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Abstract
We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A3|�O(|A|),
or small alternation, |AA−1A|�O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s
lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets
of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian
case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay
and Terry.

2020 MSC Codes: 20D60, 11B30, 03C20

1. Introduction
Freiman’s theorem (see [13], [12]) is a combinatorial result in additive number theory which states
that if A is a finite subset of a torsion-free abelian group G, and |A+A|� k|A| (i.e. A has small
doubling), then A is contained in an n-dimensional arithmetic progression of length c|A|, where
c and n depend only on k. Ruzsa [30] gave a new proof of this result, and a similar strategy was
later used by Green and Ruzsa [16] to prove a generalization of Freiman’s theorem, involving coset
progressions, for arbitrary abelian groups. A key part of this work is that a set of small doubling in
an abelian group can be ‘Freiman-isomorphically’ mapped to a dense set in a finite abelian group
(see [16, Proposition 1.2]). This allows one to apply the following result, which Ruzsa [30] adapted
from Bogolyubov [5]. For comparison to our work, we state this result in two cases.

Theorem 1.1 (Bogolyubov’s lemma). Fix r ∈Z
+ and α ∈R

+.

(a) (Bounded exponent case) Suppose G is a finite abelian group of exponent at most r, and
A⊆G is such that |A|� α|G|. Then there is a subgroup H �G such that [G: H]� rα−2 and
H ⊆ 2A− 2A.

(b) (General case) Suppose G is a finite abelian group, and A⊆G is such that |A|� α|G|. Then
there is a (1/4, n)-Bohr neighbourhood B in G such that n<α−2 and B⊆ 2A− 2A.

Bohr neighbourhoods (see Definition 2.1) are certain kinds of well-structured sets which, in the
abelian case, contain large coset progressions (preserved by Freiman isomorphism). This yields
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the ‘Bogolyubov–Ruzsa lemma1 for finite abelian groups’: if G is abelian and A⊆G is finite, with
|A+A|� k|A|, then 2A− 2A contains an n-dimensional coset progression of size c|A|, where
c and n depend only on k. The conclusion of Freiman’s theorem (exchanging the arithmetic
progression for one containing A) then follows after a little more work (see [16, Proposition 5.1]).

For an abelian group G, Freiman’s theorem also yields a classification of k-approximate sub-
groups of G, i.e. finite symmetric subsets A⊆G such that A+A can be covered by k translates of
A. Approximate subgroups of arbitrary groups have been studied by many authors, culminating
in the work of Breuillard, Green and Tao [7].

The goal of the present paper is to give generalizations of Bogolyubov’s lemma to arbitrary
finite groups, as well as similar statements about finite subsets of arbitrary groups whose product
set growth can be controlled. For this, we focus on sets of small tripling, which satisfy Plünnecke–
Ruzsa inequalities for product sets (as observed by Helfgott [18]: see Proposition 3.2(a)).
Motivated by the work of Hrushovski [19] on approximate groups, we also consider finite sets
A of small alternation, i.e. |AA−1A|� k|A| for some fixed k (see Remark 2.2).

Our main results, Theorems 2.3 and 2.4, are versions of the Bogolyubov–Ruzsa lemma for
finite sets of small tripling or alternation in arbitrary groups (with some further constraints).
Our first application of these results is the following qualitative analogue of Bogolyubov’s lemma
(Theorem 1.1) for arbitrary groups.

Theorem 1.2. Fix a positive integer r and a positive real number α.

(a) (Bounded exponent case) Suppose G is a finite group of exponent at most r, and A⊆G is
such that |A|� α|G|. Then there is a normal subgroup H �G such that [G: H]�Or,α(1)
and H ⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.

(b) (General case) Suppose G is a finite group, and A⊆G is such that |A|� α|G|. Then there is a
normal subgroup H �G and a (δ, n)-Bohr neighbourhood B in H, such that [G:H], δ−1, n�
Oα(1) and B⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.

This is proved in Section 2. For later applications, and also to illustrate the use of Bohr neigh-
bourhoods in the non-abelian setting, we prove (in Section 2) the following easy corollary of
Theorem 1.2(b). Call a (non-trivial) group G purely non-abelian if no normal subgroup H �G
has a non-trivial abelian quotient (i.e. [H,H]=H for all normal H �G). The class of purely
non-abelian groups contains all non-abelian simple groups, and is closed under direct product
by Goursat’s lemma.

Corollary 1.3. Fix a positive real number α. Suppose G is a purely non-abelian finite group and
A⊆G is such that |A|� α|G|. Then there is a normal subgroup H �G such that [G: H]�Oα(1)
and H ⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.

Before continuing to the next application, we state the following consequences for symmetric
subsets of groups of bounded exponent (part (a) follows immediately from Theorem 2.3 and part
(b) is a special case of Theorem 1.2(a); see Section 2).

Corollary 1.4.

(a) Fix positive integers k and r. Suppose G is a group of exponent r and A⊆G is finite and
symmetric, with |A3|� k|A|. Then there is a subgroupH �G such that A is covered by Ok,r(1)
translates of H and H ⊆A4.

1This name is from Sanders [33], who gives a different proof of the result yielding better bounds.
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(b) Fix a positive integer r and a positive real number α. Suppose G is a finite group of exponent r
and A⊆G is symmetric, with |A|� α|G|. Then there is a normal subgroup H �G, of index
Oα,r(1), such that H ⊆A4.

Remark 1.5. We do not know if H can also be made normal in part (a) of the previous corollary.
In addition to improving Theorem 1.6 below (see Remark 1.7), such a result could be quite inter-
esting, depending on the methods used. For example, together with the Feit–Thompson theorem
and the Brauer–Fowler theorem, this strengthening of Corollary 1.4(a) would imply that for any
positive integer r, there are only finitely many finite simple groups of exponent r. This is a known
fact, but its proof requires the classification of finite simple groups (e.g. [4, Theorem 5.4]).

