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Acarouselis acomputer-controlled warehousing systémith is widely used to store
small- and medium-sized goad3ne of the mostimportant performance character-
istics of such systems is the pick time of an oredrich mostly depends on the travel
time of the carouseln this article we consider some reasonable heuristics for order
picking. In particularwe establish properties of the Nearest l{gxh) heuristic This

one is frequently used in practic&/e derive tight upper bounds for the travel time
underthe NI heuristic and closed-form expressions for its mean and vaNseetso
present a simple two-moment approximation for the distribution of the travel time
In addition we find the meaywvariance and distribution for the number of turns

1. INTRODUCTION

A carousel is an automated warehousing system consisting of a large number of
shelves or drawers rotating in a closed loop in either directgurch systems are
used for storage and retrieval of small- and medium-sized gdduspicker has a
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fixed position in front of the carousekhich rotates the required items to the picker
The advantage of such systems is that the picker has time for sdeireding and
so forth while the carousel is rotating

One of the most important performance characteristics of carousel systems is
the total time needed to pick an ord@&rders are represented by a list of itefike
list specifies the type and retrieval quantity of each itltwally, the items should be
picked in a sequence minimizing the total pick timéich is the travel time plus the
pure pick timeThe latter obviously does not depend on the pick stratdgyce we
only have to consider the travel time in order to minimize the total pick.time

Bartoldi and Platzmapl] and Sterri6] studied the optimal pick strategy for a
carousel systenThey show that there are onlywZandidate sequencesheren is
the number of positions to be retrievekhis implies that an optimal route can al-
ways be found in linear timé&xtensions to the algorithms of Bartoldi and Platzman
and Stern have been presented by van den B8tgvho also reviewed recent lit-
erature on carousel systems as part of a general overview on planning and control
algorithms for warehousing systenRouwenhorst et al5] provide some stochastic
upper bounds for the optimal roufeheir upper bounds are proved to be rather tight
Neverthelesghe probability distribution for the minimum travel time has not been
obtained yet

In their article Bartoldi and Platzmafil] also consider some simple heuristics
for a carousel systenODne of these heuristics is the Nearest Itéf) heuristig
where the next item to be picked is always the nearestmeNI heuristic usually
performs close to optima¢xcept in some pathological casaad it produces solu-
tions guaranteed never to be too far from optintalparticular the authors prove
that the travel time under the NI heuristic is never greater than one rotation of the
carousel

The NI heuristic is related to thgreedy servemodel studied in the framework
of queuing theoryseeg e.g., Kroese and Schmid®] and the references thergiin
this mode] customers arrive according to a Poisson process randomly distributed on
a circle and wait to be served by a single serVée server travels on the circle and
he is greedy in the sense that the next customer to be served is always the nearestone
In fact, this model describes a carousel picking ordéwss one iten) on-lineunder
the NI heuristic

In the present articlave study the NI heuristic for order-picking systerige
improve the upper bound of Bartoldi and Platznjdhfor the travel time and we
show that the new upper bound is tigbising probabilistic argumenta/e obtain a
formula for the mean travel time and the distribution of the number of turns under
the assumption of uniformly distributed pick positiod¢e also study the remaining
travel time and the remaining number of turns after picking some ifemswhen
there is a known empty space at one side of the picker’s posihacursive pro-
cedure is developed to obtain closed-form expressions for the mean and variance of
the travel time and the number of turns conditioned on the size of the empty space at
one side of the picker’s positioWe further approximate the distribution of the
travel time under the NI heuristic by a beta distribution with the same suppeat
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and varianceThis approximation is validated by simulation and it appears to be
quite accurate

The article is organized as follow the next sectionwe introduce the model
and some notatiarin Section 3we study upper bounds for the travel time under the
NI heuristic In particulayr we improve an upper bound of Bartoldi and Platzriin
In Section 4we obtain a formula for the mean travel time using probabilistic argu-
ments In Section 5we develop a recursive procedure to derive a closed-form ex-
pression for the mean travel time conditioned on the size of the empty space at one
side of the picker’s positiarin Section 6we use this procedure to find the variance
for the travel timeIn Section 7 we present a two-moment approximation for the
travel time under the NI heuristi€urtherin Section 8 we find the distribution for
the number of turns under the NI heuristnid in Section 10wve recursively find the
conditional distribution for the number of turnk the final sectionwe briefly
discuss our results

2. CAROUSEL MODEL

Following Bartoldi and Platzmafil] and Rouwenhorst et al5], we represent a
carousel as a circle of length llet the random variabl&, be the picker’s starting
point and the random variabl&¢, wherei =1,2,...,n, be the position of thith item
We suppose that thg,’s, i = 1,2,...,n, are independent and uniformly distributed
on[0,1). In the sequelwe will denote by

w = (Cl)o,(l)l,...,a)n) € [0’1)n+1

a realization of the random vect@dy, Us,...,U,).

The presentation will become clearer when we act as if the picker travels to the
pick positions instead of the other way around

We denote the shortest distance between the posifiansizon a carousel by
p(y, z) (see Fig1l). We assume that the acceleration time of the carousel is negli-
gible or that it is assigned to the pick timéence the travel distance can be iden-
tified with the travel time

(=

O, 2)
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A

FiGuURE 1. A carousel system
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This completes the model descriptidn the next sectionwe will explore the
travel time under the NI heuristievhich is defined as followscf. Bartoldi and
Platzmar{1]): Always rotate to the nearest item to be retrieved

3. UPPER BOUNDS FOR THE TRAVEL TIME

The main objective in this section is to establish an upper bound for the travel time
under the NI heuristic and to prove its tightness
An important feature of the NI heuristic is that it has the following “recursive”

property

ProPERTY 3.1: The remaining part of the NI heuristic is equal to the NI heuristic for
the rest of the items with the picker’s current position as starting point.

