

(δ1δ2)(f) = (δ1 · δ2)(f) = δ2(g1 �→ δ1(g2 �→ f(g2g1))).

With this structure (2.1.10) makes V ′
b into a right D(G, K)-module, and (2.1.11) makes

V ′
b into a left D(G, K)-module. We will usually use the left D(G, K)-module structure

on V ′
b .

2.1.12. If V is a locally F -analytic representation of G, then the Lie algebra Lie(G) acts
on V by

z.v =
d
dt

(exp(tz).v)|t=0, z ∈ Lie(G), v ∈ V.

Here exp : Lie(G) ��� G denotes the exponential map, which is defined in a neighbour-
hood of 0, and d/dt is defined by the usual limit formula. This induces a natural action
of the universal enveloping algebra U(Lie(G)) of Lie(G) on V .

Denote by z �→ ż the unique anti-automorphism of U(Lie(G)) which extends the mul-
tiplication by −1 on Lie(G). Then, for any z ∈ U(Lie(G)), we define a distribution
δz ∈ DF (G, K) by δz(f) = (ż.f)(1G). This extends to an embedding of K-algebras
U(Lie(G)) ⊗F K ↪→ DF (G, K). For λ ∈ V ′

b one has (δz · λ)(v) = λ(z.v).

2.2. The p-adic Fourier transform

Now let F be a finite extension of Qp which is contained in K. We will recall essential
properties of the p-adic Fourier transform which identifies the space of distributions
DF (oF , K) with the ring of rigid-analytic functions on the character variety ôF over K,
which is a rigid-analytic space. The results are due to Amice [A] in the case F = Qp,
and to Schneider and Teitelbaum [S-T2] in general.

2.2.1. Denote by B1 the rigid-analytic open unit disc around 1 over Qp, so that B1(K) =
1+mK , where mK is the maximal ideal of oK . Associating to each z ∈ 1+mK the K-valued
character

Zp → K×, a �→ za,
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gives a bijection between B1(K) and the group Ẑp(K) := Homloc an(Zp, K
×) of locally

analytic K-valued characters of Zp (cf. [Sch, §§ 32, 47]). Moreover, B1(K) gets the struc-
ture of a Zp-module, by a · z = za for a ∈ Zp and z ∈ B1(K). Now consider oF as a
locally analytic manifold over Qp, and denote this manifold by (oF )0. We write

(̂oF )0 := B1 ⊗Zp
HomZp

(oF , Zp),

where the right-hand side denotes the rigid-analytic variety over Qp whose points in a
rigid-analytic variety X are given by B1(X) ⊗Zp HomZp(oF , Zp). The variety (̂oF )0 is
(non-canonically) isomorphic to (B1)d, where d = [F : Qp]. Its K-valued points are
in natural bijection with the group Homloc an((oF )0, K×) of locally analytic K-valued
characters of oF , considered as a locally analytic manifold over Qp. The ring of rigid-
analytic functions on (̂oF )0/K (the base-change of (̂oF )0 from Qp to K) is in a natural
way a Fréchet-algebra over K. This follows from the fact that the ring of rigid-analytic
functions on the latter space is the projective limit of the rings of functions on affinoid
subdomains inside B1 ⊗Zp

HomZp
(oF , Zp). The following theorem is a several-variable

version of Amice’s Theorem 1.3 in [A].

Theorem 2.2.2 (Amice). There is a topological isomorphism of Fréchet algebras

DQp((oF )0, K) → O((̂oF )0/K), λ �→ Φλ,

where Φλ is given on

(̂oF )0(K̄
∧
) = Homloc an((oF )0, (K̄

∧
)×)

by Φλ(χ) = λ(χ).

2.2.3. In fact Amice proves her theorem only in the case where K is a subfield of Cp.
Presumably this assumption is not essential for the proof, but one can in any case deduce
the result for any field K from the case K = Qp: first we check that there is a (necessarily
unique) Φλ ∈ O((̂oF )0/K) which satisfies Φλ(χ) = λ(χ). In fact, let U ⊂ (̂oF )0 be a quasi-
compact, admissible open subset. It suffices to construct Φλ over U . A straightforward
calculation in local coordinates on (oF )0 shows that for any a ∈ (oF )0 the function
χ �→ χ(a) is a rigid-analytic function on (̂oF )0, and hence on U , and that the function

Φ : (oF )0 → O(U) : a �→ (χ �→ χ(a))

is a locally Qp-analytic O(U)-valued function on (oF )0. Thus given a distribution λ ∈
DQp((oF )0, K) we have Φλ = (Φ, λ) ∈ O((̂oF )0/K). It follows that we have a commutative
diagram:

DQp
((oF )0, K) �� O((̂oF )0/K)

DQp
((oF )0, Qp)⊗̂QpK

��

�� O((̂oF )0)⊗̂Qp
K

��
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Now the right vertical map is easily seen to be an isomorphism, since O((̂oF )0) has a
simple description in terms of power series. The map on the bottom is an isomorphism
by Amice’s theorem. This shows that the top map is surjective. Finally, [S-T2, Proposi-
tion 1.4] shows that the top map is injective (although K is assumed to be a subfield of
Cp in [S-T2], the same argument goes through verbatim without this assumption once
one replaces Cp by K̄ everywhere).

2.2.4. Now let us consider K-valued characters of oF which are locally analytic when oF

is considered as a locally analytic manifold over F . These are the homomorphisms from
oF into K× which can be developed locally in one-variable power series with coefficients
in K. We put

ôF (K) := Hom(oF , K×) ∩ Can
F (oF , K).

Theorem 2.2.5 (see Theorem 2.3 in [S-T2]). There is a closed rigid-analytic sub-
space ôF ⊂ (̂oF )0 over F , which has the property that for any extension K of F as above,
the set of K-valued points of ôF is equal to ôF (K) ⊂ Homloc an((oF )0, K×). Moreover,
the isomorphism from Theorem 2.2.2 induces an isomorphism of K-Fréchet algebras

DF (oF , K) → O(ôF /K), λ �→ Φλ.

Again, this theorem is proved in [S-T2] under the assumption that K ⊂ Cp. One can
reduce the general case to this one as in 2.2.3.

2.2.6. Only in the case F = Qp is the rigid-analytic variety ôF isomorphic to an open
unit disc over F . In general ôF is a form of an open unit disc which becomes isomorphic
to an open unit disc over an extension which contains all torsion points of a Lubin–Tate
formal group over oF . This has certain consequences which we are going to use later on.

Let G be a Lubin–Tate formal group over oF with multiplication by oF . It is a one-
dimensional formal group of height [F : Qp] over oF , which is equipped with a homo-
morphism oF → EndoF

(G). For a ∈ oF we denote by [a] : G → G the corresponding
endomorphism of G. Denote by G′ the p-divisible group dual to G, and let T ′ = T (G′) be
the Tate-module of G′, which is a free oF -module of rank one.

Assume for the rest of this section that K contains all p-power torsion points of G.
Then T ′ is isomorphic to the group Homf gps/oK

(GoK
, (Ĝm)oK

) of homomorphisms of
formal groups over oK , where Ĝm denotes the formal multiplicative group. One then
gets a pairing

T ′ ⊗oF
G(oK) → Ĝm(oK) = 1 + pK , t′ ⊗ z �→ 〈t′, z〉,

and this gives rise to an isomorphism of groups (cf. [S-T2, Proposition 3.1])

T ′ ⊗oF
G(oK) → ôF (K), t′ ⊗ z �→ κt′⊗z,

where κt′⊗z : oF → K× is defined by κt′⊗z(a) = 〈t′, [a](z)〉. Fix a generator t′0 of T ′

as oF -module, and denote by Grig the rigid-analytic variety associated to the formal
scheme G. This rigid space is isomorphic to an open unit disc over F . For t′ ∈ T ′ define
the rigid-analytic function Φt′ on Grig

K by Φt′(z) = 〈t′, z〉 − 1. Let logG : Grig → Grig
a be
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a logarithm for G, then there is Ω ∈ oK − {0} such that Φt′
0
(z) = exp(Ω logG(z)) − 1.

Define a differential operator ∂ : O(Grig) → O(Grig) by

∂Φ(z) = lim
w→0

(1/w)(Φ(z +G w) − Φ(z)).

We have the following results.

Theorem 2.2.7 (see Theorem 3.6 and Lemma 4.6 in [S-T2]). There is an isomor-
phism of the rigid-analytic varieties Grig

K and ôF which is given on K-valued points by
z �→ κt′

0⊗z. This induces a pairing

O(Grig
K ) × Can

F (oF , K) → K, (Φ, f) �→ {Φ, f},

and we have the following formulae:

(1) {Φat′
0
Φ, f} = {Φ, f(a + ·) − f};

(2) {Φ, f(a·)} = {Φ ◦ [a], f};

(3) {Φ, f ′} = {Ω logG ·Φ, f};

(4) {Φ, xf(x)} = {Ω−1∂Φ, f}.

3. The representations

For the rest of the paper E ⊂ K will denote a finite extension of F , contained in K.

3.1. General definition and main results

3.1.1. Denote by P an E-rational parabolic subgroup of GL2/E , and use the same letter
to denote its group of E-rational points. Consider a locally F -analytic group G ⊂ GL2(E)
satisfying the following conditions.

(i) The E-linear span of Lie(G) inside Lie(GL2(E)) contains Lie(SL2(E)).

(ii) The action of G on P\ GL2(E), given by multiplication from the right, has an open
orbit.

From now on we fix such a locally F -analytic subgroup, together with an open G-orbit
H ⊂ P\ GL2(E). Let H̃ ⊂ GL2(E) be its preimage (for the canonical projection
GL2(E) → P\ GL2(E)). It is an open submanifold of the locally E-analytic manifold
GL2(E). Let P � T be the reductive quotient of P . A K-valued locally E-analytic char-
acter χ : T → K× (i.e. an element of Can

E (T, K)∩Hom(T, K×)) defines a character of P ,
again denoted by χ, by composing χ with the canonical projection from P to T . Denote
by Vχ,H the subspace of Can

E (H̃, K) consisting of functions f satisfying the following
conditions.

(i) For all q ∈ P , g ∈ H̃: f(qg) = χ(q)f(g).

(ii) P\ supp(f) ⊂ H is compact.

G acts on Vχ,H by gf(x) = f(xg), x ∈ H̃, g ∈ G.
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We will shortly define a topology on these spaces, which gives them the structure of
semi-compact inductive limits. The main result is then that these G-representations are
topologically irreducible, provided a certain simple numerical condition on the character
χ is fulfilled. We continue with a discussion of the topology on these spaces.

3.1.2. Consider a locally E-analytic section s : H → H̃ of the canonical projection map
H̃ → P\H̃ = H. Such a section exists for any surjective smooth map of locally analytic
manifolds [Bou, § 5.9.1]. The induced map s∗ : Vχ,H → Can

E,c(H, K), f �→ f ◦ s, is then
easily seen to be an isomorphism of K-vector spaces. In 2.1.4, we defined the structure
of a locally convex vector space on Can

E,c(H, K). Being an open subset of the compact
manifold P\ GL2(E), H can be written as an increasing union of a countable number of
compact subsets, so by Example 2.1.5 Can

E,c(H, K) is a semi-compact inductive limit. We
equip Vχ,H with the topology which makes s∗ a homeomorphism.

Proposition 3.1.3. The topology on Vχ,H coincides with the topology induced by the
inclusion Vχ,H ↪→ Can

E (GL2(E), K) obtained by extending functions by 0. In particular,
it is independent of the section s.

Proof. Consider first the case G = GL2(E). Then H = P\ GL2(E) is compact. Choose
a section s as above, and define χ̃ ∈ Can

E (GL2(E), K) by the formula χ̃(g) =
χ(gs(pr(g))−1), where pr : GL2(E) → P \ GL2(E) denotes the natural projection. If we
use s∗ to identify Vχ,P\ GL2(E) with Can

E (P\ GL2(E), K), then the inclusion of the propo-
sition becomes the composite

Vχ,P\ GL2(E)
∼−→ Can

E (P\ GL2(E), K)
pr∗

−−→ Can
E (GL2(E), K)

·χ̃−→ Can
E (GL2(E), K).

It follows that Vχ,P\ GL2(E) ↪→ Can
E (GL2(E), K) is continuous, and it is a homeomorphism

onto its image, because it admits the retraction

Can
E (GL2(E), K) s∗

→ Can
E (P\ GL2(E), K) ∼−→ Vχ,P\ GL2(E).

For general G, we begin by checking that the topology on Vχ,H is independent of s. If s′

is another locally analytic section of H̃ → H, then for w ∈ H write h(w) = s′(w)s−1(w) ∈
P . For f ∈ Vχ,H and w ∈ H we have

(s′∗f)(w) = f(s′(w)) = f(h(w)s(w)) = χ(h(w))f(s(w)) = χ(h(w))(s∗f)(w).

Since multiplication by χ(h(w)) induces a topological automorphism of Can
c (H, K), this

proves the topologies induced on Vχ,H by s and s′ coincide.
To show that the natural inclusion Vχ,H ↪→ Vχ,P\ GL2(E), obtained by extending func-

tions by 0, is a homeomorphism onto its image, note that the independence of s just
shown implies that we may choose s so that it extends to a locally analytic section of
GL2(E) → P \GL2(E). For such a choice of s it suffices to show that the natural inclusion

Can
E,c(H, K) ↪→ Can

E (P\ GL2(E), K) = Can
E,c(P\ GL2(E), K)

is a homeomorphism onto its image. In fact it is easily seen from the definitions that for
any locally E-analytic manifold M1, and any open submanifold M2 ⊂ M1, the natural
map Can

E,c(M2, K) → Can
E,c(M1, K) is a topological embedding. �
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Proposition 3.1.4. Vχ,H is a semi-compact inductive limit, and it is a locally analytic
G-representation.

Proof. The first assertion follows from Example 2.1.5 and the very definition of the
topology on Vχ,H. To see that Vχ,H is a locally analytic representation, note that, since
Can

E (GL2(E), K) is a locally E-analytic representation of GL2(E), it is a fortiori an
F -analytic G-representation. By Proposition 3.1.3, Vχ,H is closed in Can

E (GL2(E), K),
and it is easily seen from the definitions that a closed G-stable subspace of a locally
F -analytic G-representation is again locally F -analytic. �

3.1.5. Before stating the main result about these representations, we make a definition.
The torus T acts by the adjoint representation on the Lie algebra of the unipotent
subgroup of P via a character α : T → Gm. Its differential is a map dα : Lie(T ) →
Lie(Gm,E). Similarly, for any locally analytic character χ : T → K× = Gm(K), we have
its differential dχ : Lie(T ) → Lie(Gm,K) = Lie(Gm,E)⊗E K. Define T (1) to be the image
of P ∩ SL2 in T . Then there is then an element c(χ) ∈ K such that

dχ|Lie(T (1)) = − 1
2c(χ) dα|Lie(T (1)).

Now we can state the following theorem.

