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Abstract

We study lower bounds of a general family of L-functions on the 1-line. More precisely, we show that

for any F(s) in this family, there exist arbitrarily large t such that F(1 + it) ≥ eγF (log2 t + log3 t)m
+ O(1),

where m is the order of the pole of F(s) at s = 1. This is a generalisation of the result of Aistleitner,

Munsch and Mahatab [‘Extreme values of the Riemann zeta function on the 1-line’, Int. Math. Res. Not.

IMRN 2019(22) (2019), 6924–6932]. As a consequence, we get lower bounds for large values of Dedekind

zeta-functions and Rankin-Selberg L-functions of the type L(s, f × f ) on the 1-line.

2020 Mathematics subject classification: primary 11M41; secondary 11R42.

Keywords and phrases: Dedekind zeta function, values on the 1-line.

1. Introduction

The growth of the Riemann zeta-function ζ(s) in the critical strip 1/2 < ℜ(s) < 1

has been of interest to number theorists for a long time. The upper bound predicted

by the Lindelöf hypothesis is |ζ(σ + it)| ≪ |t|ǫ for any ǫ > 0 and 1/2 < σ < 1. This

is a consequence of the Riemann hypothesis. Although there is significant progress

towards this bound, no unconditional proof is known (see [22] for more details).

A more intricate question is to investigate how large |ζ(σ + it)| can be for a fixed

σ ∈ [1/2, 1) and t ∈ [T , T + H]. Balasubramanian and Ramachandra [7] showed that

max
t∈[T ,T+H]

∣
∣
∣
∣
∣
ζ

(
1

2
+ it

)∣∣
∣
∣
∣
≥ exp

(

c

√

log H

log2 H

)

,

where c is a positive constant, H ≪ log2 T and log2 T denotes log log T . We denote

log log . . . log T
︸             ︷︷             ︸

k times

by logk T . This result was improved by Bondarenko and Seip [9] in a

larger interval and later optimised by de la Bretèche and Tenenbaum [10], who showed

that
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max
t∈[0,T]

∣
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≥ exp

(

(√
2 + o(1)

)

√

log T log3 T

log2 T

)

.

For σ ∈ (1/2, 1) and cσ = 0.18(2σ − 1)1−σ, Aistleitner [1] proved that

max
t∈(0,T]

|ζ(σ + it)| ≥ exp

(
cσ(log T)1−σ

(log2 T)σ

)

.

On the other hand, we expect much finer results for large values of L-functions

on ℜ(s) = 1. In [12], Granville and Soundararajan used techniques of diophantine

approximation to show that

max
t∈[0,T]

|ζ(1 + it)| ≥ eγ(log2 T + log3 T − log4 T + O(1))

for arbitrarily large T. This is an improvement on the previous bounds given by

Levinson [14]. Granville and Soundararajan [12] conjectured that

max
t∈[T ,2T]

|ζ(1 + it)| = eγ(log2 T + log3 T + C1 + o(1)), (1.1)

where C1 is an explicitly computable constant. In 2017, Aistleitner, Munsch and the

second author [2] used the resonance method to prove that there is a constant C such

that

max
t∈[
√

T ,T]

|ζ(1 + it)| ≥ eγ(log2 T + log3 T + C). (1.2)

This result essentially matches (1.1), but the size of the interval is much larger. Over

shorter intervals [T , T + H], very little seems to be known regarding large values of

ζ(1 + it) (see [5], [6] for further details).

In this paper, we generalise (1.2) to a large class G of L-functions, which

conjecturally contains the Selberg class S. We establish (1.2) for elements in G

with nonnegative Dirichlet coefficients. The key difference between G and S is that

elements in G satisfy a polynomial Euler-product which is a more restrictive condition

than that in S. However, the functional equation in S is replaced by a weaker ‘growth

condition’ inG. This is a significant generalisation because most Euler products, which

have an analytic continuation exhibit a growth condition, but perhaps not a functional

equation. As applications, we prove the analogue of (1.2) for Dedekind zeta-functions

ζK(s) and Rankin-Selberg L-functions given by L(s, f × f ). We also prove a generalised

Mertens theorem for G as a precursor to the proof of our main theorem.

