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Laboratory experiments involving downward air–helium fountains are presented.
The large density differences between these releases and the ambient allow us
to investigate how non-Boussinesq effects modify fountain heights and fountain
fluctuations in comparison with the Boussinesq case (i.e. marginal density differences).
In these experiments, the source Froude number is varied over a wide range covering
(i) the very weak, (ii) the weak and (iii) the forced fountain regimes. It is shown
that the classical Boussinesq correlations can be extended to the non-Boussinesq
case provided that the Froude number is multiplied by the square root of the ratio
between the released fluid density and that of the ambient. In the range investigated,
no influence of the source Reynolds number is observed.

Key words: convection, plumes/thermals

1. Introduction

A fountain, alternatively called a negatively buoyant jet, is a release whose buoyancy
opposes its momentum. As illustrated in figure 1, at the initial stage of the fountain
development, the release extends as a jet according to its initial momentum. Then,
under the effects of the negative buoyancy, the local momentum decreases as the
fountain rises until the local velocity vanishes at a given height. This height is called
the transient height and is denoted here as Htr. The flow then reverses direction and
forms an annular down-flow which interacts with both the up-flow and the surrounding
environment. Due to these interactions, the fountain height stabilises around a mean
value (here referred to as Hm) generally lower than the transient height Htr.

While the majority of studies have focused on Boussinesq fountains, for which
densities are close to that of the ambient, fountains with significant density contrasts
have received much less attention. To the best of our knowledge, the only available
study in the literature concerning these non-Boussinesq fountains is that due to
Baddour & Zhang (2009). In their experiments, carried out with hypersaline releases,
these authors observed that the mean fountain heights were in general lower than
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FIGURE 1. Schematic of the different steps of the development of a typical turbulent
fountain: (a) initial up-flow, (b) steady state.

those predicted by using Boussinesq fountain correlations. They therefore concluded
that these differences were related to non-Boussinesq effects.

In practice, experiments carried out with salt-water releases injected into fresh
water do not allow a wide range of density contrast to be covered. This paper
aims at extending the results by Baddour & Zhang (2009) by examining air–helium
fountains. In particular, the objectives are to observe and to quantify how the mean
fountain height Hm and its vertical oscillation frequency are affected by large density
differences.

This paper is organised as follows. Section 2 presents some key results on
Boussinesq fountains. The experimental set-up is described in § 3. In § 4, the
results are analysed and new correlations for non-Boussinesq fountains are provided.
Conclusions are drawn in § 5.

2. Key results on Boussinesq fountains

Let us first discuss some notable results on turbulent Boussinesq fountains.
One of the pioneering contributions is that due to Turner (1966). From both

experimental and theoretical approaches, he found that the mean fountain height Hm

and the transient fountain height Htr (both divided by the radius of the source bi)
scale linearly with the source Froude number Fr:

Hm

bi
' 2.46Fr and

Htr

bi
' 3.52Fr. (2.1a,b)

The Froude number, which quantifies the ratio between the buoyancy and the
momentum at the source, is defined as follows:

Fr= wi√
gηibi

, (2.2)
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where wi is the bulk velocity of the released fluid, g is the gravitational acceleration
and ηi is the source density deficit. Here, the density deficit is defined by

ηi = |ρi − ρ0|
ρ0

, (2.3)

where ρi is the density of the released fluid and ρ0 is the ambient density. A
striking result found by Turner (1966) is that the ratio Hm/Htr remains constant and
around 1.43.

