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We study the propagation of a crack in critical equilibrium for a brittle material in a Mode III

field. The energy variations for small virtual extensions of the crack are handled in a novel way:

the amount of energy released is written as a functional over a family of univalent functions

on the upper half plane. Classical techniques developed in connection to the Bieberbach

Conjecture are used to quantify the energy-shape relationship. By means of a special family

of trial paths generated by the so-called Löwner equation we impose a stability condition on

the field which derives in a local crack propagation criterion. We called this the anti-symmetry

principle, being closely related to the well known symmetry principle for the in-plane fields.

1 Introduction

In the seminal work of Griffith [12], the problem of crack stability in a brittle material

was handled from first principles of mechanics and thermodynamics. The revolutionary

idea that he proposed was to apply an energy balance approach instead of the more

popular “stress threshold” criterion. Nevertheless, the question of crack evolution was not

studied by him, and a large amount of research has been carried out to understand this

phenomenon from the engineering, physical and, more recently, mathematical viewpoints

[2, 5, 7, 8, 10].

The well-posedness of the problem demands at least two scalar equations to find the

path of a crack in a two-dimensional setting. Griffith’s condition provides only one of

them, representing the balance between elastic energy released and crack surface energy

dissipated during tip advance. We recall here the asymptotic expansion of the near-tip

displacement for an antiplane field:

u(x1, x2) = k0 + k1r
1/2 sin(θ/2) + k2r cos(θ) + O

(
r3/2

)
r → 0. (1.1)

Here r, θ denote polar coordinates in the plane x1, x2 and we assume that the crack

occupies the half line (x1, 0) for x1 � 0 (see Freund [9] for details). The coefficient k1

here is, up to a multiplicative constant, the so-called stress intensity factor in Mode III,

denoted by KIII in the literature. Notice that expansion (1.1) may be carried out at any

stage of the propagation process after a suitable rotation and translation of the current

configuration, assuming that the portion of the crack path near the tip is fairly smooth.
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The local effect of the far applied loads and body geometry is contained in the factors ki.

In this way, a functional relationship involving the values of the ki’s is interpreted as a

crack propagation law, since it imposes a constraint in the way that boundary conditions,

crack configuration and near-tip field interact. In this context, Griffith’s condition for

crack advance may be recalled as follows:

k1 = material constant. (1.2)

If k1 does not reach the threshold value there is no possible crack advance. On the

other hand, when condition (1.2) is satisfied, the crack-body configuration is in a critical

equilibrium state.

The main purpose of this article is to derive a second explicit condition on the elastic

field around the tip to determine the path geometry as a free boundary problem. It turns

out that

k2 = 0, (1.3)

gives the additional constraint when a stability criterion is imposed for each configuration

of the crack. For the in-plane field (Modes I and II) there is a similar relationship known

as the symmetry principle [3, 10, 11, 18]. Nevertheless, the extension of this principle to

antiplane fields is not obvious.

A secondary but also important aim of this work is to show a remarkable relationship

between the stored elastic energy functional in a Mode III field and some classical

techniques in Complex Analysis connected to the Bieberbach Conjecture. Among other

things, we show that the elastic energy released while a small arbitrary extension of the

crack is created can be approximated by a functional defined on a compact set of univalent

functions on the upper half plane. This allows to apply Schiffer’s method of boundary

variation (cf. Courant [4, Appendix]) and Löwner evolutions of slit maps [6] to find

suitable trial paths. These tools were previously applied in the context of fluid mechanics

to other free boundary problems, in particular to study a slit-like morphology for Hele–

Shaw flow with suction in the absence of surface tension [13, 15]. The methods of Univalent

Functions for some free boundary problems in fluid mechanics were brought together more

recently in Vasil’ev [25], including the analysis of two-dimensional solidification/melting of

a nucleus in a forced flow. We briefly describe our basic ideas in the following paragraphs

and refer to Oleaga [21] for a discrete version of the model, where we also discuss other

approaches to this subject.

Without oversimplifying the vast literature on Linear Elastic Fracture Mechanics we can

state that the quasi-static propagation of a crack in a brittle material is performed under

the interaction of two physical processes, namely dissipation (irreversible crack surface

creation) and elastic deformation (reversible displacements). In this context, dissipation

is connected to the work done while breaking atomic bonds during crack advance and

it is proportional to the length of the path (see Griffith [12], a classical reference). The

elastic potential provides the energy that goes into dissipation during crack advance. Its

variations with respect to crack extension give birth to the related concept of Energy

Release Rate, sometimes called Crack Driving Force.

The dissipative force is similar in nature to classical “dry friction”. On the other hand,

the crack driving force may be interpreted as the “gradient” of a potential energy. An
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elementary example of this competition is provided by the rubbing of a material particle

against a surface in some force field which depends on the instantaneous position of the

particle. Even if this case does not take into account the “history of the motion” as we need

to do in the crack problem (i.e. the stored elastic energy depends on the whole crack-body

configuration), it captures the essential features of the interaction between a reversible

driving force and a dissipative force which acts at the tip of the crack during propagation.

In our simple setting we have that if δE (� 0) is the variation of potential energy and

δQ (� 0) is the corresponding amount of dissipation for an arbitrarily small virtual crack

extension, the condition of stable equilibrium for the crack configuration is given by the

following inequality:

−δE � δQ for all small enough virtual extensions. (1.4)

Notice that −δE := δW is the work of the generalized force coming from the potential E

and δQ := κδl, where κ � 0 is a material constant and δl is the length of the small crack

extension, is the amount of surface energy increment. A more familiar way of writing this

condition is δE + κδl � 0, which means that the total energy (elastic + surface) should

be non-negative while changing from an equilibrium position to a nearby configuration.

Strict inequality in (1.4) simply states that if we try to extend the crack a little bit from

a stable equilibrium position the amount of work provided by the elastic potential is

not enough to cover the dissipation produced by this virtual extensions. If this happens

for all small enough trial paths the crack should remain at rest. Condition (1.4) is called

“Fourier’s inequality” in Lanczos [16].