Theorem 3.1.6. If c(χ) /∈ Z�0, then Vχ,H is a topologically irreducible representation
of G.

The proof will be given in § 4.

3.1.7. Now suppose that c(χ) is a non-negative integer. In this case, following Morita
[Mo1], there is a non-zero closed proper subrepresentation V loc alg

χ,H of Vχ,H. Let U− be
the unipotent radical of the parabolic subgroup opposite to P , and fix a generator u− of
Lie(U−) as an E-vector space. We let V loc alg

χ,H be the space of functions f in Vχ,H such
that for any g ∈ H̃ the function z �→ f(exp(zu−)g) (which is defined on a sufficiently
small neighbourhood of zero in E, depending on g) is a polynomial in z of degree less
than or equal to c(χ), for sufficiently small z. The coefficients of this polynomial depend
on g. This space is G-stable since H̃ is G-stable. The Lie algebra element u− acts by left
translation on functions f on H̃ via the formula

(u−.�f)(g) = lim
λ→0

1
λ

(f(exp(λu
−)g) − f(g)).

In general u−.�f will no longer be equivariant for the action of P by left translation.
However, if we define the character χ′ of T by χ′ = χ · αc(χ)+1, then (u−)c(χ)+1.�f is
equivariant with respect to the character χ′.

Proposition 3.1.8. V loc alg
χ,H is an infinite-dimensional closed G-stable subspace of Vχ,H.

The differential operator (u−)c(χ)+1.� induces a continuous, strict surjection from Vχ,H
to Vχ′,H whose kernel is precisely V loc alg

χ,H .

The proof will be given in the next section.
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Corollary 3.1.9. V loc alg
χ,H consists of those functions f ∈ Vχ,H such that for any g ∈ H̃,

and z sufficiently small, the function z �→ f(exp(zu−)g) is a polynomial of some fixed
degree, not depending on g.

Proof. In fact, if V n
χ,H denotes the set of f such that for any g ∈ H̃ the function

z �→ f(exp(zu−)g) is (for sufficiently small z) a polynomial of degree less than or equal
to n, then V n

χ,H is a proper closed G-stable subspace of Vχ,H. Hence Theorem 3.1.6 and
Proposition 3.1.8 show that V n

χ,H ⊂ V loc alg
χ,H . �

Corollary 3.1.10. With the notation of Proposition 3.1.8, V loc alg
χ,H is the kernel of

(u−)c(χ)+1.

Proof. If we identify Vχ,H and Vχ′,H with subspaces of Can
E (E, K), then both

(u−)c(χ)+1 : Vχ,H → Vχ,H and (u−.�)c(χ)+1 : Vχ,H → Vχ′,H

are given by (d/dz)c(χ)+1. Hence the kernels of (u−.�)c(χ)+1 and (u−)c(χ)+1 are equal,
and the result follow from Proposition 3.1.8. �

3.2. Another description of the representations

3.2.1. In this section we give another description of the representations Vχ,H by choosing
the parabolic subgroup P to be the group of upper triangular matrices in GL2. In [Mo1,
Mo2], Morita defines analogous representations for SL2(E) in this way, except that he
takes P to be the group of lower triangular matrices. But because any two E-rational
Borel subgroups are conjugate by an element of GL2(E), there is no loss of generality if
we fix a specific one.

For the element u− which generates the Lie algebra of U− we choose

u
− =

(
0 0
1 0

)
.

In the following, we will sometimes identify P\ GL2(E) with P1(E) by(
a b

c d

)
�→ (c : d).

We denote by i : E → GL2(E) the map given by i(z) = exp(zu−) = 1+ zu−. The unique
point of P\ GL2(E) = P1(E) not in the image of the composite of i and the projection
GL2(E) → P\ GL2(E) will be denoted by ∞. We regard E as an open subset of P1(E)
via this composite map.

Write the character χ as a product of characters of E× as follows:

χ

(
a 0
0 d

)
= χ1(ad)χ2(d).
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Then we have that χ2(z) = exp(c(χ) log(z)) for z sufficiently close to 1. Put Vχ =
Vχ,P\ GL2(E). If f ∈ Vχ, then for z �= 0 we have

f

((
1 0
z 1

))
= f

((
1/z 1
0 z

) (
0 −1
1 1/z

))
= χ2(z)f

((
0 −1
1 1/z

))
.

Now choose a section s of the projection GL2(E) → P\ GL2(E) whose restriction to an
open neighbourhood of ∞ is given by

z �→
(

0 −1
1 1/z

)
.

Then s∗ identifies Vχ with Can
E (P\ GL2(E), K) and one sees that the image of the map

i∗ : Vχ → Can
E (E, K)

induced by i consists of all locally analytic functions f on E which have the property
that for |z| 
 0 the function z �→ χ2(z)−1f(z) can be expanded into a convergent power
series in 1/z. In particular, we can extend χ2(z)−1f(z) to a function on P\ GL2(E) by
defining χ2(∞)−1f(∞) to be the constant term of this series.

The action of GL2(E) on this space of functions is given by the formula

g =

(
a b

c d

)
maps f to (g.χf)(z) = χ1(ad − bc)χ2(bz + d)f

(
az + c

bz + d

)
. (3.2.2)

Here, if (az + c)/(bz + d) = ∞, then the expression on the right-hand side of the formula
is defined to be χ1(det g)χ2(az + c)χ−1

2 (∞)f(∞).
More generally, for a group G ⊂ GL2(E) which satisfies the assumptions made in 3.1.1

and an open orbit H, we distinguish two cases, namely whether H is contained in E (first
case) or not (second case). In the first case, the image of the map i∗ : Vχ,H → Can

E (E, K)
consists of locally analytic functions on H with compact support. When ∞ belongs to
H, the image of i∗ consists of those locally analytic functions f on E ∩ H, which have
the property that

(i) there is z0 ∈ E× such that {z ∈ E | |z| � |z0|} ⊂ H and such that on this subset
χ2(z)−1f(z) can be expanded into a convergent power series in 1/z;

(ii) supp(f) ∩ {z ∈ E | |z| � |z0|} is compact.

For c(χ) ∈ Z�0 the map i∗ identifies V loc alg
χ,H with the space of functions f on E ∩ H

which are locally polynomial of degree less than or equal to c(χ), have compact support
and, if ∞ ∈ H, have the property that for |z| 
 0 the function z �→ χ2(z)−1f(z) is a
polynomial in 1/z of degree less than or equal to c(χ). The differential operator u−.�
becomes differentiation with respect to z.
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3.2.3. Proof of Proposition 3.1.8. As above, we again denote by i the inclusion
E ∩ H → H̃ induced by i. We first check that the operator (d/dz)c(χ)+1 induces a strict
surjection i∗(Vχ,H) → i∗(Vχ′,H). If ∞ /∈ H, then this is immediate since we can always
integrate locally analytic functions on compact subsets. The strictness can be seen as
follows: any function f ∈ i∗(Vχ′,H) ∼−→ Can

E,c(H, K) which lies in FI(K) for some K-index
I on H ∩ E as in 2.1.4 can be integrated to a function in FI′(K), where I ′ depends
only on I and not on f . The explicit description of the inductive limit topology given
in [S, Lemma 5.1(iii)] now implies that differentiation of functions in Can

E,c(H, K) is a
strict map.

Suppose that ∞ /∈ H. Suppose that f is any locally E-analytic function on {z ∈ E |
|z| � |z0|} such that

χ2(z)−1f(z) = ϕ

(
1
z

)
=

∞∑
i=0

aiz
−i,

where ϕ(1/z) is a power series with coefficients in K, which is convergent for |z| � |z0|.
Differentiating both sides of this equation one finds

χ2(z)−1f ′(z) =
c(χ)
z

ϕ

(
1
z

)
− 1

z2 ϕ′
(

1
z

)
=

c(χ)a0

z
+

(c(χ) − 1)a1

z2 +
(c(χ) − 2)a2

z3 + · · · .

Hence we see that

χ2(z)−1f (c(χ)+1)(z) =
∞∑

i=2c(χ)+2

biz
−i,

where

bi = ai−c(χ)−1

c(χ)∏
j=0

(2c(χ) + 1 − i − j).

Finally,

χ′
2(z)−1f (c(χ)+1)(z) = z2c(χ)+2χ2(z)−1f (c(χ)+1)(z) =

∞∑
i=0

bi+2c(χ)+2z
−i.

Using this we see that (d/dz)c(χ)+1 induces a continuous surjection i∗(Vχ,H) → i∗(Vχ′,H),
which is strict by an argument similar to that given in the first case. (Note that if h ∈ Vχ,H
and i∗(h) = f , with χ2(z)−1f(z) = ϕ(1/z) for |z| � |z0|, as above, then the calculation
of 3.2.1 shows that s∗(h) = ϕ(1/z) for |z| � |z0|.)

It remains to show that the map i∗(Vχ,H) → i∗(Vχ′,H) constructed above is G-equivari-
ant. As observed in the proof of Proposition 3.1.3, there is a natural G-equivariant map
Vχ,H → Vχ obtained by extending functions by zero from H̃ to GL2(E). This map is also
compatible with the action of Lie(G). Hence, it suffices to consider the case G = GL2(E).

Let f ∈ i∗(Vχ). We claim that (g.χf)(c(χ)+1) = g.χ′f (c(χ)+1) for any g ∈ GL2(E), where
(g.χf)(n) denotes the nth derivative of g.χf . It is not difficult to check by induction that
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the following formula is valid for any non-negative integer n:

(g.χf)(n)(z)

= χ1(det g)χ2(bz + d)
∑

0�i�n

(
n

i

)[ n−1∏
j=i

(c(χ) − j)
](

b

bz + d

)n−i( det g

(bz + d)2

)i

f (i)(z.g).

The claim follows by putting n = c(χ) + 1 in this expression.
Now let h̃ ∈ Vχ. Set h = (u−.�)c(χ)+1h̃, and let h′ ∈ Vχ′ satisfy i∗(h′) = i∗(h). Then

for any g ∈ GL2(E) we compute

i∗(g.h) = i∗(g.(u−.�)c(χ)+1h̃) = i∗((u−.�)c(χ)+1g.h̃)

=
(

d
dz

)c(χ)+1

g.χi∗(h̃) = g.χ′

(
d
dz

)c(χ)+1

i∗(h̃) = g.χ′i∗((u−.�)c(χ)+1h̃)

= g.χ′i∗(h) = g.χ′i∗(h′) = i∗(g.h′).

Since GL2(E) acts transitively on itself by right translation, this implies that h = h′,
which shows that (u−.�)(c(χ)+1) induces a map Vχ → Vχ′ . Since u−.� commutes with right
translation, this map is automatically GL2(E)-equivariant. �

3.3. GL2: principal series and cuspidal representations

3.3.1. In this section we consider in greater detail the case when G is equal to GL2(F )
or SL2(F ). Because the basic set-up requires the existence of an open orbit of G on
P\ GL2(E), the degree of E over F is at most three. We distinguish two cases.

• E = F : GL2(F ) and SL2(F ) both act transitively on P\ GL2(E). We call this the
principal series case, although not all representations are irreducible.

• 2 � [E : F ] � 3: because of the similarities with the classical smooth theory (in the
case of a quadratic extension), we call the representations one gets in the second
case cuspidal.

Now suppose that [E : F ] is 2 or 3. Identifying P\ GL2(E) with P1(E) as in 3.2.1,
we see that the open orbits of GL2(F ) and SL2(F ) are contained in P1(E) \ P1(F ). To
describe the orbits, we will work with the description of the group action given in (3.2.2).
If H denotes an open orbit for G, then ∞ /∈ H and the space Vχ,H can be identified with
Can

E,c(H, K).
The following proposition gives a description of the orbits of GL2(F ) and SL2(F ) on

E \ F .

Proposition 3.3.2.

(1) If E/F is a quadratic or cubic extension, then GL2(F ) acts transitively on E \ F .

(2) Suppose [E : F ] = 2. Then E \ F consists of two open orbits for the action of
SL2(F ). Denote by σ the non-trivial Galois automorphism of E over F . Then two
elements z, z′ ∈ E \ F lie in the same orbit if and only if (z − σ(z))/(z′ − σ(z′)) is
a norm for E/F .
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(3) Suppose [E : F ] = 3. Then E \F consists of #(F×/F×,2) open orbits for the action
of SL2(F ). Denote by ι, σ, τ : E → F̄ the F -linear embeddings of E into F̄ . Then
two elements z, z′ ∈ E \ F lie in the same orbit if and only if

(ι(z) − σ(z))(σ(z) − τ(z))(τ(z) − ι(z))
(ι(z′) − σ(z′))(σ(z′) − τ(z′))(τ(z′) − ι(z′))

∈ F×,2.

Proof. (1) For a given element z ∈ E \ F , one has that

z.

(
a 0
c 1

)
= az + c,

which shows that for [E : F ] = 2 the action is transitive. If [E : F ] = 3 and t ∈ E \ F ,
then the map M2(F ) → E given by(

a b

c d

)
�→ (az + c) − t(bz + d)

is F -linear and hence has a non-trivial kernel. If g ∈ M2(F ) is in this kernel, then det g �= 0
as z, t /∈ F . This shows that there is a g ∈ GL2(F ) with z.g = t. (We are grateful to the
referee for this concise argument.)

(2) In the case [E : F ] = 2, another computation shows that for any z ∈ E \ F and
g ∈ GL2(F ), one has

zg − σ(zg)
z − σ(z)

=
det(g)

NE/F (bz + d)
.

This proves the ‘only if’ part of (2). Conversely, if z′ ∈ E\F is such that (z′ −σ(z′))/(z−
σ(z)) is in the image of NE/F , and g ∈ GL2(E) satisfies z.g = z′, then the above formula
shows that det(g) = NE/F (u) for some u ∈ E×. Write u = α+βz with α, β ∈ F , and set

g0 =

(
α + trE/F (βz) 1
−NE/F (βz) α

)
,

where trE/F : E → F denotes the trace. Then z′ = z.(g−1
0 g), and det(g−1

0 g) = 1.

(3) Similarly, if [E : F ] = 3, then for any z ∈ E \ F and g ∈ GL2(F ), one has that

(ι(zg) − σ(zg))(σ(zg) − τ(zg))(τ(zg) − ι(zg))
(ι(z) − σ(z))(σ(z) − τ(z))(τ(z) − ι(z))

=
det(g)3

NE/F (bz + d)2
.

This proves the ‘only if’ part of (3). Conversely, if z′ ∈ E\F is such that the expression
in (3) is in F×,2, then choose g ∈ GL2(E) with z′ = z.g. The above formula then shows
that det g ∈ F×,2, so that z′ = z.((det g)−1/2g). This proves the assertion. �
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3.3.3. The general setting of 3.1.1 also applies to the case when G is a compact-open
subgroup of GL2(F ) and [E : F ] � 3.

Consider, for example, the situation that F = E and G = GL2(oE). Because GL2(oE)
acts transitively on P\ GL2(E), the irreducibility result Theorem 3.1.6 tells us that if
c(χ) /∈ Z�0, then the representation of GL2(E) attached to χ stays irreducible after
restriction to GL2(oE). Another case, which will be studied in § 4.2, is given by principal
congruence subgroups of GL2(E).