Our final applications are in the subject of arithmetic regularity (developed by Green [15] for
abelian groups). There has been recent interest in strengthened arithmetic regularity lemmas for
subsets of groups satisfying special tameness assumptions. This was initiated by the work of Terry
andWolf [38] on ‘stable arithmetic regularity’ inFn

p , which is continued in [9] and [39]. Arithmetic
regularity in the setting of bounded VC-dimension is considered in [3], [10] and [34]. Given a
group G and A⊆G, define the VC-dimension of A to be the VC-dimension of the collection of left
translates ofA, i.e. the supremum of all integers d such that, for some d-element setX ⊆G, we have
P(X)= {X ∩ gA : g ∈G}. Alon, Fox and Zhao [3] have shown that if G is a finite abelian group of
exponent at most r, and A⊆G has VC-dimension at most d, then there is a subgroup H �G of
index (1/ε)d+or,d(1), and a subsetD⊆Gwhich is a (possibly empty) union of cosets ofH, such that
|A�D|� ε|G|. A main tool in their proof is Theorem 1.1(a), and we will use Corollary 1.4(a) to
give the following generalization to arbitrary groups.

Theorem 1.6. Fix positive integers r and d. Suppose G is a finite group of exponent at most r, and
A⊆G has VC-dimension at most d. Then, for any ε, ν > 0, there is a subgroup H of G, of index
Or,d,ν((1/ε)d+ν), which satisfies the following properties.

(i) (Structure) There is a set D⊆G, which is a union of right cosets of H, such that |A�D|� ε|G|.
(ii) (Regularity) There is a set Z ⊆G, with |Z|< 1

2ε
1/2|G|, such that for any x ∈G\Z, either

|Hx ∩A|� ε1/4|H| or |Hx\A|� ε1/4|H|.

Remark 1.7. There are several comments to be made about Theorem 1.6.

(1) In [3], Alon, Fox and Zhao conjecture that condition (i) of Theorem 1.6 holds for a nor-
mal subgroup H of index ε−Or,d(1). This would follow from the proof if one could show
that Corollary 1.4(a) holds with H being normal (see Remark 1.5). However, it does follow
from the proof that one can replace the subgroup H with the intersection of its conju-
gates to obtain a normal subgroup of index 2ε

−Or,d(1) satisfying conditions (i) and (ii) (see
Remark 8.3).

(2) In [10] (joint with Pillay and Terry), we gave a version of Theorem 1.6 in which H is also
normal, but without effective bounds on its index. One could instead use Corollary 1.4(b)
to deduce this, yielding a very different proof compared to what is done in [10] (see
Remark 8.3).

(3) The ‘regularity’ statement in condition (ii) is not made explicit in [3], but follows implicitly
from their methods (see Lemma 8.2).2

(4) The Or,d,ν constant in the statement of the theorem comes from Corollary 1.4(a) and so,
unlike the abelian case, is not explicit (see Section 9.1).

2This was first observed by C. Terry.
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In Section 8 we also show that a qualitative version of Theorem 1.6 holds for the class of purely
non-abelian finite groups (see Theorem 8.4), which yields an interesting divergence between sets
of bounded VC-dimension in non-abelian finite simple groups, compared to the abelian setting
(see Corollary 8.6).

We end this Introduction with some discussion of our proofs. The results above involving
groups of bounded exponent will be derived from Theorem 2.3. By the work of Hrushovski [19]
and Breuillard, Green and Tao [7], approximate subgroups of groups with bounded exponent
are close to genuine subgroups (see Theorem 5.1). Moreover, in any group, finite sets of small
tripling are close to approximate subgroups by a result of Tao [35]. Together, these two facts imply
a weaker version of Theorem 2.3 (see Section 9). To prove our result, we will sharpen what is
essentially the first step of the work in [7], which is a theorem about sets of small doubling (proved
independently by Croot and Sisask [11] and Sanders [32]). Namely, if G is a group, A⊆G is finite,
and |A2|� k|A|, then A2A−2 contains Sn, for some symmetric S⊆G of size�k,n(|A|). In Section 4
we re-prove this result using the same techniques, but for sets of small tripling or small alternation,
which leads to stronger conclusions. We also work in the setting of measures (similar to Massicot
andWagner [24]), so that this analysis can be applied later to pseudofinite subsets of ultraproducts
of groups. We then prove Theorem 2.3 in Section 5.

For Theorem 2.4, we will need to delve a bit deeper into the underlyingmethods of [7] and [19],
in particular, the ultraproduct construction. To prove the theorem, we will first prove a pseudo-
finite analogue, and then deduce the finitary version using an ‘ultraproduct of counterexamples’.
To simplify this discussion, and illustrate the leverage obtained by working with pseudofinite sets,
we focus on the case of symmetric sets of small tripling. In this case, the pseudofinite analogue of
Theorem 2.4 deals with a group G and a pseudofinite (symmetric) subset A⊆G. In other words,
G is an ultraproduct of groups, and A is an ultraproduct of finite (symmetric) subsets of those
groups. We also assume 〈A〉 =Am for some fixed m (which holds, for example, if A is an ultra-
product of uniformly dense subsets of finite groups). If A has small tripling (formulated using a
pseudofinite counting measure), then the Sanders–Croot–Sisask analysis from Section 4 yields a
symmetric set S such that S8 ⊆A4. Moreover, S itself has small tripling (in fact it is an approximate
subgroup), allowing us to iterate the process. After infinitely many iterations, we obtain a decreas-
ing sequence of symmetric subsets of A4, whose intersection is a demonstrably ‘large’ subgroup of
〈A〉 contained in A4.

We now reach an obstacle, in that although G is an ultraproduct of groups, the subgroup con-
structed above need not be an ultraproduct of subgroups of those groups. In order to salvage this,
we move to a saturated elementary extension G∗ of G (in a suitable first-order language). We
then find a normal subgroup � of 〈A∗〉 of small index (where A∗ is the interpretation of A in G∗),
which is contained inA4∗ and is an intersection of countablymany definable sets. By standard facts,
〈A∗〉/� is a compact Hausdorff group under a certain topology controlled by definable sets in G∗.
By a result of Pillay [28], the connected component of 〈A∗〉/� is a compact connected abelian
group, and thus an inverse limit of tori, supplying us with Bohr neighbourhoods in 〈A∗〉. Finally,
in order to transfer these Bohr neighbourhoods through the ultraproduct, we will use an approx-
imation method from [10], and a result about approximate homomorphisms from [1]. This will
yield Bohr neighbourhoods in the original groups, and allow us to prove Theorem 2.4.