To study the NI heuristic we will compare it with the Shorter Direct{@D)
heuristic which is described in Bartoldi and Platzmfd as follows

Step 1 Evaluate the length of the route that simply rotates clockwise and the
length of the route that simply rotates counterclockwise

Step 2 Choose the shorter of the two routes from Step 1

By applying the NI heuristic to retrieve a list ofitems the picker will sub-
sequently visit the positions; , w;,,...,®; . For convenienceve denote

X|=(l)i|, |=1,2,...,n;X0=a)0.

We also introduce the following random variahl&$" is the travel time to retrieve
nitems under the NI heuristic aftfP is the travel time to retrieveitems under the
SD heuristic These random variables amf course functions of the elementary
random evend € [0,1)""L, Since the NI heuristic seems to be slightly more subtle
than the SD heuristione may expect that it performs better with high probability
In fact, we will prove that the NI heuristic is never worse than the SD heuristic

Lemma 3.2: For anyw € [0,1)"*% it holds that TV (w) = T,5P(w).

Proor: We will present a proof by induction ta It is clear that for any € [0,1)?,

we haveTN'(w) = TP(w) = p(Xg, X1). Now suppose that for sonre=1,2,..., we
haveTN(w) = T°P(w), w € [0,1)"*. Then we will prove thatTN; (w) = TS5 (w),

o € [0,1)"2 The proof is illustrated in Figure.First, recall that under the SD
heuristic the carousel always rotates in the same direcfitvere are only two pos-
sible routes of that kindand their lengths differ only in the first segmenherefore
choosing the shorter direction actually means choosing the shorter first interval
Hence the algorithm for the SD heuristic can be formulated as foltows

Step 1 Rotate to the nearest item
Step 2 Proceed further in the same direction
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— NI heuristic

--» SD heuristic

FIGURE 2. An illustration for the proof of Lemma.3.

It means that the Nl and SD heuristics start with the same segment of jehgthx, ).
After the first stepthe picker is at positior; andn items remain to be picked@hus
the current situation can be describeddoye [0,1)""L. The remaining travel time
under the SD heuristic cannot be shorter th&R(w’), since by definition T.3P(w’)

is the minimum travel time needed to pioktems by proceeding in the same direc-
tion. Hence

p(Xo, X1) + TPP(0') = T35 (w). (1)
Further due to Property 3, we have
Tota(@) = p(Xo, X1) + Ty (@). (2)
From(2), the induction assumptigmand(1), it follows that
Tota(@) = p(Xo, X1) + T (@) = p(Xo, X1) + Ty P(@") = TR (w),
which completes the proof u

In order to picknitems under the NI heuristia segments of the carousel should
be coveredTheir lengths ar@ (Xo, X1), p (X1, X2),..., p(Xn_1, Xn). Note that they do
not necessarily coincide with spacings between two adjacent,i@nt® under the
NI heuristic the carousel can rotate in different directigee Fig 2). Bartoldi and
Platzman[1] showed thaflM' is always less than 1 for all. Now, we will use
Lemma 32 to prove the following stronger assertion

Tueorem 3.3: For any w € [0,1)"*! and any k= 1,2,...,n, the total length of
k arbitrarily chosen segments that arise under the NI heuristic never exceeds
1-1/2%

Proor: Consider the NI heuristics starting in an arbitrary poine [0,1). Let 1=

I, <Il,< ... <l =nbetheindices ok arbitrarily chosen segments in the order we
cover them and lep (X, -1, X,), p (X1, X,), ..., p (X1, X, ) be their correspond-
ing lengthsWe proceed with the NI heuristic until facing the first segmgniNow,
the picker is at poink, _, and there are stith — |, + 1 positions to be visited
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Consider the case thatx, 1, %, ) = 1/2% If we pick the remainingn — |, + 1
items under the SD heuristic starting at point ;, then the travel time cannot ex-
ceed 1 1/2% Then from Property 3l and Lemma 2, it follows that the remaining
travel time under the NI heuristic also does not exceedl12% Recall that, is the
first one of thekchosen segments faced under the NI heutisténce all k segments
under consideration are included in the remaining paththeir total length cannot
be greater than 4 1/2%

Now, assume thap (X _1, X;,) < 1/2% We proceed further until segmelstis
faced If p(x,-1,%,) = 1/2%1 then we can use similar arguments as above to
conclude that the total length of the remainkg 1 of thek chosen segments is not
greater than + 1/2%* and it immediately follows that the total lengthlothosen
segments does not exceed

p(Xi, 1,X,) +1—1/2k 1< 1/2k 41— 1/28 1 =1—1/2%

If p(Xi,-1,%1,) < 1/2"% then we proceed with the NI heuristic and repeat the same
argumentsFinally, two cases are possible

1. There exists an = 2,3,...,k such thatp(x, _1,X,) < 1/2%0+1 ) =
1,2,...,i =1, andp(x, -1, % ) = 1/2%*% In this casethe remaining path
under the NI heuristic is not longer than-11/2%""** and therefore the
total length ofk chosen segments does not exceed

i1 1 1 1 1 1
jglp(xlrl’ le) +1- ok—i+1 < ? + k-1 Tt ok—i+2 +1- ok—i+1
1
=1- ?

2. For eachi = 2,3,...,k, we havep(x,_1,%,) < 1/2%7'*L Then the total
length of thek largest segments is less than

1 1 1 1
?-FF-F----FE:].—?.
Thus in both caseghe assertion of the theorem holds u

Since the complete travel time is identical to the total length ohtkegments
an upper bound for the travel time under the NI heuristic immediately follows from
Theorem 3.