In the critical case in which the equality occurs for some trial path,

−δE = κδl, (1.5)

we can say that the crack grows quasistatically along a curve in which − δE
δl

is maximum.

This corresponds to the well known principle of maximum energy release rate.

The first qualitative conclusion from this formulation is that the shape of the crack

is moulded at each stage of propagation by the elastic field around the tip: there is no

global optimization function to find the crack configuration as in Francfort & Marigo [8].

In our setting we replace the trial crack shapes by a suitable family of conformal maps.

In this way the problem can be tackled using classical techniques of variational calculus

for univalent functions. The outcome is a pair of scalar equations (cf. (4.9) and (4.10))

expressing the compatibility of the field with the equilibrium condition of propagation

(1.4). As we will see later, condition (4.10) can be called an anti-symmetry principle due to

the local field properties it implies. To the author’s knowledge, this relationship was not

previously considered in the context of out-of-plane fields.

The article is organized as follows. In § 2 we describe the standard Mode III field

equations, the displacement-stress fields, their complex representation and the family of

slit maps generated by the crack extensions. This is a straightforward generalization of

a former article [21] to arbitrary trial paths. In § 3 we develope the main technical tools.

We introduce the energy functional over a suitable compact family of univalent maps.

An application of Schiffer’s technique of boundary variations gives a first clue about a

suitable selection of trial paths. In § 4 we introduce Löwner evolutions and, by means of
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some recent explicit results of Kager et al. [14], we construct explicit trial paths which

give the conditions for the quasistatic evolution of the crack. We conclude with some brief

comments about the propagation law obtained.

2 Basic facts

2.1 Antiplane fields

The Mode III or antiplane is the simplest of the two-dimensional elastic fields in which

the near tip displacement of a crack is resolved (for a general reference, see Unger [24]). It

is characterized by a single scalar function for the displacement field and two components

of stress. To fix ideas consider the initial crack configuration as a half line slit in the plane:

Γ0 := {(x, 0) : x � 0}.

The elastic body is modelled by the whole plane �2 with the slit Γ0 deleted. This setting

is typical for the computation of the asymptotic field in Mode III when the tip of the

crack is “far” from the boundary. The initial displacement field u0 is any real function

satisfying the following boundary value problem:

∆u0 = 0, x ∈ �2 \ Γ0, (2.1)

∂u0

∂n
(x) = 0, x ∈ Γ0, (2.2)

where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplace operator. The Neumann condition (2.2) arises from

the fact that there are no given normal tractions along the crack. Additionally, we require

the energy condition ∫
Br(0)\Γ0

|∇u0|2dx < ∞, ∀ r > 0, (2.3)

where Br(0) is the circle of radius r centred at the origin. Inequality (2.3) restricts the

behaviour of u0 in the vicinity of the crack tip and gives sense to the computation of the

energy variation for any crack extension.

We define the evolution of Γ0 by means of a piecewise smooth curve Γ such that

Γ0 ⊂ Γ .

The field u corresponding to the boundary given by the extended crack Γ will satisfy the

equilibrium equation (2.1), the Neumann condition (2.2) and the finite energy condition

(2.3) (with Γ0 replaced by Γ and Br(0) replaced by Br(tip(Γ ))). On the other hand, the

mapping u is unique once u0 and Γ are given after imposing a further condition at infinity,

which reads as

lim
x→∞

|u(x) − u0(x)| = 0 uniformly in x. (2.4)

The uniqueness of the field u is established by conformal mapping of the set �2 \Γ
into the upper half plane; using Schwarz reflection (applying Neumann homogeneous

condition) and concluding by a Liouville-type argument together with (2.4).

https://doi.org/10.1017/S0956792506006577 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006577


Univalent functions and quasistatic crack propagation 237

Figure 1. Variables involved in the energy increment formula.

It is to be noted that the energy functional

E(u) :=
1

2

∫
�2\Γ

|∇u|2 (2.5)

is not necessarily finite. In spite of this fact, the energy increment given by

∆E :=
1

2

∫
∆Γ

[u]
∂u0

∂n+
. (2.6)

is a finite quantity, where ∆Γ := Γ \Γ0, [u] := u+ − u− is the jump discontinuity of the

displacement field over ∆Γ , and the superscripts ± indicate the upper and lower limits

of the field on each face of ∆Γ . In addition, ∂
∂n+ is the normal derivative considering the

exterior normal to the upper face of the extended crack (see Figure 1). Notice that (2.6)

is valid for finite extensions and for arbitrary shapes of ∆Γ . It represents minus the work

done by elastic forces when we change the configuration from Γ0 to Γ . Notice that we

nondimensionalized the energy avoiding a material constant in its definition.

2.2 Complex representation and Slit Maps

We denote by � the set of complex numbers and by �̂ := � ∪ {∞} the extended complex

plane. � is the upper half plane Im z > 0, and �̂ := � ∪ � the closure of �.

Basic properties of harmonic functions provide the existence a complex function η,

analytic in � \ Γ , such that

Re η(ζ) = u. (2.7)

and, moreover,

η′(ζ) =
∂u

∂x1
− i

∂u

∂x2
, ζ = x1 + ix2. (2.8)

Assume now that ∆Γ is a Jordan arc (i.e. is the continuous image of a finite line interval).

By the Riemann Mapping Theorem we can send the set � \Γ onto the upper half plane

� in a one to one conformal correspondence. We will denote by f : z ∈ � 
→ ζ ∈ � \Γ
the inverse of one of this maps, which admits a continuous extension to the real axis by

Carathéodory’s Extension Theorem (see Duren [6, p. 12]). For Γ = Γ0 (∆Γ = ∅) we take

f(z) ≡ f0(z) := −z2. When Γ is strictly bigger than Γ0 (∆Γ � ∅) there exists a finite

closed interval I on the real line such that (cf. Figure 2):

f−1(∆Γ ) = I (2.9)
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Figure 2. The maps f0 and f.

