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In this paper, we develop the lower–upper-bound approximation in the space of Laplace
transforms for pricing American options. We construct tight lower and upper bounds for
the price of a finite-maturity American option when the underlying stock is modeled by a
large class of stochastic processes, e.g. a time-homogeneous diffusion process and a jump
diffusion process. The novelty of the method is to first take the Laplace transform of the
price of the corresponding “capped (barrier) option” with respect to the time to maturity,
and then carry out optimization procedures in the Laplace space. Finally, we numerically
invert the Laplace transforms to obtain the lower bound of the price of the American
option and further utilize the early exercise premium representation in the Laplace space
to obtain the upper bound. Numerical examples are conducted to compare the method
with a variety of existing methods in the literature as benchmark to demonstrate the
accuracy and efficiency.

Keywords: American option pricing, early exercise boundary, jump diffusions, laplace transform,
option bounds

1. INTRODUCTION

American options are widely traded in the financial markets, and they are frequently writ-
ten on a range of underlying assets, which include stocks, commodities, interest rates, and
exchange rates between two currencies. From empirical studies in Barraclough and Whaley
[4] and Jensen and Pedersen [30], a large portion of actual options traded in the market

© The Author(s), 2020. Published by Cambridge University Press 0269-9648/19 $25.00 514

https://doi.org/10.1017/S0269964820000492 Published online by Cambridge University Press

mailto:mjt@swufe.edu.cn
https://orcid.org/0000-0001-9429-7121
mailto:zcui6@stevens.edu
mailto:wylmf@2015.swufe.edu.cn
https://doi.org/10.1017/S0269964820000492


LAPLACE BOUNDS APPROXIMATION FOR AMERICAN OPTIONS 515

are American-style. While it is standard in the literature to use the Black–Scholes model
for the stock price, it is more appropriate to use alternative stochastic processes to model
commodities, interest rates, or foreign currency exchange rates because they usually exhibit
mean-reverting features. It has also been empirically documented that the stock prices
exhibit jump behaviors (e.g. the Flash Crash on May 6th, 2010). Hence, it is of inter-
est to develop efficient pricing methods for (finite-maturity) American options when the
underlying is modeled by a general time-homogeneous diffusion or a jump diffusion.

Since early exercise is allowed, the price of a finite-maturity American option is a
solution to the associated finite-horizon free-boundary problem, and there is no analytical
solution even in the Black–Scholes model except in the case of an American call option with
no dividend. In the literature, numerous numerical methods have been developed. The fol-
lowing is a partial list of the related literature, and we refer the readers to two survey papers
by Broadie and Detemple [10], Detemple [24], the book by Detemple [23], and the references
therein. The numerical methods mainly include binomial methods (see, e.g., [6,21,29]), finite
difference methods (see, e.g., [7]), analytical partial differential equation (PDE) methods
(see, e.g., [45]), integral equation methods (see, e.g., [13,14,25,28,31,32,37]), method of lines
[17], Fourier transform approach ([15,16]) least-squares Monte Carlo (LSMC) method (see,
e.g., [38]), duality methods (see, e.g., [2,8,27]), static hedging portfolio approach (see, e.g.,
[18,20,40,41]), and lower–upper-bound methods (see, e.g., [9,19]).

Although there exist many papers on pricing (finite-maturity) American call/put
options under the Black–Scholes model, there is relatively few literature on the pricing
of American options for more general underlying processes. In the literature, Detemple and
Tian [25] consider the time-homogeneous diffusion case, express the American option price
using the early exercise premium (EEP) decomposition, and derive a system of nonlin-
ear integral equations for the early exercise boundaries. For the finite-maturity American
option under the double-exponential jump diffusion (DEJD) model, numerical methods are
employed in the literature to solve the associated free boundary problem. Lattice or differ-
ential equation methods are used in Amin [1] and Zhang [44]. In Kou and Wang [34], they
extend the approximation technique in Barone-Adesi and Whaley [3] from the geometric
Brownian motion (GBM) setting to the double-exponential jump diffusion setting, and it is
later extended to the case of hyperexponential jump diffusions in Cai and Sun [11]. There
is the following discussion on page 1181 of Kou and Wang [34]: “We want to point out that
there exist other more elaborate but more accurate approximations (such as [9,12,31]) for
GBM models, and whether these algorithms can be effectively extended to jump diffusion
models invites further investigation.” Our paper aims at filling this gap in the literature
by proposing a generalized lower–upper-bound approximation (LUBA) framework following
the spirit of Broadie and Detemple [9], which applies to general underlying stochastic pro-
cesses where the Laplace transforms of capped (barrier) options are available. In a recent
paper, Leippold and Vasiljevic [36] utilize a maturity randomization approach to obtain a
tight lower bound of the finite-maturity American option price under the hyperexponen-
tial jump diffusion (HEJD) model. Our work is distinct from their work, since we use the
optimization technique in Broadie and Detemple [9] instead of the randomization technique
(called “Canadization”) of Carr [12] as utilized in Leippold and Vasiljevic [36]. Intuitively
speaking, the idea in Leippold and Vasiljevic [36] (or in [12]) is to “exactly solve the approx-
imate problem with exponential maturity,” and the idea of our approach is along the lines
of Broadie and Detemple [9], which is to “approximately solve the exact problem.” In the
constant elasticity of variance (CEV) case, our method is distinct from the Laplace–Carson
approach in Wong and Zhao [43]. They apply Laplace–Carson transform directly to the cor-
responding free-boundary problem and derive the functional equation governing the early
exercise boundary, which they then solve using quadrature methods. Then they utilize the
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numerically determined early exercise boundary to price American options through Laplace
inversion. It is not clear how their method can be generalized to jump diffusions, and it
seems that their methods are not very accurate (see the numerical comparisons and the
detailed discussion in Remark 5.1). On the other hand, our method provides theoretical
lower and upper bounds, which are tight through numerical studies in Section 4, and can
be applied to more general underlying stock dynamics such as HEJD.

The contributions of the paper are threefold:

1. First, we generalize the idea of Broadie and Detemple [9] to the Laplace space and
propose the theoretical framework for constructing tight lower and upper bounds for
(finite-maturity) American options for a large class of stochastic processes including
time-homogeneous diffusions and jump diffusions with double-exponential jumps. To
the best of authors’ knowledge, it is the first time that the LUBA idea is applied to
a model with jumps.

2. Second, we obtain explicit expressions of capped options in the CEV and double-
exponential jump diffusion models and then explicitly carry out the optimization
procedure to arrive at accurate explicit lower and upper bounds.

3. Third, our theoretical framework in the Laplace space is flexible enough to be com-
bined with other improvements in approximating the early exercise boundary (e.g.
using an exponential function [19] or a multi-piece exponential function [31]) to arrive
at more accurate results (see a brief discussion in Section 6).

The rest of the paper is organized as follows. Section 2 presents the general idea of our
‘lower–upper-bound approximation in the Laplace space’ (Lap-LUBA 1 and Lap-LUBA 2).
Section 3 considers the valuation of American call options written on diffusions. We illustrate
with explicit expressions for the GBM and CEV models. Section 4 considers the application
of our method to the DEJD model. Section 5 presents numerical examples in the case of
diffusion and DEJD settings. Section 6 illustrates the main steps of using an exponential
function to approximate the early exercise boundary in our Laplace space framework and
concludes the paper with future research directions. Appendix collects formulas related to
the benchmark case of geometric Brownian motions.

2. MAIN IDEAS FOR LAP-LUBAS

In this section, we describe the main ideas of Laplace lower–upper-bound approaches (Lap-
LUBA 1 and Lap-LUBA 2). This approach extends the idea of using the capped options to
approximate the American options for the GBM model in Broadie and Detemple [9] to some
more general models. Unlike the case of GBM model, there is no closed-form formula for
the capped option for general models. However, for some general models, the closed-form
formulas of the capped options can be derived in the Laplace space. This enables us to carry
out optimization procedures in the Laplace space. Then, the Laplace inversion and the EEP
representation facilitate obtaining the lower and upper bounds on American option. The
work flow is summarized in Figure 1.

2.1. Lap-LUBA 1

Given a probability space (Ω,F , {F}t≥0,Q), where Q is the risk-neutral probability measure,
we first consider the case when the stock price is modeled by a positive time-homogeneous
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Figure 1. Work flow of Laplace lower- and upper-bound approach.

diffusion governed by the following stochastic differential equation (SDE):

dSt
St

= μdt+ σ(St) dWt, t ≥ 0, S0 > 0. (1)

Here μ := r − δ, where r ≥ 0 and δ ≥ 0 are, respectively, the risk-free interest rate and the
dividend rate. The same underlying dynamic is also assumed in Davydov and Linetsky [22]
and Detemple and Tian [25].

We first discuss the case of the American call option with dividends under the model
(1) and illustrate the main idea of our approach. Note that the following results (such as Eq.
(2) and Lemmas 2.1 and 2.2) hold for more general underlying processes beyond diffusions.

Consider the case of a constant cap L > 0 which is, in fact, dependent on t but remains
unchanged on [t, T ] and denote C(St, t, L) as the value of a capped call with automatic
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exercise at the cap L, and it has the same strike K and maturity T as the American call
option to be priced. Define τL := inf{u ≥ t : Su ≥ L}, τ := τL ∧ T . Then, the value of the
capped call option is written as

C(St, t, L) = Et[e−r(τ−t)(Sτ ∧ L−K)+].

From the analysis in Section 7.2 of Detemple and Tian [25], we have that C(St, t) ≥
C(St, t, L) for all L > 0, or equivalently their Laplace transforms with respect to the
time-to-maturity u := T − t also satisfy

L(C(St, t)) :=
∫ ∞

0

e−λuC(St, T − u) du ≥
∫ ∞

0

e−λuC(St, T − u,L) du =: L(C(St, t, L)).

(2)

Denote C∗(St, λ, L) := L(C(St, t, L)), and the main idea of our LUBA in the Laplace space
is: instead of maximizing the expression C(St, t, L) (see Eq. (44) on p. 933 of [25]) with
respect to L in the original time space, we aim to maximize C∗(St, λ, L) with respect to L
in the Laplace space by solving the following nonlinear equation:

D(L, λ) = 0, (3)

where

D(L, λ) := lim
St↑L

∂C∗(St, λ, L)
∂L

. (4)

The explicit formula of D(L, λ) for the time-homogeneous diffusion case in (1) is given
in (20) and it is expressed in terms of solutions to the associated Sturm–Liouville ordinary
differential equation (ODE). Denote the solution of the above optimization problem as L∗,
then we insert it into the formula (11) below and apply the Laplace inversion to obtain
the lower bound on the price of the American call option. Next we insert L∗ into the EEP
expression for the American option in the Laplace space (see the following (A.10), (35), and
(53)) and apply Laplace inversion to obtain the corresponding upper bound on the price of
the American call option. Recall the following lemma.