2. Definitions, main theorems and corollaries
Before stating the main theorems, we set some notation and definitions (used throughout the
paper). Let G be a group. Given n� 1, let G×n =G× n. . .×G. Given X, Y ⊆G, let XY = {xy : x ∈
X, y ∈ Y}. Set X0 = {1} and inductively define Xn+1 = XnX. Let X−1 = {x−1 : x ∈ X}. We say that
X ⊆G is symmetric if 1 ∈ X and X = X−1. A Y-translate of X is a set of the form aX where a ∈ Y .
Given a set X ⊆G, we let 〈X〉 denote the subgroup of G generated by X, and we use the notation
X̄ for the set X ∪ X−1 ∪ {1}.
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Let Tn denote the n-dimensional torus R/Z× n. . .×R/Z, considered as an additive group with
identity 0. Let dn denote the invariant metric onTn induced by the product of the arclengthmetric
on R/Z (identified with S1).

Definition 2.1. Given a group G, a positive integer n and a positive real number δ, we say that
B⊆G is a (δ, n)-Bohr neighbourhood in G if there is a homomorphism τ : G→T

n such that

B= Bnτ ,δ := {x ∈G : dn(0, τ (x))< δ}.

In the setting of abelian groups, Bohr neighbourhoods are often used as replacements for sub-
groups in cases where few subgroups are available (e.g. in Z/pZ). In general, if G is a group and
B= Bnτ ,δ is a (δ, n)-Bohr neighbourhood in G, then B is symmetric, closed under conjugation, and
contains the kernel N of a homomorphism from G to some Tn (so G/N is abelian). While Bmay
not be closed under the group operation, one can obtain control in pairs by allowing the radius δ
to vary. For instance, B2 ⊆ Bnτ ,2δ by the triangle inequality. A more sophisticated manifestation of
this idea can be found in the work of Bourgain [6]. Finally, ifG is finite then Bohr neighbourhoods
are ‘large’, for instance |Bnτ ,δ|� δn|G| (see [37, Lemma 4.20] or [10, Proposition 4.5]).

Recall from the Introduction that we are interested in finite subsets A of some group G, which
either have small tripling, i.e. |A3|� k|A| for some fixed constant k, or have small alternation, i.e.
|AA−1A|� k|A| for some fixed k.

Remark 2.2. The notion of small alternation is motivated by Hrushovski’s definition of a near-
subgroup from [19]. Our terminology is explained by Proposition 3.2(b), which shows that
small alternation for a finite set A in a group G implies ‘very small’ tripling for AA−1 (see
Section 9.2, and especially Remark 9.4, for discussion on the relationship to approximate sub-
groups). Note that small tripling implies small doubling, and also small alternation due to the
general Plünnecke–Ruzsa inequalities observed by Helfgott (see Proposition 3.2(a)). For abelian
groups, small alternation clearly implies small doubling, and it is well known that small doubling
implies small tripling (see [29]), making the three notions equivalent. However, in non-abelian
groups, there are no general implications between small doubling and small alternation. For exam-
ple, let G be the free product H ∗ F2, where H is some finite group and F2 is the free group on two
generators, say a and b. Set A=H ∪ {a} and B= aHb. Then A satisfies small doubling but not
small alternation, and B satisfies small alternation but not small doubling.

We now state our two main theorems, which are Bogolyubov–Ruzsa-type statements for finite
sets of small alternation or small tripling. Each statement involves two crucial assumptions, the
first being either small tripling or small alternation for some finite set, and the second being one
of the following options: (1) bounded exponent of a certain subgroup, (2) bounded generation
of a certain subgroup, or (3) both. Altogether, this yields six statements, which we have divided
into two theorems, one for the bounded exponent case and the other for the general case. The two
results are proved in Sections 5 and 7, respectively.

Theorem 2.3 (bounded exponent case). Fix positive integers k, m and r. Let G be a group, and fix
a non-empty finite subset A⊆G.

(1) (Small alternation) Suppose |AA−1A|� k|A| and 〈AA−1〉 has exponent r.
(a) There is a subgroup H � 〈AA−1〉 such that:

(i) (AA−1)m is covered by Ok,m,r(1) left cosets of H, and
(ii) H ⊆ (AA−1)2.

(b) Assume 〈AA−1〉 = (AA−1)m. Then there is a normal subgroup H � 〈AA−1〉, of index
Ok,m,r(1), such that H ⊆ (AA−1)2.
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(2) (Small tripling) Suppose |A3|� k|A| and 〈A〉 has exponent r.
(a) There is a subgroup H � 〈A〉 such that:

(i) Ām is covered by Ok,m,r(1) left cosets of H, and
(ii) H ⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.

(b) Assume 〈A〉 = Ām. Then there is a normal subgroup H � 〈AA−1〉, of index Ok,m,r(1),
such that H ⊆ (AA−1)2.

Theorem 2.4. Fix positive integers k and m. Let G be a group, and fix a non-empty finite subset
A⊆G.

(1) (Small alternation) Suppose |AA−1A|� k|A| and 〈AA−1〉 = (AA−1)m. Then there are:
– a normal subgroup H of 〈AA−1〉, of index Ok,m(1), and
– a (δ, n)-Bohr neighbourhood B in H, with δ−1, n�Ok,m(1),
such that B⊆ (AA−1)2. Moreover, if 〈AA−1〉 is abelian, then we may assume H = 〈AA−1〉.

(2) (Small tripling) Suppose |A3|� k|A| and 〈A〉 = Ām. Then there are:
– a normal subgroup H of 〈A〉, of index Ok,m(1), and
– a (δ, n)-Bohr neighbourhood B in H, with δ−1, n�Ok,m(1),
such that B⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2. Moreover, if 〈A〉 is abelian then we
may assume H = 〈A〉.

Since the work of Breuillard, Green and Tao [7] on approximate groups makes several appear-
ances in this paper, we take a moment to reconcile their work with the theorems above. First,
Theorem 2.3 strengthens the main result from [7] on approximate subgroups of groups of
bounded exponent (see Theorem 5.1), in that we have replaced approximate subgroups with
sets of small alternation or small tripling. As discussed in the Introduction, this improvement is
obtained by modifying the first step of the work in [7], and then applying their structure theorem.
(See also Section 9.2, where discuss further consequences of our work for the structural results on
approximate subgroups from [7].)

To compare Theorem 2.4 to [7], we first quote one of their main results.