Consider now the following function:

h(z) := η ◦ f(z), z ∈ �. (2.10)

We have that

h′(z) = η′(f(z)) f′(z) =

(
∂u

∂t
− i

∂u

∂n

)
|f′(z)|, (2.11)

where (t, n) represent the directions that are images through the map f of the axes (z1, z2)

on the ζ plane. In terms of the function h, the boundary conditions take the form

Im h′(z) = 0, for z ∈ �.

Applying Schwarz’s symmetry principle (cf. [20]) we can extend h′ (and therefore h)

analytically to the lower half plane by means of

h′(z) = h′(z̄). (2.12)

Condition (2.3) for u and Γ , rules out any singularity around the origin. Notice that

h0(z) := η0 ◦ f0(z). (2.13)

It is possible to write the energy increment given in (2.6) by means of an integral in the

complex plane. We can show that

∆E =
(i)

1

2

∫
I

Re h(x) Im(η0 ◦ f)′(x) dx =
(ii)

i

4

∫
C

h(z) (η0 ◦ f)′(z) dz, (2.14)

where C is a closed path surrounding the interval I defined in (2.9). Identity (i) above

is obtained with (2.6) after changing variables ζ = f(z) and taking (2.10) and (2.11) into

account. In identity (ii), we used basic properties of complex integration together with the

fact that h(x) is real over the real axis and η0 ◦f is real on �\ I . After integrating by parts

and taking into account that η0(ζ) = h0 ◦ f−1
0 (ζ) we obtain the following relationship:

∆E =
1

4i

∫
C

h′(z) h0(f
−1
0 ◦ f(z)) dz. (2.15)
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Figure 3. The map F .

By (2.12) h is analytic in � and admits an expansion in the variable z with real

coefficients:

h(z) =
∑
n=0

cn z
n, cn ∈ �. (2.16)

Therefore, the following relationship is valid in the original domain:

η(ζ) =
∑
n=0

cn (f−1(ζ))n, cn ∈ �, ζ ∈ � \ Γ . (2.17)

Taking the real part this expansion turns out to be

u(x1, x2) = Re

(∑
n=0

cn(f
−1(ζ))n

)
, x1 + ix2 = ζ (2.18)

Notice that the coefficients cn depend on the configuration of the crack Γ . In the case

f ≡ f0, after taking polar coordinates, we have that

u0(r cos θ, r sin θ) = Re

(∑
n=0

cn(
√

−ζ)n

)
= c0 − c1r

1/2 sin(θ/2) − c2r cos(θ) + . . . (2.19)

This is the same expansion as the one in (1.1) where k0 = c0, k1 = −c1, k2 = −c2, . . .

Our next purpose is to write the functional ∆E given in (2.15) in terms of the coefficients

cn and the mapping functions f0, f. To this end it is more convenient to consider the map

F(z) := f−1
0 ◦ f (z) =

√
−f(z), (2.20)

carrying � to the set � \ γ, where γ :=
√

−∆Γ is a finite Jordan arc lying in � with one

tip attached to the origin (see Figure 3).

The map F takes real values on � \ I and it can be extended to the whole plane minus

I by Schwarz reflection, i.e. F(z) = F(z̄). We can take the function f (after a suitable

change of scale in z) such that F admits an expansion of the form

F(z; γ) = z + b0(γ) +
b1(γ)

z
+ . . . |z| > Z, bi ∈ �, (2.21)

for some Z > 0. We recall that F should be the identity for Γ = Γ0 (i.e. when γ = ∅ and

I = ∅). Notice that the location of the interval I is somehow arbitrary, and therefore the
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mapping F is not uniquely defined for a given curve γ. We denote by cn(γ) the coefficients

appearing in (2.16) for ∆Γ � ∅ and simply cn when ∆Γ = ∅ (γ = ∅). We can then write,

using (2.16) and (2.20) inside (2.15), the following relationship:

∆E =
1

4i

∫
C

⎛⎝∑
j=1

j cj(γ)z
j−1

⎞⎠ (∑
k=0

ck(F(z; γ))k

)
dz. (2.22)

The functional ∆E depends on the initial field and on the curve γ which in turn defines

a conformal map F and an interval I (cf. Figure 3). The coefficients cn depend explicitly

on the shape of the growing crack. This dependence is shown in the following Proposition.

Proposition 1 The coefficients cn(γ) in (2.22) satisfy the following relationship:

cn(γ) =
1

2πi

∞∑
j=n

cj

∫
C

F(z; γ)j

zn+1
dz, (2.23)

where F := f−1
0 ◦ f is given in (2.21) and C is a closed curve surrounding the interval I of

Figure 3.

Proof The real function given by

v(x) := u(x) − u0(x)

is harmonic in � \ Γ . On the other hand, by the matching condition (2.4) it goes to zero

uniformly at infinity. By (2.2) it satisfies homogeneous Neumann boundary conditions on

Γ0 and

∂v

∂n
(x) = −∂u0

∂n
(x) x ∈ ∆Γ .

We have that: (a) v(f(z)) is harmonic in the upper half plane, (b) it goes to zero at infinity,

(c) satisfies homogeneous Neumann boundary conditions on � \ I and non homogeneous

Neumann conditions on I. By (c) it can be extended by symmetry to a harmonic function

in � \ I . Using the analytic completion of the Poisson formula for the upper half plane

we have that:

v(f(z)) = Re p(z),

where p is holomorphic in �̂ \ I (recall that �̂ := � ∪ {∞}) and it can be taken such that

p(∞) = 0. It therefore admits a Laurent expansion for |z| > R, where I ⊂ [−R,R], with

strictly negative powers of z. We have then:

h(z) = g(z) + p(z),

where g(z) := η0(f(z)) (cf. 2.10 and 2.13). As h is analytic in the whole �, we must have

that g(z) and p(z) share the negative powers in z (with coefficients of opposite sign) in

their respective Laurent expansions around z = 0. Therefore, if the curve C encloses z

and I , we must have that

h(z) =
1

2πi

∫
C

g(ζ)

ζ − z
dζ, (2.24)
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The function g(z) may be written as follows:

g(z) = η0(f(z)) = h0

(
f−1

0 ◦ f(z)
)

= h0(F(z; γ)).