CoROLLARY 3.4: For eachw € [0,1)""% the travel time under the NI heuristic
satisfies

TN(w) =1—1/2"

We give an example to show that Corollaryt rovides a tight upper bound
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Example 3.5:Let n = 5 and let the starting position of the picker kg = 0.
The items to be picked are located at the positiof3213/32, 7/32, 15/32, and
31/32 — &, wheree is positive and arbitrarily smallsee Fig 3). Then the travel
distance under the NI heuristic is

+

4 8 <16 ) 31 1
—+ =+ =+ —+ €
32 32 32 32

—_ - —e=1———=.
32

Y 25

The upper bound + 1/25 is tight, sinces is arbitrarily small A similar example can
be easily constructed for amy

Remark 3.6:In Example 35, the travel time does not really achieve its upper bound
However if the picker starts at poingy = 0 and needs to pick only one item at point

X, = 1/2, or two items at pointg,; = 1/4 andx, = 3/4, then the travel time is equal

to its upper bound1/2 and 34, respectively. For n > 2, the upper bound can

also be achieved if we assume that when the travel times to the nearest items clock-
wise and counterclockwise are exactly the sathe picker always proceedsay
clockwise Now, if we pute = 0 in Example 35, then the travel time will be exactly
1—1/25

Remark 3.7:Note that Example.3 is the only one we can construct to show that the
upper bound is tightndeed from the proof of Theorem.3, it follows that if the first
segmentis smaller or greater thaf21 then the travel time to pickitems under the

NI heuristic is less than + 1/2". The only case when the upper bound can be
achieved is whep (xq, X;) = 1/2". Then after the first stepthe picker is at position

x; andn — 1 items remain to be picke&8ecause of Property.B we can use similar
arguments to show that the upper bound can only be achiepést fx,) = 1/2" %,
The same can be done for each of theteps under the NI heuristitt implies that
the upper bound can be achieved if and only ifithesegment has lengthy2"~'**
foralll=1,2,...,n.

—» NI heuristic

--» Optimal route

Ficure 3. An example for which the travel time is arbitrarily close to the upper
bound
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Figure 3 also shows that the NI strategy is sometimes far from optindded
inthe case under consideratjoime optimal sequence is B2 — ¢, 1/32 3/32,7/32,
15/32. The total length of this route is

<1 ) (1 ) 1 2 4 8 17
—te|lt|mte)+t =+ o+ =+ === +2s
32 32 32 32 32 32 32

which is much less than 332 — £ whene is small

4. MEAN TRAVEL TIME

Let Up.nt1,Urns 1, ..., Unnrer denote the order statistics of the random variables
Uo,...,U,0n[0,1) (see Sect2). Then the random variable®; = U;.,; 1 — Ui _1.n41
forl=i=nandD,.1=1— U1+ Uoneq are the spacings between two adjacent
pick positions To find the mean travel time under the NI heuristiee will use
the following very useful property of these spacintfsYi,..., Y., are indepen-
dent exponentials with the same medhen (D4,...,D,.) is distributed as
(Yo /2 Y, Y /2T Y,) (cf. Pyke[3,4]). Hence the spacings are normal-
ized exponentials

Under the NI heuristicthe picker does not have to know all spacings at once
He first considers the two spacings adjacent to his starting position and then moves
to the nearest itemNext, he also looks at the spacing adjacent to that item and
moves again to the nearest iteand so onFurthermorenote that we may act as
if the picker faces nonnormalized exponential spacings and afterward divide the
travel time by the sum of all spacing$hen it is clear that each new spacing
faced by the picker is independent of the ones already obseNed, let X;,
wherei = 1,...,n+ 1, denote théth nonnormalized exponential spacing faced by
the picker Thus the spacings are numbered as observed by the picker operating
under the NI heuristi¢see Fig 4).

__ = NI heuristic

Ficure 4. The NI route of the picker facing five exponential spacings
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Then the travel timeT,N' can be expressed as

I min(§, Xis1)
Tan = —’

where§ = z}zlx,-. Hence by taking expectationsve find

min(S,Xm)) 3)

BT = S E
= Se( T

The following lemma gives a simple formula for the expected travel time intthe
step

LEMMA 4.1 LetX, ..., Xqi1 be n+ 1independent exponentials with the same mean
andlet$=2>;_1X;,i =1,...,n+1. Thenit holds that

E<min(S,Xi+1)>= 1 (1_i>, i=1...,n
Svia nti\" 2

Proor: Let u denote the mean of each of the exponenti@isen the event

Ex = [S-1 < X1 < &1,

for somek=1,...,i, the random variableX,..., X,,,1 can be coupled as
1 1
XIZEYI’ |:15’k_1’ XKZEYK—’_YkJrl’
) 1
x|:Y|+l7 |:k+17"|7 Xi+1:2_Y|’
i-12
X|:Y|, |:i+2,...,n+1,

whereYy, Y,, ... are independent exponentials with meaithis follows by observ-
ing that givenE,, the random variabl¥; is the minimum ofX, andX; . ;, and thus
it is exponential with meap/2. Since the overshoot of;. ; is again exponential
with meany, we can repeat the argument % and so onEventually X;,; — S
is less tharX,, so it is exponential with meguy 2. The random variabl¥y is the sum
of two exponentialsone with meanu/2 and the other paft.e., the overshogtwith
meanu (see also Figh). Since the everf, does not provide any information on the
other random variableghey remain exponential with mean

Now, given the evenE,, it follows that

Y

NI

k
min(S, Xi+1) = Xiz1 = 2
=1
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FiGuUre 5. Coupling of the random variables,..., X, under eveng,.