Lemma 1 (Lemma 1 of [9]): Suppose that L(1)
s and L(2)

s are any continuous time-dependent
boundaries satisfying L(2)

s > L
(1)
s ≥ B∗

s for all s ∈ [t, T ], where B∗
s is the optimal exercise

boundary. Then Ct(St, t, L
(2)
t ) < Ct(St, t, L

(1)
t ).

Note that the proof of Lemma 2.1 holds for more general underlying processes, then we
have the following result.

Lemma 2 (Laplace space version of the Proposition 10 of [25]): Suppose that the underlying
stock price follows the diffusion process in (1) and Sσ(S) is a function of S and satisfies the
Lipschitz condition. Let B∗

t be the optimal exercise boundary for the American call option,
and L∗(λ) be the exercise boundary for a capped call option in the Laplace space, and it solves
D(L∗(λ), λ) = 0, where D(·, ·) is defined in (4). Then L−1(L∗(λ)) ≤ B∗

t , for all t ∈ [0, T ],
where L−1 denotes the inverse Laplace operator.

Proof: Since Ct(St, t, L(2)) < Ct(St, t, L(1)) is equivalent to L(Ct(St, t, L(2))) < L(Ct(St,
t, L(1))), the result follows as an easy consequence of Lemma 2.1. �
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On p. 934, Detemple and Tian [25] mentioned

This approach (i.e. the lower-upper bound approach) becomes particularly attractive when
the capped call option C(St, t, L) has a closed-form expression.

Now, we have weakened the assumptions of the approach to only requiring that we
have a closed-form expression for the Laplace transform C∗(St, λ, L) := L(C(St, t, L)) with
respect to the time-to-maturity u := T − t. This can be applied to more situations, since
most of the time, the density of the first passage time of the diffusion to a constant boundary
is not available, but its Laplace transform is tractable if we have the explicit eigenfunctions
from the associated Sturm–Liouville ODE.

2.2. Lap-LUBA 2

For the Lap-LUBA 2 method, we first derive the Laplace transform formula for the capped
option in the Laplace space, then use numerical Laplace inversion to get the approximation
of the capped option price and the associated derivatives. After optimizing the approximate
formula for the capped option w.r.t. L in the time domain, we get the optimal value L∗.
Inserting the optimal value L∗ into the approximation of the capped option in the time
space, we obtain the lower bound on the American option value and inserting the optimal
value L∗ into the EEP formula for the American options in the time space, we obtain the
upper bound on the American option value.

Denote limSt→L (∂C(St, L, t))/∂L by (∂C(L, t))/∂L, and L(C(St, L, t)) by C∗(St, L, λ),
then we have the approximate capped option formula in the time domain using the
Gaver–Stehfest Laplace inversion formula (see [35]):

C(St, L, t) ≈ ln 2
T − t

N∑
k=1

VkC
∗
(
St, L,

k ln 2
T − t

)
, (5)

where

Vk = (−1)k+N/2
min(k,N/2)∑
j=[(k+1)/2]

jN/2(2j)!
(N2 − j)!j!(j − 1)!(k − j)!(2j − k)!

. (6)

Similarly, the first- and second-order partial derivatives are given by

∂C(L, t)
∂L

≈ ln 2
T − t

N∑
k=1

VkD

(
L,
k ln 2
T − t

)
, (7)

and

∂2C(L, t)
∂L2

≈ ln 2
T − t

N∑
k=1

Vk
∂D

(
L, k ln 2

T−t
)

∂L
, (8)

where Vk is defined in (6).
Therefore, we solve the following algebraic equation

∂C(L, t)
∂L

≈ ln 2
T − t

N∑
k=1

VkD

(
L,
k ln 2
T − t

)
= 0 (9)

using the Newton’s method to get the value L∗ and then use the work flow of Lap-LUBA
2 to obtain the lower and upper bounds on the American option value.
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3. AMERICAN OPTIONS UNDER TIME-HOMOGENEOUS DIFFUSIONS

3.1. General Formulas

In this section, for the general form of time-homogeneous diffusion (1), we derive the for-
mulas to be used in Lap-LUBAs. Define τL := inf{u ≥ t : Su ≥ L}, τ := τL ∧ T , and recall
the following general decomposition for the capped call option

C(St, t, L) = Et[e−r(τ−t)(Sτ ∧ L−K)+]

= Et[e−r(τ−t)(Sτ ∧ L−K)+1{τL<T}] + Et[e−r(τ−t)(Sτ ∧ L−K)+1{τL≥T}]

= (L−K)Et[e−r(τL−t)1{τL<T}] + Et[e−r(T−t)(ST −K)+1{τL≥T}]. (10)

Then we have the following results.

Proposition 1: Under the model (1), the Laplace transform of the value of the capped call
option with respect to the time-to-maturity u := T − t is given by

C∗(St, λ, L) := L(C(St, t, L)) = (L−K)
1
λ

ψr+λ(St)
ψr+λ(L)

+
ψλ+r(St)

ωλ+rψλ+r(L)
[ψλ+r(L)(Jλ+r(K,K,L)1{St≤K} + Jλ+r(K,St, L)1{St>K})

− φλ+r(L)(Iλ+r(K,K,L)1{St≤K} + Iλ+r(K,St, L)1{St>K})]

+ 1{St>K}
Δλ+r(St, L)
ωλ+rψλ+r(L)

Iλ+r(K,K, St), (11)

where 1{·} is the indicator function, and the functions ψλ+r(y) and φλ+r(y) are, respec-
tively, the unique (up to a multiplicative constant) increasing and decreasing solution of the
following Sturm–Liouville ODE

μy
du

dy
+

1
2
y2σ2(y)

d2u

dy2
= (λ+ r)u, y ∈ (0,∞). (12)

The other auxiliary functions are defined for 0 < K ≤ A < B <∞ and λ > 0:

Iλ+r(K,A,B) :=
∫ B

A

(y −K)ψλ+r(y)ζ(y) dy,

Jλ+r(K,A,B) :=
∫ B

A

(y −K)φλ+r(y)ζ(y) dy,

ζ(y) :=
2

σ2(y)y2s(y)
,

s(y) := exp
(
−
∫ y

·

2μdx
σ2(x)x

)
,

Δλ+r(A,B) := φλ+r(A)ψλ+r(B) − ψλ+r(A)φλ+r(B),

(13)

and ωλ+r is the Wronskian, which is a constant satisfying

φλ+r(x)
dψλ+r

dx
(x) − ψλ+r(x)

dφλ+r

dx
(x) = s(x)ωλ+r. (14)
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Proof: First, we analyze the two terms in (10) separately utilizing results from Davydov
and Linetsky [22]. We take the Laplace transform of both sides of (10) with respect to the
time-to-maturity u := T − t. Note that we assume that St < L, then from Davydov and
Linetsky [22 Eq. (16)], we have

∫ ∞

0

e−λuEt[e−r(τL−t)1{τL<T}] du =
∫ ∞

0

e−λuEt[e−r(τL−t)1{τL−t<u}] du

=
1
λ
Et[e−(r+λ)(τL−t)] =

1
λ

ψr+λ(St)
ψr+λ(L)

. (15)

From Davydov and Linetsky [22 Eq. (21)], we have that if St ≤ K, then

∫ ∞

0

e−λuEt[e−ru(ST −K)+1{τL≥T}] du

=
∫ ∞

0

e−(λ+r)uEt[(ST −K)+1{u≤τL−t}] du

=
Δλ+r(0, St)

ωλ+rΔλ+r(0, L)
[ψλ+r(L)Jλ+r(K,K,L) − φλ+r(L)Iλ+r(K,K,L)]; (16)

and if St > K, then

∫ ∞

0

e−λuEt[e−ru(ST −K)+1{τL≥T}] du

=
∫ ∞

0

e−(λ+r)uEt[(ST −K)+1{u≤τL−t}] du

=
Δλ+r(0, St)

ωλ+rΔλ+r(0, L)
[ψλ+r(L)Jλ+r(K,St, L) − φλ+r(L)Iλ+r(K,St, L)]

+
Δλ+r(St, L)

ωλ+rΔλ+r(0, L)
[φλ+r(0)Iλ+r(K,K, St) − ψλ+r(0)Jλ+r(K,K, St)]. (17)

Finally, we obtain the formula of the Laplace transform for the capped call

C∗(St, λ, L)

:= L(C(St, t, L)) = (L−K)
1
λ

ψr+λ(St)
ψr+λ(L)

+
Δλ+r(0, St)

ωλ+rΔλ+r(0, L)
[ψλ+r(L)(Jλ+r(K,K,L)1{St≤K} + Jλ+r(K,St, L)1{St>K})

− φλ+r(L)(Iλ+r(K,K,L)1{St≤K} + Iλ+r(K,St, L)1{St>K})]

+ 1{St>K}
Δλ+r(St, L)

ωλ+rΔλ+r(0, L)
[φλ+r(0)Iλ+r(K,K, St) − ψλ+r(0)Jλ+r(K,K, St)]. (18)

Using the boundary conditions ψλ+r(0+) = 0 as in Davydov and Linetsky [22 Eqs. (10) and
(11)], we simplify (18) to arrive at (11). This completes the proof. �
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To start the optimization w.r.t. L, we shall first carry out the computation for gen-
eral diffusions and express it using the associated eigenfunctions. We take the first-order
derivative of (11) w.r.t. L and derive that

∂C∗(St, λ, L)
∂L

=
1
λ

ψr+λ(St)
ψr+λ(L)

− L−K

λ

ψr+λ(St)ψ′
r+λ(L)

ψ2
r+λ(L)

− ψλ+r(St)ψ′
λ+r(L)

ωλ+rψ2
λ+r(L)

[ψλ+r(L)(Jλ+r(K,K,L)1{St≤K} + Jλ+r(K,St, L)1{St>K})

− φλ+r(L)(Iλ+r(K,K,L)1{St≤K} + Iλ+r(K,St, L)1{St>K})]

+
ψλ+r(St)

ωλ+rψλ+r(L)
[ψ′
λ+r(L)(Jλ+r(K,K,L)1{St≤K} + Jλ+r(K,St, L)1{St>K})

− φ′λ+r(L)(Iλ+r(K,K,L)1{St≤K} + Iλ+r(K,St, L)1{St>K})]

+ 1{St>K}Iλ+r(K,K, St)