We recall that the function F sends the upper half plane in a one to one way to the upper

half plane minus the set γ := f−1
0 (∆Γ ), taking real values on � \ I. Therefore, it can be

extended by symmetry to an analytic univalent function on �\I and admits an expansion

of the form (2.21). We use now the formula for the coefficients in a Laurent expansion

[20], taking into account the development of h0 given in (2.16) and (2.24), obtaining

cn(γ) =
1

2πi

∫
C

g(z)

zn+1
dz =

1

2πi

∫
C

h0(F(z; γ))

zn+1
dz =

1

2πi

∞∑
j=0

cj

∫
C

F(z; γ)j

zn+1
dz

We replace now F(z; γ) using (2.21)

cn(γ) =
1

2πi

∞∑
j=0

cj

∫
C

dz

zn+1

(
z +

∞∑
k=0

bk(γ)

zk

)j

.

We see at once that ∫
C

dz

zn+1

(
z +

∞∑
k=0

bk(γ)

zk

)j

= 0 for j < n,

and then we can write

cn(γ) =
1

2πi

∞∑
j=n

cj

∫
C

dz

zn+1

(
z +

∞∑
k=0

bk(γ)

zk

)j

,

which is (2.23). �

3 Univalent functions on �.

3.1 Motivation for this section

Fourier’s inequality (1.4) and the critical growth condition (1.5) imply that the crack will

try to find a compromise between a maximum amount of elastic energy released by the

body and a minimum of energy dissipated in the crack opening. In this Section we explore

the optimal shape for maximum energy released in a set of crack extensions of limited

size. In first place we consider the main term in the energy release expansion and later

we include the first two tems in (2.22). As we will see, it is possible to write the energy

released as a functional over the set of univalent functions on the upper half plane. In

the following Section we will use the optimal shape obtained as a “trial path” to obtain

explicit conditions for the field surrounding the free boundary.

3.2 A set of conformal maps as trial paths.

In § 2.2 we considered an initial crack Γ0 and its extension ∆Γ . In the new configuration

Γ := Γ0 ∪ ∆Γ we used a conformal map f (not unique) to pose the problem in the upper
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half plane �. With the help of classical properties of analytic functions and Neumann

boundary conditions, we defined a functional ∆E measuring the amount of energy released

by the appearance of ∆Γ (cf. 2.22). This approach is not yet complete for our purposes.

We want to determine an optimal ∆Γ but we still do not have a suitable set of curves in

which this shape can be found. Moreover, we did not define an appropriate topology on

the space of admissible paths; therefore the continuity of the functional ∆E is, right now,

an empty statement.

In this section we change the point of view: we will focus on the conformal maps

instead of the sets defining the crack extension. Taking the function f as above, we define

a map F :=
√

−f(z), with F : � 
→ �. There exists an interval I ⊂ � such that the

extension by symmetry of F has real values on �\I and F(I) = γ (cf. Figure 3). Instead of

focusing on the curve γ as a variable, we drive now our attention to a family of univalent

maps (cf. [6]) defined on the upper half plane � and taking values on �. A closer look

at the formulae for ∆E and cn in (2.22) and (2.23) reveals that the functional dependence

of ∆E on γ is explicit through the mapping F . The growing crack can be visualized

as the set of omitted values of this conformal map after a suitable transformation, i.e.

γ = O := � \F(�). Taking as a guide the properties of the functions already considered

in § 2.2, we will define a proper setting where we can look for the desired path. There are

two main assumptions that we must keep in mind.

In the first place we must find the more relevant terms in the released energy for small

extensions of the crack. We must then control the size of the set of omitted values. We

will see that, after a suitable normalization of the behaviour of the map F at infinity, the

size of O is controlled by the length of the interval I (cf. Figure 3). An easy way to guess

this relationship consists in applying the following change of scale to the map F:

F̃(z) = λF
(z

λ

)
.

If F corresponds to a single slit γ departing from the origin and is normalised as in (2.21)

it is easy to check that F̃ ∼ z as z → ∞, and corresponds to the slit λγ with an interval

λI. If we allow I to be unbounded then we can take λ > 0 as big as we want to produce

arbitrarily “big” cracks. Nevertheless, this is not the true physical constraint to the trial

paths since the correct way to control the energy dissipated is through the actual crack

length. We will temporarily use the size of I as an artificial constraint to guess the shape

of the optimal growing path. Later we will come back to this point through Löwner

evolutions.

In the second place, it is necessary to fix a full normalization for the maps F to obtain a

suitable expansion for the released energy. We must be sure that when we change the slit γ

the corresponding map measures the sets under the same scale. In order to have a unique

representation for each omitted set we choose the so-called hydrodynamic normalization

(see point 2 in Definition 2).

We are now in a position to define the family of transformations that describe the

admissible competitors for the optimal crack shape.

Definition 2 Given R > 0, let F R be the family of univalent functions F : � 
→ �
satisfying the following additional conditions:
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(1) F(x) ∈ � for x ∈ � such that |x| > 2R.

(2) F(∞) = ∞ with the following expansion

F(z) = z +
b1

z
+

b2

z2
. . . , |z| > 2R. (3.1)

It is possible to extend F by symmetry to � \ I . The resultant function is still univalued

on the points of analyticity being a sectionally analytic function (i.e. F is analytic out of

the interval I := [−2R, 2R]). In the following, we will identify F with its extension. Notice

also that in property 2 of Definition 2 we set b0 = 0 (cf. 2.21).