and
1 1 k 1
Sper= Yot oMt Yt Y X DY Yt e Yo
1=1
=Y+ o+ Yora
Thus we obtain
k
1
_ oY
min(S, Xi11) =12
E————|E|)=E| ———
Sn+1 Y1+ et Yn+1

Il
NI
M~

m
PR
<
+
IS
+
=<
T
AN
~

SinceYy, Yo, ... are independent and identically distribui@d.d), we have

Y, 1
E = , 1=1...,n+1
Y+ +Y,) n+1

This immediately follows from the fact that these expectations are all the same and
that they add up to.lHence

min(S, Xi;1)
E - =7
< S

_ k
I T o2in+ 1)
Further it is easily seen that

E( mln(s ’ Xi+1)
Si1

i 9Xi+
X1 > s) - E(—m'”(;l !

e ).
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Hence since P[E,] = 1/2X we find for the full expectation

min(S, X;. i k 1 i 1
S =12(n+1) 2 2(n+1) 2
hls)
= 1-— ,
n+1 2
which completes the proof of the lemma u

From(3) and Lemma 4L, we obtain after a simple calculatigrthe following
result

THEOREM 4.2: Foralln=1,2,..., we have

E(TNI) — L — (1_ i) 1 (4)
" n+1 2"/ n+1

Let us compare the mean performance of the NI and SD heuri€ios can
verify (cf. Rouwenhorst et a[5]) that

2t" Osts%
P(TSP<t) = 1
2t — (2t —-1)", §<tsl.

Hence it is easy to compute that

n 1 1
E(T>°) = n+1 2n+1’

If the carousel just rotates in the same arbitrarily chosen directi@m the mean
travel time is clearlyn/(n + 1), since there ara segments to coveand ¥(n+1) is

the average length of each segmdhthe SD heuristic is appligdhen the mean
travel time will be reduced by one-half of an average segnignapplying the NI
heuristic we can reduce the mean travel time by a fractionh 1/2" of an average
segmentObviously whenn is large the difference between these different heuris-
tics becomes negligible

5. CONDITIONAL MEAN TRAVEL TIME

The probabilistic approach in the previous section may also be used for finding
higher moments of the travel time under the NI heurjdbiat, here we will not
elaborate this furtheinstead we exposein this sectionan alternative analytical
approach to determine the mean travel tiraed in Section 6we show that this
approach is also suitable for finding higher momeidact, this approach yields
more information than just the moments of the travel tisiace it determines the
moments of theemaining travel timafter picking some item§.e., the travel time
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conditioned on the size of the known empty space at one side of the picker’s current
position.

To derive a formula for the mean travel time under the NI heutiste will
develop a procedure exploiting Propertyl.3According to this propertythe re-
maining part of the NI heuristic after the first step is equal to the NI heuristic for
the othem — 1 items with the picker’s current position as the starting poifite
expected travel time of the first step can be found straightforwakdbwever
the expectation of the remaining travel time is not just the mean travel time
under the NI heuristic fon — 1 items because we also need to take into consid-
eration the size of the empty space at one side of the picker’s pashiws we
can obtain a recursive equation for the mean travel time conditioned on the size of
the empty space at one side of the picker’s positidanote byE(T,N'|t) the mean
travel time under the NI heuristigiven that at one side of the picker’s starting
point there is an empty space of sizeThen the mean travel time under the NI
heuristic is just equal t&(T.N'|0):

E(Ta") = E(Ty"|0).

Our objective now is to derive a formula f&n(TN'[t), 0=t < 1.

The cas€; =t < 1 is trivial, since in this case the carousel will rotate in one
direction only It is easy to see that there amesegments to cover and the average
length of each segment (& — t)/(n + 1). Thus we have

E(TN'|t)=L(1—t) }St<1 (5)
. n+1 ) '

Let us now consider & t < 5. We will derive a recursive equation f&(T.N' |t)
by conditioning on the location of the nearest itdrat f,(y|t) denote the density of
the travel time to the nearest item given that there is an empty space bhsizethe
starting pointThere are two possible cas@gich are shown in Figure.Gory < t,
we have

A A

FIGURE 6. Two possible locations of the nearest item
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nl—t—yn1

W10 = =

and after this steghere will be an empty space of size y. Fort <y < 1, it holds
that

2n(1—2y)"?

fa(ylt) = 1-t)" s

and after such a stethere will be an empty space of sizg. Now, we use the full
expectation formula

t ot n—1
E(TnN'|t>:f0 MOV e gt 4 y) + vl dy

1—0"
Jl/zzn(l‘—zy)“ ETN[2y) +yldy, 0=t<=. (6
t 1-v" [E(T=i[2y) +yldy, 0=t<zZ.  (6)

To find a solution for(6), we first introduce the functions
D,(t) =E(MN|Hy(1-t)", 0=t<1.

Now, we can rewritg6) in the following form

t 1/2
D) = [ nD, s(t+yyay+ [ 20D, 2y ay
0] t

t 1/2 1
+ f n(l—t—y)”*lydy+f 2n(1—2y)" tydy, Ost<§. (7
[0] t

The last two integrals i7) can be easily calculateglielding

(1_ t)n+l (1_ 2t)n+1
n+1 2(n+1) °

t 1/2
f n(l—t—y)”*lydy+f 2n(1—-2y)"tydy=
0 t

Puttingr = y + t in the first integral and- = 2y in the second oneve simplify
(7) to

(1_t)n+1 (1_2t)n+l 1
- , 0=t< -, (8)
n+1 2(n+1) 2

D,(t) =f ND,_,(7) dr +

In this casethe change of variables simplifies the recursion significaiihys sim-
ple trick will appear to be very helpful throughout the whole artielewever as we
will see in Section 10t does not always help that muchhere we need to consider
eachoftheintervals &t < 1/2" 1/2"=t < 1/2"%,...,1/4 =t < 1/2 separately
which makes the calculations much more complicated
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From(8) itis seen that one needs to kn®y_,(t) at 5 =t < 1 to calculateD,(t)
at0=t < 2. From(5), we have

n n+1 1
Dn(t)=m(l—t) ) ESI<1. (9)