When F = E, any compact-open subgroup of GL2(E) has only a finite number of
orbits on the flag variety. In contrast to this case, when 2 � [E : F ] � 3, any compact-
open subgroup of GL2(F ) has an infinite (countable) number of orbits on the (only) open
orbit of GL2(F ) on P\ GL2(E). This will be of importance when discussing the strong
admissibility of these representations in 7.1.1.

3.3.4. Now suppose that E is a quadratic extension of F and that G = GL2(F ). Let
H ⊂ P\ GL2(E) denote the unique open orbit of G. Suppose that, in the notation
of 3.2.1, χ1 is the trivial character. In this case we will give yet another construction of
the representation Vχ,H (the general case where χ1 is non-trivial can be reduced to this
one by twisting by a character). Although this description will not be used in the rest
of the paper, it is suggestive of the construction of smooth cuspidal representations of
GL2(E) in terms of characters of a non-split torus. It thus serves to support the heuristic
that the locally analytic representations interpolate the smooth ones.

Choose a non-split torus T ⊂ GL2/F such that T(F ) ∼−→ E×. Let g ∈ GL2(E) be an
element such that T(E) ⊂ g−1Pg. Set Gg := g GL2(F )g−1 and T g = gT(F )g−1 = P ∩Gg.
Then

T g =

{(
σ(z) 0

0 z

)
: z ∈ E×

}
⊂ P.

Now let

H =

{
p ∈ P : p =

(
∗ ∗
0 1

)}
.

Since H ∩ Gg = H ∩ T g = {1}, we have a Gg-equivariant, open immersion of locally
F -analytic manifolds Gg ↪→ H\ GL2(E). In particular, this gives Gg the structure of a
locally E-analytic manifold.

Now we define a locally analytic Gg-representation Wχ,g as follows. The underlying
topological K-vector space of Wχ,g consists of functions f ∈ Can

E (Gg, K) such that

• for all e ∈ T g = E× and h ∈ Gg, f(eh) = χ2(e)f(h);

• E×\ supp(f) is compact.

Gg acts on Wχ,g by multiplication on the right.

Proposition 3.3.5. If we regard Wχ,g as a representation of GL2(F ) via the map

GL2(F )
h�→ghg−1

−−−−−−→ Gg,

then there is an isomorphism of locally analytic GL2(F )-representations Wχ,g
∼−→ Vχ,H.
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Proof. Write Hg = Hg−1, so that Hg is the unique orbit of Gg on P\ GL2(E). As
in the proposition, we can regard Vχ,Hg as a GL2(F )-representation. Then one checks
immediately that we have an isomorphism of locally analytic GL2(F )-representations

Vχ,H → Vχ,Hg : f �→ (h �→ f(hg), h ∈ H̃g).

Thus, it suffices to show that Wχ,g
∼−→ Vχ,Hg as locally analytic Gg-representations. But

this follows from the definitions, once we note that T g\Gg ⊂ P\ GL2(E) is open, and
hence coincides with Hg, and that the assumption that χ1 is trivial, implies that any
f ∈ Vχ,Hg descends to a function on H\H̃g = Gg. �

3.4. Quaternion division algebras and unitary groups

3.4.1. Let F be a finite extension of Qp, and let D be a central division algebra of
dimension four over F . Given a quadratic extension E of F , there is an embedding E ↪→
D, and there are elements τ ∈ D×, ι ∈ F× \ NE/F (E×) such that D = E ⊕ Eτ , τ2 = ι,
and conjugation by τ leaves E stable and induces the non-trivial Galois automorphism
x �→ x̄ of E over F . Thus, the map

D → M2(E), a + bτ �→
(

a ιb

b̄ ā

)
is an embedding of F -algebras. We let G := D× ⊂ GL2(E) be the group of units
of D, considered as a locally F -analytic subgroup of GL2(E). The map D ⊗F E →
M2(E) induced by the map above is an isomorphism. Moreover, G acts transitively on
P\ GL2(E). Hence, the conditions in 3.1.1 are satisfied, and we get, for any locally E-
analytic character χ of the diagonal torus T , a locally analytic representation of D× on
the space Vχ = Vχ,H defined in 3.1.1. On functions f ∈ Vχ the action is given by the
formula in (3.2.2): g.χf is given by

(g.χf)(z) = χ1(aā − ιbb̄)χ2(ιbz + ā)f
(

az + b̄

ιbz + ā

)
, where g =

(
a ιb

b̄ ā

)
∈ D×.

Let D×,1 = D× ∩ SL2(E) ⊂ GL2(E). Then G = D×,1 also satisfies the conditions
of 3.1.1. There are two orbits of D×,1 on P\ GL2(E). This can be seen by using the
bijections

P\ GL2(E)/D1,× ∼−→ E×\D×/D1× ∼−→ F×/NE/F (E×),

where the first map is induced by the inclusion D× ⊂ GL2(E), and the second by the
reduced norm Nrd : D× → F×. We will makes use of this in our discussion of unitary
groups below, where we also provide a more explicit description of the two orbits.

3.4.2. Let 〈· , ·〉 denote a non-degenerate hermitian form on E ⊕ E (i.e. 〈x, y〉 = 〈y, x〉,
〈αx, y〉 = α〈x, y〉 for α ∈ E, and for any y ∈ E2 the form x �→ 〈x, y〉 is non-zero). We
think of elements of E2 as rows, on which GL2(E) acts from the right:

(x1, x2)

(
a b

c d

)
= (x1a + x2c, x1b + x2d).
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Consider the unitary group G attached to this hermitian form:

G = {g ∈ GL2(E) | 〈xg, yg〉 = 〈x, y〉}.

There is a hermitian 2 × 2 matrix A such that 〈x, y〉 = xAty. Using this description we
find that

Lie(G) = {X ∈ M2(E) | XA + AtX = 0},

and an easy calculation (assuming A to be a diagonal matrix) shows that Lie(G) spans
Lie(GL2/E) over E. Of course, one could also use the general fact that G is a form
of GL2/F .

We now describe the orbits of G on P\ GL2(E). There are two cases to distinguish:
either the hermitian form is anisotropic (i.e. 〈x, x〉 �= 0 for any x �= 0) or it is not.

For the first case, let ι ∈ F×\NE/F (E×) and D ⊂ M2(E) be as in 3.4.1. Let ∗ :
D → D denote the canonical anti-involution of D which induces the non-trivial Galois
automorphism of any subfield E′ ⊂ D which is a quadratic extension of F . If we identify
E2 with E ⊕ Eτ = D, by (x1, x2) �→ x2 + x1τ , then an anisotropic form is given by
〈x, y〉 = ε(xy∗) where ε : D → E is the map which sends a + bτ to a. Any anisotropic
form is equivalent to this one. If x = (x1, y1) and y = (y1, y2), then the form is given
explicitly by

〈(x1, x2), (y1, y2)〉 = −ιx1ȳ1 + x2ȳ2.

It is easily checked that D×,1 is a subgroup of G. Denote by F×,+ (respectively, F×,−)
the subgroup NE/F (E×) (respectively, F×\NE/F (E×)) of F×. Put

H± = P\
{

g =

(
a b

c d

)
∈ GL2(E)

∣∣∣∣∣ 〈(0, 1)g, (0, 1)g〉 = −ι|c|2 + |d|2 ∈ F×,±

}
.

These subsets are open in P\ GL2(E), and stable under the action of right multiplication
by G, because Pg is in H± if and only if 〈(0, 1)g, (0, 1)g〉 ∈ F×,±. In particular they
are stable by D×,1. Since we saw in 3.4.1 that D×,1 has exactly two open orbits on
P\ GL2(E), H± must coincide with these orbits. It also follows that H± are precisely
the orbits of G on P\ GL2(E). As the orbits are quotients of the compact group D×,1

they are also compact, and any compact-open subgroup of G therefore has only finitely
many orbits on H.

In the case where the hermitian form is isotropic there exists a basis (v1, v2) of E2 such
that 〈v1, v1〉 = 〈v2, v2〉 = 0 and 〈v1, v2〉 = θ for some generator θ of E over F such that
θ2 ∈ F . One checks easily that G contains SL(Fv1⊕Fv2). The quotient P\ GL2(E) is the
disjoint union of three sets of elements v mod P . Namely, the preimages of {0}, F×,+ and
F×,− under the map g �→ 〈(0, 1)g, (0, 1)g〉. Each of these subsets is stable under G. The
first of these sets is clearly closed and compact, and corresponds to P1(F ) = P(Fv1⊕Fv2).
The other two sets are open and non-compact. Since SL2(F ) = SL(Fv1 ⊕Fv2) acting on
P\ GL2(E) has two open orbits by Proposition 3.3.2, these two sets are exactly the open
orbits of G on P\ GL2(E). Consequently, any compact-open subgroup has an infinite
number of orbits on each of the open subsets stable under G.
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As we have seen, the first case is similar to the case of the quaternion division algebra,
whereas the second case is close to that of SL2(F ). For this reason we will not explicitly
work out the results of §§ 5–7 for the case of unitary groups, but leave this as an exercise
for the reader.

4. Irreducibility of generic representations

The aim of this section is to prove the main result on the irreducibility of the repre-
sentations constructed above. After recalling some formulae for the action of the Lie
algebra in § 4.1, we prove in § 4.2 a result on the irreducibility of certain representa-
tions of principal congruence subgroups of GL2(oE). This is a generalization of the main
result of [S-T1], and the proofs mostly follow the methods of that paper. What may
be more surprising is that this result can be applied to prove irreducibility of cuspidal
representations, which is what we do in § 4.3.

4.1. Action of the Lie algebra

4.1.1. In this section we consider the action of certain elements of the Lie algebra of
GL2(E) on Vχ = Vχ,H. We assume that P is the group of upper triangular matrices and
work with the model of Vχ = Vχ,H described in 3.2.1. That is, we identify Vχ = Vχ,H
with a space of functions on E. The elements we will consider are

u
+ =

(
0 1
0 0

)
, u

− =

(
0 0
1 0

)
.

Define a linear endomorphism Θ of Can
E (E, K) by (Θf)(z) = zf(z).

The following lemma is a variant of [S-T1, Lemmas 5.2, 5.3].

Lemma 4.1.2. We have

(1) u− = d/dz;

(2) u+ = c(χ)Θ − Θ2(d/dz) = c(χ)Θ − Θ2u−;

(3) for any m � 1, u−Θm = mΘm−1 + Θmu−;

(4) for any m � 1,

(u+)m = m!
(

c(χ)
m

)
Θm + Qmu

−,

where Qm is a sum of terms of the form Θa(u−)b (a, b ∈ Z�0) with coefficients
in K.

Proof. Parts (1) and (2) follow from a simple computation and part (3) follows imme-
diately from part (1). For m = 1 the assertion in part (4) is true by part (2). Assuming
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the assertion is true for a given m � 1, we can calculate

(u+)m+1 = u
+
(

m!
(

c(χ)
m

)
Θm + Qmu

−
)

= (c(χ)Θ − Θ2
u

−)
(

m!
(

c(χ)
m

)
Θm + Qmu

−
)

= c(χ)m!
(

c(χ)
m

)
Θm+1 + c(χ)ΘQmu

− − m!
(

c(χ)
m

)
Θ2

u
−Θm − Θ2

u
−Qmu

−

= m!
(

c(χ)
m

)
(c(χ) − m)Θm+1 + (c(χ)ΘQm − m!

(
c(χ)
m

)
Θm+2 − Θ2

u
−Qm)u−,

where in the last equality we have used (3). This proves (4). �

4.2. Representations of principal congruence subgroups

4.2.1. Before proving in Theorem 4.2.5 what we call the local irreducibility result, we
begin with a simple lemma. Fix a locally analytic section s : P\ GL2(E) → GL2(E). Let
G ⊂ SL2(E) be a compact-open subgroup, and let ∆ ⊂ P\ GL2(E) be an orbit of G.
For a character χ of T , we identify the underlying space of the representation Vχ,∆ with
Can

E,c(∆, K) using the section s, as in 3.1.2.
The result of applying an element g ∈ G to a function f ∈ Can

E,c(∆, K) will be denoted
by g.χf . Similarly, for δ ∈ DE(G, K) and λ ∈ DE(∆, K), we denote the image of λ under
δ by δ.χλ. We will work with different groups, and it is important that the section s is
fixed, independent of G, ∆ and χ.

Fix g0 ∈ GL2(E) and define isomorphisms

g0.χ : Can
E,c(∆g0, K) → Can

E,c(∆, K), f �→ g0.χf,

DE(∆, K) λ�→λg0
−−−−→ DE(∆.g0, K), λg0(f) = λ(g0.χf),

DE(g−1
0 Gg0, K) δ �→δg0

−−−−→ DE(G, K), δg0(f) = δ(g �→ f(g0gg−1
0 )).

Lemma 4.2.2. For λ ∈ DE(∆, K) and δ ∈ DE(g−1
0 Gg0, K) we have (δg0 ·χλ)g0 = δ·χλg0 .

Proof. For f ∈ Can
E,c(∆.g0, K) we have

(δg0 ·χ λ)g0(f) = (δg0 ·χ λ)(g0.χf) = δg0(g �→ λ(g−1.χ(g0.χf)))

= δ(g �→ λ(g0.χ(g−1.χf))) = δ(g �→ λg0(g−1.χf)) = (δ ·χ λg0)(f).

�

Corollary 4.2.3. Suppose that DE(∆.g0, K) is a simple DE(g−1
0 Gg0, K)-module. Then

DE(∆, K) is a simple DE(G, K)-module.

Proof. Let M ⊂ DE(∆, K) be a DE(G, K)-submodule. Then

Mg0 = {λg0 | λ ∈ M} ⊂ DE(∆.g0, K)
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is a module under DE(g−1
0 Gg0, K), because

δ ·χ λg0 = (δg0 ·χ λ)g0 ∈ Mg0 .

Hence Mg0 is zero or DE(∆.g0, K). So M is zero or DE(∆, K). �

4.2.4. We now consider a principal congruence subgroup Gr := 1 + pr
EM2(oE) ∩ SL2(E)

for some r ∈ Z>0. Moreover, we work with the model described in § 3.2.1. That is, we
choose P to be the group of upper triangular matrices, and we identify E with a subset
of P\ GL2(E). It is easy to see that any orbit of Gr can be mapped into oE ⊂ E by
some element of GL2(oE), and that any orbit contained in oE is of the form z0 + pr

E for
some z0 ∈ oE . Moreover, after translation by ( 1 0

−z0 1 ) we may assume that the orbit is
pr

E . Then we put

g0 :=

(
�−r

E 0
0 1

)
,

so that the image of this orbit under g0 is oE , and

G′
r := g−1

0 Grg0 =

{(
1 + pr

E p2r
E

oE 1 + pr
E

)}
∩ SL2(E).