Proposition 3 FR is compact in the topology of uniform convergence of functions over

compact sets and the following bound is valid for the coefficients in expansion (3.1):

|bn| � n−1/2(2R)n+1, n = 1, 2, . . . (3.2)

Proof The bound (3.2) for n � 1 is a consequence of the classical Area Theorem (see

Duren [6, Corollary to Theorem 2.1, p. 326]). We must only take into account that F ,

extended to the lower half plane, is analytic on � \ I, and after property 1) in Definition 2

is univalent outside a disc of radius 2R.

We turn now to the compactness property. By Montel’s Theorem (cf. Schiff [23, p. 35])

we show first that FR is normal by proving that the family is locally bounded. Consider

the map

TR(w) := w +
R2

w
, (3.3)

which sends the exterior of the circle of radius R onto the complement of the slit [−2R, 2R].

We have that G(w) = F(TR(w)) is a univalent map defined on the complement of the disc

of radius R with the following expansion around infinity:

G(w) = w +
R2 + b1

w
+ O

(
1

w2

)
, |w| > R. (3.4)

By Lemma 5.1.3 in Schiff [23], the following growth condition is valid for G:

|G(w)| � 2|w| for |w| > R,

and the condition for F is given by the following inequality:

|F(z)| � 2|T−1
R (z)| for z ∈ � \ [−2R, 2R]. (3.5)

We conclude that the whole family is locally bounded and FR is normal on �\ [−2R, 2R]

by Montel’s theorem.

The compactness of FR follows from the following properties: (a) the fact that ana-

lyticity and univalence are preserved under uniform convergence over compact sets (see

Duren [6, p. 5]), together with the fact that the representation (3.1) precludes a constant

limit), and (b) that the properties (1) and (2) of Definition 2 are preserved in the limit.
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We will make further comments about this last statement. If Fn(z) ∈ � and Fn(z) → F(z)

for z ∈ �, then F(z) ∈ �: Assume that this is not the case; then there exists some z ∈ �
such that ImF(z) � 0. Due to the univalency of F, we must have that the image of a

small disc around z contains a disc around F(z) (open mapping theorem). Then there

must be some ẑ with Im ẑ > 0 such that ImF(ẑ) < 0, this contradicts the fact that F is

a uniform limit of functions Fn : � 
→ �. Property (1) is a consequence of the fact that

pointwise limit of real values is also real for x ∈ � \ I. Property (2) is a consequence of

Cauchy’s formula for the coefficients together with the property of uniform convergence

over compact sets. �

We have now all the ingredients to look for an optimal shape inside the compact family

FR.

3.3 The Energy functional

Let us recall the expression for the released energy in terms of the mapping function F.

We replace the dependence on γ in (2.22) by the map F:

∆E =
1

4i

∫
C

⎛⎝ ∞∑
j=1

j cj(F)zj−1

⎞⎠ ( ∞∑
k=0

ck F(z)k

)
dz. (3.6)

Our aim is to maximize −∆E for F in the normalized family FR . The integration path

should surround the interval [−2R, 2R]. Now we take into account the result of Proposi-

tion 1 together with the bounds for the bi’s (3.2) obtained in Proposition 3. We can write

cn(F) = cn + (n + 1)cn+1b0(F) + O(R2), R → 0

where cn ≡ cn(Id) refers (as before) to the coefficients of the displacement field when

F(z) = z (ie, no added crack). Therefore, it is possible to write the following expansion

for the energy released:

∆E =
1

4i

∫
C

(
c2
1F(z) + c1c2(F(z)2 + 2F(z)(z + b0(F)))

)
dz + O(R4)

=
π

2

(
c2
1b1(F) + 4c1c2(b0(F)b1(F) + b2(F))) + O(R4), R → 0.

The terms considered correspond to the index values (j, k) = (1, 1), (1, 2) and (2, 1) in

equation (2.22). By property (2) of Definition 2, we have that b0(F) ≡ 0. Then we will

take, as an approximation to the shape problem for R → 0+, the following energy

functional over the family FR:

E(F) :=
π

2

(
c2
1b1(F) + 4c1c2b2(F)

)
. (3.7)

Notice that c0 has no influence on the energy increment. The main contribution to E
as R → 0+ is given by the term involving the coefficient b1(F). This corresponds to the

so-called Energy Release Rate in Fracture Mechanics and will be considered in the first
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place. This term is of order R2 by (3.2). For maps F generating “kinks” we have that

R is of the order of
√
l, l being the length of the kink (cf. Oleaga [21]). In this case the

quantity limR→0+
c2
1

R2 b1(F) is related to the energy released per unit length of the growing

crack (leaving aside multiplicative constants).

3.4 The best shape for optimal energy release rate

Let us approximate the functional E in (3.7) neglecting the term 4c1c2b2(F) = O(R3)

(cf. (3.2)):

E(F) ≈ π

2
c2
1b1(F).

To maximize −E, we must find the mapping F ∈ FR that provides the minimum value

for the coefficient b1. This minimum is attained due to the compactness of FR and the

continuity of the functional:

b1(F), F ∈ FR.

To find the optimal F we make use of the elementary theory of univalent functions (cf. [6]).

Consider the map TR given in (3.3), the function G(w) = F(TR(w)) and its expansion at

w = ∞ given in (3.4). By an application of the Area Theorem to G(w) (in the same spirit

that for the bound (3.2)) we have that |R2 + b1| � R2, and the equality holds if and only

if G is given by (see Duren [6, Corollary to Theorem 2.1])

G(w) = w +
d1

w
, |d1| = R2.

Therefore, the minimum value of d1 corresponds to −R2, and then b1 = −2R2 should be

also a minimum. The composition with the map T−1
R ,

w = T−1
R (z) =

z +
√
z2 − 4R2

2
, (3.8)

sending the set � \ [−2R, 2R] on � \ (R�), gives the function F:

F(z) = G
(
T−1
R (z)

)
=

z +
√
z2 − 4R2

2
− 2R2

(z +
√
z2 − 4R2)

After some manipulation of this expression, we obtain that

F(z) =
√
z2 − 4R2 (3.9)

is the unique optimal map in FR . This corresponds to a straight vertical slit in the upper

half plane, from z = 0 to z = i2R. If we go back to the original domain through the map

z → −z2, we have that

z ∈ � 
→ f(z) = 4R2 − z2
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is the function defining the optimal shape of the crack for the simplified case at hand.