As the range investigated by Turner (1966) was limited to high Froude numbers
(i.e. forced fountains), Kaye & Hunt (2006) recently investigated low-Froude-number
turbulent fountains. Their results exhibited the existence of two supplementary
regimes: the weak fountain regime for which Hm/bi ∝ Fr2 and the very weak
fountain regime for which Hm/bi ∝ Fr2/3. In the same vein, Burridge & Hunt (2012)
studied the dynamics of salt-water Boussinesq fountains experimentally. Following an
experimental approach similar to that used by Turner (1966), they found respectively
for very weak, weak and forced fountains

Hm

bi
= 0.81Fr2/3 for Fr< 1, (2.4)

Hm

bi
= 0.86Fr2 for 1< Fr< 3, (2.5)

Hm

bi
= 2.46Fr for Fr> 3. (2.6)

Burridge & Hunt (2013) also investigated the magnitude and the frequency of the
fountain height oscillations around Hm. In the particular case of forced fountains,
they exhibited the existence of a dominant frequency f which they used to build a
Strouhal number (St= fbi/wi). This Strouhal number was found to scale as Fr−2. The
magnitude of the fountain fluctuations δz (divided by the source radius) was found
to scale linearly with the Froude number.

We shall return to these Boussinesq results for comparison after describing the
experimental set-up and the measurement methods.

3. Experimental apparatus

Figure 2 shows a sketch of the experimental apparatus. It is composed of a
thin horizontal rectangular panel (1.5 m × 2.5 m). The panel is located 1.5 m
from the floor of the laboratory, a distance that is sufficiently large to avoid any
vertical confinement effect. To produce the fountains, a light air/helium mixture is
continuously released downward from a nozzle of radius bi, flush with the surface
and located at the centre of the panel.

Before being released, the mixture first fills a large plenum chamber, located
above the panel, which contains honeycomb sections. The air and helium flow rates
are controlled by two independent flow meters. For low and moderate flow rates,
Bronkhorst flow meters type EL-FLOW, which cover the range 0–12 m3 h−1 with an
accuracy of 2 % of the measurement, are used. For higher flow rates, Bronkhorst flow
meters type E-7000, which cover the range 0–60 m3 h−1 with an accuracy of 1 % of
the measuring range, are used.

To visualise the flow, the released mixture is seeded with ammonium salt obtained
by chemical reaction of ammonia vapour with hydrochloric acid. It should be noted
that the mass of salt added to the flow is very weak and therefore does not affect
the density of the fountain. A laser light sheet (argon 2 W) cuts through the central
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FIGURE 2. Schematic of the experimental apparatus: 1, air source; 2, helium source;
3, flow meters; 4, hydrochloric acid; 5, ammoniac; 6, plenum chamber; 7, rectangular
panel; 8, laser sheet; 9, CCD camera.
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FIGURE 3. Instantaneous snapshots of (a) a stable fountain (Fr= 1, Re= 570 and ρi/ρ0=
0.95) and (b) a fluctuating fountain (Fr= 14, Re= 1770 and ρi/ρ0 = 0.44).

plane of the fountain perpendicularly to the horizontal panel (see figure 3). Images
are recorded as 8 bit bitmap image files at a frequency of 40 f.p.s. with a high-speed
camera type PCO 1200hs equipped with a 50 mm Nikon lens.

For the experiments exploited in this paper, nine different nozzle diameters are used:
10, 20, 30, 38, 45, 84, 112, 118 and 138 mm. These diameters, together with the large
density deficit range covered by air–helium mixtures, allow us to produce fountains
with Froude numbers lying between 0.2 and 64 and Reynolds numbers lying between
120 and 3500. It should be noted that the (source) Reynolds number is defined by

Re= ρiwibi

µi
, (3.1)

where µi is the dynamic viscosity of the mixture. It should be noted that in our
experiments, the ratio between the dynamic viscosity of the released fluid and that
of the ambient air (i.e. µi/µair) lies between 1 and 1.12. According to this relatively
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constant ratio, it can be assumed that the entrainment process will not be affected by
the variation of the viscosity (see Campbell & Turner 1985).

To measure the mean fountain height Hm, recordings begin a while after the release
reaches its steady-state phase. At least 2600 successive frames are recorded for each
experiment in order to ensure statistical convergence of the measurements. The digital
images are post-processed following an approach similar to those used by Williamson
et al. (2008) and Burridge & Hunt (2012), which can be summarised as follows.