Then, Vχ,oE
is a locally analytic representation of G′

r, and hence DE(oE , K) � (Vχ,oE
)′
b

is a module under DE(G′
r, K). Now fix a Lubin–Tate group G over E.

Theorem 4.2.5. Assume that K contains all torsion points of G and that it is spherically
complete. Suppose that c(χ) /∈ Z�0. Then DE(oE , K) is a simple DE(G′

r, K)-module.
Consequently, DE(∆, K) is a simple DE(Gr, K)-module, for any orbit ∆ of Gr.

Proof (cf. the proof of Theorem 5.4 in [S-T1]). The second statement follows from
Corollary 4.2.3.

Recall the pairing of Theorem 2.2.7:

{· , ·} : O(Grig
K ) × Can

E (oE , K) → K,

with which we identify DE(oE , K) with O(Grig
K ). That is, for each λ ∈ DE(oE , K)

there is a unique Φλ ∈ O(Grig
K ), such that {Φλ, f} = λ(f) for any f ∈ Can

E (oE , K).
Let I ⊂ DE(oE , K) � O(Grig

K ) be a DE(G′
r, K)-stable non-zero submodule. Because the

action of G′
r on oE contains all translations z �→ z + a, a ∈ oE , the submodule I is an

ideal when considered as a subspace of O(Grig
K ). We want to show that I = O(Grig

K ). Since
K is spherically complete, a result of Lazard [Laz] implies that any finitely generated
ideal of the ring O(Grig

K ) is principal, and that the principal ideals are in bijection with
the effective divisors on Grig

K , which are formal sums of closed points, having only finite
support on any affinoid subdomain.

The first step is to start with an arbitrary non-zero function Φ ∈ I and to construct
another function Φ1 ∈ I, such that the common zeros of Φ and Φ1 are contained in the
set of torsion points Gtors of G. By Lazard’s result, this implies that there is a function
Φ2 contained in I such that all of its zeros are in Gtors. The second step is to use Φ2 to
construct another function Φ3 ∈ I which does not vanish at any torsion point of G, so
that Φ2 and Φ3 generate the unit ideal.
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First step. Let Φ ∈ I be a non-zero function. Let S be the set of zeros of Φ on Grig(K̄),
and put S′ = S \ (S ∩ Gtors). Because S is countable and o

×
E is uncountable, there exists

a ∈ o
×
E such that [a2](S′) ∩ S = ∅, where [·] = [·]G : GK → GK is the multiplication of oE

on G. Thus, the common zeros of Φ1 := Φ ◦ [a2] and Φ are contained in Gtors.
Now we show that Φ1 is in I. To do this, we may choose a arbitrarily close to 1, and we

will assume from now on that a ∈ 1 + pr
E . Put ga = diag(a−1, a), and let δga

∈ DE(G′
r, K)

be the distribution which is given by evaluating functions at ga. By Theorem 2.2.7, we
compute for any Φλ ∈ O(Grig

K ) and f ∈ Can
E (oE , K):

{Φδga ·χλ, f} = (δga ·χ λ)(f)

= λ(χ2(a−1)f(a2·))
= {Φλ, χ2(a−1)f(a2·)}
= {χ2(a−1)Φλ ◦ [a2], f}.

Thus, if Φ is in I, then Φ ◦ [a2] = χ2(a)Φδga ·χλ is in I.

Second step. Let {x0, x1, x2, . . . } ⊂ K be the set of torsion points of G. By the first
step and Lazard’s result alluded to above, there is a function Φ2 ∈ I such that the zeros
of Φ2 are contained in Gtors and, denoting by mi the order of vanishing of Φ2 at xi, we
have 0 < m0 < m1 < m2 < · · · .

By Lemma 4.1.2 (4) and Theorem 2.2.7, and with the notation introduced in 2.1.12,
we have, for any Φλ ∈ O(Grig

K ) and f ∈ Can
E (oE , K),

{Φδ(u+)m ·χλ, f} = {Φλ, cmΘmf + Qmu
−f} = {cmΩ−mΦ

(m)
λ , f} + {Ω logG ·Φλ,Qm , f},

where cm = m!
(
c(χ)
m

)
, Φλ,Qm

is defined by requiring that

{Φλ,Qm , f} = {Φλ, Qmf}

for any f ∈ Can
E (oE , K), and Φ

(m)
λ is the mth derivative of Φλ. Therefore,

Φ2,m := cmΩ−mΦ
(m)
2 + Ω logG Φ2,Qm

is in I and is congruent to cmΩ−mΦ
(m)
2 modulo logG . Moreover, because logG vanishes

on Gtors and cm �= 0 (here we use that c(χ) /∈ Z�0) the function Φ2,mi does not vanish
at xi but vanishes at all xj for j > i. Taking a zero sequence (bi)i�0, bi ∈ K×, which
converges to zero sufficiently fast, we see that

Φ3 :=
∑
i�0

biΦ2,mi

is a well-defined element of O(Grig
K ), which does not vanish at any torsion point of G.

Hence Φ2 and Φ3 generate the unit ideal.
On the other hand, by [S-T1, Corollary 2.6] the bi may be chosen so that the series∑
i�0 biδ(u+)mi converges to a well-defined element of DE(G′

r, K). Using the continuity
and linearity of the action of DE(G′

r, K) on DE(oE , K), we obtain

Φ3 =
∑
i�0

biΦ2,mi =
( ∑

i�0

biδ(u+)mi

)
·χ Φ2.
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Since I is stable under the action of DE(G′
r, K), and Φ2 ∈ I, this shows that Φ3 ∈ I, so

that I is the unit ideal. This proves the theorem. �

Proposition 4.2.6. Suppose c(χ) /∈ Z�0. Let ∆1 �= ∆2 ⊂ P\ GL2(E) be two Gr-orbits.
Then any continuous Gr-equivariant map Can

E (∆1, K) → Can
E (∆2, K) is the zero map.

Hence, DE(∆1, K) and DE(∆2, K) are non-isomorphic DE(Gr, K)-modules.

Proof. Without loss of generality we may assume that P is the subgroup of upper
triangular matrices and that ∆1 ∪ ∆2 is contained in the open subset E ⊂ P\ GL2(E)
(because ∆1∪∆2 is properly contained in P\ GL2(E) and we may conjugate by an element
of GL2(oE) to map any point in the complement to infinity). Let φ : Can

E (∆1, K) →
Can

E (∆2, K) be a continuous Gr-equivariant map. Denote by 1∆1 the constant function
with value 1 on ∆1. Because the action of u− is differentiation with respect to z, and
because φ is Gr-equivariant and continuous, u−.φ(1∆1) = φ(u−.1∆1) = 0. Hence φ(1∆1)
is a locally constant function on ∆2. For b ∈ pr

E we have exp(bu+) ∈ Gr. Put xb :=
exp(−bu+) ◦ u− ◦ exp(bu+). A straightforward calculation shows that, for any locally
constant function f on E, we have

(xn
b .χf)(z) = n!

(
c(χ)
n

)
bn(1 − bz)nf(z).

It follows that for any polynomial P (z) ∈ K[z] one has φ(P (z) · 1∆1) = P (z) · φ(1∆1).
Now choose a sequence of polynomials Pi such that Pi(z) · 1∆1 converges to 1∆1 on

Can
E (∆1, K), but Pi(z)·1∆2 converges to the zero function on Can

E (∆2, K). Such a sequence
exists by Lemma 4.2.8 below. In particular Pi(z) · φ(1∆1) converges to zero. But it also
converges to φ(1∆1). Hence φ(1∆1) is zero and therefore φ(P (z) · 1∆1) is zero for any
polynomial P . Since the space of functions P (z) · 1∆1 with P a polynomial is dense in
the space of all locally analytic functions on ∆1, φ is the zero map. �

Corollary 4.2.7. Assume that K is as in Theorem 4.2.5. Suppose c(χ) /∈ Z�0. Let
C =

∐
1�i�n ∆i be a finite union of disjoint Gr-orbits and set

Vχ,C =
⊕

1�i�n

Vχ,∆i .

Then, the closed Gr-stable subspaces of Vχ,C are all of the form⊕
i∈S

Vχ,∆i

∼−→
⊕
i∈S

Can
E (∆i, K),

where S ⊂ {1, . . . , n}.

Proof. Let V be a closed Gr-stable subspace of Can
E (C, K). Then, the kernel I of the

map DE(C, K) → V ′ is a DE(Gr, K)-submodule of

DE(C, K) =
⊕

1�i�n

DE(∆i, K).
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By Theorem 4.2.5 and Proposition 4.2.6, we must have I =
⊕

i∈S′ DE(∆i, K), for some
S′ ⊂ {1, . . . , n}, since all the DE(Gr, K)-submodules of DE(C, K) are of this form. Thus,
if S denotes the complement of S′ then V ⊂

⊕
i∈S Can

E (∆i, K), and this closed embedding
becomes an isomorphism after passing to duals. Since K is spherically complete, we can
apply the Hahn–Banach theorem to conclude that V =

⊕
i∈S Can

E (∆i, K). �

Lemma 4.2.8. Let U ⊂ E be a compact-open subset, and let f : U → K be a continuous
function. Then there exists a sequence {fi}i�1 ⊂ K[z] which converges to f .

Proof. Since f can evidently be approximated by locally constant functions, it suffices
to consider the case when f is locally constant, and then by additivity, even the case
where f is the characteristic function of an open subset of U . This last case is a special
case of [S-T2, Theorem 4.7], which shows that a locally E-analytic, Cp-valued function
has a generalized Mahler expansion. �

4.3. The irreducibility result

Let G ⊂ GL2(E) be a subgroup as in 3.1.1, and let Vχ,H be the locally analytic repre-
sentation of G defined there. Fixing a locally analytic section s : H → H̃, we identify Vχ,H
with Can

E,c(H, K), as in 3.1.2. In this section we prove Theorem 3.1.6 on the irreducibility
of this representation. As a first reduction we show the following.

Lemma 4.3.1. Vχ,H is topologically irreducible if for any non-zero f ∈ Vχ,H the minimal
closed G-invariant subspace containing f contains Can

E (supp(f), K).

Proof. Given f �= 0, there are, for any compact subset C in H, elements g1, . . . , gt ∈ G

such that C is contained in
⋃

1�j�t supp(gjf). Moreover, there are b1, . . . , bt ∈ K such
that

supp(b1(g1f) + · · · + bt(gtf)) =
⋃

1�j�t

supp(gjf).

To see this, we may assume (by induction) that t = 2 (and b1 = 1, g1 = 1). Decompose
supp(f) ∪ supp(gf) (for an arbitrary g ∈ G) into compact-open subsets on which both
f and gf are rigid-analytic. For each such subset there is at most one b ∈ K such that
f + b(gf), is zero on this subset, so for all other values of b this subset is contained in the
support of f + b(gf). Therefore, if we avoid finitely many values, f + b(gf) will non-zero
on any of these subsets. Thus supp(f) ∪ supp(gf) = supp(f + b(gf)).

A G-stable subspace containing f also contains b1(g1f) + · · · + bt(gtf), and by our
assumption

Can
E (C, K) ⊂ Can

E (supp(b1(g1f) + · · · + bt(gtf)), K)

is contained in any closed G-stable subspace containing f . Hence, such a subspace is
necessarily the whole space. �

Proof of Theorem 3.1.6. Let f ∈ Vχ,H be a non-zero function. We will show that
a closed G-stable subspace of Vχ,H containing f necessarily contains Can

E (supp(f), K).
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Since f is locally E-analytic, there is an open neighbourhood U of 0 ∈ Lie(SL2(E)) such
that for all x ∈ U we have an equality of locally E-analytic functions on P\ GL2(E):

exp(x)f =
∑
k�0

1
k!

x
kf.

Next, let Gf ⊂ G be a compact-open subgroup such that Ad(Gf ) (‘Ad’ denoting the
action by conjugation on Lie(SL2(E))) preserves U, and which stabilizes supp(f). Note
that the identity above also holds for all gf with g ∈ Gf . Let Vf be the minimal closed
Gf -stable subspace of Can

E (supp(f), K) which contains f . By Lemma 4.3.1 it suffices to
show that Vf = Can

E (supp(f), K).
Since the E-linear span of Lie(G) contains Lie(SL2(E)), the right-hand side of the

identity above is an element of Vf , and the same is true if we replace f by gf , for any
g ∈ Gf . Let r ∈ Z�1 be such that Gr is contained in exp(U). The observation just made,
shows that Gr maps the space spanned by the gf , for g ∈ Gf , into Vf . By the continuity
of the action of Gr on Can

E (supp(f), K), this implies that Vf is stable under Gr.
In order to apply Corollary 4.2.7, we let L ⊃ K be a spherically complete extension

which contains all torsion points of a Lubin–Tate group G, as in Theorem 4.2.5. Such an
extension always exists [Ro, Corollary 4.48, Theorem 4.49]. Suppose that Vf is a proper
subspace of Can

E (supp(f), K). Let Vf,L be the closure of Vf ⊗K L in Can
E (supp(f), L).

Proposition 8.1.4 implies that Vf,L is a proper subspace of Can
E (supp(f), L), and by the

continuity of the action of Gr on Can
E (supp(f), L), Vf,L is stable under this group. Decom-

pose supp(f) =
∐

1�i�n∆i into disjoint Gr-orbits. Since Vf,L is a proper subspace of
Can

E (supp(f), L), all elements of Vf,L vanish on at least one of the ∆i, by Corollary 4.2.7.
But this is impossible, as f does not vanish on any of these. �

4.4. The locally algebraic subspace

4.4.1. Suppose now that c(χ) ∈ Z�0. In 3.1.7 we defined a subspace V loc alg
χ,H . For principal

series representations of GL2(F ) this subspace has a two step filtration whose associated
graded pieces are irreducible GL2(F )-modules (see the remarks following Proposition 6.2
in [S-T1]). In this subsection we show that this is not the case for cuspidal representa-
tions. Namely, in this case, V loc alg

χ,H has an infinite increasing G-stable filtration, whose
associated graded pieces are all non-zero. This is due to the fact that in these cases the
stabilizer SG(z0) ⊂ G of any point z0 in the orbit H, is compact modulo its subgroup of
scalar matrices. This in turn has the effect that there are arbitrarily fine coverings of the
orbit which are stable under G.

Let G and H be as in 3.1.1.

Lemma 4.4.2. Suppose SG(z0) is compact modulo its subgroup of scalar matrices. Then
G has a fundamental system of neighbourhoods of the identity consisting of compact-open
subgroups which are normalized by SG(z0).

Fix such a subgroup G0 ⊂ G, and assume H0 = z0.G0 is contained in E. Let H̃0 be
the preimage of H0 in P\ GL2(E). If G0 is sufficiently small then we have the following.
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(1) For g ∈ G denote by Vχ,H0(g) ⊂ Vχ,H the subspace of functions f with support in
H̃0.g such that we have

f

(
q

(
1 0
z 1

)
g

)
= χ(q)ϕ(z)

for all q ∈ P , z ∈ H0, and some polynomial ϕ ∈ K[z] of degree less than or equal
to c(χ). If H̃0.g1 = H̃0.g2, then Vχ,H0(g1) = Vχ,H0(g2).