Theorem 2.5 (Theorem 1.6 of [7]). Fix a positive integer k. Suppose G is a group and A⊆G is a
finite k-approximate subgroup of G. Then there is a subgroup H of G and a finite normal subgroup
N of H with the following properties:

(i) A is covered by Ok(1) left translates of H,
(ii) H/N is nilpotent and finitely generated of rank and step Ok(1),
(iii) A4 contains N and a generating set for H.

For comparison, in both parts of Theorem 2.4 the Bohr neighbourhood B contains the ker-
nel N of a homomorphism from H to T

n. Thus H/N is a finite abelian group, which can be
generated by n�Ok,m(1) elements. Moreover, since |B|��k,m(|H|), we could replace H with
the subgroup generated by B, and have that B contains a generating set of H (although possi-
bly losing normality of H). Altogether, Theorem 2.4 can be seen as an analogue of Theorem 2.5,
where we obtain stronger conclusions for sets of small alternation or small tripling, under the
extra ‘bounded generation’ assumption coming from the parameterm. As with Theorem 2.3, our
proof of Theorem 2.4 relies on [7], although this time implicitly via a result of Pillay [28] used in
Proposition 6.2. However, this dependence on [7] could be avoided by using a generalization of
Pillay’s result due to Nikolov, Schneider and Thom [26].

Remark 2.6. Recall that the ‘Bogolyubov–Ruzsa lemma’ for abelian groups, discussed after
Theorem 1.1, does not involve a ‘bounded generation’ parameterm like in Theorem 2.4. However,
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similar to Freiman’s theorem, this result for abelian groups reduces to Theorem 1.1(b), using the
fact that Bohr neighbourhoods in abelian groups can be approximated by coset progressions (see
[37, Lemma 4.22]), and that finite sets of small doubling in abelian groups have ‘good models’ as
dense sets in finite abelian groups (see [16, Proposition 2.1]). Thus, for the sake of completeness,
we will explain in Remark 7.4 how to obtain G=H in Theorem 1.2(b) when G is abelian.

The rest of this section is devoted to proving the theorems and corollaries in Section 1
(except for Theorem 1.6, which is proved in Section 8). We first consider Corollary 1.4 since it
is immediate from the theorems above.

Proof of Corollary 1.4. Part (a) is immediate from Theorem 2.3. Part (b) is immediate from
Theorem 1.2(a).

Proof of Theorem 1.2. Part (a). Fix a positive integer r and a positive real number α. Suppose G
is a finite group of exponent r and A⊆G is such that |A|� α|G|. It is straightforward to show that
〈A〉 = Ām for somem� �3α+ 1� (see e.g. [24, Remark 4]). So we can apply Theorem 2.3(2b), with
k= �α−1� and m= �3α+ 1�, to obtain a subgroup K � 〈A〉, of index n= n(α, r), such that K ⊆
(AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2. Note also that [G: 〈A〉]� �α−1�, and so [G: K]� n�α−1�.
Now, ifH = ⋂

g∈G gKg−1, then [G:H]� [G: K]!�Oα,r(1),H is normal in G, andH ⊆ (AA−1)2 ∩
A2A−2 ∩ (A−1A)2 ∩A−2A2.

Part (b). Fix a positive real number α. Suppose G is a finite group and A⊆G is such that
|A|� α|G|. In analogy to part (a), Theorem 2.4(2) provides a subgroup K � 〈A〉 and a Bohr
neighbourhood Bnτ ,δ ⊆K such that [G: K], δ−1 and n are bounded above in terms of α, and
Bnτ ,δ ⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2. If H = ⋂

g∈G gKg−1 and B= Bnτ ,δ ∩H, then H is
normal in G, [G: H]�Oα(1) and B= Bnτ�H,δ . So B and H are as desired.

Remark 2.7. It is worth pointing out that part (a) of Theorem 1.2 also follows easily from part (b),
due to the fact that a (δ, n)-Bohr neighbourhood in a group of exponent r> δ−1 is a subgroup.We
leave details to the reader. In a similar way, parts (1b) and (2b) of Theorem 2.3 follow from parts
(1) and (2) of Theorem 2.4, respectively. On the other hand, the proof given below of Theorem 2.3
is more direct, and does not require the model-theoretic methods employed here, nor the work
from [10] on approximate Bohr neighbourhoods.

Proof of Corollary 1.3. Fix α > 0. Suppose G is a purely non-abelian finite group and A⊆G is
such that |A|� α|G|. By Theorem 1.2(b), there is a normal subgroup H �G and a (δ, n)-Bohr
neighbourhood B⊆H, such that [G:H]�Oα(1) and B⊆ (AA−1)2 ∩ (A−1A)2 ∩A2A−2 ∩A−2A2.
Since B contains ker (τ ) for some homomorphism τ : H →T

n, and G is purely non-abelian, we
must have B=H.

Remark 2.8. Corollary 1.3 implies that for any α > 0, if G is a non-abelian finite simple group of
size at least �α(1), and A⊆G is such that |A|� α|G|, then G= (AA−1)2 = (A−1A)2 =A2A−2 =
A−2A2. Applied to the case of alternating groups An, this implies that the least upper bound on
the index of H in Theorem 1.2(b) must be greater than 1

2
α−1�! (at least for α � 1
5 ). However,

it should be noted that stronger results about dense sets in non-abelian finite simple groups are
already known. In particular, if G is a non-abelian finite simple group with log |G|��(α−6), and
A, B, C ⊆G are such that |A|, |B|, |C|� α|G|, then G=ABC.3 This follows from work of Gowers
[14] on quasirandom groups (as observed by Nikolov and Pyber [25]; see also [25, Corollary 1],

3By [14], the implied constant in �(α−6) is no more than 25log (25). Using the classification of finite simple groups, the
overall bound can be improved to |G|> (�α−3� + 1)! (see [8]).

https://doi.org/10.1017/S0963548320000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000176


814 G. Conant

[14, Theorem 3.3] and [14, Theorem 4.7]). Similar results are shown by Hrushovski in [19] (e.g.
[19, Corollary 1.4]).