The resonance method with a similar resonator was used by Aistleitner, Munsch,

Peyrot and the second author [3] to establish large values of Dirichlet L-functions

L(s, χ) with a given conductor q at s = 1. Perhaps, a similar method can also be used

to establish large values over more general orthogonal families of L-functions in G.

1.1. The class G. In 1991, Selberg [20] introduced a class of L-functions S, which

is expected to encapsulate all naturally occurring L-functions arising from arithmetic

and geometry.
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DEFINITION 1.1 (The Selberg class). The Selberg class S consists of meromorphic

functions F(s) satisfying the following properties.

(i) Dirichlet series. The Dirichlet series

F(s) =

∞∑

n=1

aF(n)

ns

is absolutely convergent in the region ℜ(s) > 1. We normalise the leading

coefficient by aF(1) = 1.

(ii) Analytic continuation. There exists a nonnegative integer k, such that the

function (s − 1)kF(s) is an entire function of finite order.

(iii) Functional equation. There exist real numbers Q > 0 and αi ≥ 0, complex

numbers βi and w ∈ C, withℜ(βi) ≥ 0 and |w| = 1, such that

Φ(s) := Qs
∏

i

Γ(αis + βi)F(s) (1.3)

satisfies the functional equation Φ(s) = wΦ(1 − s).

(iv) Euler product. There is an Euler product of the form

F(s) =
∏

p prime

Fp(s), (1.4)

where

log Fp(s) =

∞∑

k=1

bpk

pks

with bpk = O(pkθ) for some θ < 1/2.

(v) Ramanujan hypothesis. For any ǫ > 0,

|aF(n)| = Oǫ(n
ǫ). (1.5)

The Euler product implies that the coefficients aF(n) are multiplicative, that

is, aF(mn) = aF(m)aF(n) when (m, n) = 1. Moreover, each Euler factor also has a

Dirichlet series representation

Fp(s) =

∞∑

k=0

aF(pk)

pks
,

which is absolutely convergent onℜ(s) > 0 and nonvanishing onℜ(s) > θ, where θ is

as in (iv).

For the purpose of this paper, we need a stronger Euler product to ensure that the

Euler factors factorise completely. We also require a zero free region near the 1-line,

similar to that in the proof of prime number theorem. However, we can replace the

functional equation with a weaker condition on the growth of L-functions on vertical

lines. This leads to the definition of the class G.
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DEFINITION 1.2 (The class G). The class G consists of meromorphic functions F(s)

satisfying (i) and (ii) in Definition 1.1 and the following properties.

(a) Complete Euler product decomposition. The Euler product in (1.4) factorises

completely, that is,

F(s) :=
∏

p

k∏

j=1

(

1 −
αj(p)

ps

)−1

(1.6)

with |αj| ≤ 1 andℜ(s) > 1.

(b) Zero-free region. There exists a positive constant cF, depending on F, such that

F(s) has no zeros in the region

ℜ(s) ≥ 1 − cF

log(|ℑ(s)| + 2)
,

except the possible Siegel zero of F(s), that is, the possible real exceptional zero

of F(s) in the neighbourhood of 1 which is the only zero of F(s) in the interval

(1 − ǫ, 1).

(c) Growth condition, For s = σ + it, define

µ∗F(σ) := inf{λ > 0 : |F(s)| ≪ (|t| + 2)λ}.
Then,

µ∗
F
(σ)

1 − 2σ

is bounded for σ < 0.

One expects S to satisfy conditions (a) and (b). In fact, the Riemann zeta-function,

the Dirichlet L-functions, the Dedekind zeta-functions and the Rankin-Selberg

L-functions can all be shown to satisfy (a) and (b). Furthermore, for elements in

S the growth condition (c) is a consequence of the functional equation (1.3). However,

it is possible to have L-functions which satisfy the growth condition but do not obey a

functional equation. One can consider linear combination of elements in S to see this.