·
(
∂Δλ+r(St,L)

∂L ψλ+r(L) − Δλ+r(St, L)ψ′
λ+r(L)

ωλ+rψ2
λ+r(L)

)
. (19)

Then, we have

D(L, λ) = lim
St↑L

∂C∗(St, λ, L)
∂L

=
1
λ
− (L−K)

λ

ψ
′
λ+r(L)

ψλ+r(L)
+
Iλ+r(K,K,L)

ωλ+r

[
φλ+r(L)ψ′

λ+r(L)
ψλ+r(L)

− φ′λ+r(L)
]
. (20)

3.2. The Constant Elasticity of Variance Model

Under the risk-neutral measure, the CEV model is given by the following SDE:

dSt = μSt dt+ σSβ+1
t dWt, S0 > 0, β �= 0, (21)

with μ = r − δ. Here, we consider the case when we are at time t; thus, the current stock
price is St instead of S0. From Proposition 5 of Davydov and Linetsky [22], the fundamental
solutions to the CEV ODE are

ψλ+r(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yβ+1/2 eεx/2Mk,m(x), if β < 0, μ �= 0,
yβ+1/2 eεx/2Wk,m(x), if β > 0, μ �= 0,
y1/2Fν(

√
2(λ+ r)z), if β < 0, μ = 0,

y1/2Gν(
√

2(λ+ r)z), if β > 0, μ = 0,

(22)
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and

φλ+r(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yβ+1/2 eεx/2Wk,m(x), if β < 0, μ �= 0,
yβ+1/2 eεx/2Mk,m(x), if β > 0, μ �= 0,
y1/2Gν(

√
2(λ+ r)z), if β < 0, μ = 0,

y1/2Fν(
√

2(λ+ r)z), if β > 0, μ = 0,

(23)

where

x :=
|μ|
σ2|β|y

−2β , z :=
1
σ|β|y

−β , (24)

and here the constants are given by

ε := sign(μβ), m :=
1

4|β| , (25)

k := ε

(
1
2

+
1
4β

)
− λ+ r

2|μβ| , ν :=
1

2|β| . (26)

Here, Mk,m(x) and Wk,m(x) are Whittaker functions, and Fν(x) and Gν(x) are the modified
Bessel functions. The scale density is

s(y) = exp
(

μ

σ2β
y−2β

)
, (27)

and the Wronskian is

ωλ+r =

⎧⎨⎩
2|μ|Γ(2m+ 1)

σ2Γ(m− k + 1/2)
if μ �= 0,

|β| if μ = 0,
(28)

where Γ(·) is the Gamma function.
The auxiliary functions can be calculated as follows:

Iλ+r(K,A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ B

A

(y −K)yβ+1/2 eεx/2Mk,m(x)ζ(y) dy, if β < 0, μ �= 0,∫ B

A

(y −K)yβ+1/2 eεx/2Wk,m(x)ζ(y) dy, if β > 0, μ �= 0,∫ B

A

(y −K)y1/2Fν(
√

2(λ+ r)z)ζ(y) dy, if β < 0, μ = 0,∫ B

A

(y −K)y1/2Gν(
√

2(λ+ r)z)ζ(y) dy, if β > 0, μ = 0,

(29)

and

Jλ+r(K,A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ B

A

(y −K)yβ+1/2 eεx/2Wk,m(x)ζ(y) dy, if β < 0, μ �= 0,∫ B

A

(y −K)yβ+1/2 eεx/2Mk,m(x)ζ(y) dy, if β > 0, μ �= 0,∫ B

A

(y −K)y1/2Gν(
√

2(λ+ r)z)ζ(y) dy, if β < 0, μ = 0,∫ B

A

(y −K)y1/2Fν(
√

2(λ+ r)z)ζ(y) dy, if β > 0, μ = 0,

(30)

https://doi.org/10.1017/S0269964820000492 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000492


524 J. Ma et al.

where

ζ(y) =
2

σ2y2β+4 exp
(

μ
σ2β y

−2β
) . (31)

The capped call option in the Laplace space for the CEV model is the formula (11) with
the replacement of the corresponding parts by (22)–(31).

We then calculate the derivatives:

ψ′
λ+r(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
β +

1
2

)
yβ−1/2 eεx/2Mk,m(x) + yβ+1/2 eεx/2

ε

2
dx

dy
Mk,m(x)

+yβ+1/2 eεx/2
dMk,m(x)

dx

dx

dy
, if β < 0, μ �= 0;

(β +
1
2
)yβ−1/2 eεx/2Wk,m(x) + yβ+1/2 eεx/2

ε

2
dx

dy
Wk,m(x)

+yβ+1/2 eεx/2
dWk,m(x)

dx

dx

dy
, if β > 0, μ �= 0;

1
2
y−1/2Fν(

√
2(λ+ r)z) + y1/2F ′

ν(
√

2(λ+ r)z)
√

2(λ+ r)
dz

dy
,

if β < 0, μ = 0;
1
2
y−1/2Gν(

√
2(λ+ r)z) + y1/2G′

ν(
√

2(λ+ r)z)
√

2(λ+ r)
dz

dy
,

if β > 0, μ = 0,

(32)

and

φ′λ+r(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
β +

1
2

)
yβ−1/2 eεx/2Wk,m(x) + yβ+1/2 eεx/2

ε

2
dx

dy
Wk,m(x)

+yβ+1/2 eεx/2
dWk,m(x)

dx

dx

dy
, if β < 0, μ �= 0;(

β +
1
2

)
yβ−1/2 eεx/2Mk,m(x) + yβ+1/2 eεx/2

ε

2
dx

dy
Mk,m(x)

+yβ+1/2 eεx/2
dMk,m(x)

dx

dx

dy
, if β > 0, μ �= 0;

1
2
y−1/2Gν(

√
2(λ+ r)z) + y1/2G′

ν(
√

2(λ+ r)z)
√

2(λ+ r)
dz

dy
,

if β < 0, μ = 0;
1
2
y−1/2Fν(

√
2(λ+ r)z) + y1/2F ′

ν(
√

2(λ+ r)z)
√

2(λ+ r)
dz

dy
,

if β > 0, μ = 0.

(33)
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Using (22), (23), (32), and (33), we simplify (20) for the CEV case as

D(L, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λ
− (L−K)

λ

[(
β +

1
2

)
L−1 +

ε

2
dx(L)
dL

+
dMk,m(x)

dx

dx(L)
dL

1
Mk,m(x)

]
+Lβ+1/2 eεx/2

Iλ+r(K,K,L)
ωλ+r

[
dMk,m(x)

dx

dx(L)
dL

Wk,m(x)
Mk,m(x)

− dWk,m(x)
dx

dx(L)
dL

]
,

if β < 0, μ �= 0;
1
λ
− (L−K)

λ

[(
β +

1
2

)
L−1 +

ε

2
dx(L)
dL

+
dWk,m(x)

dx

dx(L)
dL

1
Wk,m(x)

]
+Lβ+1/2 eεx/2

Iλ+r(K,K,L)
ωλ+r

[
dWk,m(x)

dx

dx(L)
dL

Mk,m(x)
Wk,m(x)

− dMk,m(x)
dx

dx(L)
dL

]
,

if β > 0, μ �= 0;
1
λ
− (L−K)

λ

[
1
2
L−1 +

√
2(λ+ r)F ′

v(
√

2(λ+ r)z)
dz(L)
dL

1
Fv(

√
2(λ+ r)z)

]

+L1/2

√
2(λ+ r)Iλ+r(K,K,L)

ωλ+r

[
F ′
v(
√

2(λ+ r)z)
dz(L)
dL

Gv(
√

2(λ+ r)z)
Fv(

√
2(λ+ r)z)

−G′
v(
√

2(λ+ r)z)
dz(L)
dL

]
, if β < 0, μ = 0;

1
λ
− (L−K)

λ

[
1
2
L−1 +

√
2(λ+ r)G′

v(
√

2(λ+ r)z)
dz(L)
dL

1
Gv(

√
2(λ+ r)z)

]

+L1/2

√
2(λ+ r)Iλ+r(K,K,L)

ωλ+r

[
G′
v(
√

2(λ+ r)z)
dz(L)
dL

Fv(
√

2(λ+ r)z)
Gv(

√
2(λ+ r)z)

−F ′
v(
√

2(λ+ r)z)
dz(L)
dL

]
, if β > 0, μ = 0.

(34)

Consequently, we use the bisection method to solve the algebraic Eq. (3) with the expression
(34) to the get the optimal value L∗ and then follow the work flow of Lap-LUBA 1 to get
a lower bound on the American call value.

To calculate the upper bound on the American call value using the Lap-LUBA 1 method,
we derive the EEP representation in the Laplace space by following Wong and Zhao [43]

C∗(S, λ,B(λ)) =

{
C11ψλ+r(S) + C12φλ+r(S), when S ∈ (0,K),
C21ψλ+r(S) + C22φλ+r(S) + uλ+r(S), when S ∈ [K,B(λ)),

(35)

where B(λ) is the early exercise boundary in the Laplace space,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C11 =
a5(a2b2 − a4b1) + a6(a3b1 − a1b2)

a5(a2a3 − a1a4)
+
b3
a5
,

C12 = 0,

C21 =
a6(a3b1 − a1b2)
a5(a2a3 − a1a4)

+
b3
a5
,

C22 =
a1b2 − a3b1
a2a3 − a1a4

,

uλ+r(S) =
λ

λ+ δ
S − λ

λ+ r
K,
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and

a1 = ψλ+r|S=K , a2 = φλ+r|S=K , a3 =
dψλ+r

dS

∣∣∣∣
S=K

,

a4 =
dφλ+r

dS

∣∣∣∣
S=K

, a5 =
dψλ+r

dS

∣∣∣∣
S=B(λ)

, a6 =
dφλ+r

dS

∣∣∣∣
S=B(λ)

,

b1 = uλ+r|S=K , b2 =
duλ+r

dS

∣∣∣∣
S=K

, b3 = 1 − duλ+r

dS

∣∣∣∣
S=B(λ)

.

Then, we replace B(λ) in (35) by L∗ and use Laplace inversion to obtain the upper bound
on the price of the American call option.

For the Lap-LUBA 2 method, we solve Eq. (9) with replacement of function D by (34)
using the bisection method to get L∗ and then follow the work flow of Lap-LUBA 2 to get
the lower bound on the price of American call option.