3. Ultraproducts of groups
In this section we review the ultraproduct construction in the case of groups. The reader only
interested in Theorem 2.4 (the bounded exponent case) can skip this section. Throughout this
section, let (Gs)s∈N be a fixed sequence of groups, and fix a non-principal ultrafilter U on N.
Let G= ∏

U Gs be the ultraproduct of the sequence (Gs)s∈N with respect to U . Explicitly, G=
(
∏

s Gs∈N)/∼, where (as)∼ (bs) if and only if {s : as = bs} ∈ U . Recall that G is a group under the
(well-defined) operation [(as)] · [(bs)]= [(as · bs)]. A subset X ⊆G is internal if there is a sequence
(Xs)s∈N, with Xs ⊆Gs, such that

X =
∏
U

Xs :=
(∏
s∈N

Xs

)/
∼ .

The collection of internal subsets of G forms a Boolean algebra.
We also assume that G is infinite, i.e. {s ∈N : |Gs|> n} ∈ U for all n ∈N. As a result, we obtain

the following saturation property of G.

Fact 3.1 (Keisler [21]). Suppose (Xi)∞i=0 is a sequence of internal subsets of G×n such that⋂k
i=0 Xi �= ∅ for all k ∈N. Then

⋂∞
i=0 Xi �= ∅.

Finally, we fix a distinguished internal set A⊆G (so A= ∏
U As for some As ⊆Gs), and we

assume that A is non-empty and pseudofinite (i.e. As is non-empty and finite for all s ∈N). With
A fixed, we define the |A|-normalized pseudofinite counting measure μ on the Boolean algebra of
internal subsets of G. Specifically, given an internal set X = ∏

U Xs, define

μ(X)= lim
U

|Xs|
|As| ∈R�0 ∪ {∞},

where limU xs = y if and only if, for all ε > 0, {s : |xs − y|< ε} ∈ U . Note that μ is a left and right
invariant finitely additive measure on the internal subsets of G.

Properties of finite subsets of groups such as small alternation or small tripling can be formu-
lated using μ. For example, μ(A3)<∞ if and only if, for some fixed k> 0, {s : |A3

s |� k|As|} ∈ U .
The fact that μ is controlled by discrete counting measures allows us to transfer the following
Plünnecke–Ruzsa inequalities to G.

Proposition 3.2. Fix an internal set X ⊆G, with 0<μ(X)<∞.

(a) Suppose μ(X3)� kμ(X) for some k> 0. Then, for any n� 1 and ε1, . . . , εn ∈ {−1, 1},
μ(Xε1 · . . . · Xεn)� kOn(1)μ(X).

(b) Suppose μ(XX−1X)� kμ(X) for some k> 0. Then μ((XX−1)n)� kOn(1)μ(X) for any n� 1.

Proof. It suffices to fix s ∈N and prove the claims for Gs with μ replaced by the usual counting
measure. In this setting, part (a) is precisely the ‘discrete case’ of [35, Lemma 3.4] (first observed
by Helfgott [18, Lemma 2.2]). So we only need to show part (b). The proof is similar to that of
[35, Lemma 3.4] and relies on the triangle inequality for the Ruzsa distance. In particular, given
non-empty finite X, Y ⊆Gs, the Ruzsa distance between X and Y is defined as

d(X, Y)= log
( |XY−1|

|X|1/2|Y|1/2
)
.
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Then, for non-empty finiteX, Y , Z ⊆Gs, we have d(X, Z)� d(X, Y)+ d(Y , Z) (this is due to Ruzsa
[31] in the commutative setting; see also [35, Lemma 3.2]).

Now fix a non-empty finite set X ⊆Gs, and assume |XX−1X|� k|X|. By part (a) (in
Gs) it is enough to show |(XX−1)3|� kO(1)|X|. For this, first note that d(XX−1, X−1)�
log k. So d(XX−1, XX−1)� log k2 by the triangle inequality, and thus |(XX−1)2|� k2|XX−1|.
Then d(XX−1X, X)� log k2. By the triangle inequality, d(XX−1X, XX−1X)� log k4, and thus
|(XX−1)3|� k4|XX−1X|� k5|X|.

4. Sanders–Croot–Sisask analysis
In this section we prove Lemma 4.1, which is the main technical lemma of the paper. It is essen-
tially a modification of a result of Croot and Sisask [11] and Sanders [32], which was later adapted
by Breuillard, Green and Tao [7, Section 5] for their results on the structure of approximate
groups. In the model-theoretic setting, these same techniques were used by Massicot andWagner
[24] in their work on ‘definably amenable’ approximate groups, and also by Krupiński and Pillay
[22]. Part (a) of Lemma 4.1, which deals with sets of small alternation, is similar to some of
Hrushovski’s work with near-subgroups, especially [19, Corollary 3.11]. Our proof follows Sanders
[32] (as do [7], [22] and [24]), and makes the modifications necessary to work with sets of small
tripling or small alternation, and also to account for working with internal sets in the case of
ultraproducts.

In this section we work with a fixed group G, a fixed subset A⊆G and a finitely additive mea-
sure μ, defined on a certain Boolean algebra of subsets of G and taking values in R�0 ∪ {∞}.
While one could formulate a precise axiomatic framework to allow for a more general setting, it
will suffice for our purposes to further assume that one of the following two cases holds.

Discrete case. A is a non-empty finite subset of G and μ is the |A|-normalized counting measure:
μ(X)= |X|/|A|, defined for any X ⊆G.

Pseudofinite case. G, A and μ are as in Section 3.

The reader only interested in Theorem 2.4 can assume the discrete case and ignore the pseudo-
finite case. We call a set X ⊆G measurable if μ(X) is defined. Note that Proposition 3.2 makes
sense in the discrete case if we remove the word ‘internal’ and the statement remains true (this is
what was shown in the proof).

Lemma 4.1. Fix m, n� 1 and a measurable set X ⊆G, with 0<μ(X)<∞.

(a) Supposeμ(XX−1X)� kμ(X) for some k� 1. Then there is ameasurable symmetric set Y ⊆G
such that Yn ⊆ (XX−1)2 and (XX−1)m is covered by Ok,m,n(1) (XX−1)m-translates of Y.

(b) Suppose μ(X3)� kμ(X) for some k� 1. Then there is a measurable symmetric set Y ⊆G
such that Yn ⊆ (XX−1)2 ∩ X2X−2 ∩ (X−1X)2 ∩ X−2X2 and X̄m is covered by Ok,m,n(1) X̄m-
translates of Y.