A family of L-functions based on a growth condition was introduced by V. K. Murty

in [17] (see [11] for more details). The Igusa zeta-function, and the zeta function of

groups have Euler products but may not have a functional equation (see [19]).

1.2. The main theorem. We prove a lower bound for large values of L-functions in

G on the 1-line. For a meromorphic function F(s) having a pole of order m at s = 1,

define

c−m(F) = lim
s→1

(s − 1)mF(s). (1.7)

THEOREM 1.3. Let F ∈ G have nonnegative Dirichlet coefficients aF(n) and a pole of

order m at s = 1. Then, there exists a constant CF > 0 depending on F(s) such that

max
t∈[
√

T ,T]

|F(1 + it)| ≥ eγF ((log2 T + log3 T)m − CF),

where γF = mγ + log c−m(F) and γ is the Euler-Mascheroni constant.
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Here, since aF(n) ≥ 0, we clearly have m ≥ 1. This is important because if F has no

pole at s = 1, it is possible for F(s) to grow very slowly on the 1-line.

As an immediate corollary, we get the following result for Dedekind zeta-functions

ζK(s). Let K/Q be a number field. The Dedekind zeta-function ζK(s) is defined on

ℜ(s) > 1 by

ζK(s) :=
∑

0,a⊆OK

1

(Na)s
=

∏

p

(

1 − 1

(Np)s

)−1

,

where a runs over all nonzero integral ideals and p runs over all nonzero prime ideals

of K. The function ζK(s) has an analytic continuation to the complex plane except for a

simple pole at s = 1. Furthermore, ζK satisfies properties (a), (b) and (c) and therefore

ζK ∈ G.

COROLLARY 1.4. For a number field K, there exists a constant CK > 0 depending on

K such that

max
t∈[
√

T ,T]

|ζK(1 + it)| ≥ eγK (log2 T + log3 T − CK),

where γK = γ + log ρK , with ρK being the residue of ζK(s) at s = 1.

The L-function associated to the Rankin-Selberg convolution of any two holomor-

phic newforms f and g, denoted by L(s, f × g), is in the Selberg class and it can also be

shown that L(s, f × g) ∈ G. Here f and g are normalised Hecke eigenforms of weight

k. It is known that if L(s, f × g) has a pole at s = 1, then f = g.

COROLLARY 1.5. For a normalised Hecke eigenform f, there exists a constant C f > 0

such that

max
t∈[
√

T ,T]

|L(1 + it, f × f )| ≥ eγ f (log2 T + log3 T − C f ),

where γ f = γ + log ρ f , with ρ f being the residue of L(s, f × f ) at s = 1.

Theorem 1.3 is a refined version of the bound established by Aistleitner–Pańkowski

[4], which states that if F(s) is in the Selberg class and satisfies the prime number

theorem, that is,
∑

p≤x

|aF(p)| = κ x

log x
+ O

(
x

log2 x

)

,

then for large T,

max
t∈[T ,2T]

|F(1 + it)| = Ω((log log T)κ). (1.8)

Since we are assuming the zero-free region in G, using [13, Theorem 1], we have

κ = m. Hence, we get a slightly more refined result than (1.8), but on a larger interval

[
√

T , T].

The poles of any element F in the Selberg class S are expected to arise from the

Riemann zeta-function. More precisely, if F(s) has a pole of order m at s = 1, then

F(s)/ζ(s)m is expected to be entire and in S. Thus, it is not surprising to expect the

lower bound in Theorem 1.3 to be of the order (log log T)m.
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It is possible to generalise Theorem 1.3 to the Beurling zeta-function [8] by

constructing a suitable resonator over Beurling numbers instead of integers. We plan

to return to this in future research.

2. Mertens’ theorem for the class G

In 1874, Mertens [15] proved the following estimate for the truncated Euler-product

of ζ(s), also known as Mertens’ third theorem:

∏

p≤x

(

1 − 1

p

)−1

= eγ log x + O(1).

The analogue of Mertens’ theorem for number fields was proved by Rosen [18]:

∏

NP<x

(

1 − 1

NP

)−1

= ρKeγ log x + O(1),

where ρK denotes the residue of ζK(s) at s = 1. Mertens’ theorem for the extended

Selberg class satisfying conditions (a) and (b) was proved by Yashiro [23] in 2013.