Furthermore, we can calculate the upper bound on the American call value by the
Lap-LUBA 2 method by using the following EEP representation in the time space from
Detemple and Tian [25 Prop. 3],

C(St, t;B(t)) = Ce(St, t) + Π(St, t;B(t)), (36)

with

Ce(St, t) = Ste
−δ(T−t)ϕ1(St,K, T ) −Ke−r(T−t)ϕ2(St,K, T ), (37)

and

Π(St, t;B(t)) =
∫ T

t

[δSt e−δ(T−t)ϕ1(St, B(ν), ν) − rK e−r(T−t)ϕ2(St, B(ν), ν)] dν, (38)

where

ϕ1(St, B(ν), ν) =

⎧⎪⎪⎨⎪⎪⎩
χ2

(
2yB(ν)(ν); 2 − 1

β
, 2xSt

(ν)
)
, if β < 0,

χ2

(
2xSt

(ν);
1
β
, 2yB(ν)(ν)

)
, if β > 0,

ϕ2(St, B(ν), ν) =

⎧⎪⎪⎨⎪⎪⎩
1 − χ2

(
2xSt

(ν);− 1
β
, 2yB(ν)(ν)

)
, if β < 0,

1 − χ2

(
2yB(ν)(ν); 2 +

1
β
, 2xSt

(ν)
)
, if β > 0,

and

xD(ν) =
r − δ

σ2β
(
1 − e−2(r−δ)β(ν−t))D−2β e−2(r−δ)β(ν−t),

yD(ν) =
r − δ

σ2β
(
1 − e−2(r−δ)β(ν−t))D−2β .

The function χ2(x; ν, y) is the complementary noncentral chi-square distribution function
evaluated at x, with ν degrees of freedom and nonconcentrality parameter y.
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4. AMERICAN OPTIONS UNDER DOUBLE-EXPONENTIAL JUMP DIFFUSIONS

In this section, we shall extend the Lap-LUBAs to the case of double-exponential jump
diffusions [34]. We consider the finite-maturity American put option because we want to
compare our results with those in Leippold and Vasiljevic [36], where they only consider
American puts. The method developed in this section can be analogously applied to the
valuation of (finite-maturity) American call options under the DEJD model.

Under the risk-neutral measure, the double-exponential jump diffusion model is given
by

dSt
St−

= (r − δ − λ2ζ) dt+ σ dWt + d

⎛⎝N(t)∑
i=1

(Vi − 1)

⎞⎠ , (39)

where N(t) is an independent Poisson process with the rate λ2, and {Yi = ln(Vi) : i =
1, 2, . . .} is a sequence of independent and identically distributed double-exponential random
variables with the probability density function

fY (y) = pη1 e
−η1y1{y≥0} + qη2 e

η2y1{y<0}, (40)

where η1 > 1, η2 > 0, p ≥ 0, q ≥ 0, and p+ q = 1. The return process is given by

Xt := ln(St/S0) = μt+ σWt +
Nt∑
i=1

Yi, X0 = 0, (41)

where μ = r − δ − σ2/2 − λ2ζ, and we can calculate ζ := E[eY − 1] = pη1/(η1 − 1) +
qη2/(η2 + 1) − 1.

To make the notations consistent, we have the following correspondence between the
parameters in Sepp [42] and our parameters. In the following equation, the left-hand side
is his notation and the right-hand side corresponds to our notation:

d→ δ, α→ ζ, J → Y, q+ → p, 1/η+ → η1, q− → q, 1/η− → η2. (42)

Let Lu and Ld be, respectively, the up and down barriers, and denote the value of a double-
barrier knock-out option by FDB(S, t). Then, it satisfies the following boundary conditions
for 0 ≤ t ≤ T :

FDB(S, T − t) = φ∗u(T − t), if S ≥ Lu, FDB(S, T − t) = φ∗d(T − t), if S ≤ Ld, (43)

where φ∗u(t) and φ∗d(t) are contract functions that determine payoffs when the corresponding
barrier is reached. The following notations are used:

u = T − t, x = ln
S

K
, xu = ln

Lu
K
, xd = ln

Ld
K
, φu(t) =

φ∗u(t)
K

, φd(t) =
φ∗d(t)
K

.

(44)

Define φ̄u := L(φu(t)) and φ̄d := L(φd(t)), and for standard barrier options, it is usually the
case that φu(·) = φd(·) = 0. In terms of the new notations, we have the new representation of
FDB(S, u) as V DB(x, u), where u = T − t. The Laplace transform of V DB(x, u) with respect
to the time-to-maturity u is defined by

UDB(x, λ) :=
∫ ∞

0

e−λuV DB(x, u) du, (45)

where λ is a transform variable with a positive real part.
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We also need the following lemma.

Lemma 3 [42 Lemma 4.1:: ] The following characteristic equation,

1
2
σ2ψ2 + μψ − (r + λ+ λ2) + λ2

[
pη1

η1 − ψ
+

qη2
η2 − ψ

]
= 0, (46)

has four real roots ψi, i = 0, 1, 2, 3, such that

−∞ < ψ3 < −η2 < ψ2 < 0 < ψ1 < η1 < ψ0 <∞. (47)

Now we recall the following result on the Laplace transform of the double barrier option
under double-exponential jump diffusions using our notation.

Lemma 4 [42 Prop. 5.1:: ] In the Laplace space, the value of a double-barrier knockout
option under a double-exponential jump diffusion model in (39) is given by the formula

UDB(x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(C0 + C4) eψ0x + (C1 + C5) eψ1x + C6 e
ψ2x + C7 e

ψ3x

+
φ− 1

2

[
ex

δ + λ
− 1
r + λ

]
, if x < 0,

(C2 + C6) eψ2x + (C3 + C7) eψ3x + C4 e
ψ0x + C5 e

ψ1x

+
φ+ 1

2

[
ex

δ + λ
− 1
r + λ

]
, if x ≥ 0,

(48)

where the constants Cj, j = 0, 1, 2, 3 are solutions of the following system

⎛⎜⎜⎜⎜⎝
1 1 −1 −1
ψ0 ψ1 −ψ2 −ψ3
η2

ψ0 + η2

η2
ψ1 + η2

− η2
ψ2 + η2

− η2
ψ3 + η2η1

ψ0 − η1

η1
ψ1 − η1

− η1
ψ2 − η1

− η1
ψ3 − η1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝

C0

C1

C2

C3

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
δ + λ

− 1
r + λ

1
δ + λ

η2
(δ + λ)(1 + η2)

− 1
r + λ

η1
(δ + λ)(1 − η1)

+
1

r + λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the constants Cj, j = 4, 5, 6, 7 are solutions of the system⎛⎜⎜⎜⎜⎜⎜⎝
η2 e

ψ0xd

ψ0 + η2

η2 e
ψ1xd

ψ1 + η2

η2 e
ψ2xd

ψ2 + η2

η2 e
ψ3xd

ψ3 + η2
eψ0xd eψ1xd eψ2xd eψ3xd

eψ0xu eψ1xu eψ2xu eψ3xu

η1 e
ψ0xu

ψ0 − η1

η1 e
ψ1xu

ψ1 − η1

η1 e
ψ2xu

ψ2 − η1

η1 e
ψ3xu

ψ3 − η1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

C4

C5

C6

C7

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ− 1
2

(
η2 e

xd

(δ + λ)(1 + η2)
− 1
r + λ

)
+ φ̄d − η2 e

ψ0xd

ψ0 + η2
C0 − η2 e

ψ1xd

ψ1 + η2
C1

−φ− 1
2

(
exd

δ + λ
− 1
r + λ

)
+ φ̄d − eψ0xdC0 − eψ1xdC1

−φ+ 1
2

(
exu

δ + λ
− 1
r + λ

)
+ φ̄u − eψ2xuC2 − eψ3xuC3

−φ+ 1
2

(
η1 e

xu

(δ + λ)(1 − η1)
+

1
r + λ

)
− φ̄u − η1 e

ψ2xu

ψ2 − η1
C2 − η1 e

ψ3xu

ψ3 − η1
C3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Note that we only need the price of the single down-and-out barrier option to carry out
our optimization procedure. As illustrated in p. 10 of Sepp [42], for the case of down-and-
out barrier option, we take xu → ∞ and set C4 = C5 = 0 in the linear systems contained in
Lemma 4.2. Then we have that in the Laplace space, the value of the single down-and-out
barrier option under a double-exponential jump diffusion model is given by the formula:

UDOB(x, λ)

=

⎧⎪⎪⎨⎪⎪⎩
C0 e

ψ0x + C1 e
ψ1x + C6 e

ψ2x + C7 e
ψ3x +

φ− 1
2

[
ex

δ + λ
− 1
r + λ

]
, if x < 0,

(C2 + C6) eψ2x + (C3 + C7) eψ3x +
φ+ 1

2

[
ex

δ + λ
− 1
r + λ

]
, if x ≥ 0,

(49)

where the constants Cj , j = 0, 1, 2, 3 are solutions of the system in Lemma 4.2 and the
constants Cj , j = 6, 7 are solutions of the following simplified system

⎛⎝ eψ2xu eψ3xu

η2e
ψ2xu

ψ2 + η2

η2e
ψ3xu

ψ3 + η2

⎞⎠(C6

C7

)

=

⎛⎜⎜⎝ −φ− 1
2

(
exd

δ + λ
− 1
r + λ

)
+ φ̄d − eψ0xdC0 − eψ1xdC1

−φ− 1
2

(
η2 e

xd

(δ + λ)(1 + η2)
− 1
r + λ

)
+ φ̄d − η2 e

ψ0xd

ψ0 + η2
C0 − η2 e

ψ1xd

ψ1 + η2
C1

⎞⎟⎟⎠ . (50)

From the above discussion, we can obtain the Laplace transform formula for the capped
put option under the DEJD model, which is summarized in the following proposition.

Proposition 2: Denote the capped put option by P (St, t, L) and the Laplace transform by
P ∗(St, λ, L) under the double-exponential jump diffusion model. Then, the one-dimensional
Laplace transform of the value of the capped put option with respect to the time-to-maturity
u := T − t is given by

P ∗(St, λ, L) :=
∫ ∞

0

e−λuP (St, T − u,L) du

=

⎧⎪⎪⎨⎪⎪⎩
C0 e

ψ0x + C1 e
ψ1x + Ĉ6 e

ψ2x + Ĉ7 e
ψ3x +

φ− 1
2

[
ex

δ + λ
− 1
r + λ

]
, if x < 0,

(C2 + Ĉ6) eψ2x + (C3 + Ĉ7) eψ3x +
φ+ 1

2

[
ex

δ + λ
− 1
r + λ

]
, if x ≥ 0,

(51)

where C0, C1, C2, C3 are given by the system in Lemma 4.2, and Ĉ6, Ĉ7 given by system
(50) with φ̄d = (K − L)+/(λK), x := ln(St/K), xd := ln(L/K) > 0.