(1) Frames are read by using the software MATLABr and converted in terms of grey
level matrices. It should be noted that the values of the grey levels lie between
0 (black) and 255 (white).

(2) The matrices are then line-by-line averaged (i.e. horizontally averaged), producing
vertical vectors of grey levels.

(3) These vertical vectors are concatenated to produce an image corresponding to a
time series of rise heights for each fountain.

(4) The time evolution of the fountain height H(t), from which both the mean height
Hm and the fluctuations are measured, is extracted by using a light intensity
threshold delimiting the fountain (white) envelope and the (black) surrounding.

It should be noted that, in this method, distances are measured with an accuracy of
4 pixels, corresponding to an actual distance of 5 mm in physical space.

Results are presented and compared with the Boussinesq correlations in the next
section.

4. Observations and results

In this study 88 fountains have been investigated over the ranges 0.2 < Fr < 64,
120< Re< 3500 and 0.13<ρi/ρ0 < 0.96. These ranges allow us to cover transitional
turbulent fountains (weak and forced) and laminar transitional fountains (weak and
very weak). As expected, two different behaviours have been observed according to
the values of the Froude number and the Reynolds number.

(1) For Fr.1 and for a sufficiently small Reynolds number (typically Re.1000), the
fountain exhibits a stable aspect (see figure 3a). In this regime, a steady toroidal
recirculating cell surrounding the base of the up-flow of the fountain is observed.

(2) For Fr > 1 and for a sufficiently high Reynolds number (typically Re & 1000),
the fountain exhibits a turbulent aspect (see figure 3b). In these cases, vertical
oscillations of the fountain height around Hm are observed.

4.1. Fountain mean heights
We now focus on the influence of the density contrast (between the fountain and
the ambient) on the mean fountain height. Figure 4 shows the experimental results
together with the Boussinesq correlations (2.4), (2.5) and (2.6) corresponding to very
weak, weak and forced fountain regimes respectively. In addition, in this figure, the
data points are also shaded according to the value of the density ratio ρi/ρ0 (light
dots for weak density contrast and dark dots for strong density contrast). It is seen
that some points deviate markedly from the Boussinesq correlations, especially when
the density ratio ρi/ρ0 is small (i.e. large density contrast). This is particularly true
for forced fountains. This suggests non-Boussinesq effects.

To quantify these effects more precisely, let us first consider the experimental data
corresponding to forced fountains (Fr> 3). To do so, the ratio Hm/(2.46biFr) (bearing
in mind that 2.46biFr corresponds to the mean height in the Boussinesq case) is
plotted on a linear scale and on a log–log scale in figure 5 with respect to ρi/ρ0.
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FIGURE 4. Comparisons between the present experimental results for the mean height Hm
and the correlations by Burridge & Hunt (2012): solid line, Hm/bi = 2.46Fr; dashed line,
Hm/bi= 0.86Fr2; dash-dotted line, Hm/bi= 0.81Fr2/3. The experimental data points (◦) are
shaded according to the density ratio ρi/ρ0.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7
0.8
0.9
1.0
1.1

(a)

(b)

FIGURE 5. Determination from experimental data (◦) the corrective function associated
with the density ratio ρi/ρ0. The solid line represents the best fit, with a slope of 1/2, and
the dashed line, whose slope is 3/4, represents the solution derived from the Morton-like
model (see appendix A). The dash-dotted line corresponds to the Boussinesq case.

As the ratio Hm/(2.46biFr) is expected to be equal to 1 for Boussinesq fountains,
any deviation from unity therefore provides insight into the role of non-Boussinesq
effects. As expected, for weak density contrasts (i.e. ρi/ρ0 → 1), the experimental
results are close to unity. However, for greater density contrasts (thus increasing the
non-Boussinesq effects), the fountain reaches a mean height significantly weaker than
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that predicted by the Boussinesq correlation. In particular, the deviation of the ratio
Hm/(2.46biFr) from unity clearly depends on the value of ρi/ρ0. It turns out that the
data points (see figure 5b) are scattered about a straight best-fit line (solid line) whose
slope is close to 1/2. This best-fit relation reads as

Hm

2.46biFr
' 1.05

(
ρi

ρ0

)1/2

for
ρi

ρ0
< 0.8. (4.1)

This is one of the main results of the present experimental study.
It should be noted that the present experimental results are in qualitative agreement

with the recent experiments by Ahmad & Baddour (2015) carried out for upward
turbulent fountains. Indeed, for a fixed value of the Froude number, these authors have
shown that an increase of the density difference leads to a decrease of the fountain
height.