(2) The sum

Vχ,H,H0 =
∑
g∈G

Vχ,H0(g) =
⊕

g∈SG(z0)G0\G

Vχ,H0(g) ⊂ Vχ,H

is a closed G-invariant subspace of V loc alg
χ,H . Moreover, V loc alg

χ,H is the union of all
Vχ,H,z0.G0 , where G0 runs over all sufficiently small compact-open subgroups of G

which are normalized by SG(z0).

Proof. As G is a locally profinite group, there is a compact-open subgroup Gc which
has a fundamental system of neighbourhoods of the identity consisting of compact-open
subgroups which are normal in Gc. Let Z ⊂ SG(z0) be the subgroup of scalar matrices.
Since SG(z0)/Z is compact, SG(z0)/(SG(z0) ∩ Gc)Z is finite. Let s1, . . . , sn ∈ SG(z0) be
representatives for this finite set. Then, for any compact-open normal subgroup G′ ⊂ Gc

the intersection
⋂

1�i�n siG
′s−1

i is a compact-open subgroup of G normalized by SG(z0).
Now fix a compact-open subgroup G0 of G which is normalized by SG(z0). Put g0 =

exp(z0u
−). Then, as SG(z0)G0 is compact modulo its subgroup of scalar matrices, there

is an r ∈ Z such that, if g ∈ SG(z0)G0 and

g0gg−1
0 =

(
a b

c d

)
,

then one has (b/d) ∈ pr
E . Let s > 0 be such that χ2(1 + t) = (1 + t)c(χ), for all t ∈ ps

E .
After passing to a smaller subgroup inside G0 we can assume that H0 = z0.G0 is contained
in z0 + p

s−r
E .

(1) Suppose H̃0g1 = H̃0g2. Then g1g
−1
2 ∈ SG(z0)G0. Denote the entries of the matrix

g0g1g
−1
2 g−1

0 by a, b, c, d as above. Then we have exp(zu−)g1 = q exp(z′u−)g2, where z is
in H0 and

q =

⎛⎝ ad − bc

b(z − z0) + d
b

0 b(z − z0) + d

⎞⎠ , z′ =
a(z − z0) + c

b(z − z0) + d
+ z0 ∈ H0.

If f ∈ Vχ,H0(g2), then

f(exp(zu
−)g1) = f(q exp(z′

u
−)g2) = χ1(ad − bc)χ2(b(z − z0) + d)ϕ(z′)

= χ1(ad − bc)χ2(d)χ2

(
1 +

b

d
(z − z0)

)
ϕ

(
a(z − z0) + c

b(z − z0) + d
+ z0

)
.
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By assumption,

χ2

(
1 +

b

d
(z − z0)

)
=

(
1 +

b

d
(z − z0)

)c(χ)

so f ∈ Vχ,H0(g1), and Vχ,H0(g1) ⊂ Vχ,H0(g2). As the other inclusion holds by symmetry,
this proves (1).

(2) For g, g′ ∈ G one obviously has

g.Vχ,H0(g
′) = Vχ,H0(g

′g−1),

and from the definitions one sees that Vχ,H0(g) is a subspace of V loc alg
χ,H . Thus, Vχ,H,H0 is

a G-invariant subspace of V loc alg
χ,H . By (1), Vχ,H,H0 is the direct sum of the spaces Vχ,H0(g)

where g runs over a set of representatives of G0\G. From this fact and from the very
definition of the topology on Vχ,H it follows that Vχ,H,H0 is a closed subspace.

Now suppose f is an element of V loc alg
χ,H . Then, for any h ∈ H̃, the function z �→

f(exp(zu−)h) is, locally in a neighbourhood of 0, a polynomial in z of degree less than
or equal to c(χ). As the support of f is compact modulo P , we can find a sufficiently
small open compact subgroup G0, and finitely many elements g1, g2, . . . , gn ∈ G so that
on z0.G0 the function

z �→ f(exp(zu
−)gi) = f(exp((z − z0)u−)g0gi)

is a polynomial in z − z0 (and hence in z) of degree less than or equal to c(χ), and such
that

⋃
1�i�n z0.G0gi contains P\ supp(f). Thus f is contained in the span of the spaces

Vχ,H0(gi). This proves (2). �

Proposition 4.4.3. With the notation and assumptions of Lemma 4.4.2, the smooth
character of E× given by χ̃2(d) = χ2(d)d−c(χ) can be naturally considered as a character
of SG(z0)G0, and there is a canonical isomorphism

Vχ,H,H0 � (χ1 ◦ det) ⊗ (c-indG
SG(z0)G0

χ̃2) ⊗E Symc(χ)(E2). (4.4.4)

If G′
0 ⊂ G0 is a compact-open subgroup normalized by SG(z0), then the formation of

χ̃2 is compatible with restriction from G0 to G′
0, and we have

V loc alg
χ,H � lim−→

G′
0

(χ1 ◦ det) ⊗ (c-indG
SG(z0)G′

0
χ̃2) ⊗E Symc(χ)(E2)

where G′
0 runs over compact-open subgroups of G0 normalized by SG(z0).

Proof. For q ∈ P we denote by χ2(q) and χ̃2(q) the value of χ2 and χ̃2 respectively on
the lower right entry of q. We define the character χ̃2 of G0 as follows: for g ∈ SG(z0)G0

write g0gg−1
0 = q exp((z − z0)u−) with some q ∈ P and z ∈ H0. Then χ̃2(g) = χ̃2(q). It

is not hard to check that this gives a smooth character of SG(z0)G0.
Consider an element of the representation on the right of (4.4.4), and assume it has

the form ϕsm ⊗ ϕalg where ϕsm : G → K is a smooth function satisfying ϕsm(g′g) =
χ̃2(g′)ϕsm(g) for any g ∈ G and g′ ∈ SG(z0)G0, and ϕalg is a homogeneous polynomial of
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degree c(χ) in two variables. Then the inverse of (4.4.4) maps ϕsm ⊗ϕalg to the following
function on H̃:

q exp(zu
−)g �→ χ1(det(g))χ(q)ϕsm(g)ϕalg((z, 1)g), (4.4.5)

where q ∈ P , z ∈ H0, g ∈ G.
To check that this is well defined, suppose that we have q1 ∈ P , g1 ∈ G and z1 ∈ H0

with q exp(zu−)g = q1 exp(z1u
−)g1. Then gg−1

1 ∈ SG(z0)G0 and we compute

ϕsm(g) = ϕsm(gg−1
1 g1) = χ̃2(gg−1

1 )ϕsm(g1) = χ̃2(q−1q1)ϕsm(g1). (4.4.6)

Next, an examination of the lower row of exp(zu−)g = q−1q1 exp(z1u
−)g1 shows that

(z, 1)g = d(q−1q1)(z, 1)g1, where d(q−1q1) denotes the lower right-hand entry of q−1q1,
so that

ϕalg((z, 1)g) = ϕalg(d(q−1q1)(z1, 1)g1) = d(q−1q1)c(χ)ϕalg((z1, 1)g1). (4.4.7)

Now using (4.4.6), (4.4.7) and the fact that χ̃2(q−1q1)d(q−1q1)c(χ) = χ2(q−1q1) we obtain

χ1(det(g))χ(q)ϕsm(g)ϕalg((z, 1)g)

= χ1(det(g))χ(q)χ2(q−1q1)ϕsm(g1)ϕalg((z, 1)g1)

= χ1(det(g1))χ(q1)χ1(det(q−1q1))χ(qq−1
1 )χ2(q−1q1)ϕsm(g1)ϕalg((z, 1)g0g1)

= χ1(det(g1))χ(q1)ϕsm(g1)ϕalg((z, 1)g1).

This shows that the map given by sending ϕsm⊗ϕalg to the function given by (4.4.5) is
well defined, and its G-equivariance follows from a straightforward computation. More-
over, using Lemma 4.4.2 (2) one sees that (4.4.5) is in fact contained in V loc alg

χ,H .
Finally, it not hard to check that the map of representations we have defined is an iso-

morphism: for the surjectivity note that if g ∈ G, and f ∈ Vχ,H0(g) is as in Lemma 4.4.2
then f is the image of ϕsm ⊗ ϕalg for suitably chosen ϕsm (which is supported on
SG(z0)G0.g) and ϕalg. Similarly, the injectivity follows easily from the fact that if ϕsm is
supported on SG(z0)G0.g, then the image of ϕsm ⊗ ϕalg lies in Vχ,H0(g).

This shows that we have an isomorphism as in (4.4.4). That formation of χ̃2 is com-
patible with restriction from G0 to G′

0 is clear from the construction. The rest of the
proposition now follows from the final claim in Lemma 4.4.2. �

Corollary 4.4.8. Suppose that E/F has degree 2 or 3 and G is an open subgroup of
SL2(F ), GL2(F ) or D× (in the latter case [E : F ] = 2). Then for any z0 ∈ H SG(z0) is
compact modulo centre, and the conclusions of Proposition 4.4.3 hold.

Proof. Since SG(z0) ⊂ G is necessarily a closed subgroup, it suffices to check that it is
contained in a subgroup which is compact modulo centre. A fortiori it suffices to check
this for G equal to GL2(F ) or D× (since G is always a closed subgroup of one of these
groups).

For GL2(F ) this stabilizer is computed in Corollary 5.2.6. The calculations there show
that SGL2(F )(z0) can be conjugated into a group of diagonal matrices whose entries are
conjugate elements of E×. Since E×/F× is compact, we are done in this case.

For D× the result is clear since D×/F× is already compact. �
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5. Intertwining operators

5.1. Intertwiners between principal series and cuspidal representations

5.1.1. In this subsection, we let E and E′ be finite extensions of F , which are contained in
K. Let G be a locally F -analytic group, equipped with embeddings of locally F -analytic
groups ι and ι′ into GL2(E) and GL2(E′) respectively. We assume that G satisfies the
axioms of 3.1.1 as a subgroup of each of these two groups. Let P (respectively, P ′)
be the subgroup of upper triangular matrices in GL2(E) (respectively, GL2(E′)), H
(respectively, H′) an open orbit of G on P\ GL2(E) (respectively, P ′\ GL2(E′)), and
χ (respectively, δ) a K×-valued locally analytic character of the reductive quotient T

(respectively, T ′) of P (respectively, P ′). Consider the locally analytic representations
Vχ,H and Vδ,H′ of G, and a continuous intertwining operator

φ : Vχ,H → Vδ,H′ .

We work with the model given in 3.2.1. In particular, we write

χ

(
a 0
0 d

)
= χ1(ad)χ2(d), δ

(
a 0
0 d

)
= δ1(ad)δ2(d).

We write Hf = H ∩ E and H′
f = H′ ∩ E′ respectively, and we identify Vχ,H and Vδ,H′

with subspaces of Can
E (Hf , K) and Can

E′(H′
f , K) respectively, with the group action given

by (3.2.2).

Proposition 5.1.2. Suppose c(χ) /∈ Z�0, and that φ is non-zero.

(1) Let C ⊂ Hf be a non-empty compact-open subset, and denote by 1C the char-
acteristic function of C. Then φ(1C) is locally constant, and for any polynomial
P (z) ∈ K[z] one has that φ(P (z)1C) = P (z)φ(1C).

(2) We have c(χ) = c(δ) and E′ ⊂ E.

(3) If the embeddings ι and ι′ are compatible via the inclusion GL2(E′) ⊂ GL2(E)
induced by E′ ⊂ E, then E′ = E, H = H′ and supp(φ(1C)) = C.

Proof. Let u+ and u− be the Lie algebra elements defined in 4.1.1. Since the induced
action of u− on locally analytic functions f(z) on open subsets of E or E′ is simply
differentiation with respect to z (and is independent of the character), one has 0 =
φ(u−.χ1C) = u−.δφ(1C). Hence φ(1C) is locally constant.

For b ∈ F×, put xb = exp(−bu+) ◦ u− ◦ exp(bu+). As in the proof of Proposition 4.2.6,
we have

(xn
b .χf)(z) = n!

(
c(χ)
n

)
bn(1 − bz)nf(z) (5.1.3)

for any compactly supported, locally constant function f on E, and any z ∈ E. Hence

φ(xb.χ1C) = φ(z �→ c(χ)b(1 − bz)1C(z)) = c(χ)bφ(z �→ (1 − bz)1C(z)),
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and φ(xb.χ1C)(z′) = xb.δφ(1C)(z′) = c(δ)b(1 − bz′)φ(1C)(z′) for any z′ ∈ H′. Therefore,

c(χ)bφ(z �→ (1 − bz)1C(z))(z′) = c(δ)b(1 − bz′)φ(1C)(z′).

Dividing both sides by b and letting b tend to 0 one gets c(χ)φ(1C) = c(δ)φ(1C). Because
we assumed that φ is non-zero and Vχ,H is irreducible, φ(1C) is non-zero, so that c(χ) =
c(δ). This implies that

φ(xn
b .χ1C)(z′) = x

n
b .δφ(1C)(z′) = n!

(
c(χ)
n

)
bn(1 − bz′)nφ(1C)(z′)

for z′ ∈ H′
f . Comparing with (5.1.3) we see that φ(P (z)1C) = P (z)φ(1C) for any poly-

nomial P (z) ∈ K[z].
Now suppose that there is a non-empty compact-open subset C1 ⊂ H′

f such that
φ(1C)|C1 �= 0 but C1 ∩ C = ∅, where the intersection is taken inside K. Let C2 = C ∪
(supp(φ(1C))\C1), and choose disjoint compact-open subsets C̃1, C̃2 in E ·E′ with C1 ⊂ C̃1

and C2 ⊂ C̃2. By Lemma 4.2.8 there is a sequence of polynomials Pi(z) ∈ K[z] such that
Pi(z) converges to 0 for z ∈ C̃2 and to 1 for z ∈ C̃1. It follows that

0 = φ(0) = lim
i→∞

φ(Pi(z)1C) = lim
i→∞

Pi(z)φ(1C) = φ(1C) · 1C1 .

This is a contradiction. Thus, every compact-open subset of supp(φ(1C)) must meet Hf .
Since suppφ(1C) is an open subset of E′, we must have E′ ⊂ E. This shows (2).

Now suppose that ι and ι′ are compatible with the inclusion GL2(E′) ⊂ GL2(E). Then
H and H′, being orbits of G on P\ GL2(E), must be disjoint unless they are equal. Thus,
we must have H = H′ and E = E′.

We have already seen that supp(φ(1C)) ⊂ C, and it remains to prove the opposite
inclusion. Suppose then that there is a non-empty compact-open subset C1 ⊂ C such
that φ(1C)|C1 = 0. Then we can find a sequence of polynomials Pi(z) ∈ K[z] such that
limi→∞Pi(z)1C1 = 1C1 but limi→∞ Pi(z)|C\C1 = 0. It follows that

φ(1C1) = lim
i→∞

φ(Pi(z)1C1) = lim
i→∞

φ(Pi(z)1C) = lim
i→∞

Pi(z)φ(1C) = 0.