Proof: We can identify the capped put option as a down-and-out barrier option with a
constant rebate at the lower barrier hitting time. The rebate level is φ∗d(t) = (K − L)+, after
dividing K and Laplace transform acquires φ̄d := L(φd(t)) = (K − L)+/λ/K. Therefore,
formula (51) follows from (49) by replacing C6, C7 with Ĉ6, Ĉ7. �
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For the DEJD model, we can calculate

D(L, λ) = lim
St↓L

∂P ∗(St, λ, L)
∂L

=
dĈ6

dL
eψ2xd +

dĈ7

dL
eψ3xd , (52)

where

dĈ6

dL
= − (ψ2 + η2)ψ2

(ψ2 − ψ3)L
e−ψ2xd

[
−φ− 1

2

(
exd

δ + λ
− 1
r + λ

)
+ φ̄d − eψ0xdC0 − eψ1xdC1

]
+
ψ2 + η2
ψ2 − ψ3

e−ψ2xd

[
−φ− 1

2
exd

L(δ + λ)
− 1
Kλ

− C0ψ0

L
eψ0xd − C1ψ1

L
eψ1xd

]
+

(ψ2 + η2)(ψ3 + η2)ψ2

η2(ψ2 − ψ3)L
e−ψ2xd

[
−φ− 1

2

(
η2 e

xd

(δ + λ)(1 + η2)
− 1
r + λ

)
+ φ̄d

−η2C0 e
ψ0xd

ψ0 + η2
− η2C1 e

ψ1xd

ψ1 + η2

]
− (ψ2 + η2)(ψ3 + η2)

η2(ψ2 − Ψ3)
e−ψ2xd

[
−φ− 1

2
η2 e

xd

(δ + λ)(1 + η2)L
− 1
Kλ

−η2C0ψ0 e
ψ0xd

(ψ0 + η2)L
− η2C1ψ1 e

ψ1xd

(ψ1 + η2)L

]
,

and

dĈ7

dL
=

(ψ3 + η2)ψ3

(ψ2 − ψ3)L
e−ψ3xd

[
−φ− 1

2

(
exd

δ + λ
− 1
r + λ

)
+ φ̄d − eψ0xdC0 − eψ1xdC1

]
− ψ3 + η2
ψ2 − ψ3

e−ψ3xd

[
−φ− 1

2
exd

L(δ + λ)
− 1
Kλ

− C0ψ0

L
eψ0xd − C1ψ1

L
eψ1xd

]
− (ψ2 + η2)(ψ3 + η2)ψ3

η2(ψ2 − ψ3)L
e−ψ3xd

[
−φ− 1

2

(
η2 e

xd

(δ + λ)(1 + η2)
− 1
r + λ

)
+ φ̄d

−η2C0 e
ψ0xd

ψ0 + η2
− η2C1 e

ψ1xd

ψ1 + η2

]
+

(ψ2 + η2)(ψ3 + η2)
η2(ψ2 − ψ3)

e−ψ3xd

[
−φ− 1

2
η2 e

xd

(δ + λ)(1 + η2)L
− 1
Kλ

−η2C0ψ0 e
ψ0xd

(ψ0 + η2)L
− η2C1ψ1 e

ψ1xd

(ψ1 + η2)L

]
.

We solve the algebraic equation D(L, λ) = 0 with expression (52) using the bisection
method to get the value L∗ and then follow the work flow of Lap-LUBA 1 to obtain the
lower bound on the price of American options.

To calculate the upper bound of the American options using the Lap-LUBA 1 method,
we need the following EEP representation in the Laplace space (see [36]). To make the
notations consistent, we have the following correspondence between the parameters in Leip-
pold and Vasiljevic [36] and our parameters. The left-hand side is their notation and the
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right-hand side corresponds to our notation:

β2 → ψ0, β1 → ψ1, γ1 → ψ2, γ2 → ψ3, η1 → η1, θ1 → η2.

The EEP representation of the American put option in the Laplace space can be written as

P ∗
A(S, λ) =

{
p∗E(S, λ) + e∗p(S, λ), if S > B(λ),
K − S, if S ≤ B(λ),

(53)

where B(λ) is the time-independent early exercise boundary in the Laplace space, and
P ∗
A(S, λ) is the standard American put option price. Here, p∗E(S, λ) is the Canadized

European put option price given by

p∗E(S, λ) =

⎧⎪⎪⎨⎪⎪⎩
ω1

(
S

K

)ψ1

+ ω2

(
S

K

)ψ0

+
λK

λ+ r
− λS

λ+ δ
, if S ≥ K,

ω1

(
S

K

)ψ2

+ ω2

(
S

K

)ψ3

, if S ≥ K.

The coefficients ω = (ω1, ω2, ω1, ω2)′ are solutions of the following matrix equation

Aω = J,

where

A =

⎛⎜⎜⎜⎜⎜⎝
1 1 −1 −1
ψ1 ψ0 −ψ2 −ψ3
1

η1 − ψ1

1
η1 − ψ0

− 1
η1 − ψ2

− 1
η1 − ψ3

1
η2 + ψ1

1
η2 + ψ0

− 1
η2 + ψ2

− 1
η2 + ψ3

⎞⎟⎟⎟⎟⎟⎠ ,

J =
(

λK

λ+ δ
− λK

λ+ r

λK

λ+ δ

1
η1 − 1

λK

λ+ δ
− 1
η1

λK

λ+ r

1
η2 + 1

λK

λ+ δ
− 1
η2

λK

λ+ r

)′
.

The EEP e∗p(S, λ) is given by

e∗p(S, λ) =

⎧⎪⎨⎪⎩
2∑
j=1

vj

(
S

B(λ)

)ψj+1

, if S > B(λ),

K − S − p∗E(S, λ), if S ≤ B(λ),

where B(λ) is the time-independent early exercise boundary, and p∗E(S, λ) is the Canadized
European put option price. The coefficients v = (v1, v2)′ can be solved in the matrix equation
as follows:

Ãv = J̃ ,

where

Ã =

⎛⎝ 1 1
1

η2 + ψ2

1
η2 + ψ3

⎞⎠ , J̃ = −Ωb+
B(λ)
K

ω + ε,

Ω =

(
ω1 ω2
ω1

η2 + ψ1

ω2

η2 + ψ0

)
, b =

( (
B(λ)
K

)ψ1
(
B(λ)
K

)ψ0
)′
,

ω =
(
− δK

λ+ δ
− 1
η2 + 1

δK

λ+ δ

)′
, ε =

(
rK

λ+ r

1
η2

rK

λ+ r

)′
,
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and the detailed calculations can be found in Leippold and Vasiljevic [36].
According to the work flow of Lap-LUBA 1 for calculating the upper bound, we replace

B(λ) in (53) by L∗ and use the Laplace inversion to obtain the upper bound on the price
of the American options.

For the Lap-LUBA 2 method, we solve Eq. (9) with the replacement of function D by
(52) using the bisection method to get L∗ and then follow the work flow of Lap-LUBA 2 to
get the lower bound on the price of American options.

To calculate the upper bound using the Lap-LUBA 2 method, we need EEP representa-
tion of the American put options under the DEJD model (see [5]). Denote z = lnSt, and let
F (t, z) be the price of the American option and {b(τ) : 0 ≤ τ ≤ t} be the optimal exercise
boundary. Then, the EEP for an American put option can be expressed as follows:

F (t, z) = FE(t, z) + e1(t, z) − e2(t, z), (54)

where FE(t, z) is the European put option price explicitly expressed in Theorem 2 of Kou
[33].

e1(t, z) = rK

∫ t

0

e−rsP [Zs(z) ≤ b(t− s)] ds− λ2ζ e
z

∫ t

0

∫ b(t−s)−z−μs

−∞
ewf(w, s) dw ds,

e2(t, z) =
∫ t

0

e−rs
∫ b(t−s)−z−μs

−∞
f(w, s)

∫ ∞

b(t−s)−z−μs−w
[F (t− s, z + μs+ w + y)

− (K − ez+μs+w)]pη1 e−η1y dy dw ds,

with

f(w, s) = π0ϕ

(
w

σ
√
s

)
+

∞∑
n=1

πn

n∑
k=1

Pn,k(σ̃η1)k
e(σ̃η1)

2/2

σ̃
√

2π
ewη1Hk−1

(
−w
σ̃

+ σ̃η1

)

+
∞∑
n=1

πn

n∑
k=1

Qn,k(σ̃η2)k
e(σ̃η2)

2/2

σ̃
√

2π
ewη2Hk−1

(w
σ̃

+ σ̃η2

)
.

Here, ϕ is the density function of the standard normal distribution, and

πn = e−λ2s
(λ2s)n

n!
, σ̃ = σ

√
s,

Pn,k =
n−1∑
i=k

(
n− k − 1
i− k

)(
n
i

)(
η1

η1 + η2

)i−k (
η2

η1 + η2

)n−i
piqn−i,

Qn,k =
n−1∑
i=k

(
n− k − 1
i− k

)(
n
i

)(
η1

η1 + η2

)n−i(
η2

η1 + η2

)i−k
pn−iqi,

for 1 ≤ k ≤ n− 1, and Pn,n = pn, Qn,n = qn, and p+ q = 1. The probability P [Zs(z) ≤
b(t− s)] in e1(t, z) can be explicitly expressed using Theorem B.1 of Kou [33]. Indeed,

P [Zs(z) ≤ b(t− s)] = 1 −Q(t, s, z),
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where by letting a = b(t− s) − z, we have

Q(t, s, z) = π0Φ
(
−a− μs

σ
√
s

)
+
e(ση1)

2s/2

σ
√

2πs

∞∑
n=1

πn

n∑
k=1

Pn,k(σ
√
sη1)k × Ik−1

(
a− μs;−η1,− 1

σ
√
s
,−ση1

√
s

)

+
e(ση2)

2s/2

σ
√

2πs

∞∑
n=1

πn

n∑
k=1

Qn,k(σ
√
sη2)k × Ik−1

(
a− μs; η2,

1
σ
√
s
,−ση2

√
s

)
with Φ being the standard normal cumulative distribution function and

In(c;α, β, δ) = −e
αc

α

n∑
i=0

(
β

α

)n−i
Hi(βc− δ)

+
(
β

α

)n+1 √
2π
β

eαδ/β+α2/2β2
Φ
(
−βc+ δ +

α

β

)
for β > 0, α �= 0, n ≥ −1; and

In(c;α, β, δ) = −e
αc

α

n∑
i=0

(
β

α

)n−i
Hi(βc− δ)

−
(
β

α

)n+1 √
2π
β

eαδ/β+α2/2β2
Φ
(
βc− δ − α

β

)
for β < 0, α < 0, and n ≥ −1.