Proof. We will prove the two statements in parallel, as the arguments are similar. Let X ⊆G be a
fixed internal set, with 0<μ(X)<∞. Fix an integer k� 1. By ‘case (a)’ we mean the assumption
that μ(XX−1X)� kμ(X), and by ‘case (b)’ we mean the assumption that μ(X3)� kμ(X).

Before starting the argument, we first simplify case (b). Define

	1(X)= (XX−1)2, 	2(X)= X2X−2, 	3(X)= (X−1X)2 and 	4(X)= X−2X2.

We claim that it suffices to find, for each individual c ∈ {1, 2, 3, 4}, a set Yc as described but
only with Yn

c ⊆	c(X). To see this, we apply some elementary tools from [7] (which transfer
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to the pseudofinite setting). So fix m, n� 1 and suppose that, for c ∈ {1, 2, 3, 4}, we have mea-
surable symmetric Yc ⊆G such that Y4n

c ⊆	c(X) and X̄m is covered by Ok,m,n(1) X̄m-translates
of Yc. Let S= X̄max{m,2}. Then S is an Ok,m(1)-approximate subgroup by Proposition 3.2(a)
and [7, Corollary 5.2]. Setting Y∗ = ⋂4

c=1 Y2
c , we have μ(X̄m)�μ(S)�Ok,m,n(μ(Y∗)) by [7,

Corollary 5.9]. By [7, Lemma 5.1], there is a finite set F ⊆ X̄m such that |F|�μ(X̄mY∗)/μ(Y∗)
and X̄m ⊆ FY2∗ . Since Y∗ ⊆ X̄2, we have μ(X̄mY∗)�Ok,m(μ(X̄m)) by Proposition 3.2(a), which
implies |F|�Ok,m,n(1). So if we set Y = Y2∗ , then Y is a measurable symmetric set, X̄m is covered
by Ok,m,n(1) X̄m-translates of Y , and

Yn = Y2n∗ ⊆
4⋂

c=1
Y4n
c ⊆

4⋂
c=1

	c(X),

as desired.
So now in case (b) we fix c ∈ {1, 2, 3, 4} and find Y = Yc with Yn ⊆	c(X). Since 	1(X−1)=

	3(X) and	2(X−1)=	4(X), it suffices to assume c ∈ {1, 2}. Set

V =
{
(XX−1)m in case (a)
X̄m in case (b)

and Z =
{
X−1 in case (a), or case (b) with c= 1,
X in case (b) with c= 2.

Note that V is symmetric. We now closely follow Sanders [32]. For t ∈ (0, 1], define
Bt = {B⊆ X : B is internal and μ(B)� tμ(X)}.

Then X ∈ Bt for all t ∈ (0, 1], and so we may define a function f : (0, 1]→ [1,∞) such that f (t)=
inf{μ(BZ)/μ(X) : B ∈ Bt}.

By Proposition 3.2, we may fix 
� 1 such that 
� kOm(1) and μ(VX)� 
μ(X) (in case (a)
use μ((XX−1)mX)�μ((XX−1)m+1)). By [24, Lemma 11] (taken from [32]), we may choose
t ∈ (0, 1] such that t−1 �Ok,m,n(1) and f (t2/2
)� ((2n− 1)/2n)f (t). Choose B ∈ Bt such that
μ(BZ)/μ(X)� ((2n+ 1)/2n)f (t).

Define
Y∗ = {g ∈V2 : μ(gB∩ B)� (t2/2
)μ(X)},

and note that 1 ∈ Y∗, since B ∈ Bt and t> t2/2
.

Claim 1. V is covered by Ok,m,n(1) V-translates of Y∗.

Proof. Let w= 
2
/t� and note that w�Ok,m,n(1). Suppose, for a contradiction, that V is not
covered by w V-translates of Y∗. Then we may construct a sequence (gi)wi=0 from V such that,
for all i�w, gi �∈ ⋃

j<i gjY∗. For any 0� i< j�w, g−1
i gj ∈V2\Y∗, and so we have μ(giB∩ gjB)<

(t2/2
)μ(X). We also have giB⊆VX for any 0� i�w. Now we obtain a contradiction:

μ(X)�μ(VX)

�μ
(⋃
i�w

giB
)

� (w+ 1)μ(B)−
∑

i<j�w
μ(giB∩ gjB)

> (w+ 1)tμ(X)− w(w+ 1)t2μ(X)
4


= (w+ 1)
(
1− wt

4


)
tμ(X)
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> 
μ(X),
where the last inequality uses w� 2
/t<w+ 1.

Set

W =
{
(XX−1)2 in case (a), or case (b) with c= 1,
X2X−2 in case (b) with c= 2.

Claim 2. Yn∗ ⊆W.

Proof. We first show that μ(gBZ�BZ)< 2μ(BZ)/n for any g ∈ Y∗. To see this, note that if g ∈ Y∗
then gB∩ B ∈ Bt2/2
, and so

μ(gBZ ∩ BZ)�μ((gB∩ B)Z)� f (t2/2
)μ(X)� 2n− 1
2n

f (t)μ(X)� 2n− 1
2n+ 1

μ(BZ).

So, for any g ∈ Y∗,

μ(gBZ�BZ)= 2μ(BZ)− 2μ(gBZ ∩ BZ)� 4
2n+ 1

μ(BZ)<
2
n
μ(BZ).

Now fix g1, . . . , gn ∈ Y∗ and, for 0� i� n, let hi = ∏
j�i gj (so h0 = 1). Then

μ(hnBZ�BZ)�μ
(n−1⋃

i=0
hi(gi+1BZ�BZ)

)
�

n−1∑
i=0

μ(gi+1BZ�BZ)< 2μ(BZ).

It follows that hnBZ ∩ BZ �= ∅, which implies hn ∈ BZZ−1B−1 ⊆W.

Now, in the discrete case, we may take Y = Y∗ and the proof is finished. In the pseudofinite
case, we must address the fact that Y∗ may not be internal. So suppose we are in the pseudofinite
case.

Claim 3. Y∗ = ⋂∞
i=0 Yi where, for each i ∈N, Yi is symmetric and internal, and contains Yi+1.