Since
Do(t) = E(Tg"'[t)(1—1)°=0,

the solution of(8) should be of the form

1
D,(t) =a,(1—-t)"*+Db,(1—2)"", O0=t< 5 (10)
where
= 4 — =0
@n n+1anl n+1’ 20=0;
n 1
bn = =

mn+nb“1_2m+n’ bo
Denotinga;, = (n + 1)a, andb, = (n + 1)b,, we have

a,=a, +1l=ay+tn=n,

which gives

Do(t) = —— (1 — t)n — i<1— i)(1—2t)“+l O=t< = (11)
n n+1 n+1 on ’ 2

Function(11) satisfies both the recursidB) and the initial conditiorD(t) = 0.

Remark 5.1:We could immediately say thatid,(t) satisfies(10); then a, should
necessarily ba/(n + 1). Otherwise the function defined by9) and (10) is not
continuous at = 3.

Our results are summarized in the following theorem

THEOREM 5.2: Foralln=12,..., we have

n 1 (1-—2t)*?
E(TnN||t) = m 1-1)— (1— —>

2" n Lioa(t), 0=t<Ll

(n+1)(1—t)
(12)
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Ficure 7. The conditional mean travel time as a function of the empty space

Of coursewhen we set = 0 in (12), we retrieve formuld4) for the (uncondi-
tional) mean travel timeln Figure 7 we show the conditional expectation of the
travel time as a function of the empty spaéer nequal to 25, and 10 Surprisingly
we see that the graphs slightly increase for sindlhis is very well seen fon = 2.

It means that information about the empty space can be “nedalifies may be
explained by the fact that this information reduces the probability that items must
be retrieved near the picker’s positicknother observation is that the conditional
expectation tends very fast to a linear functierich is of course also apparent
from (12).

6. VARIANCE OF THE TRAVEL TIME
The power of the analytical approach in the previous section is that it can also be

used to obtain higher momentsBf'. For examplefor the second momenwe need
to consider the conditional expectatigd[T,N']?|t). One can easily see that

=t<l1, (13)

NI

BT = — =17
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and that a recursive equation similar(& holds for 0=t < %:

t l—t— n—1
el = [ P Tyl

o (@A=b"

J‘l/z 2n(1—2y)" 1t
t

1
NI + 2 =t< =,

(14)
By introducing the functions
D (t) = E([TM"]?[)(1— )"

and changing variablese can rewritg14) in the form

1
D(t) = f nD?,(7) dr
t
t 1/2
+ f 2nyD,_4(t+y)dy+ f 4nyD,_,(2y) dy
0 t

t 1/2
+ f ny?(L—t—y)"? dy+f 2ny?(1—2y)" tdy,
0 t

Substituting(9) and(11) into (15) for ; =t < %, we obtain
2n(1—t)"*2
(n+1(n+2)

B t(1—2t)n+1_< +(1—i>> (1— 2t)"2 s
n+1 n 2 )+ Dn+ 2’ (16)

1
D(t) = f nDZy(7) dr +
t

and for 0=t < %, we get

2n(1—t)"*2 - 2t)n*+t
(n+1D)(n+2) n+1

( <1 i)) (1— 2t)n2 (1— ap)n+2 <1 1)
") nromr2 Tanspne P21 )

17

1
D2(t) = f nD?,(r) dr +
t

From(13), we know that

2 n n+2 1
D} (I)ZnTZ(l—t) 3 55t<1.
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Thus we can first solve the recursidi6) and then(17) exactly as it was done
earlier However the calculations become much more complicatédte that our
method performs the calculations “backwakdée also Remark.8). This finally
leads to the following result

THEOREM 6.1: Foralln=1,2,...and0 <t < 1, we have

EQTNI2) = —— (1 - )% - i(l— i)% Lotz (1)
" n+2 n+1 2n (1—1t)" [0;1/2)
_$< _i>(1—2t)”+21 t
(n+1)(n+2) ") (1—t)" [0:1/2) (1)
+;<} 1,2 )(1—4t)n+21 o
n+D(n+2)\3 20 34"/ (1-tn “evar
CoRrOLLARY 6.2: Foralln=1,2,..., it holds that
1 2 n 2
N2y — = 2 _f. +
BT = p (1= 5+ 5+ g )
Var(TN')—;<4_n_ n 8t 1 )
" (n+12n+2\ 3 34" 3 22 34 )

Remark 6.3:0ur method determines the second momfft(t) according to a
backward recursiarit subsequently solveB?(t) on the interval§1/2,1), [1/4,
1/2), and[0,1/4). To determine thé&th momenjwe will have to consider the se-
quence of intervalfl/2,1),[1/4,1/2),...,[0,1/2%).