Such a behaviour of the fountain height with respect to the density ratio seems
to be not so obvious. In particular, it cannot be recovered by using a Morton-like
theoretical approach in which the entrainment coefficient is modified to account for
non-Boussinesq effects (as proposed by Ricou & Spalding (1961) or Rooney & Linden
(1996) for turbulent plumes). To show this more clearly, the conservation equations
applied to a rising fountain are solved in appendix A, leading us to a fountain height
corrected with a density ratio to the power of 3/4. The Morton-like solution, given
by (A 12), is then plotted in figure 5. It is seen that this approach overestimates
the density effects. However, it is important to mention that the theoretical model
presented in appendix A does not take into account the influence of the fountain
down-flow. This is a possible explanation for the differences observed.

For convenience, the dependence on ρi/ρ0 can be included in the definition of the
non-Boussinesq Froude number,

FrNB = Fr
(
ρi

ρ0

)1/2

= wi√
gbiη̄i

, where η̄i = ρ0 − ρi

ρi
, (4.2)

where the density difference η̄i is made dimensionless by using ρi instead of ρ0
(Boussinesq case). Introduction of such a non-Boussinesq Froude number indeed
allows the dependence on both the density ratio ρi/ρ0 and the Boussinesq source
Froude number Fr to be captured. In particular, (4.1) can be simply rewritten as
follows:

Hm

bi
' 2.58FrNB. (4.3)

It should be noted that to study turbulent plumes with large density contrasts, this
non-Boussinesq Froude number has already been used by several authors, such as, for
instance, Crapper & Baines (1978).

Relation (4.3) thus extends (2.6) to fountains with large density differences. In
addition, we have also verified that in this regime, the fountain height does not depend
on the source Reynolds number Re. Indeed, figure 6 shows the ratio Hm/(2.58biFrNB)

as a function of Re. We observe that all of the experimental points are close to
unity despite a weak scattering, not exceeding 10 % for the lowest Reynolds number
values. These results corroborate the findings of Philippe et al. (2005), who have
exhibited experimentally the independence of the mean fountain height Hm on the
source Reynolds number for Re> 200.
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FIGURE 6. Ratio between the dimensionless fountain height and its corresponding
correlation as a function of the source Reynolds number.
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FIGURE 7. Comparisons between the experimental results obtained for the fountain mean
height Hm and the following correlations: solid line, Hm/bi = 2.58FrNB; dashed line,
Hm/bi = 1.4Fr2

NB; dash-dotted line, Hm/bi = 1.1Fr2/3
NB . The data points (◦) are shaded

according to the density ratio ρi/ρ0.

We now propose to plot in figure 7, for all of the experiments (i.e. including
the very weak and weak regimes), the mean fountain height as a function of the
non-Boussinesq Froude number FrNB. As expected, we observe that the experimental
points in the forced regime align along the straight line corresponding to (4.3). It is
remarkable, however, that for very weak and weak fountains, the experimental points
also align with two straight lines (on a log–log scale) whose slopes are respectively
2/3 and 2. These two exponents are the same as those found by Burridge & Hunt
(2012) for Boussinesq fountains. This leads us to the conclusion that the classical
Boussinesq correlations concerning the mean fountain height can be straightforwardly
generalised to the non-Boussinesq case by using FrNB. These new correlations are
provided in table 1 with their specific ranges of validity given in terms of FrNB.