Following a similar approach, one can establish Mertens’ theorem for G.

THEOREM 2.1. Let F(s) ∈ G. Suppose that F(s) has a pole of order m at s = 1 and let

c−m(F) be as in (1.7). Then, for a constant CF with 0 < CF ≤ 1,

∏

p≤x

k∏

j=1

(

1 −
αj(p)

p

)−1

= c−m(F)eγm(log x)m(1 + O(e−CF

√
log x)).

PROOF. We follow closely the method of Yashiro [23]. Let

F(1; x) :=
∏

p≤x

k∏

j=1

(

1 −
αj(p)

p

)−1

and log F(s) =

∞∑

n=1

bF(n)

ns
.

By the complete Euler product (1.6), bF(n) = 0 if n , pr and bF(n) ≪ nθ for some

θ < 1/2. Since

bF(pr) =
1

r

k∑

j=1

αj(p)r,

we have |bF(pr)| ≤ k. Write

log F(1; x) =
∑

p≤x

∞∑

r=1

bF(pr)

pr
=

∑

n≤x

bF(n)

n
+

∑

√
x<p≤x

∑

pr>x

bF(pr)

pr
+

∑

p≤√x

∑

pr>x

bF(pr)

pr
.

(2.1)

It is easy to estimate the second and third terms above as follows:

∑

√
x<p≤x

∑

pr>x

bF(pr)

pr
≪

∑

√
x<p≤x

∞∑

r=2

1

pr
≪

∑

√
x<p≤x

1

p2
≪ 1√

x
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and
∑

p≤√x

∑

pr>x

bF(pr)

pr
≪

∑

p≤√x

1

x
≪ 1√

x
.

From (2.1),

log F(1; x) =
∑

n≤x

bF(n)

n
+ O

(

1√
x

)

.

Setting u = 1/ log x and T = e
√

log x and using Perron’s formula,

∑

n≤x

bF(n)

n
=

1

2πi

∫ u+iT

u−iT

xs

s
log F(1 + s) ds + O(e−cF

√
log x).

Let u′ = CF/ log T = CF/
√

log x. Choosing x sufficiently large, we can ensure that

there are no Siegel zeros for F(1 + s) in the region [−u′, u]. Hence from condition

(b), F(1 + s) has no zeros in the region −u′ ≤ ℜ(s) ≤ u and |ℑ(s)| ≤ T and has a pole

of order m at s = 0.

Consider the contour C joining u − iT ,−u′ − iT ,−u′ + iT and u + iT . By the residue

theorem,

Ress=0

(
xs

s
log F(1 + s)

)

=
1

2πi

∫

C

xs

s
log F(1 + s) ds. (2.2)

We now estimate this integral. Suppose s = σ + it. By the growth condition (c),

|F(s)| ≪ |t|µF(σ),

where µ(σ) ≪ (1 − 2σ). Thus, for our choice of u and u′ and for σ ∈ [−u′, u],

log F(1 + σ + iT) ≪ (log T)2.

Hence,

∣
∣
∣
∣
∣

1

2πi

∫ −u′+iT

u+iT

xs

s
log F(1 + s) ds

∣
∣
∣
∣
∣
≪

∣
∣
∣
∣
∣

(log T)2

T

∫ −u′

u

xσ dσ

∣
∣
∣
∣
∣

≪ (log x)e−
√

log x ≪ e−c′
F

√
log x, (2.3)

for some c′
F

with 0 < c′
F
< 1. Similarly,

∣
∣
∣
∣
∣

1

2πi

∫ u+iT

−u′+iT

xs

s
log F(1 + s) ds

∣
∣
∣
∣
∣
≪ e−c′

F

√
log x. (2.4)

We use the following result due to Landau (see [16, page 170, Lemma 6.3]) to esimate

the other terms in (2.2).