For every n ≥ 0, the Hn function above is a nonincreasing function defined by:

Hn(x) =
∫ ∞

x

Hn−1(y) dy =
1
n!

∫ ∞

x

(t− x)n e−t
2/2 dt ≥ 0, n = 0, 1, 2, . . .

We can compute Hn function recursively as

H−1(x) =
√

2πϕ(x), H0(x) =
√

2πΦ(−x),
nHn(x) = Hn−2(x) − xHn−1(x), n ≥ 1.

For more details, refer to Kou [33]. Finally following the work flow of Lap-LUBA 2, we
replace b(τ) in (54) by L∗(T − τ) to obtain the upper bound on the price of the American
put option.

5. NUMERICAL EXAMPLES

This section reports the numerical results using Lap-LUBA 1 and Lap-LUBA 2 and compare
them with the methods in the literature, finite difference methods (FCMs) developed by
Muthuraman [39], Laplace transform methods (LTMs) by Zhu [46] (for GBM), Wong and
Zhao [43] (for CEV) and Leippold-Vasiljevic [36] (for DEJD), Fourier-cosine series methods
(FCMs) by Fang and Oosterlee [26]. These comparison of different methods are summarized
in Table 1. To make a fair comparison, we implement the algorithms in the literature
ourselves and report corresponding computing times.
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Table 1. Other methods used for comparisons: FDM, LTM, FCM

Methods FDM LTM FCM
Models CEV, DEJD CEV, DEJD DEJD

Remark 1: The pricing results are in general very accurate as seen from the tables, and
the methods can also produce a very close approximation to the early exercise boundary
as seen from the figures. However, for the Lap-LUBA 1, the “upper bounds” reported in
some tables are slightly lower than the benchmark values. The main reason is that the EEP
representation of the American options in the Laplace space ([46] (for GBM), [43] (for
CEV), and [36] (for DEJD)) is not accurate. The EEP representation in the Laplace space
is derived by the Laplace transforms for the pricing PDEs defined on the moving region
[B(T − τ),+∞) which make use of the assumption that early exercise boundary moves very
slowly in comparison with the “diffusion” of the option price (see [46] for the elaborations).
However it is problematic to use this assumption as the early exercise boundary changes
considerably near the expiry date. We implement the LTMs developed by Zhu [46] (for
GBM), Wong and Zhao [43] (for CEV), and Leippold and Vasiljevic [36] (for DEJD).
Indeed, the numerical results show that the early exercise boundaries solved by the LTMs
often have notable errors.

Thus, we recommend carrying out the optimization procedure in the original time space
using the closed-form formulas of the capped option price and the EEP representation in
the time space if they are available, which is referred as Lap-LUBA 2. Numerical results
show that the Lap-LUBA 2 generates correct and tight lower and upper bounds on the
American option values and obtains accurate early exercise boundaries for all the models
considered in this paper.

Overall from the numerical results for GBM, CEV, and DEJD models, we have common
observations that the Lap-LUBA 2 can generate correct lower and upper bounds on the
option values and very close early exercise boundaries to the benchmark. Lap-LUBA 1
can generate the correct lower bound, but sometimes not accurate upper bound and early
exercise boundaries.

5.1. Numerical Examples for GBM

In this section, we compare our method with that of Broadie and Detemple [9] to check
whether the Laplace lower–upper-bound approaches (Lap-LUBA 1 and Lap-LUBA 2) pro-
vide accurate lower-bound approximations to the early exercise boundaries and generate
tight lower and upper bounds on option values. It can be seen from Table 2 that the Lap-
LUBA 2 has similar performance as Broadie and Detemple’s LUBA (B&D LUBA). The
upper bound generated by the Lap-LUBA 1 is not accurate as the upper bound is smaller
than the true option value in many situations. The reason is that the EEP representation
in the Laplace space is not accurate, as discussed in detail in Remark 5.1.

In Figure 2–4, we draw the early exercise boundaries for the American call option with
r < δ, r > δ, and r = δ, respectively, using the Lap-LUBAs and other approaches including
the binomial approach, B&D LUBA, and LTM. From these figures, we can see that the early
exercise boundaries by the Lap-LUBA 2 and B&D LUBA are pretty close to the benchmark
(the binomial approach) for all the cases. The early exercise boundaries by Lap-LUBA 1
and LTMs deviate largely from the benchmark for r ≥ δ (see Figures 3 and 4).
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Table 2. American call option value bounds and approximations (maturity T = 3 years) for GBM

Option parameter Asset price Lap-LUBA 1 Lap-LUBA 2 B&D-LUBA LTM value True value
LB UB LB UB LB UB

r = 0.03 80 2.532 2.532 2.553 2.589 2.553 2.589 2.532 2.580
σ = 0.20 90 5.068 5.068 5.121 5.187 5.121 5.187 5.068 5.167
δ = 0.07 100 8.892 8.892 9.002 9.103 9.002 9.103 8.892 9.066

110 14.170 14.170 14.371 14.504 14.371 14.504 14.170 14.443
120 21.019 20.586 21.354 21.506 21.354 21.506 20.586 21.414

r = 0.03 80 11.152 11.152 11.238 11.354 11.238 11.354 11.152 11.326
σ = 0.40 90 15.475 15.475 15.608 15.763 15.609 15.763 15.475 15.722
δ = 0.07 100 20.461 20.461 20.656 20.850 20.656 20.850 20.461 20.793

110 26.065 26.065 26.336 26.569 26.337 26.569 26.065 26.495
120 32.245 32.245 32.607 32.877 32.607 32.876 32.245 32.781

r = 0.00 80 5.408 5.408 5.463 5.540 5.463 5.540 5.408 5.518
σ = 0.30 90 8.666 8.666 8.766 8.879 8.766 8.879 8.666 8.842
δ = 0.07 100 12.882 12.882 13.048 13.199 13.048 13.199 12.882 13.142

110 18.092 18.092 18.347 18.535 18.347 18.535 18.092 18.453
120 24.313 24.313 24.685 24.903 24.685 24.903 24.313 24.791

r = 0.07 80 12.147 12.147 12.145 12.145 12.145 12.145 12.147 12.145
σ = 0.30 90 17.369 17.369 17.367 17.368 17.367 17.368 17.369 17.369
δ = 0.03 100 23.347 23.347 23.347 23.349 23.347 23.349 23.347 23.348

110 29.960 29.960 29.961 29.964 29.961 29.964 29.960 29.964
120 37.096 37.096 37.099 37.104 37.099 37.104 37.096 37.104

The strikes for all options are taken as K = 100. The number of time steps is taken as n = 200 for both “Lap-LUBA 2” and “B&D-LUBA.” The Gaver-Stehfest method
[35] is used for the Laplace inversion with N = 8 for “Lap-LUBA 1” and N = 12 for “Lap-LUBA 2.” The “true value” column is based on the binomial method with
n = 15,000 time steps. In “Lap-LUBA 1,” the computation of lower bound (LB) takes on average 0.004 s, and upper bound (UB) on average 0.004 s. In “Lap-LUBA 2,”
the computation of the “LB” takes on average 0.006 s, and “UB” on average 0.359 s. In “B&D-LUBA,” the computation of the “LB” takes on average 0.003 s, and ‘UB’ on
average 0.150 s. The “LTM” takes on average 0.092 s. The “true value” takes on average 47.590 s.
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Figure 2. Early exercise boundaries generated by Lap-LUBA 1, Lap-LUBA 2,
B&D-LUBA, LTM, and the binomial approach for American call options with GBM. The
parameters are S0 = 100, K = 100, r = 0.03, δ = 0.07, σ = 0.3, and T = 3.
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Figure 3. Early exercise boundaries generated by Lap-LUBA 1, Lap-LUBA 2,
B&D-LUBA, LTM, and the binomial approach for American call options with GBM. The
parameters are S0 = 100, K = 100, r = 0.07, δ = 0.03, σ = 0.3, and T = 3.
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Figure 4. Early exercise boundaries generated by Lap-LUBA 1, Lap-LUBA 2,
B&D-LUBA, LTM, and the binomial approach for American call options with GBM. The
parameters are S0 = 100, K = 100, r = 0.03, δ = 0.03, σ = 0.3, and T = 3.

5.2. Numerical Examples for CEV

This section reports the numerical results of the Lap-LUBAs methods (Lap-LUBA 1 and
Lap-LUBA 2) for solving the American options with underlying asset price following the
CEV model. The computed option values are listed in Table 3, and the early exercise
boundaries are depicted in Figure 5. It can be seen from Table 3 that the Lap-LUBAs have
competitive accurate performance as Wong and Zhao’s LTM. However, in occasional cases,
the upper bound generated by the Lap-LUBA 1 is larger than the true value as seen at
the last rows for β = −1 and β = −4 in Table 3. Again, we predict that the reason is that
the EEP representation in the Laplace space [43] is not accurate (see Remark 5.1). Due
to the inappropriate use of the Laplace transform for free-boundary problems, the early
exercise boundaries computed by the Lap-LUBA 1 and LTM of Wong and Zhao [43] have
big difference to the benchmark by the FDMs in Figure 5. Since the EEP representation in
the time space, which is used in Lap-LUBA 2, is accurate, the early exercise boundary by
the Lap-LUBA 2 is close to the benchmark as shown in Figure 5.

5.3. Numerical Examples for DEJD

In this section, we compute the American option price based on DEJD models using the Lap-
LUBA methods, the LTMs in Leippold and Vasiljevic [36], FCMs in Fang and Oosterlee [26],
FDMs in Muthuraman [39]. We also use regression to obtain more accurate approximation
of the option value from the lower bound. The numerical results are listed in Table 4, and
the early exercise boundaries are drawn in Figure 6.

From Table 4, we observe that the option values computed by the FCM and FDM are
pretty close. Either one can be regarded as the benchmark true value. The LTM is always

https://doi.org/10.1017/S0269964820000492 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000492


5
3
8

J.
M

a
et

al.