This corresponds to the horizontal segment [0, 4R2] in the domain of Γ0 (i.e. in the middle

of Figure 3) for z in the interval [−2R, 2R]. Thus, the straight line is preferred among a

very general family of competitors. In particular this shows that, in this context, the best

growing strategy is through a unique slit. In other words, it is energetically more efficient

to grow without bifurcation.

3.5 Schiffer’s variational method

We consider (3.7) in its full form:

E(F)=
π

2

(
c2
1b1(F) + 4c1c2b2(F)

)
The maximum of −E corresponds to the minimum of E with c1, c2 ∈ � given. This

is a linear function of the coefficients of the map F, which are themselves continuous

functionals on the compact family FR . Therefore, there exists at least one F ∈ FR

minimizing E. This kind of problem, arising in connection with the theory of univalent

functions, is closely connected to the mathematical tools developed for the proof of the

celebrated Bieberbach conjecture. One of the most powerful approaches is the so-called

Schiffer’s method of boundary variation (see, for example, his Appendix to Courant’s book

[4]). The basic idea is to perturb the extremal function by composing it with maps

univalent on its range which are close to the identity. Schiffer’s Theorem converts the

resulting collection of inequalities into the conclusion that the set omitted by an extremal

function is a system of analytic arcs which are trajectories of a certain quadratic differential

(see also Duren [6]).

Before applying Schiffer’s method we need to make some further comments. The

functional E in (3.7) is well defined for the bigger class of univalent maps that are

analytic outside the interval I . That is, the functional may be evaluated on maps that

are not symmetric with respect to the real axis. When F(z̄) = F(z), the bi ’s are real and

Re E(F) = E(F). Therefore, we will proceed to minimize the real part of E over the wider

set of univalent maps on � \ I satisfying the hydrodynamic normalization. Later on, we

will show that the minimizers belong in fact to FR . We follow essentially the book of

Duren [6] in our presentation.

Consider a univalent variation of F given by the map

χ(w) = w +
λr

w − w0
+ o(r2), r → 0+,

where w0 ∈ � belongs to the set of omitted values of F and λr satisfies

lim
r→0+

r−2|λr| > 0.

We now evaluate the real part of the functional E:

Re{E(χ ◦ F)} − Re{E(F)} = λr 


(
1

F − w0
;F

)
+ o(r2),
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where 
(·;F) is the Fréchet differential of Re{E} at F. Then we must have [6]

Re{λrs(w0) + o(r2)} � 0,

for all w0 in the omitted set, where

s(w0) := 


(
1

F − w0
;F

)
.

According to Schiffer’s Theorem this leads to the following quadratic differential for the

omitted set:

s(w(t))

(
dw

dt

)2

< 0.

To compute the trajectories, we must find the explicit expression for s. To this end we

analyze the changes in the coefficients b1 and b2 that take place when we perform the

variation

ε

F − w
, for |ε| � 1

We have that:

db1

dε
= 1,

db2

dε
= w.

Thus




(
1

F − w
;F

)
=

π

2

(
c2
1 + 4c1c2w

)
.

The quadratic differential is given now explicitly by the expression

(
c2
1 + 4c1c2w

)(
dw

dt

)2

< 0.

Or in other terms (selecting a suitable parameterization),√
c2
1 + 4c1c2w

dw

dt
= i. (3.10)

Notice that if we impose c2 = 0 (as in the previous case), then (3.10) turns out to be

|c1|dw
dt

= i, (3.11)

This is the equation for straight vertical trajectories. For w(0) = 0 it gives w(t) = ti/|c1|,
and we recover the previous result.

We proceed to integrate (3.10) assuming that c1c2 � 0:

d

dt

(
c2
1 + 4c1c2w

)3/2
= 6c1c2i,
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gives (
c2
1 + 4c1c2w

)3/2
= 6c1c2it + k, (3.12)

where k is an integration constant that may depend on R. If we assume that the optimal

path will grow starting from the origin we must have that

k = |c1|3. (3.13)

It is not obvious how to justify this assumption within this mathematical context, but

we can give several ad-hoc arguments in favor of (3.13). One of them is that the crack

cannot initiate away from the origin because there is no other singularity on the elastic

field. With no singularity there is no possible driving force to produce a crack extension.

Another kind of argument may be called a “continuity argument” and it is as follows:

the optimal crack extension should approach the correct shape (3.11) in the limit c2 → 0.

Under this assumption we can easily obtain the value of k. Let us write (3.12) in the

following way:

w(t) =
(6c1c2it + k)2/3 − c2

1

4c1c2
(3.14)

To have a well defined limit path we must cancel the numerator for c2 = 0. This gives

k2/3 = c2
1 and then k = |c1|3 as in (3.13). With this value of k we can now take the limit

in (3.14) for c2 → 0:

w(t) = lim
c2→0

(6c1c2it + |c1|3)2/3 − c2
1

4c1c2
=

2

3

6c1it(|c1|3)−1/3

4c1
=

it

|c1| ,

being the same as the one predicted for c2 = 0 in (3.11).