Again a contradiction, because we assumed φ to be non-zero. �

Corollary 5.1.4. Keep the assumptions of 5.1.1 and suppose that φ is non-zero. We
no longer assume that c(χ) /∈ Z�0. Then E′ ⊂ E. If ι and ι′ are compatible with the
inclusion GL2(E′) ⊂ GL2(E) then E = E′ and H = H′. If c(χ) ∈ Z�0 then c(δ) = c(χ)
or −2 − c(χ).

Proof. By Proposition 5.1.2 we have only to consider the case where c(χ) ∈ Z�0. If
φ(V loc alg

χ,H ) = 0, then φ induces a map

Vχαc(χ)+1,H → Vδ,H′

by Proposition 3.1.8 and the result follows by Proposition 5.1.2 and the observation that
c(χαc(χ)+1) = −2 − c(χ).
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Suppose that φ(V loc alg
χ,H ) �= 0. Since the image of V loc alg

χ,H is killed by (u−)c(χ)+1 by
Corollary 3.1.10, we must have

φ(V loc alg
χ,H ) ⊂ V loc alg

δ,H′ �= 0

and c(δ) ∈ Z�0. Now, if the induced map

Vχαc(χ)+1,H
∼−→ Vχ,H/V loc alg

χ,H → Vδ,H′/V loc alg
δ,H′

∼−→ Vχαc(δ)+1,H′

is non-zero, then we may again conclude by Proposition 5.1.2. In this case we have
c(χ) = c(δ).

Suppose that this map is 0. Then we have

φ((u−)c(δ)+1Vχ,H) = (u−)c(δ)+1φ(Vχ,H) ⊂ (u−)c(δ)+1V loc alg
δ,H′ = {0}.

Since any element in f ∈ Vχ,H with supp f ⊂ Hf is in the image in u−, φ is 0 on all such
elements. However, it is easy to see that such elements span Vχ,H, so that φ = 0. �

Corollary 5.1.5. Keep the assumptions of 5.1.1 and assume that φ is non-zero.
Suppose G is an open subgroup of GL2(F ), SL2(F ) (so ι and ι′ are the natural inclu-

sions), or an open subgroup of the group of units D× of the quaternion algebra D over
F . Then E = E′ and H = H′. If c(χ) /∈ Z�0 then c(χ) = c(δ). If c(χ) ∈ Z�0 then c(χ) is
one of c(δ) and −2 − c(δ).

In particular there are no intertwiners between the principal series and cuspidal rep-
resentations of GL2(F ) or SL2(F ).

Proof. This follows immediately from Proposition 5.1.2 and Corollary 5.1.4. We remark
only that if G is an open subgroup of D×, then the fields E and E′ necessarily have
degree 2 over F , so that E′ ⊂ E implies E = E′. �

5.1.6. Let G be one of SL2(F ) or GL2(F ), and suppose that E′ = F , and that [E :
F ] � 2. In this case we can give another proof of part of Proposition 5.1.2, which uses a
Jacquet functor argument. To explain this, for any locally F -analytic representation V

of G, put
J(V ) = V/〈uv − v; u ∈ U−, v ∈ V 〉.

That is, J(V ) is the maximal Hausdorff quotient of the coinvariants of J(V ) under U−.
(This is the most obvious generalization of the Jacquet module for smooth representa-
tions. Another extension of the Jacquet functor to locally analytic representations has
been given by Emerton [Em2].)

Proposition 5.1.7. We have J(Vχ,H) = {0}, while the K-vector space J(Vδ,H′) is two
dimensional if c(δ) ∈ Z�0 and one dimensional otherwise. In particular Vχ,H and Vδ,H′

are not isomorphic.
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Proof. As usual we regard elements of Vχ,H and Vδ,H′ as locally analytic functions on
E and E′ respectively. The operator u− then becomes differentiation d/dz, where z is
the tautological coordinate on E or E′. Since Vχ,H consists of the compactly supported,
locally analytic functions on H, we have u−Vχ,H = Vχ,H, so that a fortiori J(Vχ,H) = {0}.

Similarly, we have that Vδ,H′ consists of locally analytic functions on E′, such that

δ2(z)−1f(z) = ϕ

(
1
z

)
=

∞∑
i=0

aiz
−i

for |z| 
 0, where ϕ(1/z) is a power series which is convergent for |z| sufficiently large.
As in 3.2.3, differentiating both sides of this equation one finds

δ2(z)−1f ′(z) =
c(δ)
z

ϕ

(
1
z

)
− 1

z2 ϕ′
(

1
z

)
=

c(δ)a0

z
+

(c(δ) − 1)a1

z2 +
(c(δ) − 2)a2

z3 + · · · .

Now the constant coefficient of this series always vanishes, and the coefficient of z−c(δ)−1

vanishes if c(δ) ∈ Z�0. On the other hand, since we can always integrate locally analytic
functions on compact subsets, and because ϕ(1/z) can be approximated by polynomials
in 1/z, any function f such that a0 = 0 and ac(δ)+1 = 0 if c(δ) ∈ Z�0, is in u−Vδ,H′ .
Thus, it suffices to show that if u ∈ U− and f ∈ Vδ,H′ then uf − f ∈ u−Vδ,H′ . Write

u =

(
1 0
c 1

)
.

Then for |z| 
 0 we have

δ(z)−1((u ·δ f)(z) − f(z)) = δ(z)−1(f(z + c) − f(z))

=
∞∑

i=0

δ2

(
z + c

z

)
ai(z + c)−i − aiz

−i

=
∞∑

i=0

aiz
−i

((
1 +

c

z

)c(δ)−i

− 1
)

,

and the expression on the right-hand side has constant term 0, and the coefficient of
z−c(δ)−1 is equal to 0 when c(δ) ∈ Z�0. This proves the proposition. �

Remark 5.1.8. In fact the proof of the preceding proposition shows that if V is one of
Vδ,H′ or Vχ,H, then J(V ) = V/u−V . Moreover, u−V is closed in V , except if V = Vδ,H′ ,
c(δ) /∈ Z�0 and |c(δ) − n|−1 is not bounded by |zn| for any z ∈ E. In particular, u−V is
closed in V if c(δ) /∈ Zp \ Z.

5.2. Intertwiners between cuspidal representations

We now return to the assumptions of 5.1.1. From now on we assume that E = E′,
H = H′ and that the maps ι and ι′ are equal. Thus, we view G as a subgroup of GL2(E).
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Lemma 5.2.1. Let C ⊂ Hf be a compact-open subset. Then, for any

g =

(
a b

c d

)
∈ G

such that Cg−1 ⊂ Hf , one has that

(g.δφ(1C))(z) = χ1(det(g))χ2(bz + d)φ(1Cg−1)(z).

Proof. g.δφ(1C) = φ(g.χ1C), and

(g.χ1C)(z) = χ1(det(g))χ2(bz + d)1C(z.g) = χ1(det(g))χ2(bz + d)1Cg−1(z).

For any z0 ∈ H there is a small disc Dz0 around z0 such that for all z in this disc

χ2(bz + d) = χ2(bz0 + d)χ2

(
bz + d

bz0 + d

)
= χ2(bz0 + d)

∑
j�0

(
c(χ)

j

)(
bz + d

bz0 + d
− 1

)j

.

Since Cg−1 is compact, it can be written as a finite union of discs Dz0 for various points
z0 ∈ H, and it suffices to consider the case when Cg−1 ⊂ Dz0 . Then

φ(χ1(det(g))χ2(bz + d)1Cg−1(z)) = χ1(det(g))χ2(bz0 + d)φ
(

χ2

(
bz + d

bz0 + d

)
1Cg−1(z)

)
.

By Proposition 5.1.2 and the continuity of φ,

φ

(
χ2

(
bz + d

bz0 + d

)
1Cg−1(z)

)
= χ2

(
bz + d

bz0 + d

)
φ(1Cg−1(z)).

This proves the assertion. �

Proposition 5.2.2. Suppose c(χ) /∈ Z�0, and let z0 ∈ Hf . There exists a non-zero
continuous intertwining operator φ : Vχ,H → Vδ,H, if and only if c(χ) = c(δ), and for all

g0 =

(
a0 b0

c0 d0

)
∈ G

such that z0.g0 = z0 we have

χ1

δ1
(det(g0))

χ2

δ2
(b0z0 + d0) = 1. (5.2.3)

If these conditions hold, then Vχ,H and Vδ,H are isomorphic.

Proof. We have already seen that the existence of a non-zero φ implies that c(χ) = c(δ).
Let g0 ∈ G such that z0.g0 = z0, and choose compact-open subsets C1 ⊂ C ⊂ Hf such
that z0 ∈ C1 and C1 ⊂ Cg−1

0 ⊂ Hf . Then, by Proposition 5.1.2,

φ(1Cg−1
0

)(z0) = φ(1Cg−1
0 \C1

)(z0) + φ(1C1)(z0) = φ(1C1)(z0)

= φ(1C\C1)(z0) + φ(1C1)(z0) = φ(1C)(z0).
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Since c(χ) /∈ Z�0, Vχ,H is irreducible, so φ �= 0 implies φ(1C) �= 0 and Lemma 5.2.1
shows that

χ1

δ1
(det(g0))

χ2

δ2
(b0z0 + d0) = 1.

Now suppose that the above identity is fulfilled. Then we can define an intertwining
operator φ as follows. We consider Vχ,H and Vδ,H as subspaces of the space of locally
E-analytic functions on H̃, and we define a function ϕ : H̃ → K× by

ϕ(q exp(z0u
−)g) =

δ

χ
(q),

for q ∈ P , g ∈ G. To see that ϕ is well defined, note that if q exp(z0u
−)g = q1 exp(z0u

−)g1

with q1 ∈ P and g1 ∈ G, then g1g
−1 = exp(−z0u

−)q−1
1 q exp(z0u

−) fixes z0, so that,
writing g0 = g1g

−1, we get

δ

χ
(q−1

1 q) =
δ

χ
(exp(z0u

−)g1g
−1 exp(−z0u

−)) =
δ1

χ2
(det(g0))

δ2

χ2
(b0z0 + d0) = 1,

where the second equality follows by writing δ and χ in terms of δ1 and δ2, and χ1 and
χ2 respectively, and computing the lower right entry of the matrix

δ

χ
(exp(z0u

−)g1g
−1 exp(−z0u

−)).

We will see in a moment that ϕ is E-analytic. Assuming this, we define an isomorphism
of locally E-analytic representations

φ : Vχ,H → Vδ,H, f �→ φ(f) = ϕ · f.

It remains to check that ϕ is locally E-analytic. It suffices to check this in a neigh-
bourhood U of exp(z0u

−), as any element h in H̃ can be written as h = q exp(z0u
−)g

with q ∈ P and g ∈ G, so that qUg is an open neighbourhood of h, and we have

ϕ(qh′g) =
δ

χ
(q)ϕ(h′)

for any h′ ∈ U . The composite of the map

P × Hf → H̃, (q, z) �→ q exp(zu
−),

and ϕ is given by

(q, z) �→ δ

χ
(q)ϕ(exp(zu

−)),

so it suffices to see that the map z �→ ϕ(exp(zu−)) is locally E-analytic around z0.
Writing exp(zu−) = q exp(z0u

−)g, one verifies directly that this map is given by

z �→ χ1

δ1
(det(g))

χ2

δ2
(bz0 + d),

where g ∈ G satisfies z0.g = z.
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Now we claim that the two characters (χ1/δ1) ◦det and χ2/δ2 are locally constant. To
see this note that the second character is locally constant since c(χ) = c(δ). For the first
character, if det : G → E× has finite image, then there is nothing to prove. If det has
infinite image, then Lemma 5.2.4 below implies that any compact-open subgroup G0 ⊂ G

contains infinitely many elements g0 which are scalars in GL2(E). Since χ2/δ2 is a smooth
character, if we choose G0 sufficiently small, then (5.2.3) implies that (χ1/δ1)(det g0) = 1.
Since this holds for infinitely many scalar g0, and (χ1/δ1) ◦ det is a locally E-analytic
character, this implies it is locally constant.

Now, if we let g vary in a sufficiently small neighbourhood of the unit element in G,
then z = z0.g will vary in a neighbourhood of z0, but the function

z �→ χ1

δ1
(det(g))

χ2

δ2
(bz0 + d)

will then be constant on this neighbourhood. Thus we have seen that ϕ is locally E-
analytic. �

Lemma 5.2.4.

(1) Let g ⊂ Lie(SL2(E)) be a Lie F -subalgebra, which spans Lie(SL2(E)) as an
E-vector space. Then there is a simple Lie F -subalgebra g′ ⊂ g which spans
Lie(SL2(E)) as an E-vector space.

(2) Let g ⊂ Lie(GL2(E)) be a Lie F -subalgebra which spans Lie(GL2(E)) over E. Then
g has non-trivial intersection with Lie(E×) ⊂ Lie(GL2(E)).

Proof. For any F -Lie algebra h we will write hE = h ⊗F E.

For (1) suppose that i ⊂ g is a non-zero ideal of g. Since gE surjects onto Lie(SL2(E)),
and the image of iE in Lie(SL2(E)) is not trivial, it must be the whole space. Thus, we
may replace g by i. Repeating the process, we eventually arrive at a Lie algebra g′ with
the required properties.

To prove (2), suppose on the contrary that the intersection is trivial. Then the composite
of the maps

g → Lie(GL2(E)) ∼−→ Lie(SL2(E)) ⊕ Lie(E×) → Lie(SL2(E)) (5.2.5)

is an injection, and we may choose a Lie subalgebra g′ ⊂ g as in (1). Since we have a
surjection g⊗F E → Lie(GL2(E)) → Lie(E×), and g′ is simple, the g′-module g contains
a non-trivial submodule h on which g′ acts trivially. Then Lie(SL2(E)) acts trivially on
the image of hE in Lie(SL2(E)). But this implies that the image of hE , and hence of h,
in Lie(SL2(E)) is trivial, which contradicts the fact that (5.2.5) is an injection. �

For G = GL2(F ), SL2(F ) or D× we can make the result of Proposition 5.2.2 more
explicit.
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Corollary 5.2.6. Keeping the above notation and assumptions we have the following.

(1) If [E : F ] = 2 and G = GL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists
if and only if (

χ1

δ1
◦ NE/F

)
χ2

δ2
= 1.

(2) If [E : F ] = 2 and G = SL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists
if and only if

χ2

δ2
= ψ ◦ NE/F

for some locally constant character ψ : F× → K×.

(3) If [E : F ] = 2 and G = D×, where D is the quaternion algebra over F , then a
non-zero intertwiner φ : Vχ,H → Vδ,H exists if and only if(

χ1

δ1
◦ NE/F

)
χ2

δ2
= 1.

(4) If [E : F ] = 3 and G = GL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists
if and only if c(χ) = c(δ) and

χ1

δ1
(x2)

χ2

δ2
(x) = 1, x ∈ E×.