4.2. Fountain fluctuations
We now discuss the results concerning the fountain height fluctuations around Hm.
Indeed, in some cases, the fountain height fluctuates due to self-sustained instabilities
associated with the dynamics of the fountain collapsing on itself. For all experiments
in which the fountain fluctuates, we determine first the standard deviation δz and
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FIGURE 8. Variation of the standard deviation δz as a function of the non-Boussinesq
Froude number FrNB. The best-fit line (solid line) is given by (4.4). The experimental data
points (◦) are shaded according to the density ratio ρi/ρ0.

Regime FrNB Fountain mean height Hm/bi

Very weak fountains 0.1< FrNB < 0.8 1.1Fr2/3
NB

Weak fountains 0.8< FrNB < 2 1.4Fr2
NB

Forced fountains FrNB > 2 2.58FrNB

TABLE 1. Flow regime and the associated correlations for the mean fountain height as a
function of the non-Boussinesq Froude number.

second the emerging frequency f from a Fourier transform analysis of the fountain
height time signal H(t).

Figure 8 shows the standard deviation δz versus FrNB in the case of forced fountains.
The experimental data are best-fitted by the following linear relation:

δz
bi
' 0.18FrNB. (4.4)

Again, this relation straightforwardly extends the Boussinesq correlation found by
Burridge & Hunt (2012) (i.e. δz/bi ' 0.14Fr) by using the non-Boussinesq Froude
number.

To analyse the results concerning the emerging frequency f , let us reintroduce the
Strouhal number St based on the source radius and the source velocity,

St= fbi

wi
. (4.5)

Figure 9 shows that, in the case of highly forced fountains (FrNB� 1), the Strouhal
number is proportional to Fr−2

NB. This dependence is similar to that found by Clanet
(1998) (i.e. St= 0.66Fr−2

NB) for non-miscible fountains (water in ambient air) as well as
that found by Burridge & Hunt (2013) and Williamson et al. (2008) (i.e. St ∝ Fr−2)
for Boussinesq fountains (salt-water into fresh water).

To analyse this dependence, let us recall that usually the initial source momentum
Mi and the source buoyancy flux Bi are defined by

Mi = ρi

ρ0
w2

i b2
i and Bi = g(ρ0 − ρi)

ρ0
wib2

i . (4.6a,b)
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FIGURE 9. Variation of the Strouhal number St as a function of the non-Boussinesq
Froude number FrNB. The experimental data points (◦) are shaded according to the density
ratio ρi/ρ0.

According to the relation St∝ Fr−2
NB, it can be inferred that

1
f
∝ Mi

Bi
. (4.7)

As a result, this time scale is found to be independent of the radius of the fountain
source. This is a common feature of elongated fountains (i.e. Hm� bi), for which a
radius-independent ‘bobbing’ behaviour is observed (see Vinoth & Panigrahi 2014).

5. Conclusions

In this paper, downward non-Boussinesq fountains have been investigated exper-
imentally. To do so, air–helium mixtures have been released into the quiescent
ambient air, allowing us to cover wide ranges of variation of the source Froude
number, the source Reynolds number and the density ratio between the fountain and
the surroundings (i.e. ρi/ρ0).

The experimental results show that the (Boussinesq) classical relations concerning
the steady mean fountain height and the rhythm of fountain fluctuations can be readily
generalised to the non-Boussinesq case by using the non-Boussinesq source Froude
number (see (4.2)).

This result is not so obvious. In particular, it cannot be derived by using a
theoretical approach similar to that of Morton (1959) extended to the non-Boussinesq
case, that is by multiplying the entrainment coefficient by the square root of the
local density (see Ricou & Spalding 1961; Rooney & Linden 1996). Indeed, by
introducing such a modified entrainment coefficient in the turbulent fountain equations
(see appendix A), it turns out that the relation found reads as

Hm

2.46biFr
∝
(
ρi

ρ0

)3/4

, (5.1)

which is different in nature from (4.1). It can therefore be concluded that such
a theoretical approach overestimates the non-Boussinesq effects and, consequently,
underestimates the fountain mean height, at least for downward fountains.
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Experimental non-Boussinesq fountains