Notice that the omitted set

w(t) =
(6c1c2it + |c1|3)2/3 − c2

1

4c1c2
,

parameterized by t, is symmetric with respect to the real axis. Therefore we can find an

optimal F satisfying the condition of symmetry (1) and the hydrodynamic expansion (2)

in Definition 2. Applying the map w → −w2 we are able to obtain the shape of the

starting crack in the original domain. Taking a Taylor expansion of −w(t)2 with respect

to t around t = 0, we have that

−
(

(6c1c2it + |c1|3)2/3 − c2
1

4c1c2

)2

=
t2

c2
1

− 2i
c2

c1

t3

|c1|3 + O(t4),

which gives the following shape for the starting crack:

x1 ≈ t2

c2
1

⇒ √
x1 ≈ t

|c1| , x2 ≈ −2
c2

c1
x

3/2
1 . (3.15)

The result given by (3.15) is the same qualitative behaviour that the one obtained for a

limit of straight kinks of vanishing lengths in Oleaga [21]. It shows how the shape of the
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growing crack depends on the local field and deviates from the straight line following

the path which releases the maximum amount of energy. In spite of that, (3.15) may

not be correct from the physical point of view. Inside the family FR we are considering

crack extensions of different lengths, which means that they involve a different amount of

energy dissipated. Therefore, the shape given by this optimal path is somehow artificial

because it is not taking into account the full physical picture.

In the following section we will consider as trial paths the family of shapes given by:

x2 = c x
3/2
1 , (3.16)

with the complete energy and dissipation terms. This will be carried easily with the help

of the Löwner approach for univalent maps, and some available explicit solutions.

4 Löwner evolutions

The results of the previous section show that, among all the shapes contained in the

family FR, the one optimizing the energy release rate is given by a straight vertical slit

(cf. § 3.4) starting from the origin. When we considered the full energy functional (3.7),

Schiffer’s method suggested the path (3.16) as the best strategy, but we needed some

ad-hoc assumptions to justify this result.

In this section we will take (3.16) as a family of trial paths, but taking into account

the full physical picture, i.e. with the dissipation term, following Fourier’s inequality (1.4).

For that purpose we will take advantage of some recent explicit solutions to the so-called

Löwner equation [14]. We begin with a short exposition of the Löwner approach following

Lawler [17], and we suggest the reading of the Introduction in Kager et al. [14] for a

quick excursion into the subject.

Consider again Figure 3 with the map F normalized as in (2) of Definition 2 and the

interval I such that F(I) = ∆Γ . Now let us assume that ∆Γ is parameterized in a one to

one way by γ : 0 � t � T 
→ �. We denote the evolution of the tip as γ(t) and the whole

set of the crack extension up to time t by γ[0, t]. We will impose that all the trial slits

depart from the origin, i.e. γ(0) = 0. The parameter t may be selected in such a way that

the coefficient b1(t) for each normalized map Ft : � 
→ �\γ[0, t] is −2t:

Ft(z) = z − 2t

z
+

b2(t)

z2
+ O(1/z3). (4.1)

We define ξt as F−1
t (γ(t)). Notice that ξt ∈ �. Under this conditions it can be shown

(cf. Lawler [17]) that Ft satisfies the following differential equation, known as the chordal

Löwner equation:

∂tFt(z) = −2∂zFt(z)

z − ξt
, F0(z) = z. (4.2)

Conversely, given a function ξt (also called driving force in the mathematical literature!)

which is Hölder continous with exponent 1/2 and small norm, equation (4.2) generates

slit maps Ft (see Marshall & Rohde [19]).
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4.1 Constant forcing

We start with an interpretation of the result in § 3.4 in terms of the Löwner equation. In

that case we had to minimize the coefficient b1 of the map F. In terms of (4.1) this means

that we have to choose the function ξt in (4.2) in such a way that t is as big as possible,

with the additional constraint that the interval It = F−1
t (γ[0, t]) should be contained in

[−2R, 2R]. The unique solution given there corresponds to the constant driving force

ξt ≡ 0. Equation (4.1) turns out to be

∂tFt(z) +
2∂zFt(z)

z
= 0, F0(z) = z.

Along the characteristics we must have that

z′ =
2

z
⇒ z2

2
− z2

0

2
= 2t.

Finally

Ft(z) = F0(z0) ≡ z0 =
√
z2 − 4t.

The interval I is given by [−2
√
t, 2

√
t] and then tmax = R2. We have that

Ftmax
(z) ≡ F(z) =

√
z2 − 4R2,

giving the same result as (3.9).

We can now write the energy balance between the Elastic and Dissipation terms

following Fourier’s inequality (1.4) during critical growth (1.5). The term corresponding

to elastic potential energy is given by

δE =
π

2
c2
1b1(Ft) + o(t) = −π

2
c2
1 2t + o(t).

The dissipation is proportional to the length of a straight segment in the true physical

plane. The tip moves there following the segment:

x1(t) + i x2(t) = −(2i
√
t)2 = 4t.

The dissipation is then written as

δQ = 4κt,

where κ is the amount of work per unit length needed to open the crack (see the

Introduction). Compatibility in the critical state gives

−δE = δQ for t → 0+ ⇒ πc2
1 = 4κ.

Then, we can say that

|c1| =

√
4κ

π
(4.3)
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gives the condition for critical equilibrium and Fourier’s inequality provides the fact that

the crack will grow in the same direction as the one of the initial configuration. This was

already obtained in Oleaga [21] under a more restrictive set of trial paths. As we mentioned

there, this is not enough to find the crack evolution shape, since any smooth curve for

a strong enough initial field will satisfy this conditions. To find more information we

will make use of the full energy functional (3.7) and the intuition obtained through the

non-physical optimal problems.

4.2 Linear forcing and anti-symmetry principle

Let us consider now the case of a slit evolution with linear driving force:

ξt = λt.

The Löwner equation (4.2) is then

∂tFt(z) = −2∂zFt(z)

z − λt
, F0(z) = z. (4.4)

In Kager et al. [14], equation (4.4) is solved explicitly and it is easy to show that the

asymptotic behaviour of the tip in the physical plane is given by

y = −λ

3
x3/2 + o

(
x3/2

)
.

This is the same qualitative behaviour as the one obtained in (3.16) through Schiffer’s

method and is the one predicted in Oleaga [21] for a limit of little kinks. Our next step

is to write the energy expansion in terms of t, and show the explicit dependence of the

terms on λ.