Proof. Let β = (t2/2
)μ(X), and so Y∗ = {g ∈V2 : μ(gB∩ B)� β}. By assumption, X and B are
internal and so we may choose sets Xs, Bs ⊆Gs, for s ∈N, such that X = ∏

U Xs and B= ∏
U Bs.

Given s ∈N, set

Vs =
{
(XsX−1

s )n in case (a),
X̄n
s in case (b).

Note that each Vs is symmetric, and V = ∏
U Vs. Given i ∈N and s ∈N, define

Yi,s =
{
g ∈V2

s :
|gBs ∩ Bs|

|Gs| >β − 1
i+ 1

}
.

Note that Y−1
i,s = Yi,s for all i, s ∈N. Given i ∈N, let Yi = ∏

U Yi,s. Then, for any i ∈N, Y−1
i = Yi

and Yi+1 ⊆ Yi. Moreover, Y∗ = ⋂∞
i=0 Yi.

Fix (Yi)∞i=0 as in Claim 3. To finish the proof of the lemma in the pseudofinite case, it suffices to
show that Yn

i ⊆W for some i ∈N. Toward this end, we first show Yn∗ = ⋂∞
i=0 Yn

i . We clearly have
Yn∗ ⊆ ⋂∞

i=0 Yn
i . For the other direction, fix a ∈ ⋂∞

i=0 Yn
i . For i ∈N, define

Di = {(g1, . . . , gn) ∈G×n : gj ∈ Yi for 1� j� i, and a= g1 · . . . · gn}.
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Then, for all i ∈N, Di is non-empty, internal, and Di+1 ⊆Di. By Fact 3.1, there is (g1, . . . , gn) ∈⋂∞
i=0 Di, and so a= g1 · . . . · gn ∈ Yn∗ .
Finally, since

⋂∞
i=0 Yn

i = Yn∗ ⊆W, it follows from Fact 3.1 that Yn
i ⊆W for some i ∈N.

At this point, we have all the necessary tools to proceed with the proof of Theorem 2.3 (see
Section 5). For Theorem 2.4 we will need the following corollary of the previous lemma, which is
only meaningful in the pseudofinite case.

Corollary 4.2.

(a) Suppose μ(AA−1A)� k<∞. Then there is a sequence (Xn)∞n=0 of symmetric, internal sub-
sets of G such that X0 ⊆ (AA−1)2 and, for any n ∈N, X2

n+1 ⊆ Xn and (AA−1)4 is covered by
Ok,n(1) 〈AA−1〉-translates of Xn.

(b) Suppose μ(A3)� k<∞. Then there is a sequence (Xn)∞n=0 of symmetric, internal subsets
of G such that X0 ⊆ (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2 and, for any n ∈N, X2

n+1 ⊆ Xn
and Ā8 is covered by Ok,n(1) 〈A〉-translates of Xn.

Proof. As in Lemma 4.1, we prove the two statements in parallel. Set

(V ,W,�)=
{
((AA−1)4, (AA−1)2, 〈AA−1〉) in case (a),
(Ā8, (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2, 〈A〉) in case (b).

We construct a sequence (Yn)∞n=0 of symmetric, internal subsets of G, such that Y8
0 ⊆W and,

for all n ∈N, Y8
n+1 ⊆ Y4

n and V is covered by OK,n(1) �-translates of Yn. Given this, the result
follows by setting Xn = Y4

n .
By Lemma 4.1, there is a symmetric, internal set Y0 ⊆G such that Y8

0 ⊆W and V is covered
by Ok(1) V-translates of Y0. Suppose we have constructed Y0, . . . , Yn satisfying the desired prop-
erties. Note that μ(W)<∞ by Proposition 3.2, and thus μ(Yn)<∞ since Yn ⊆ Y8

n ⊆W. Since
V is covered by Ok,n(1) translates of Yn, we have 0<μ(V)�Ok,n(1)μ(Yn), and thus μ(Yn)> 0.
Since Y3

n ⊆W, we also have μ(Y3
n)�Ok,n(1)μ(Yn). By Lemma 4.1(b), there is a symmetric, inter-

nal Yn+1 ⊆G such that Y8
n+1 ⊆ Y4

n and Y8
n is covered by Ok,n+1(1) Y8

n-translates of Yn+1. Since
Yn ⊆ Y8

n ⊆W, it follows that Yn is covered by Ok,n+1(1)W-translates of Yn+1. Since V is covered
by Ok,n(1)�-translates of Yn, it follows that V is covered by Ok,n+1(1)�-translates of Yn+1.

5. Proof of Theorem 2.3
The following theorem is [7, Theorem 6.15]. It can also be deduced from [19, Corollary 4.18].

Theorem 5.1 ([7]). Let G be a group of exponent r, and suppose X ⊆G is a k-approximate
subgroup. Then X4 contains a subgroup H �G such that X is covered by Ok,r(1) left cosets of H.

We now give the proof of Theorem 2.3.

Proof of Theorem 2.3. We prove parts (1) and (2) of the theorem in two parallel cases. Fix posi-
tive integers k,m and r. LetG be a group and fixA⊆G non-empty and finite, with |AA−1A|� k|A|
in case (1) and |A3|� k|A| in case (2). Set

(V ,W,�)=
{
(AA−1, (AA−1)2, 〈AA−1〉) in case (1),
(Ā, (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2, 〈A〉) in case (2).
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By increasingm if necessary, we may assumeW ⊆Vm without loss of generality.
Assume � has exponent r. By Lemma 4.1, there is a non-empty finite symmetric set Y ⊆G

such that Y4 ⊆W and Vm is covered by Ok,m(1) left translates of Y . Since Y2 ⊆ Y4 ⊆W ⊆Vm, it
follows that Y is an Ok,m(1)-approximate group. By Theorem 5.1, Y4 contains a subgroup H �G
such that Y is covered by Ok,m,r(1) left cosets of H. Then H ⊆W and Vm is covered by Ok,m,r(1)
left cosets of H. This proves part (a) in both cases (1) and (2).

For part (b), suppose � =Vm. By part (a) there is a subgroup K ��, of index Ok,m,r(1),
such that K ⊆W. If H = ⋂

g∈� gKg−1, then H is normal in �, H ⊆W and [G: H]� [G: K]!�
Ok,m,r(1).