Table 3. American call option value bounds and approximations (maturity T = 3 years) for the CEV model

CEV parameter Asset price Lap-LUBA 1 Lap-LUBA 2 LTM value True value
LB UB LB UB

β = −1/3 80 11.6006 11.6006 11.5999 11.6083 11.6006 11.6006
90 17.0872 17.0872 17.0853 17.0878 17.0871 17.0874
100 23.3429 23.3429 23.3391 23.3443 23.3429 23.3439
110 30.2107 30.2107 30.2044 30.2138 30.2107 30.2131
120 37.5628 37.5628 37.5533 37.5683 37.5628 37.5676

β = −1/2 80 11.3501 11.3501 11.3498 11.3501 11.3501 11.3500
90 16.9675 16.9675 16.9664 16.9724 16.9675 16.9675
100 23.3621 23.3621 23.3596 23.3629 23.3621 23.3625
110 30.3592 30.3592 30.3546 30.3595 30.3592 30.3607
120 37.8229 37.8229 37.8153 37.8271 37.8229 37.8263

β = −2/3 80 11.1119 11.1119 11.1117 11.1118 11.1119 11.1117
90 16.8602 16.8602 16.8597 16.8603 16.8602 16.8600
100 23.3951 23.3951 23.3936 23.3956 23.3951 23.3953
110 30.5241 30.5241 30.5208 30.5254 30.5241 30.5250
120 38.1032 38.1032 38.0971 38.1062 38.1032 38.1055

β = −1 80 10.6687 10.6687 10.6687 10.6689 10.6687 10.6687
90 16.6821 16.6821 16.6820 16.6823 16.6821 16.6820
100 23.5067 23.5067 23.5062 23.5069 23.5067 23.5067
110 30.9120 30.9120 30.9105 30.9126 30.9120 30.9123
120 38.7385 38.7385 38.7351 38.7400 38.7385 38.7396

RMSD 4.4451 × 10−6 6.1832 × 10−3

RMSE 1.6025 × 10−3 1.6024 × 10−3 5.4431 × 10−3 2.1003 × 10−3 1.6026 × 10−3

RMSRE(%) 4.5529 × 10−3 4.5526 × 10−3 1.6217 × 10−2 1.6301 × 10−2 4.5541 × 10−3

The parameters for all the options are taken as r = 0.07, δ = 0.03, K = 100, σ0 = 0.3, and σ0 = σSβ
0 . The column “UB” of “Lap-LUBA 1” is computed by the EEP in the

laplace space (see [43]). The column “UB” of “Lap-LUBA 2” is computed by the EEP in the time space (see [25]). The “LTM” column is the LTM in Wong and Zhao [43].
The “true value” column is the finite difference method with 15,000 time steps and 4,000 space steps. The Gaver-Stehfest method [35] is used for the Laplace inversion
with N = 12. The “RMSD” row is the root mean square difference between the “LB” and the “UB” by each method. The “RMSE” row is the root mean square error w.r.t.
“True value” by each method. The “RMSRE(%)” row is the root mean square relative error w.r.t. “True value” by each method. In “Lap-LUBA 1,” the computation of the
“LB” takes on average 36.893 s and “UB” on average 41.981 s. In “Lap-LUBA 2,” the computation of the “LB” takes on average 78.912 s and “UB” on average 463.136 s.
The “LTM” takes on average 20.177 s.

https://doi.org/10.1017/S0269964820000492 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269964820000492


LAPLACE BOUNDS APPROXIMATION FOR AMERICAN OPTIONS 539

0 0.5 1 1.5 2 2.5 3
230

235

240

245

250

255

260

265

t

E
xe

rc
is

e 
bo

un
da

rie
s

CEV exercise boundaries with different methods

 

 
Lap−LUBA 1
Lap−LUBA 2
LTM
FDM

Figure 5. Early exercise boundaries generated by the Lap-LUBA 1, Lap-LUBA 2, LTM
of Wong and Zhao [43], and FDMs for American call options under the CEV model. The
parameters are S0 = 100, K = 100, r = 0.07, δ = 0.03, σ0 = 0.3, T = 3, and β = −1.

lower than the benchmark, which also occurs in the numerical examples of Leippold and
Vasiljevic [36]. The Lap-LUBA 2 can generate correct upper bounds. However, the upper
bound by the Lap-LUBA 1 is sometimes smaller than the true values by the FCM or FDM.
The reasons lie in that the EEP representation in the Laplace space [36] is not accurate
(see Remark 5.1). The early exercise boundary generated by Lap-LUBA 2 is closer to the
benchmark by the FDM or FCM compared to the other approaches as shown in Figure 6.

Following Broadie and Detemple [9], we use regression to convert the lower bound P l(S)
to the option value approximation P 1(S). The second last column in Table 4 shows that
the regression value from the lower bound by the Lap-LUBA 2 is closer to the benchmark
values than the lower-bound approximation by the Lap-LUBA 2. The detailed regression
approach is presented as follows. The relationship between the lower bound by Lap-LUBA
2 and the regression approximation is

P 1(S) = λ̂1P
l(S),

where λ̂1 ≥ 1 is a function of the option parameters S, K, T, r, δ, σ, λ2, η1, η2, and p.
In order to determine λ̂1 = λ̂1(S,K, T, r, δ, σ, λ2, η1, η2, p), we first introduce some

intermediate variables. Let a ∨ b ≡ max(a, b) and a ∧ b ≡ min(a, b). Define x1 = T , x2 =√
T , x3 = S/K, x4 = r, x5 = δ, x6 = min(r/(δ ∨ 10−5), 5), x7 = x2

6, x8 = σ, x9 = (P l(S) −
p(S))/K, x10 = x2

9, x11 = P l(S)/p(S), x12 = x2
11, x13 = x3

11, x14 = λ2, x15 = η1, x16 = η2,
and x17 = p. Recall that p(S) denotes the European option value.

Assume that y1 is the linear combination of these intermediate variables x1, . . . , x17.
Then, the coefficients in the formula for y1 are determined from a regression of 100 options.
In the regression, we choose a distribution of parameters that is reasonable reflection of
options that are of interest to academics and practitioners. Volatility σ is distributed uni-
formly between 0.1 and 0.6. Time to maturity is uniform between 0.1 and 1.0 years with
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Table 4. American put option value bounds and approximations (maturity T = 1 years) for the DEJD model

Poisson intensity Asset pric,e Lap-LUBA 1 Lap-LUBA 2 LTM value FCM value Regress value FDM value
LB UB LB UB

λ2 = 0.5 80 21.1211 21.1242 21.3487 22.0660 21.1243 21.4742 21.4358 21.4746
90 14.7051 14.7076 14.7716 15.2532 14.7076 14.9276 14.8428 14.9274
100 9.9748 9.9765 9.9700 10.2837 9.9765 10.1080 10.0536 10.1075
110 6.6170 6.6182 6.5869 6.7847 6.6182 6.6918 6.6704 6.6912
120 4.3126 4.3133 4.2753 4.3969 4.3134 4.3486 4.3467 4.3481

λ2 = 1 80 21.1612 21.1673 21.3882 22.0979 21.1676 21.5160 21.4689 21.5163
90 14.7643 14.7693 14.8329 15.3113 14.7695 14.9887 14.8991 14.9885
100 10.0409 10.0444 10.0384 10.3513 10.0446 10.1758 10.1179 10.1753
110 6.6810 6.6833 6.6524 6.8507 6.6834 6.7570 6.7331 6.7564
120 4.3689 4.3705 4.3326 4.4551 4.3705 4.4058 4.4023 4.4053

λ2 = 1.5 80 21.2012 21.2102 21.4277 22.1270 21.2111 21.5578 21.5019 21.5581
90 14.8232 14.8305 14.8939 15.3669 14.8311 15.0495 14.9548 15.0493
100 10.1067 10.1118 10.1064 10.4169 10.1123 10.2433 10.1817 10.2427
110 6.7446 6.7481 6.7177 6.9151 6.7484 6.8220 6.7954 6.8213
120 4.4250 4.4274 4.3898 4.5118 4.4276 4.4630 4.4576 4.4625

λ2 = 2 80 21.2411 21.2531 21.4672 22.1526 21.2545 21.5997 21.5348 21.6000
90 14.8817 14.8914 14.9546 15.4185 14.8924 15.1101 15.0102 15.1098
100 10.1720 10.1789 10.1740 10.4775 10.1796 10.3104 10.2450 10.3097
110 6.8079 6.8126 6.7827 6.9733 6.8131 6.8867 6.8573 6.8860
120 4.4810 4.4842 4.4469 4.5611 4.4845 4.5200 4.5127 4.5195

The parameters for the options are taken as r = 0.07, δ = 0.03, σ = 0.3, K = 100, p = 0.7, q = 0.3, η1 = η2 = 30. The “UB” of “Lap-LUBA 1” is computed by the EEP
in the Laplace space (see [36]). The “UB” of “Lap-LUBA 2” is computed by the EEP in the time space (see [5]). The “LTM” is based on Leippold and Vasiljevic [36].
The “FCM” is the value of Bermudan option by Fang and Oosterlee [26], which is an approximation to the exact value of American options with a large number of time
steps. The Gaver-Stehfest method [35] is used for Laplace inversion with N = 8 for “Lap-LUBA 2,” N = 6 for both “Lap-LUBA 1” and “LTM.” The “FCM” is used with
M = 1, 000 time steps and N = 1, 024.. The “FDM” column is the finite difference method with 3,000 time steps and 3, 000 space steps. In “Lap-LUBA 1,” the computation
of the “LB” takes on average 0.016 s and the “UB” on average 0.016 s. In “Lap-LUBA 2,” the computation of “LB” takes on average 0.029 s and the “UB” on average
2303.686 s. The “LTM” takes on average 0.011 s. The “FCM” takes on average 53.976 s. The “FDM” takes on average 283.827 s.

https://doi.org/10.1017/S0269964820000492 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269964820000492


LAPLACE BOUNDS APPROXIMATION FOR AMERICAN OPTIONS 541

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

65

70

75

80

85

90

95

100

E
xe

rc
is

e 
bo

un
da

rie
s

DEJD exercise boundaries with different methods

Lap-LUBA 1

Lap-LUBA 2

LTM

FCM

FDM

Figure 6. Early exercise boundaries generated by the Lap-LUBA 1, Lap-LUBA 2, LTM
[36], FCM [26], and the FDM for American put options under the DEJD model. The param-
eters are S0 = 100, K = 100, r = 0.07, δ = 0.03, σ0 = 0.3, T = 1, η1 = η2 = 30, p = 0.7,
q = 0.3, and λ2 = 1.

probability 0.75, and uniform between 1.0 and 5.0 years with probability 0.25. We fix the
strike price at K = 100 and take the initial asset price S ≡ S0 to be uniform between 70 and
130. Relative errors do not change if S and K are scaled by the same factor, that is, only
the ratio S/K is of interest. The interest rate r and the dividend rate δ are both uniform
between 0.0 and 0.10. As for the parameters of Poisson process, λ2 is distributed uniformly
between 0.5 and 5, η1 and η2 are independent and both uniform between 10 and 50, and p
is uniform between 0.05 and 0.95. Each parameter is selected independently of the others.
The regression results are

y1 = 4.234 × 100 − 1.403 × 10−2x1 + 4.518 × 10−2x2 − 7.826 × 10−3x3

+ 2.779 × 10−1x4 − 5.466 × 10−2x5 + 1.098 × 10−2x6

− 1.626 × 10−3x7 − 2.963 × 10−2x8 + 2.454 × 100x9

− 12.643 × 100x10 − 6.007 × 100x11 + 3.282 × 100x12

− 5.235 × 10−1x13 − 1.414 × 10−3x14 − 1.979 × 10−4x15

− 1.140 × 10−4x16 − 1.907 × 10−3x17.