We start with the the energy functional (3.7). We must compute the coefficients b1(t)

and b2(t) generated by (4.4). Writing for Ft:

Ft = z +
b1(t)

z
+

b2(t)

z2
+ . . . |z| > Z,

for some Z > 0. We have that

∂tFt =
b′

1(t)

z
+

b′
2(t)

z2
+ . . . ,

∂zFt(z) = 1 − b1(t)

z2
− 2

b2(t)

z3
+ . . . .

Using (4.4) we obtain

b′
1(t)

z
+

b′
2(t)

z2
+ O(z−3) = − 2

z − λt

(
1 − b1(t)

z2
− 2

b2(t)

z3
+ O(z−4)

)
= −2

z
− 2λt

z2
+ O(z−3),
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and therefore

b′
1(t) = −2 b1(0) = 0,

b′
2(t) = −2λt b2(0) = 0.

This gives the unique solutions

b1(t) = −2t, b2(t) = −λt2.

An extension evolving up to “time” t will release an amount of energy (cf. 3.7) given by

δE =
π

2

(
c2
1b1(Ft) + 4c1c2b2(Ft)

)
+ O(t3)

= −πc2
1t − 2πλ c1c2 t

2 + O(t3).

For the dissipation term we must know the evolution of the length in the true physical

plane. Let us call Fλ,t(z) the solution of (4.4) for a given value of λ. It is easy to show that

we can obtain every solution from F1,t by means of a change of scale:

Fλ,t(z) =
1

λ
F1,λ2t(λz).

Notice that the factor 1
λ

is needed to fit the hydrodynamic normalization. It can also be

shown that the trace of singularities γλ,t satisfies the following scaling:

γλ,t =

{
1
λ
γ1,λ2t λ > 0,

1
λ
γ1,λ2t λ < 0.

(4.5)

On the other hand, the explicit computations done in Kager ett al. [14] provide the

behaviour of γ1,t for t → 0:

γ1,t = 2it1/2 +
2

3
t − i

18
t3/2 + O(t2).

Taking into account the scaling (4.5) of γλ,t we have that

γλ,t = 2i t1/2 +
2

3
λt − i

18
λ2t3/2 + O(t2).

The trial path in the physical plane is given by

−(γλ,t)
2 = 4t − 8

3
iλt

3
2 − 2

3
λ2t2 + O

(
t5/2

)
.

We compute the tangent to this curve

4 − 4iλt1/2 − 4

3
λ2t + O

(
t3/2

)
,
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and the length of the crack extension is given by the expression

l(t) = 4

∫ t

0

√(
1 − λ2

3
τ

)2

+ λ2τ + O(τ2) dτ = 4t +
2λ2

3
t2 + O(t3).

We gather the last computations in the following equation:

−δE − δQ = (πc2
1 − 4κ)t +

(
2πλ c1c2 − 2κλ2

3

)
t2 + O(t3) (4.6)

The term of order t cancels out due to the critical condition |c1| =
√

4κ
π

in (4.3). In

order to satisfy the quasistatic growth condition (1.4) we need the term of order t2 to be

non-positive. We compute the maximum with respect to the parameter λ. We obtain

d

dλ

(
2πλc1c2 − 2κλ2

3

)
= 0,

and then

λ =
3πc1c2

2κ
. (4.7)

Minus the energy increment for this value of λ is

− (δE + δQ) =
3

2

π2

κ
c2
1c

2
2 t

2 + O(t3) > 0 for t → 0.

This means that: if |c1| =
√

4κ
π

and c2 � 0, there exists a trial path violating the quasi-

static growth condition (1.4). In other words, there is an instability of second order

in the expansion of δE + δQ (the total energy increment) which allows the energy to

go downhill, breaking the equilibrium process. The only way to avoid such a singular

behaviour, incompatible with our quasi-static assumption, is a new claim on the local

field, that we might call the anti-symmetry principle:

c2 = 0 for a stable equilibrium configuration.

As we already mentioned, this condition is quite similar in nature to the so-called symmetry

principle for modes I and II of propagation. In that case, the absence of a KII component

implies a completely symmetric field with respect to the crack line. In our case, let us

recall the asymptotic expansion around the tip for a fairly smooth portion of the crack

near the tip (cf. (1.1) and (2.19)):

u(r, θ) = k0 + k1 r
1/2 sin(θ/2) + k2 r cos(θ) + . . . (4.8)

The absence of the k2 = −c2 term implies that the first two contributions after the constant

k0 generate anti-symmetric displacement fields with respect to the plane containing the

crack (x2 ≡ 0). In other words, the crack should evolve avoiding a symmetric contribution

of the field along the line of propagation.
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Summing up, the detailed study of the energy landscape variations for different trial

paths shows that the two scalar conditions for quasistatic crack propagation in Mode III

are given by

k2
1 =

4κ

π
critical growth, (4.9)

k2 = 0 quasistatic compatibility, (4.10)

where k1 and k2 are obtained in the typical expansion of the displacement around the tip

for an out of plane field (1.1).

5 Concluding remarks

Löwner evolutions provide a suitable family of trial paths to characterize the shape of a

crack in quasistatic propagation. The linear driving force show the correct scale to manage

the energy released and the dissipation in accordance to Fourier’s inequality (1.4).

Condition (4.9) is typical in Linear Elastic Fracture Mechanics. It represents the balance

of generalized (or so-called configurational) forces in the direction of propagation. On the

other hand, condition (4.10) is more subtle and it is not obtained by first order variations

of the energy. The vanishing of the coefficient k2 is a free boundary law that penalizes the

presence of an instability of second order in the energy landscape around an equilibrium

point. It provides a second scalar equation for crack path.

The crack propagation law depends on the coefficients of the asymptotic expansion of

the field around the tip. This means that the conditions on the crack path are local. Of

course k1 and k2 depend on the far body-load configuration, but the shape of the crack

path will be affected only through the value of the coefficients defining the local field. In

other words, any change in the far conditions giving the same values of k1 and k2 will

not affect the behaviour of the path. Notice that no global optimal energy criterion is

required: the condition of criticality and second order stability are the main ingredients

in this physical picture.
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