LEMMA 2.2. Let f (z) be an analytic function in the region containing the disc |z| ≤ 1

and suppose | f (z)| ≤ M for |z| ≤ 1 and f (0) , 0. Fix r and R such that 0 < r < R < 1.
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Then, for |z| ≤ r,

f ′

f
(z) =

∑

|ρ|≤R

1

z − ρ + O

(

log
M

| f (0)|

)

,

where ρ is a zero of f (s).

Let f (z) = (z + 1/2 + it)mF(1 + z + (1/2 + it)), R = 5/6 and r = 2/3 in Lemma 2.2.

Using the zero-free region (b),

| log smF(1 + s)| ≪
{

log(|t| + 4), |t| ≥ 7/8 and σ ≥ −u′,
1 |t| ≤ 7/8 and σ ≥ −u′.

We now have the estimate
∣
∣
∣
∣
∣

∫ −u′+iT

−u′

xs

s
log F(1 + s) ds

∣
∣
∣
∣
∣
≪

∫ T

0

x−u′

|s| (| log sm| + | log smF(1 + s)|) dt

≪ e−c′′
F

√
log x, (2.5)

for some c′′
F

with 0 < c′′
F
< 1. Similarly,

∣
∣
∣
∣
∣

∫ −u′

−u′−iT

xs

s
log F(1 + s) ds

∣
∣
∣
∣
∣
≪ e−c′′

F

√
log x. (2.6)

Using(2.3), (2.4), (2.5) and (2.6) in (2.2) and choosing CF = min(cF, c′
F
, c′′

F
),

1

2πi

∫ u+iT

u−iT

xs

s
log F(1 + s) ds = Ress=0

(
xs

s
log F(1 + s)

)

+ O(e−CF

√
log x)

Let C denote the circle of radius u′ centred at 0. Then,

1

2πi

∫

C

xs

s
log F(1 + s) ds = Ress=0

(
xs

s
log F(1 + s)

)

.

Hence, it suffices to estimate this integral. Since F(s) has a pole of order m at s = 1,

c−m(F) = lim
s→1

(s − 1)mF(s) , 0.

Writing F(s + 1) = (s−m)(smF(s + 1)),

1

2πi

∫

C

xs

s
log F(1 + s) ds = − m

2πi

∫

C

xs

s
log s ds + log c−m(F). (2.7)

The integral on the right hand side is

∫

C

xs

s
log s ds =

∫ π

−π

xu′eiθ

u′eiθ
(log u′eiθ)(iu′eiθ) dθ

= i(log u′)

∫ π

−π
eu′eiθ log xdθ −

∫ π

−π
θeu′eiθ log x dθ. (2.8)

Using series expansion of the exponential function and interchanging the order of

summation and integration, since the sum is absolutely convergent,
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∫ π

−π
eu′eiθ log x dθ =

∫ π

−π
dθ +

∞∑

r=1

(u′ log x)r

r!

∫ π

−π
eirθdθ = 2π.

Similarly,

∫ π

−π
θeu′eiθ log x dθ =

∫ π

−π
θ dθ +

∞∑

r=1

(u′ log x)r

r!

∫ π

−π
θeirθ dθ

=

∞∑

r=1

(
(u′ log x)r

r!

)(
(−1)r2π

ir

)

=
2π

i

∞∑

r=1

(−1)r

r!

∫ u′ log x

0

wr−1 dw

=
2π

i

∫ u′ log x

0

e−w − 1

w
dw.

But the Euler-Mascheroni constant γ satisfies the identity

γ =

∫ 1

0

1 − e−w

w
dw −

∫ ∞

1

e−w

w
dw.

Thus,
∫ u′ log x

0

e−w − 1

w
dw = γ +

∫ u′ log x

1

dw

w
−

∫ ∞

u′ log x

e−w

w
dw

= γ + log log x + log u′ + O(e−CF

√
log x). (2.9)

Combining the estimates (2.8) and (2.9),

log F(1; x) = log c−m(F) + mγ + m log log x + O(e−CF

√
log x).

The result follows by exponentiating both sides since ey
= 1 + O(y) for |y| < 1. �

3. Proof of the main theorem

For F ∈ G, define

F(s; Y) :=
∏

p≤Y

k∏

j=1

(

1 −
αj(p)

ps

)−1

.