7. APPROXIMATION FOR THE DISTRIBUTION FUNCTION

In this sectionwe introduce a simple two-moment approximation for the distribu-
tion function of the travel time under the NI heuristitamely we will compare the
distribution of TN with the distribution of the random variabk,, given byZ,, =
u,V,, where the scaling factar, is given by

U, =1- —
2n

andV, has a beta-densityhat is
F( Mn + Vn)

M) = ) T )

1=x)H"Ixn L 0<x<1l

Clearly, the random variableg, andT,M' have the same suppdiee Car3.4) and
their first two moments match if we set
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Ficure 8. The distribution functions o5 (solid) andTJ"' (dashedl

(un - E(TnNI))(E(TnNI) - E([Tan]z)/un)
Var (TN ’
~ EMM(ETY") — E(T"17)/un)
n Var(TN) '

n

Numerical results suggest that the approximation is quite acciigigre 8 shows
the distribution function oZs and the empirical distribution function &' ob-
tained by a simulation of 1Qtrials. Herg the maximal absolute difference between
the two distribution functions is about@B. An error of the same order occurs for all
n=2

8. DISTRIBUTION OF THE NUMBER OF TURNS

In this sectionwe will determine the distribution of the number of turns under the NI
heuristic Let the random variabl&, denote the number of turns to pickitems
under the NI heuristicand define

Ti = 1[S<Xi+1]’ i= 1727---’
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whereXy, X,,... are independent exponentials with the same meaay andS =
ijlx-, i = 1. SinceX; can be interpreted as th&h nonnormalized exponential
spacing faced by the pickésee Sectd), it is clear that the random variablg
indicates whether or not the picker turns after pickinghe 1)st item Thus we
may write

Ko=ST.

M-

i=2
SinceE(T)) = Pr[S < Xi.1] = 1/2/, we immediately obtain the following result
THEOREM 8.1: Foralln=12,..., we have

E(K,) = 1 i (18)

2 2"
To find the variance andn fact, the complete distribution of the number of

turns we need the following remarkable result
LeEmMaA 8.2: The random variables,JT,,... are independent

Proor: We will prove that each pair is independehie independence of any finite
sequence of these random variables can be proved along the samkedires i <
j. To prove thafl; andT; are independenit suffices to show that

PIIS < Xi41,§ < Xj41] = Pr[S < X4 1]PI[§ < Xj41]. (19)
Clearly
PrS < Xi+1,§ < Xjz1] =PI[S < Xi1 1 JPI[§ < X 11|S < Xi44]. (20)

Now, given the evenfS < Xi,], we can coupleXy,..., Xj, in the same way as
done in the proof of Lemma.%; that is

1 i 1
XIZ_YH |:1,...,|; Xi+1:E_YI+Yi+1;
2 i-12
X|:Y|, |:|+2,,J+1,

whereY,,Y,,... are independent exponentials with mganHence given event
[S < Xit1], we haveX;,, = Y., and

1 1 1
§= Vit F N D OV Yt Vi Y,
I=1

=Y, + - +Y,.
Thus
Pr{S < X:1|S < Xii1]=PrlY+ -+ + Y, < Y],
which, together with(20), proves equality19). u
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Remark 8.3:Lemma 82 is not valid for examplefor uniform random variables
X1, X5,... on the interval0,1). It is easily verified that in this cas&e have

1
P <X <X ]==
NS S 4] 9%
and
1 1
PIS <X]=7,  PIS<X]=_,

so equality(19) does not hold

From(18) and Lemma &, for the second moment we obtain that

E(TP) = SETA+ S 2E(TT)

i=2 2=i<j=n

E(T)+ X 2E(T)E()

i=2 2=i<j=n

1 1
- — + —_—
on 25iz<jsn 2|+]71

1 N 1
2n71 3(4n71)'

WIN NI

This yields the following formula for the variance of the number of turns
THEOREM 8.4: Foralln=12,..., we have

5 1 1
Var(Kn) = 1—2 - 5 + 3(4n).

(21)

Of coursefrom Lemma 82, we can also obtain the distribution of the number
of turns

TaeoreM 8.5: For all 0 = k < n, we have

PrK, = k] = > Pr[T, =ky]---Pr[T, = k,], (22)

where

1
Pr[T,=1]=1-PrT, =0]= > i=2,...,n
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FiGcure 9. Distribution for the number of turns

For computational purposgse mention that the probability distribution fi,
can be determined recursivelet p,  denote PfK, = k]. From Theorem &, we
then obtainby conditioning onl,,, the following recursion

1 1
Pnx = E pn—1,k—1+ (1_ 5) Pn—1 k> O=k<n,

with initial conditionp, o =1 and boundary conditiorns, _; = p,,=0forn> 1. In
Figure 9 we show the distribution fon = 4, 5, 7, and 10 We see that it rapidly
converges to the limiting distribution fd¢, asn — co. Let the random variablk_,
have this limiting distributionFrom Theorem &%, we directly obtain

PrK, = 0]= ﬁ(l— %) ~ 05776
i=2
>0 1\& 1
Pr[K,, = 1] = _]'[2<1— E) Zz TR 0.3504 (23)

o 1\ = 1 1
Pr[Koo=2]=H<1——.>Ek 57 57 ~ 00666
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and so onAn alternative and elegant expression for the distributio ofwill be
derived in Section 10Note that the NI heuristic with no turns is actually the SD
heuristic One might intuitively expect that for large it is very unlikely that the
carousel will change directioiowever we see that the probability that the NI and
SD heuristics coincide does not tend to has oo, but it decreases to approximately
0.5776 Thereforein the limit, the NI heuristic oscillates with quite high probability
However the oscillation is very modessince the limiting probability of four turns
is about 00002 and the probability of more than four turns is negligible

9. CONDITIONAL MEAN AND VARIANCE FOR THE NUMBER OF TURNS

In this sectionwe first derive an upper bound for the number of remaining turns
after picking thath item Next, we will obtain the mean and variance of the number
of remaining turns conditioned on an empty space ofts&@ne side of the picker’s
position

Bartoldi and Platzmahl] mention that a route to pick items under the NI
heuristic actually consists of a number of segments of uninterrupted clockwise and
counterclockwise movemenBenote the number of segmentsiyso the number
of turns isN — 1) and letl; denote the length along tljh segment to the first item
retrieved on that segme(gee Fig 10). Then they note that

|1-22|j,1, j:2,...,N.
From this observatiarit immediately follows that

1 1 1
EIZS e = 2N*1 IN— 2N'

Ficure 10. Segments of uninterrupted clockwise and counterclockwise movements
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Herg the last inequality follows from the simple fact that any step under the NI
heuristic is never greater thgnThus we have proved the following lemmahich
allows us to estimate the number of remaining turns after pickingttheem

LemMa 9.1: The number of remaining turns under the NI heuristic after picking the
ith item in the jth segmenl =< j =i = n, is never greater thafog,, |; — 1.