Finally, define λ̂1 by

λ̂1 =

{
1, if P l(S) = p(S) or P l(S) ≤ K − S,

max(y1, 1), otherwise.
(55)
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6. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose a theoretical framework to develop tight lower and upper bounds
for the prices of finite-maturity American options when the Laplace transforms of the cor-
responding “capped (barrier) options” written on the underlying stochastic process are
available. We derive explicit expressions when the underlying asset follows a general time-
homogeneous diffusion, or a jump diffusion with double-exponential jumps. The study
extends the scope of models in the previous literature and proposes an efficient and accurate
method for the pricing of (finite-maturity) American options in a rich class of stochastic
processes. We foresee this Laplace space framework to have practical applications in the
valuation of American options on stocks, commodities, interest rates and exchange rates,
where stochastic processes alternative to Black–Scholes framework are desired.

Based on our Laplace space framework, future research direction is to incorporate other
improvements in approximating the early exercise boundary in the literature (e.g. using an
exponential function ([19]) or a multi-piece exponential function ([31])) to arrive at more
accurate lower and upper bounds. The original approach of Broadie and Detemple [9] is
based on using a constant L to approximate the early exercise boundary, and a recent
paper of Chung et al. [19] considers using an exponential function to approximate the early
exercise boundary and obtains tighter lower and upper bounds than those in Broadie and
Detemple [9].

We illustrate the main ideas and outline the main steps. Specifically, we approximate the
early exercise boundary of an American call using an exponential function Bt := Lea(T−t),
where we have introduced a new parameter r ≥ a ≥ 0 which controls the curvature of
the exponential function. When a = 0, it reduces to the constant boundary that we have
considered in previous sections.

Define τL,a := inf{u ≥ t : Su ≥ Leau} = inf{u ≥ t : S̃u ≥ L}, where S̃u = e−auSu. Thus,
we can see that we have translated the problem of valuing the ‘capped option’ with an expo-
nential boundary to an equivalent problem of valuing the ‘capped option’ with a constant
boundary. The only difference is that we have to adjust the drift parameter of the cor-
responding stochastic process. Specifically, in the time-homogeneous diffusion setting, the
adjusted S̃t satisfies

dSt
St

= (r̃ − δ) dt+ σ(St) dWt, t ≥ 0, S0 > 0, (56)

where r̃ = r − a.
In the double-exponential jump diffusion setting, the corresponding S̃t satisfies

dS̃t

S̃t−
= (r̃ − δ − λ2ζ) dt+ σ dWt + d

⎛⎝N(t)∑
i=1

(Vi − 1)

⎞⎠ , (57)

where r̃ = r − a.
Then, we introduce

DL(L, λ, a) := lim
St↑L

∂C∗(St, λ, L, a)
∂L

Da(L, λ, a) := lim
St↑L

∂C∗(St, λ, L, a)
∂a

.

(58)

Similar as Eq. (7) on p. 81 of Chung et al. [19], we define

H(L, a, t) = (DL(L, λ, a))2 + (Da(L, λ, a))2, (59)
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and denote L∗ and a∗ as the solution to the equation H(L, a, t) = 0. The details involve
lengthy calculations and for the brevity of this paper, and they are left to future research.
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APPENDIX A. GEOMETRIC BROWNIAN MOTION

Our benchmark model is the Black–Scholes model, where the stock price is modeled by a GBM,
and we shall compare our result with that of Broadie and Detemple [9], where they have obtained a
closed-form expression of the capped call option. We are interested in comparing the accuracy of the
Lap-LUBA 1 and Lap-LUBA 2 with the B&D LUBA in Broadie and Detemple [9] for computing
the finite-maturity American call option prices.

Under the risk-neutral measure, consider the GBM model

dSt = μSt dt+ σSt dWt, S0 > 0, (A.1)
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with μ = r − δ in the risk-neutral sense. The model is a special case of the general diffusion models
(1). Therefore, the formulas in Section 3.1 can be applied to the GBM model with a simpler form.
The fundamental solutions to the GBM ODE are given in Eq. (15) of Davydov and Linetsky [22]

ψλ+r(y) = yγ+ , φλ+r(y) = yγ− , γ± = −γ ±
√
γ2 +

2(λ+ r)

σ2
, γ =

μ

σ2
− 1

2
, (A.2)

and the Wronskian is

ωλ+r = 2

√
γ2 +

2(λ+ r)

σ2
. (A.3)

The auxiliary functions can be computed as follows:

Iλ+r(K,A,B) =

∫ B

A
(y −K)yγ+

2

σ2y2y−2μ/σ2 dy

=
2

σ2(1 − γ−)
(B1−γ− −A1−γ−) +

2K

σ2γ−
(B−γ− −A−γ−), (A.4)

and

Jλ+r(K,A,B) =

∫ B

A
(y −K)yγ−

2

σ2y2y−2μ/σ2 dy

=
2

σ2(1 − γ+)
(B1−γ+ −A1−γ+) +

2K

σ2γ+
(B−γ+ −A−γ+), (A.5)

where

γ± = −γ ±
√
γ2 +

2(λ+ r)

σ2
, γ =

μ

σ2
− 1

2
. (A.6)

The capped call option for GBM is derived by replacing the corresponding parts in (11) by (A.2)
– (A.6),

C∗(St, λ, L) ≡ L(C(St, t, L)) =
L−K

λ
(St/L)γ+

+
1

ωλ+r
(St/L)γ+

{
1{St≤K}

[
2

σ2(1 − γ+)
(L−K(L/K)γ+) +

2K

σ2γ+
(1 − (L/K)γ+)

]
+1{St>K}

[
2

σ2(1 − γ+)
(L− St(L/St)

γ+) +
2K

σ2γ+
(1 − (L/St)

γ+)

]
−1{St≤K}

[
2

σ2(1 − γ−)
(L−K(L/K)γ−) +

2K

σ2γ−
(1 − (L/K)γ−)

]
−1{St>K}

[
2

σ2(1 − γ−)
(L− St(L/St)

γ−) +
2K

σ2γ−
(1 − (L/St)

γ−)

]}
+ 1{St>K}

1

ωλ+r
(S
γ−
t − Lγ−(St/L)γ+)

[
2

σ2(1 − γ−)
(S

1−γ−
t −K1−γ−) +

2K

σ2γ−
(S

−γ−
t −K−γ−)

]
.

(A.7)

Through direct calculation, we obtain

D(L, λ) =
1 − γ+
λ

+
γ+K

λL

+
2

σ2

[
1

1 − γ−
+

K

γ−L

[
1 − 1

1 − γ−

(
K

L

)−γ−]]
, (A.8)
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and

∂D(L, λ)

∂L
= −γ+K

λL2
+

2K

σ2γ−L2

[(
K

L

)−γ−
− 1

]
. (A.9)

Consequently, we use Newton’s method to solve the algebraic Eq. (3) with the expression (A.8)
to the get the optimal value L∗ and then follow the work flow of Lap-LUBA 1 to get a lower bound
on the American call value.

To calculate the upper bound on the American call value using the Lap-LUBA 1 method, we
derive the EEP representation in the Laplace space by following [43],

C∗(S, λ,B(λ)) =

{
C11ψλ+r(S) + C12φλ+r(S), when S ∈ (0,K),

C21ψλ+r(S) + C22φλ+r(S) + uλ+r(S), when S ∈ [K,B(λ)),
(A.10)

where B(λ) is the early exercise boundary in the Laplace space,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C11 =
a5(a2b2 − a4b1) + a6(a3b1 − a1b2)

a5(a2a3 − a1a4)
+
b3
a5
,

C12 = 0,

C21 =
a6(a3b1 − a1b2)

a5(a2a3 − a1a4)
+
b3
a5
,

C22 =
a1b2 − a3b1
a2a3 − a1a4

,

uλ+r(S) =
λ

λ+ δ
S − λ

λ+ r
K,

and

a1 = ψλ+r|S=K , a2 = φλ+r|S=K , a3 =
dψλ+r

dS

∣∣∣∣
S=K

,

a4 =
dφλ+r

dS

∣∣∣∣
S=K

, a5 =
dψλ+r

dS

∣∣∣∣
S=B(λ)

, a6 =
dφλ+r

dS

∣∣∣∣
S=B(λ)

,

b1 = uλ+r|S=K , b2 =
duλ+r

dS

∣∣∣∣
S=K

, b3 = 1 − duλ+r

dS

∣∣∣∣
S=B(λ)

.

Thus, we replace B(λ) in (A.10) by L∗ and use the Laplace inversion to obtain the upper bound
on the American call value.

Also, we can use the Lap-LUBA 2 to calculate the lower bound on the American call value.
By replacing the corresponding parts in (5), (7), and (8) by (A.7), (A.8), and (A.9), we solve Eq.
(9) by Newton’s method and then follow the work flow of Lap-LUBA 2 to get the lower bound on
the price of American call option.

Furthermore, we can calculate the upper bound on the American call value by the Lap-LUBA
2 method by using the following EEP representation in the time space from Broadie and Detemple
[10],

C(St, t;B(t)) = Ce(St, t) + Π(St, t;B(t)), (A.11)

with

Ce(St, t) = St e
−δ(T−t)N(d2(St,K, T )) −Ke−r(T−t)N(d3(St,K, T )),

and

Π(St, t;B(t)) =

∫ T

t
[δSt e

−δ(T−t)N(d2(St, B(ν), ν)) − rKe−r(T−t)N(d3(St, B(ν), ν))] dν,
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where

d2(St, B(ν), ν) =
1

σ
√
ν − t

×
[
log(St/B(ν)) +

(
r − δ +

1

2
σ2
)

(ν − t)

]
,

d3(St, B(ν), ν) = d2(St, B(ν), ν − t) − σ
√
ν − t.
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