We use the following approximation lemma.

LEMMA 3.1. For large T,

F(1 + it) = F(1 + it; Y)

(

1 + O

(
1

(log T)10

))

,

for Y = exp((log T)10) and T1/10 ≤ |t| ≤ T.
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PROOF. From the Euler product of F(s), forℜ(s) > 1,

log F(s) = −
∑

p

k∑

j=1

log

(

1 −
αj(p)

ps

)

=

∑

p

k∑

j=1

∑

l

αj(p)l

lpls
.

Let t0 > 0 and let α > 0 be any sufficiently large constant. Define

σ0 :=
1

α log T
, σ1 :=

1

(log T)20
and T0 :=

T1/10

2
.

Applying Perron’s summation formula as in [21, Theorem II.2.2],

∫ σ1+iT0

σ1−iT0

log F(1 + it0 + s)
Ys

s
ds = −

∑

p≤Y

k∑

j=1

log

(

1 −
αj(p)

p1+it0

)

+ O

(
1

(log T)10

)

.

We shift the path of integration to the left. By the zero-free region of F ∈ G, the only

pole of the above integrand inℜ(s) ≥ −σ0 and ℑ(s) ≤ T0 is at s = 0. Therefore,

log F(1 + it0) = −
∑

p≤Y

k∑

j=1

log

(

1 −
αj(p)

p1+it0

)

+ O

(
1

(log T)10
+

∫

C
log F(1 + it0 + s)

Ys

s
ds

)

,

(3.1)

where C is the contour joining −σ0 − iT0,σ1 − iT0,σ1 + iT0 and −σ0 + iT0. Since,

| log F(σ + it)| ≪ log t on C,
∫ −σ0−iT0

σ1−iT0

log F(1 + it0 + s)
Ys

s
ds ≪ log T

T1/10
,

∫ σ1+iT0

−σ0+iT0

log F(1 + it0 + s)
Ys

s
ds ≪ log T

T1/10
,

(3.2)

and
∫ −σ0+iT0

−σ0−iT0

log F(1 + it0 + s)
Ys

s
ds ≪ (log T)2

exp
(

α−1(log T)9
) , (3.3)

where all implied constants are absolute. Substituting the bounds from (3.2) and (3.3)

into (3.1), for T1/10 ≤ t0 ≤ T ,

log F(1 + it0) = −
∑

p≤Y

k∑

j=1

log

(

1 −
αj(p)

p1+it0

)

+ O

(
1

(log T)10

)

.

We may argue similarly when t0 is negative. �

By Lemma 3.1, it suffices to show Theorem 1.3 for F(1 + it; Y). We follow closely

the argument in [2]. Set

X = 1
6
(log T)(log2 T)

and for primes p ≤ X set

qp =

(

1 − p

X

)

.
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Also set q1 = 1 and qp = 0 for p > X. We now extend the definition completely

multiplicatively to all positive integers. If n = p
a1

1
p

a2

2
· · · pam

m , set

qn := qa1
p1

qa2
p2
· · · qam

pm

and define

R(t) =
∏

p≤X

(1 − qp pit)−1.

Then

log(|R(t)|) ≤
∑

p≤X

(log X − log p) = π(X) log X − ϑ(X),

where π(X) is the prime counting function and ϑ(X) is the first Chebyshev function.

By partial summation,

π(X) log X − ϑ(X) =

∫ X

2

π(t)

t
dt = (1 + o(1))

X

log X
.

By our choice of X,

|R(t)|2 ≤ T1/3+o(1). (3.4)

From the Euler product, R(t) has the series representation R(t) =
∑∞

n=1 qnnit, so

|R(t)|2 =
( ∞∑

n=1

qnnit
)( ∞∑

n=1

qnn−it
)

=

∞∑

m,n=1

qmqn

(
m

n

)it

.

Recall that

F(1 + it; Y) =
∏

p≤Y

k∏

j=1

(

1 −
αj(p)p−it

p

)−1

.