Now, we will use the procedure from the Sections 5 and 6 to obtain the mean and
variance of the number of turns conditioned on an empty space of atzme side
of the picker’s positionLet E(K,|t) be the expected number of turns conditioned on
the empty space If the size of the empty space is greater tHathen no turns are
possible

1
E(K[) =0, S=t<l (24)

Fort < %, note that changing direction actually implies crossing the known empty
spaceThe probability of this event is

Y21 —2y)nt - 2t)"
a-or YT ra_om

Pr{crossing an empty space of size= f
t

However if t = 0, then this probability becomes This is in contradiction to the
natural assumption that the first step is never a.tblence the case = 0 becomes
exceptional To avoid thatwe introduce an artificial random variable

K. =K,+K, (25)
whereK is a random variable independentkf, and

P{K=0]t]=0, 0<t<],
Pr{K = 0/0] = Pr[K = 1]|0] = 1/2.

The conditional characteristics Kf, are continuous dt= 0, and for 0<t < 1, they
coincide with the conditional characteristicsky. Thus we are first going to find
the conditional mearvariance and(in Sect 10) the conditional distribution oK},.
Then we can retrieve formulas for the mearariance and distribution ofK,, by
puttingt = 0 and applying25).

We useK;, mostly as an auxiliary random variabléowever it has a reasonable
interpretation itselfindeed the picker’s starting point is often just the last point of
the previous ordeand the picker reaches this point following a certain direction
To pick the first item of the next ordgthe picker changes the direction with prob-
ability 3. If this event is also considered as a tuttmen the total number of turns is
actually distributed akK}, (instead ofK,).
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For the conditional expectatid(K/|t), where 0=t < 3, we have the recursion

thl—-t—y)"1?
E(Kam:f NV e ko e+ y) dy
0

1-1"
1/2 n(l— 2y)n71 /
+ J: W E(Kn-1/2y) dy
v2p@a-2ynt 1
ft T [E(Ki-al2y) +1]dy, O=t<—.  (26)

Denoting
Ca(t) = E(KplH (1= 1)",

and taking into consideratia24), we can rewritg26) as

12 a-2t)"

C,(t) = nC,_,(7)dr + —

t
This recursion can be solved in the same way as done in Sections 5. dihe 6
outcome is presented in the following theorem

THEOREM 9.2: Foralln=1,2,..., we have

E(K; —(1 i)—(l_mn
( n|t)_ - (1—t)n

on Lo1(t), 0=t<Ll
Formula(18) from Theorem 8L can now be obtained as follows

1 1
E(Kn) = E(K;|0) — E(K[0) = > on

For the conditional second momeat[K;]?|t), we again apply the same pro-
cedure as foE([TN']2|t) in Section 6 This yields the following

TaEOREM 9.3: Foralln=12,..., we have

(k0 = (1- 5 ) S22 1,00
") @-pn
- 2<} AT >w Loya(t), 0=t<L1
3 20 364m) @-pn T
From Theorem 3, it follows that
Var(K,) = Var(K/|0) — Var(K|0) = > _ 1 + 1 ,
12 2" 3(4")

which coincides witH21) of Theorem &4.

https://doi.org/10.1017/50269964801152010 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964801152010

NEAREST ITEM HEURISTIC FOR ORDER PICKING 159

10. CONDITIONAL DISTRIBUTION FOR THE NUMBER OF TURNS

Using the recursive procedyrge can also derive the conditional distribution for the
random variabl&};. Let Pi{ K/ = k|t] be the probability thaK}, equalsk if there is
an empty space of sizeat one side of the picker’s positiowe will first determine
Pr{K/ = 0]|t]. Clearly,

1
PK; = 0jt] =1, =t<Ll (27)

Further we obtain

1-t—y"?t

t
n
PK,=0|t]= | P{K,_,=0|t+ d
| It] fo MKi-1=0[t+Y] a—1" y

" fl/ZP[K' =0[2 ]n(l_zy)nild 0=t<?:
t 8- =21y 1-tn Y o 2’
By introducing
LO(t) = P{K,=0[t]1—-t)" 0=t<1,

the last expression becomes

2t 1 1
LO(t) = f L', (r) dr + 5 f nL', () dr. (28)
t 2

t

Note that this time change of variables does not help that much because now we not
only face a recursion in but also one irt. Indeed if we naturally put

LO(t) = PK4=0|t](1-t)°=1 O0=t<1,
then forn =1, (28) and(27) immediately yield

1_(1 ) (1-2t) 0<t<1
B 2 0 T T2

LY'(t) =

1-1t, =t<1

NI

This expression can also be verified directjow, to solveL(zo)(t) from (28), we
have to distinguish two case8 = 2t < ; and3 = 2t < 1. Hence we will have
different expressions fdr? (t) at 0=t < % and% <t < %. Proceeding this wayve
conclude that it is necessary to consider the intervals 0< 1/2", 1/2" =t <
17271 .. 1/2=t< 1tofindL©(t). Sq as beforethe calculations have to be done
“pbackward”(cf. Remark 63) because we need to kndW , (7) atr € [t,1) in order

to find L (t).
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Solving the recursiofi28), one can see that the functiaff’ (t) has the form

L(t) = 2 (_1)ikn,i(1 - Zit)nl[o,l/z')(t), 0=t<] (29)
i=0
and it only remains to find the coefficierts;,n=0,1,...,i =0,1,...,n, which turn

out to satisfy the recursion

kio=1 n=01,...,

1 n—I|
Z ki 1< ) , n=12,..., i=12,...,n

I=i—1

kn, i

Thus those coefficients are just geometric sums

kn’ozl, I’]EO,
1
kn,l:]-_?’ nzl’
1 1 21
“2T 3T Ta "E2

and so onNote that we have seen the same coefficients for the conditional mean and
variance of the travel time and the number of tuigee Thmsb.2, 6.1, 9.2, and 93).