(5) If [E : F ] = 3 and G = SL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists
if and only if c(χ) = c(δ) and

χ2

δ2
(−1) = 1.

(6) If E = F and G = GL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists if
and only if χ = δ.

(7) If E = F and G = SL2(F ) then a non-zero intertwiner φ : Vχ,H → Vδ,H exists if
and only if χ2 = δ2.

In each of these cases if a non-zero φ exists, then Vχ,H and Vδ,H are isomorphic.

Proof. Note that z0.g0 = z0 if and only if

g0 =

(
1 0

−z0 1

) (
x y

0 w

) (
1 0
z0 1

)
=

(
x + z0y y

z0(w − x) − z2
0y w − z0y

)
,

where (
x y

0 w

)
∈ P.

A simple calculation shows that, with this notation, we have b0z0 +d0 = w. Observe also
that when G ⊂ GL2(F ) then y ∈ F , and if w ∈ F× then we must have x = w and y = 0,
as z0 /∈ F .
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Now with the assumptions of (1) we must have x = σ(w), where σ denotes the non-
trivial automorphism of E over F . Hence

χ1

δ1
(det g0)

χ2

δ2
(b0z0 + d0) =

χ1

δ1
(NE/F (w))

χ2

δ2
(w).

Thus, if (
χ1

δ1
◦ NE/F

)
χ2

δ2
= 1

then a non-zero φ exists by Proposition 5.2.2. (Note that this condition implies that
c(χ) = c(δ) as χ and δ are locally E-analytic.) Conversely, suppose a non-zero φ exists.
Given w ∈ E× write w = b0z0 + d0 with b0 and d0 in F . Taking

g0 =

(
b0(z0 + σ(z0)) + d0 b0

−b0z0σ(z0) d0

)
and using Proposition 5.2.2, we see that

χ1

δ1
◦ NE/F (w)

χ2

δ2
(w) =

χ1

δ1
(det g0)

χ2

δ2
(b0z0 + d) = 1.

This proves (1).
Suppose we are in the situation of (2). Then x = σ(w) = w−1 and we have

χ1

δ1
(det g0)

χ2

δ2
(b0z0 + d0) =

χ2

δ2
(w).

If χ2/δ2 factors through the norm, then the right-hand side is 1 as NE/F (w) = 1. It
follows that a non-zero φ exists by Proposition 5.2.2. Conversely, suppose a non-zero φ

exists. If w ∈ E× satisfies NE/F (w) = 1, then defining g0 in the same way as in the proof
of (1) we see that g0 ∈ SL2(F ), and

χ2

δ2
(w) =

χ2

δ2
(b0z0 + d) = 1.

This proves (2).
For (3) note that, since H = P\ GL2(E) in this case, we can choose z0 = 0, when we

must have x = σ(w), and (3) follows from Proposition 5.2.2.
In the situation of (4), observe that x and w are roots of a quadratic equation with

coefficients in F . Since [E : F ] = 3, we must have w and x in F , so that x = w and
y = 0, as observed above. Thus, g0 is a scalar matrix and

χ1

δ1
(det g0)

χ2

δ2
(b0z0 + d0) =

χ1

δ1
(w2)

χ2

δ2
(w).

Now Proposition 5.2.2 implies that a non-zero φ exists if and only if c(χ) = c(δ) and the
above expression is equal to 1 for all w ∈ F×.

Under the assumptions of (5), g0 is a scalar matrix in SL2(F ), so g0 = {±1}. Thus
Proposition 5.2.2 implies that a non-zero φ exists if and only if c(χ) = c(δ) and
(χ2/δ2)(−1) = 1.

Finally, (6) and (7) are obvious using Proposition 5.2.2. For GL2 this result was already
contained in [S-T1, Proposition 6.2]. �
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Corollary 5.2.7. Suppose G = GL2(F ). Let ψ : F× → K× be a locally F -analytic
character. We also regard ψ as a character of GL2(F ) by composing it with the determi-
nant.

(1) If [E : F ] = 2 then there exists an isomorphism Vχ,H ⊗ ψ
∼−→ Vχ,H if and only if

ψ ◦ NE/F = 1.

(2) If [E : F ] = 3 then there exists an isomorphism Vχ,H ⊗ ψ
∼−→ Vχ,H if and only

ψ(x2) = 1 for all x ∈ F×.

In particular ψ is locally constant.

Proof. After replacing K by a finite extension, we may assume that ψ extends to a
locally E-analytic character ψ̃ : E× → K×. Then we have

Vχ·ψ̃,H
∼−→ Vχ,H ⊗ ψ

where we regard ψ̃ as a character of GL2(E)—and hence of the diagonal torus—by com-
posing it with the determinant. For example, using the model of 3.2.1 this isomorphism
is just given by f �→ f . Now the corollary follows from Corollary 5.2.6 once we note that
multiplying χ by ψ̃ leaves χ2 unchanged, and multiplies χ1 by ψ̃. �

5.2.8. Using Corollary 5.2.7, one can recover in some cases the result of Proposition 5.1.2
that, if Vχ,H is isomorphic to Vδ,H then E = E′. Namely, if G = GL2(F ) and E has
degree 2, then Corollary 5.2.7 shows that the set of characters ψ such that Vχ,H ⊗ ψ

∼−→
Vχ,H can only equal the analogous set of characters for Vδ,H if E = E′.

6. Relations with Weil group representations

6.1.1. We recall the definition of the Weil group WF [Ta]. Let E/F be a finite
Galois extension. By local class field theory there is a canonical element cE/F ∈
H2(Gal(E/F ), E×). The relative Weil group WE/F is the corresponding extension

0 → E× → WE/F → Gal(E/F ) → 0.

Since E× is naturally a locally F -analytic group, this gives WE/F the structure of a
locally F -analytic group. The Weil group WF is given by WF = lim←−E

WE/F where E

runs through the finite Galois extensions of F . For an extension E′/E of finite Galois
extensions of F , the corresponding transition map in the inverse limit induces the natural
projection Gal(E′/F ) → Gal(E/F ), and the norm map NE′/E : E′× → E×. WF there-
fore has a structure of a pro-locally F -analytic group. Thus, a locally F -analytic rep-
resentation of WF is just a locally F -analytic representation of WE/F for some finite
extension E of F .

If E is a finite extension of F , then there is a natural inclusion WE → WF of locally
F -analytic groups, which makes WE a subgroup of WF of index [E : F ].
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6.1.2. Suppose that E/F is an extension of degree 1 or 2, and let χ be as in 3.1.1.
For any locally E-analytic character ψ : E× → K×, we may regard ψ as a character of
WE via the projection WE → WE/E = E×, or as a character of WF via the composite
WF → F× ↪→ E×.

Now assume that c(χ) is not a non-negative integer. Suppose that G = GL2(F ) and
that H is the unique open orbit of G on P \ GL2(E). If [E : F ] = 2 then we set

σ(Vχ,H) = (IndWF

WE
χ2) ⊗ χ1 : WF → GL2(K),

where we regard χ2 and χ1 as characters of WE and WF respectively, as explained above.
(Here we have chosen a basis for (IndWF

WE
χ2) ⊗ χ1, to get a map into GL2(K), but we

will only be concerned with the isomorphism class of this representation.)
If E = F then we set σ(Vχ,H) equal to the representation of WF corresponding to the

composite

WF → F× a�→(χ1(a),χ1(a)χ2(a))−−−−−−−−−−−−−−→ K× × K× ↪→ GL2(K).

Suppose that G = SL2(F ) and H is an open orbit of SL2(F ) on P \ GL2(F ). Then we
define σ(Vχ,H) in the same way as above, depending on whether [E : F ] is 1 or 2, but we
compose the resulting representation with the projection GL2(K) → PGL2(K).

Proposition 6.1.3. Let χ and χ′ be two locally E-analytic characters of the diagonal
torus of GL2(E), and suppose that c(χ) and c(χ′) are not non-negative integers. Let G

be one of GL2(F ) or SL2(F ). Let H and H′ be open orbits of G on P \ GL2(E).

(1) If Vχ,H is isomorphic to Vχ′,H′ then σ(Vχ,H) is isomorphic to σ(Vχ′,H′).

(2) If [E : F ] = 2 and G = GL2(F ) then the converse of (1) also holds.

Proof. This is a simple exercise using Corollarys 5.2.6 and 5.1.5. �

Remarks 6.1.4.

(1) If E = F then the converse of (1) fails because, if χ′ is the composite of χ and the
map

E× × E× (a,b) �→(b,a)−−−−−−−→ E× × E×,

and c(χ′) /∈ Z�0, then σ(Vχ,H) = σ(Vχ′,H′).

(2) If [E : F ] = 2, G = SL2(F ), and H and H′ are the two open orbits of SL2(F ) on
P \ GL2(E), then σ(Vχ,H) ∼−→ σ(Vχ,H′) (and Corollary 5.2.6 (2) shows that this is
the only obstruction to the converse of (1) holding). This is completely analogous
to the situation in the theory of discrete series representations of SL2(R), and
the phenomenon of L-indistinguishability which occurs there [L-L]. Thus, the pair
{Vχ,H, Vχ,H′} may be thought of as a ‘p-adic L-packet’.

(3) We do not know whether one can reasonably attach representations of WF to a
representation Vχ,H in the case where [E : F ] = 3.
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6.1.5. Now suppose that [E : F ] = 2. Let H be the open orbit of GL2(F ) on P\ GL2(E).
If c(χ) /∈ Z�0 then we denote by ρ(Vχ,H) the representation Vχ,P\GL2(E) of D×, corre-
sponding to the character χ.

Proposition 6.1.6. Let E and E′ be two quadratic extensions of F , and let χ

(respectively, χ′) be a locally E-analytic character of the diagonal torus in GL2(E)
(respectively, GL2(E′)). Then Vχ,H is isomorphic to Vχ′,H′ if and only if ρ(Vχ,H) is
isomorphic to ρ(Vχ′,H′).

Proof. This follows immediately from Corollary 5.1.5 and parts (1) and (3) of Corol-
lary 5.2.6. �

7. Admissibility

7.1.1. Let us recall that in [S-T1] (cf. the definition after Corollary 3.4) a locally analytic
representation V of a locally analytic, compact group G is called strongly admissible, if
V is a semi-compact inductive limit, and V ′

b is a countably generated module over the
distribution algebra D(G, K). It can be shown that it is then in fact finitely generated.
Examples of strongly admissible representations are given by the irreducible principal
series representations, when restricted to any compact-open subgroup of GL2(F ). This
follows from the fact that the duals of these representations are simple modules over the
distribution algebra of GL2(oF ) (cf. [S-T1, Theorem 6.1]).

In [S-T3], Schneider and Teitelbaum introduced the notion of an admissible repre-
sentation of G. This is a generalization of the notion of a strongly admissible repre-
sentation, though it seems that the admissible representations thus far encountered in
practice are strongly admissible. We refer to [S-T3] for the definition of an admissible
G-representation.

Let G and H be as in 3.1.1. In this subsection we show that the restrictions of the rep-
resentations Vχ,H to compact-open subgroups are admissible if and only if H is compact,
in which case Vχ,H is strongly admissible.

Lemma 7.1.2. Suppose that H is not compact. Then for any compact-open subgroup
H of GL2(E), there exists a z0 ∈ E and a compact-open subgroup G0 ⊂ G such that
z0.H ⊂ E and z0.H contains infinitely many disjoint orbits of G0 on H.

Proof. For any compact-open subgroup G0 of G, we let S(G0) = {∆i}i∈I be the set of
orbits of G0 on H. We call z0 ∈ P\ GL2(E) a limit point of S(G0) if there is an infinite
subset ∆i1 , ∆i2 , . . . of S(G0) such that for some sequence {dj}j�1 with dj ∈ ∆ij

, we have
lim−→ dj = z0.

Now for any choice of G0, S(G0) has a limit point on P\ GL2(E), since this space is
compact, while S(G0) is infinite, as H is non-compact. Moreover, the set of limit points
is stable under G0. If ∞ were the only limit point of G0, then G0 ⊂ GL2(E) would have
to be contained in the lower triangular matrices, which contradicts the assumption that
the E-linear span of its Lie algebra contains Lie(SL2(E)). Thus S(G0) has a limit point
z0 ∈ E.
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Choose an infinite subset ∆i1 , ∆i2 , . . . of S(G0) and a sequence {dj}j�1 with dj ∈ ∆ij ,
and lim−→ dj = z0. Choose a compact-open subgroup H of GL2(E) such that z0.H ⊂ E.
After replacing G0 by a smaller group, we may assume that G0 ⊂ H. Then ∆ij meets
z0.H for j sufficiently large, and this implies that ∆ij

⊂ z0.H, as G0 ⊂ H. �

Proposition 7.1.3. The representation Vχ,H is admissible when restricted to compact-
open subgroups of G if and only if H is compact, in which case Vχ,H is strongly admissible.

Proof. If G1 ⊂ G2 are two compact-open subgroups of G, then it is easy to see that
DF (G2, K) is a finite module over DF (G1, K). Hence the proposition is true for one
compact-open subgroup if and only if it is true for all of them.

Suppose first that H is compact, and let G0 be a compact-open subgroup of G. Then
G0 has only finitely many orbits on H, and it suffices to show that for any such orbit ∆,
Vχ,∆ is strongly admissible as a G0-representation. Let z0 ∈ ∆. Then the orbit map

G0
g �→z0.g−−−−−→ ∆

induces G0-equivariant maps

DF (G0, K) → DF (∆, K) → DE(∆, K). (7.1.4)

Now since the orbit map above is a surjection with smooth fibres, it admits a locally
analytic section. Hence the first map in (7.1.4) admits a section, and is, in particular,
surjective. Since the canonical map Can

E (∆, K) → Can
F (∆, K) is a homeomorphism onto

its image, the second map in (7.1.4) is also surjective. Hence the composite of the maps
in (7.1.4) is surjective. This composite maps δ ∈ DF (G0, K) to the linear form f �→
δ(g �→ f(z0.g)). We denote by λz0 the Dirac distribution supported in z0. For a given
distribution δ ∈ DF (G0, K) define δ′ ∈ DF (G0, K) by

δ′(ϕ) = δ(g �→ χ1(det(g))−1χ2(bz0 + d)−1ϕ(g−1)).

Then we compute (cf. 2.1.9)

(δ′.χλz0)(f) = δ′(g �→ λz0(g
−1.χf))

= δ(g �→ χ1(det(g))−1χ2(bz0 + d)−1λz0(g.χf))

= δ(g �→ χ1(det(g))−1χ2(bz0 + d)−1(χ1(det(g))χ2(bz0 + d)f(z0.g)))

= δ(g �→ f(z0.g)).

Hence λz0 is a generator of DE(∆, K) over DF (G0, K). It follows that Vχ,H is a strongly
admissible G0-representation.