Since |αj(p)| ≤ 1,

|F(1 + it; Y)| ≪ (log Y)k ≪ (log T)10k.

Set Φ(t) := e−t2

and recall that its Fourier transform is positive. Using (3.4),
∣
∣
∣
∣
∣

∫

|t|≥T

F(1 + it; Y)|R(t)|2Φ
(
log T

T
t

)

dt

∣
∣
∣
∣
∣
≪ 1,

and
∣
∣
∣
∣
∣

∫

|t|≤
√

T

F(1 + it; Y)|R(t)|2Φ
(
log T

T
t

)

dt

∣
∣
∣
∣
∣
≪ T5/6+o(1).

From the positivity of the Fourier coefficients of Φ and the fact that q1 = 1,
∫ T

√
T

|R(t)|2Φ
(
log T

T
t

)

dt ≫ T1+o(1).
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By a similar argument, again using the positivity of the Fourier coefficients,
∫ ∞

−∞
F(1 + it; Y)|R(t)|2Φ

(
log T

T
t

)

dt ≥
∫ ∞

−∞
F(1 + it; X)|R(t)|2Φ

(
log T

T
t

)

dt.

So, we restrict ourselves to primes p ≤ X in the truncated Euler-product. This is to

ensure both R(t) and F(1 + it; X) have terms with the same q’s.

Write F(1 + it; X) as

F(1 + it; X) :=

∞∑

n=1

akk−it,

where ak ≥ 0 because the Dirichlet coefficients of F(s) are nonnegative. Now define

I1 :=

∫ ∞

−∞
F(1 + it; X)|R(t)|2Φ

(
log T

T
t

)

dt

=

∞∑

k=1

ak

∞∑

m,n=1

∫ ∞

−∞
k−itqmqn

(
m

n

)it

Φ

(
log T

T
t

)

dt.

We also define

I2 :=

∫ ∞

−∞
|R(t)|2Φ

(
log T

T
t

)

dt.

Since we are working with truncated Euler-products, everything is absolutely conver-

gent. Now, using the fact that the Fourier coefficients of Φ are positive and that the qn

are completely multiplicative, we can bound the inner sum of I1 from below by

∞∑

n=1

∑

k|m

∫ ∞

−∞
k−itqmqn

(
m

n

)it

Φ

(
log T

T
t

)

dt = qk

∞∑

n=1

∞∑

r=1

∫ ∞

−∞
qrqn

(
r

n

)it

Φ

(
log T

T
t

)

dt.

Thus,

I1

I2

≥
∞∑

k=1

akqk =

∏

p≤X

k∏

j=1

(

1 −
αj(p)

p
qp

)−1

=

∏

p≤X

k∏

j=1

(

1 −
αj(p)

p

)−1

·
∏

p≤X

k∏

j=1

( p − αj(p)

p − αj(p)qp

)

. (3.5)

Using the generalised Mertens Theorem 2.1, the first product in (3.5) is

∏

p≤X

k∏

j=1

(

1 −
αj(p)

p

)−1

= eγF (log X)m
+ O(1) = eγF (log2 T + log3 T)m

+ O(1). (3.6)

The second product in (3.5) can be bounded as follows:

− log
∏

p≤X

k∏

j=1

( p − αj(p)

p − αj(p)qp

)

= −
∑

p≤X

k∑

j=1

log

( p − αj(p)

p − αj(p)qp

)

≪
∑

p≤X

1

X
≪ 1

log X
. (3.7)
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From (3.5), (3.6) and (3.7),

I1

I2

≥ eγF (log2 T + log3 T)m
+ O(1).

In other words,
∣
∣
∣
∣

∫ T√
T

F(1 + it; X)|R(t)|2Φ
(

log T

T
t
)

dt
∣
∣
∣
∣

∫ T√
T
|R(t)|2Φ

(
log T

T
t
)

dt
≥ eγF (log2 T + log3 T)m

+ O(1).

Hence, we conclude

max
t∈[
√

T ,T]

|F(1 + it)| ≥ eγF ((log2 T + log3 T)m − CF).
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