Appendix A

In this appendix, the height of a downward non-Boussinesq turbulent fountain is
derived theoretically by using an approach inspired by Morton (1959). This approach
is based on the conservation equations of volume, mass and momentum of the
fountain flow (before the formation of the return flow), which are given respectively
by

d(wb2)

dz
=2α

(
ρ

ρ0

)1/2

wb,
d(ρwb2)

dz
=2α

(
ρ

ρ0

)1/2

ρ0wb,
d(ρw2b2)

dz
=−g(ρ0−ρ)b2.

(A 1a−c)
Here, ρ0 and ρ are respectively the densities of the ambient and of the fountain, b is
the radius of the fountain, w is its vertical velocity, z is the vertical coordinate, the
axis of which is oriented downward, and α is the entrainment coefficient. It should be
noted that here the entrainment coefficient has been corrected with the square root of
the local density, as is usually done for non-Boussinesq plumes (see Ricou & Spalding
1961; Rooney & Linden 1996).

To solve these equations, we introduce the functions Γ and β, which are defined
as

Γ = 5g(ρ0 − ρ)β
8ραw2

, β = b
(
ρ

ρ0

)1/2

. (A 2a,b)

Derivation of these two functions with respect to the vertical coordinate leads us to

dΓ
dz
= 4αΓ

β
(Γ + 1),

dβ
dz
= 2α

(
1+ 2

5
Γ

)
. (A 3a,b)

By combining these two equations, we obtain the following differential equation:

dΓ
dz
= 4α
βi

Γ
1/2

i

(1+ Γi)3/10
Γ 1/2(Γ + 1)13/10, (A 4)

where βi and Γi are the values of β and Γ at the source (i.e. z= 0).
At the top of the fountain (z = Htr), we have w = 0 and Γ → ∞. These two

conditions allow the fountain height to be written in the following form:

Htr

βi
= (1+ Γi)

3/10

4αΓ 1/2
i

∫ ∞
Γi

Γ −1/2(Γ + 1)−13/10 dΓ. (A 5)

To approximate (A 5) in the case of forced fountains (i.e. Γi→ 0), the prefactor can
be expanded as

(1+ Γi)
3/10

4αΓ 1/2
i

= 1
4

1

αΓ
1/2

i

+ 3
40α

Γ
1/2

i +O(Γ 3/2
i ). (A 6)

The integral in (A 5) is then split as follows:∫ ∞
Γi

Γ −1/2(Γ + 1)−13/10 dΓ =
∫ ∞

0
Γ −1/2(Γ + 1)−13/10 dΓ

−
∫ Γi

0
Γ −1/2(Γ + 1)−13/10 dΓ. (A 7)
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The first integral on the right-hand side of (A 7) evaluates to∫ ∞
0
Γ −1/2(Γ + 1)−13/10 dΓ ≈ 2.3. (A 8)

Given that Γ < Γi � 1, the second integral on the right-hand side of (A 7) can be
approximated as∫ Γi

0
Γ −1/2(Γ + 1)−13/10 dΓ =

∫ Γi

0
Γ −1/2 dΓ − 13

10

∫ Γi

0
Γ 1/2 dΓ +O(Γ 5/2

i ), (A 9)

and we are led to∫ Γi

0
Γ −1/2(Γ + 1)−13/10 dΓ = 2Γ 1/2

i −
26
30
Γ

3/2
i +O(Γ 5/2

i ). (A 10)

By combining (A 6), (A 8) and (A 10), we obtain

lim
Γi→0

Htr

βi
= 0.575

αΓ
1/2

i

− 1
2α
+ 0.172

α
Γ

1/2
i +O(Γi). (A 11)

At leading order, the dimensionless fountain height finally reads as

Htr

bi
≈ 0.575

αΓ
1/2

i

(
ρi

ρ0

)1/2

≈ 0.727
α1/2

Fr
(
ρi

ρ0

)3/4

. (A 12)
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