Suppose conversely that H is not compact, but that Vχ,H is admissible. We identify
Vχ,H with Can

E,c(H, K). By Lemma 7.1.2 there is a compact-open subgroup G0 ⊂ G, a
z0 ∈ E, and a compact-open subgroup H ⊂ GL2(E) such that z0.H ⊂ E and z0.H

contains infinitely many disjoint orbits of G0.
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Fix a global chart G0 ↪→ F d on G0. A vector v ∈ Vχ,H is called G0-analytic, if the
orbit map

G0
h�→h.v−−−−→ Vχ,H

factors through a BH-subspace W of Vχ,H and induces a W -valued analytic map on G0.
That is, the map is given by a convergent power series in the chosen global coordinates
on G0, with coefficients in W . Denote by VG0 ⊂ Vχ,H the subspace of G0-analytic vectors.
By [Em1, Theorem 5.1.15(ii)], if Vχ,H is admissible, then VG0 is a BH-subspace of Vχ,H.

Now let Σ = {∆1, ∆2, . . . } be an infinite set of orbits of G0 contained in z0.H. For
i ∈ N+ ∪ {∞}, let VG0,i ⊂ VG0 denote the subspace of G0-analytic functions supported
on

⋃i
j=1 ∆j . Then VG0,i is evidently closed in VG0 with its induced topology as a sub-

space of Vχ,H. Hence, a fortiori it is closed in VG0 with its Banach space topology. This
implies that each VG0,i is a BH-subspace of Vχ,H, and from now on we consider these
subspaces with their Banach space topologies. In particular, we have VG0,∞ =

⋃
i�1 VG0,i

is a countable union of closed subspaces.
Now choose G0 so small that χ2(bz + d) = (bz + d)c(χ) for z ∈ z0.H and

g =

(
a b

c d

)
∈ G0,

and a, b, c, d are analytic functions on G0 with respect to the fixed global chart. Then
it is easy to check that for any N > 0 there are non-zero G0-analytic vectors supported
on ∆N . In fact any function which is analytic (as a function on a subset of E) on ∆N

corresponds to a G0-analytic vector in Vχ,H. Thus for i an integer, each VG0,i is a proper
subspace of VG0,∞, and in particular nowhere dense. Since VG0,∞ is the union of these
subspaces, we get a contradiction by the Baire category theorem. �

Corollary 7.1.5. If [E : F ] > 1 and G is one of GL2(F ) or SL2(F ), then the represen-
tation Vχ,H is not strongly admissible. If [E : F ] = 2 and G = D× then Vχ,H is strongly
admissible.

Proof. This follows immediately from the description in Proposition 3.3.2 of the open
orbits of these groups on P \ GL2(E). �

7.1.6. Although the representations Vχ,H are not in general admissible, they do have the
following property which seems to be a natural generalization of the notion of admissi-
bility for smooth representations.

Proposition 7.1.7. Let G, χ and H be as in 3.1.1, and let G0 be a compact-open
subgroup of G. Then

Vχ,H|G0

∼−→
⊕
i∈I

Vi,

where I is a countable index set, Vi is a strongly admissible G0-representation, and for
i, j ∈ I with i �= j, there exist no non-zero intertwiners φ : Vi → Vj .

If Vχ,H is topologically irreducible, then the Vi can be chosen to be topologically
irreducible G0-representations.
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Proof. Let I be the set of orbits of G0 on H. For any i ∈ I we take Vi = Vχ,i. Then
we clearly have an isomorphism as required by the proposition. Since G0 is compact,
so is each orbit i, so Vi is strongly admissible by Proposition 7.1.3. The statement on
intertwiners between the Vi follows from Proposition 5.1.2.

Finally, if Vχ,H is irreducible, then c(χ) /∈ Z�0 by Proposition 3.1.8, so that each Vi is
irreducible by Theorem 3.1.6. �

8. Appendix

8.1. On properties of semi-compact inductive limits

We begin by stating the following useful proposition.

Proposition 8.1.1. Let A be a compactoid subset of a locally convex Hausdorff K-
vector space V , and let a ∈ K such that |a| > 1. Then, for any open lattice L ⊂ V there
exist finitely many v1, . . . , vn ∈ aA such that A ⊂ L + oKv1 + · · · + oKvn.

Proof (cf. Remark 12.8 in [S]). Note that the standing assumption there that K be
spherically complete is not necessary for this assertion. �

Theorem 8.1.2. Let V be a locally convex Hausdorff K-vector space which is a semi-
compact inductive limit. Then any closed subspace U of V is a semi-compact inductive
limit. More precisely, if V = lim(V1 → V2 → · · · ) is the locally convex inductive limit of
Banach spaces Vi with semi-compact transition maps, then U is equal to the union of
all Vi ∩ U , and the subspace topology on U is equal to the locally convex inductive limit
topology of the Vi ∩ U .

Proof. The last assertion about the topologies is Theorem 3.1.16 in [GKPS]. For the
sake of completeness we show the simple assertion that the induced maps Vi∩U

ιi−→Vi+1∩U

are compact. Put Bi(ε) := {v ∈ Vi | ‖v‖Vi
� ε}. Then the image of Bi(1) under ιi is

compactoid in Vi+1, and so is ιi(Bi(1) ∩ U). By Proposition 8.1.1 there are for a given
ε > 0 elements v1, . . . , vn ∈ aιi(Bi(1) ∩ U), where a ∈ K is as in Proposition 8.1.1, such
that

ιi(Bi(1) ∩ U) ⊂ Bi+1(ε) +
n∑

j=1

oKvj .

It follows immediately that

ιi(Bi(1) ∩ U) ⊂ (Bi+1(ε) ∩ U) +
n∑

j=1

oKvj ,

and hence ιi(Bi(1) ∩ U) is compactoid in Vi+1 ∩ U . �

Proposition 8.1.3. Let V be a locally convex Hausdorff K-vector space which is a
semi-compact inductive limit, and let U ⊂ V be a closed subspace. Then the quotient
V/U , equipped with the quotient topology, is a semi-compact inductive limit.
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Proof. Set W = V/U . Write V as an inductive limit of Banach spaces Vi with compact
transition maps: V = limi(V1 → V2 → · · · ). Put Ui = Vi ∩ U , and Wi = Vi/Ui, with
the quotient topology. If B ⊂ Wi is an open ball, then it is the image of an open ball
B̃ ⊂ Vi. Since the image of B̃ ⊂ Vi in Vi+1 is compactoid, so is its image in Wi+1. Hence
the image of B in Wi+1 is compactoid, and the map Wi → Wi+1 is a compact map of
Banach spaces.

We consider limi(W1 → W2 → · · · ), equipped with the locally convex direct limit topol-
ogy. The inclusions Wi ↪→ W induce a continuous bijection limi(W1 → W2 → · · · ) → W .
On the other hand, the map

V = lim
i

(V1 → V2 → · · · ) → lim
i

(W1 → W2 → · · · )

has kernel U , and hence factors through W , as W = V/U has the quotient topology.
This shows that limi(W1 → W2 → · · · ) ∼−→ W . �

The following proposition is used in the proof of Theorem 4.2.5.

Proposition 8.1.4. Let F ⊂ K ⊂ L be a sequence of p-adic fields, with F a finite
extension of Qp, and that L is spherically complete.

Let M be an analytic manifold and suppose M can be written as an increasing union
of a countable number of compact-open subsets. Let U be a closed proper subspace
Can

F,c(M, K) (as introduced in 2.1.4). Then, the closure of U ⊗K L inside Can
F,c(M, L) is a

proper subspace.

Proof. By Proposition 8.1.3, the quotient V of Can
F,c(M, K) by U is a semi-compact

inductive limit and therefore reflexive (cf. [GKPS, Theorem 3.1.7]). Because V is not
zero, the dual space of V is non-zero, and hence there is a non-zero continuous linear
form, λ on Can

F,c(M, K), which vanishes on U . Extending λ linearly to the algebraic tensor
product Can

F,c(M, K)⊗K L provides us with a linear form on this subspace of Can
F,c(M, L),

which is continuous for the projective tensor product topology on Can
F,c(M, K) ⊗K L

(cf. [S, § 17]).
Now we show that the subspace topology on Can

F,c(M, K) ⊗K L ⊂ Can
F,c(M, L) is equal

to the projective tensor product topology. To see this, it is sufficient to consider the
corresponding question for the Banach subspaces FI(K) ⊗K L ⊂ FI(L), where I is a
compact K-index on M , which gives us ‘by extension of scalars’ a compact L-index on
M , again denoted by I, and FI(K)⊗K L is equipped with the projective tensor product
topology. Denote by ‖ · ‖1 := ‖ · ‖FI(K) ⊗ | · |L the corresponding norm on FI(K) ⊗K L

(cf. [S, Proposition 17.4]) and by ‖ · ‖2 the restriction of the norm on FI(L). We may
assume that I is of the form (D, φ, K), and that φ(D) is the unit disc around 0. Hence
we may even assume that D is the unit disc around 0 (and φ is the identity). From the
very definition of ‖ · ‖1 it follows that ‖f‖2 � ‖f‖1 for any f ∈ FI(K) ⊗K L ⊂ FI(L).
And if f(x) =

∑N
i=0 aix

i is a polynomial, we have ‖f‖1 � max0�i�N |ai|L = ‖f‖2. Hence
we have an equality in this case. But any function in FI(K) ⊗K L can be approximated
by polynomials, simultaneously for both norms.
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Hence the norms and topologies coincide. It follows that λ is continuous for the sub-
space topology on Can

F,c(M, K) ⊗K L. By the Hahn–Banach theorem, and because L

is spherically complete, λ extends to a continuous non-zero linear form on Can
F,c(M, L)

(cf. [S, Corollary 9.4]). It is zero on the subspace U⊗KL, and therefore zero on the closure
of that subspace. Hence the closure of U ⊗K L in Can

F,c(M, L) is a proper subspace. �

8.2. A proposition on morphisms between Fréchet spaces

The following proposition is a result for Fréchet spaces over a non-archimedean com-
pletely valued field. There are similar statements over R or C (cf. [Bou2, § 4.2]), however,
we could not find an exact reference, and wanted to give a complete proof.

Lemma 8.2.1. Let φ : V → W be a continuous surjective morphism of Fréchet spaces
over K. Then any compactoid subset of W is the image of a compactoid subset of V .

Proof. The topology of V can be defined by a countable family of seminorms pn, n =
0, 1, . . . (cf. [S, Proposition 8.1]). Replacing pn by max{p0, . . . , pn}, we may assume that
p0(v) � p1(v) � · · · for any v ∈ V . Put

‖v‖ = sup
n�0

1
2n

pn(v)
1 + pn(v)

.

Then d(v1, v2) = ‖v1 −v2‖ is a translation-invariant metric on V , as is shown in the proof
of Proposition 8.1 in [S]. For any v ∈ V and α ∈ oK one has ‖αv‖ � ‖v‖, so that for any
ε ∈ R>0

BV (0, ε) := {v ∈ V | ‖v‖ < ε}
is an open lattice in V . Note that BV (0, 1) = V . By the open mapping theorem,
φ(BV (0, ε)) is an open lattice in W . Now let A ⊂ W be a compactoid subset. Sup-
pose we have already shown that A is the image of a compactoid subset C ⊂ V . Then,
for any subset A′ ⊂ A we have that C ∩φ−1(A′) is compactoid in V and projects onto A′.
Hence we may assume that A is an oK-module and it is closed (because the closure of a
compactoid subset is compactoid).

Let us first give an outline of the rest of the proof. For i = 1, 2, . . . we will inductively
define vectors vi,1, vi,2, . . . , vi,ni ∈ BV (0, 1/2i−1) such that for any w ∈ A there exist
scalars αi,ji ∈ oK , 1 � i, 1 � ji � ni such that for any ε ∈ R>0 there is an i(ε) � 1 and
v(ε) ∈ BV (0, ε) such that

w = φ

(
v(ε) +

∑
1�i�i(ε), 1�ji�ni

αi,jivi,ji

)
.

This means that A is contained in the image of

C :=
∑

1�i, 1�ji�ni

oKvi,ji .

On the other hand, we will have that φ(vi,j) ∈ A for any i, j, so that φ(C) = A, because
we assume A to be closed. The set of all vi,j is compactoid because any open lattice
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L ⊂ V contains a ball BV (0, ε) and therefore almost all vectors vi,j . This implies that C

is compactoid.
Now we come to the actual construction of the vectors vi,j . Fix a ∈ K such that

1 < |a| < 2. For i = 1 we find elements v1,1, . . . , v1,n1 ∈ BV (0, 1) = V such that

A ⊂ φ(BV (0, 1
4 )) +

∑
j=1,...,n1

oKφ(v1,j).

Now suppose we have defined vi,1, vi,2, . . . , vi,ni ∈ BV (0, 1/2i−1) for i = 1, . . . , k such
that

A ⊂ φ

(
BV

(
0,

1
2k+1

))
+

∑
0�i�k, ji=1,...,ni

oKφ(vi,ji
).

For any w ∈ A fix vw ∈ BV (0, 1/2k+1) and αi,ji ∈ oK , 1 � i � k, 1 � ji � ni, such that

w = φ(vw) +
∑

1�i�k, 1�ji�ni

αi,ji
φ(vi,ji

).

The set φ({vw | w ∈ A}) is compactoid because it is contained in the oK-submodule
generated by A and the vectors φ(vi,ji), 1 � i � k, 1 � ji � ni. By Proposition 8.1.1
there exist w1, . . . , wnk+1 ∈ aφ(BV (0, 1/2k+1)) such that

φ({vw | w ∈ A}) ⊂ φ

(
BV

(
0,

1
2k+2

))
+

∑
j=1,...,nk+1

oKwj .

For any v ∈ V one has ‖av‖ � |a| ‖v‖. Hence there are

vk+1,j ∈ aBV

(
0,

1
2k+1

)
⊂ BV

(
0,

1
2k

)
such that wj = φ(vk+1,j). This finishes the proof. �

Proposition 8.2.2. Let φ : V → W be a continuous surjective map of Fréchet spaces
over K, and assume W is also a Montel space. Then the map on dual spaces φ′ : W ′

b → V ′
b

is a homeomorphism onto its image.

Proof. We will show that the image of any open lattice in W ′
b under φ′ is the intersection

of an open lattice in V ′
b with the image of φ′. For a bounded subset B of W and ε ∈ R>0,

the lattice {
l ∈ W ′

∣∣∣ sup
w∈B

|l(w)| < ε
}

is open, and by letting B run over all bounded subsets of W and ε over all positive real
numbers, one gets a fundamental system of open lattices in W ′

b. Because W is Montel, B

is compactoid. Hence, by Lemma 8.2.1, there is a compactoid subset B̃ ⊂ V , such that
φ(B̃) = B. Of course, B̃ is bounded in V . But then we have obviously

φ′
({

l ∈ W ′
∣∣∣ sup

w∈B
|l(w)| < ε

})
=

{
λ ∈ V ′

∣∣∣ sup
v∈B̃

|λ(v)| < ε
}

∩ φ′(W ′).

Therefore, φ′ induces an open map from W ′
b onto its image. Because φ′ is continuous, it

is a homeomorphism onto its image. �
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[Laz] M. Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet.
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