Now, we can apply similar methods to calculate the conditional probabilities
PriK,=k|t], k=12,...,n, conditioned on the empty spateSince a turn neces-
sarily provides a stepvhich is greater than the size of the empty spaoe may
conclude from Lemma.Q that the number of turns can only achigdwié t < 1/2k:

PIIK.=Kk|t]=0, t=1/2%
Thus denoting
LW() = PrK,=k[t](1—-t)", 0=t<1l 1=Kk=n,

we obtain the following recursion

ok

1/2
nLy 1 (2y) dy + f LY (2y) dy,

172K

t
L&(t) :f Nl (t +y) dy+f
0] t

which can be rewritten as

2 K 1 2t K 1 vt k—1
L®(t) :f Lol () dr + 2] Ly, (7) dr + EJ Lo (1) dr.
t 2t 2

t

This recursion can be solved subsequently foin [1/25"%1/25) [1/2K"2
1/2%+1),...,[0,1/2"). The results are presented in the following thearem
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THeoreM 10.1: For all 0 = k = n, we have

n

1 e .
PrK;, = k|t] = 1—on ;((_1)|+k (k) Kni (1= 2't)"10.1/21 (1),

i=k

PTK; = K= 3, (—1>i+k<|'(> o

According to(25), the conditional distribution df,, for t > 0 is the same as the
one ofK/, and fort = 0, it can be found from

k
PriK,=k]l=2> (-1)'PrK;=k—1]
=0

||
I\M;\-

}n) 1)‘+‘<<:>kn,i, 0=k=n, (30)

which is another form of formulé22) from Theorem &.

In Figure 11 we show the conditional probability B, = 0|t] of no turns as a
function of the empty spaddor n = 10 (observe the discontinuity &t 0). We see
that it rapidly goes to 1 asincreasesHence the picker only oscillates near his
starting positionOnce he has picked a few itepisbecomes very unlikely that he
will turn.,

Lettingn — oo in (30) and denoting

n—oo

‘ 1
k i = | kni: -, -:1,2,...,
i = lim K, j];[2 i |
we obtain after some simplificationghe following elegant expression for the lim-
iting distribution
TueoreM 10.2: The limiting distribution of K as n— oo is given by
PriK,, = k] =2(=1) E (=) kw.2< ) (31)
i=k+2
In particular (31) gives(cf. Eq. (23))

Pr{K 0] 2{1 ! + ! }
I = = _——_— — e
~ 3 3.7 3.7:15 ’

1 1 1
PF[KOO=1]=2{E(1+3) 3715(1+4)+m(1+5)---}, (32)

PI{K., = 2] =2 (1+4+6)— ;(1+5+10)+---}.

1
{3 7-15 3.7-15.31
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Ficure 11. The conditional probability HiK,, = 0|t] of no turns as a function of
the empty spacefor n = 10.

Remark 10.3:Formulag23) and(32) arg of coursethe samgwhich can be proved
by combinatorial argumentket us showfor examplethat the formulas for BK , =
0] from (23) and(32) indeed coincideln other wordswe are going to prove the
equality

ﬁ(l 1)—1 1+ ! 33
i1 20/ 3 37 3715 (33)

To do thatwe open braces in the left-hand side and we arrange the terms as follows
1 1 1

(e-;)-+23-8322 233205

i=1

Further note that

Il
VS
| =
_|_
N
_|_
S~— :
VS
Nl
_l’_
5|
_l’_
~ S SN
Il
[SRRE
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Similarly,
> =2 *> 1 1 1 1 1 1 1
— ===+ -+ -+ —+ -+ —
.:Zl,z.zﬂk;ﬂz' 21 2 <2 4 >< 16 )(8 64 )
_ 1
3.7

and so onThus the left-hand side of33) becomes

1 1+1 t, 1
3 37 3715

which is the required result

11. DISCUSSION

One may distinguish two main directions for studying the performance of carousel
systemsThe first one concerns the analysis of the optimal order picking strategy
However a detailed analysis of probabilistic characteristics of the response time is
quite complicatedcf. Rouwenhorst et a[5]).

The other main direction is developing and studying simple heuristics for order
picking in carousel systemtn practice they can be very useful because they pro-
vide reasonable control without mugtomputational effort. Probabilistic proper-
ties of such heuristics sometimes can be obtained analytiGalyn real life, one
may prefer simple heuristics becaude they do not require much effort an@)
their properties are well understadeurthermorgheuristics are also useful on-
line (dynamig situations In fact, in such situationsthey usually perform much
better than (statig optimal” strategies

The present article can be classified in the second diredVerstudied in detail
the NI heuristic We provided a tight upper bound for the travel tinvde used
probabilistic arguments to find the mean travel time and the distribution for the
number of turnsMoreover in Section 5 we developed a procedure to obtain the
conditional mean and variance of the travel time and also the conditional distribu-
tion for the number of turns given that there is a certain empty space at one side of
the picker’s positionAlso, we gave a quite accurate two-moment approximation for
the distribution function of the travel time under the NI heuristic
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