6. Saturated extensions and approximate Bohr neighbourhoods
Throughout this section, let G be an ultraproduct constructed as in Section 3. We will now endow
G with a first-order structure, and then take a sufficiently saturated elementary extension G∗.
Specifically, we define the internal language of G, denoted L, to be the group language together
with a unary relation RX for any internal X ⊆G. We view G as an L-structure by interpreting each
RX asX. We also view eachGs as anL-structure by interpreting RX as some set X(GS)⊆Gs, so that
X = ∏

U X(Gs). In particular, G is also the ultraproduct of the sequence of L-structures (Gs)s∈N.
Now let G∗ be a sufficiently saturated elementary extension of G with respect to the language

L.4 When we say X ⊆G∗ (resp. X ⊆G) is definable, we mean definable in the language L using
parameters from G∗ (resp. from G). If we want to specify that X is definable using parameters
from some set C, we will say C-definable. Let A∗ be the interpretation in G∗ of the predicate in L
naming A.

Note that the measure μ naturally extends to G-definable subsets of G∗. In particular, given a
G-definable set X ⊆G∗, the interpretation X(G) of X in G is internal, so we let μ(X)=μ(X(G)).
We say that a G-definable set X ⊆G∗ is pseudofinite if X(G) is an ultraproduct of finite sets.

Remark 6.1. Although it will not be necessary for our work, we recall that μ can be extended
(not necessarily uniquely) to all definable subsets of G∗. For example, one can add a sort for [0, 1]
and a function fφ for each formula φ(x; ȳ), from the home sort to [0, 1], which is interpreted
as fφ(b̄)=μ(φ(G; b̄)). Then take G∗ to be a saturated extension in this larger language. See [20,
Section 2].

A cardinal is bounded if it is strictly smaller than the saturation of G∗. A set X ⊆G∗ is type-
definable (resp. countably type-definable) if it is an intersection of a bounded (resp. countable)
number of definable subsets of G∗.

Now suppose� is a definable subgroup of G∗, and � is a type-definable normal subgroup of�
such that [� : �] is bounded. Call a set X ⊆�/� closed if π−1(X) is type-definable, where π is the
canonical projection from �. It is a standard fact that this defines a topology on �/�, called the
logic topology, under which �/� is a compact (Hausdorff) topological group. If � is countably
type-definable, then�/� is second countable. See [27, Section 2] for details.

The rest of this section summarizes some tools from [10] concerning Bohr neighbourhoods in
G∗ and issues regarding their transfer to G and the groups Gs.

Given a compact space X , we say that a map f : G→X is definable if f−1(C) is type-definable
for any closed C ⊆X . The next proposition is a special case of [10, Proposition 5.1], and crucially
relies on the result of Pillay [28] that the connected component of a definable compactification of
a pseudofinite group is abelian.

4‘Sufficiently saturated’ typically means κ-saturated and strongly κ-homogeneous for some very large (e.g. strongly
inaccessible) cardinal κ .
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Proposition 6.2. Suppose� is a G-definable pseudofinite subgroup of G∗, and� �� is a countably
type-definable bounded-index normal subgroup of�. Then there is a decreasing sequence (Xi)∞i=0 of
definable subsets of � such that � = ⋂∞

i=0 Xi and, for all i ∈N, there are:

• a definable finite-index normal subgroup Hi ��, and
• a definable homomorphism πi : Hi →T

ni , for some ni ∈N,

such that � ⊆ ker πi ⊆ Xi ⊆Hi. If, moreover, �/� is abelian, then we may assume Hi =� for all
i ∈N.

In the setting of the previous proposition, the fact that Xi is definable and contains ker πi
implies that it contains a Bohr neighbourhood Bniπi,εi for sufficiently small εi > 0. However, these
Bohr neighbourhoods are not necessarily definable, and so we will need to approximate them by
definable objects.

Definition 6.3. Fix a group H and an integer n ∈N.

(1) Given δ > 0, we say that a function f : H →T
n is a δ-homomorphism if f (1)= 0 and, for all

x, y ∈H, dn(f (xy), f (x)+ f (y))< δ.
(2) Given δ, ε > 0, we say that Y ⊆H is a δ-approximate (ε, n)-Bohr neighbourhood in H if

there is a δ-homomorphism f : H →T
n such that Y = {x ∈H : dn(f (x), 0)< ε}.

(3) Assume H is a definable subgroup of G∗, and π : H →T
n is a definable homomorphism.

Given an integer t� 1, we say that a decreasing sequence (Yi)∞i=0 of subsets of H is a
definable (t, π)-approximate Bohr chain in H if

⋂∞
i=0 Yi = ker π and there is a decreasing

sequence (δi)∞i=0 in R>0 converging to 0 such that, for all i� 0,

Yi = {x ∈H : dn(fi(x), 0)< tδi}
for some definable δi-homomorphism fi : H →T

n with finite image.

Note that if (Yi)∞i=0 is a definable (t, π)-approximate Bohr chain in H, then each Yi is a δi-
approximate (tδi, n)-Bohr set in H. It is also worth emphasizing that each Yi is indeed a definable
subset of H (see [10, Proposition 5.3]). The next result is a special case of [10, Lemma 5.4].

Lemma 6.4. Suppose H �G∗ is definable and π : H →T
n is a definable homomorphism for some

n ∈N. Then, for any integer t� 1, there is a definable (t, π)-approximate Bohr chain (Yi)∞i=0 in H.

Finally, we state a special case of [10, Corollary 4.4], which is an immediate consequence of [1,
Theorem 5.13].

Proposition 6.5. There is a real number θ > 0 such that if H is a finite group, n ∈N, and 0< δ < θ ,
then every δ-approximate (3δ, n)-Bohr neighbourhood in H contains a (δ, n)-Bohr neighbourhood
in H.

7. Proof of Theorem 2.4
7.1 Transfer to G∗
Throughout this subsection, let G be an ultraproduct constructed as in Section 3, and let G∗ be
the saturated extension from Section 6. The goal of this subsection is to transfer the analysis in
Section 4 to the saturated group G∗. The main idea is that the decreasing sequence (Xn)∞n=0 of
internal sets constructed in Corollary 4.2 converges to a subgroup ofG, which is ‘large’ in a certain
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sense. By transferring the sequence first to G∗, we will have more precise control over exactly what
this means, and it will be easier to find normal subgroups.

Recall that A∗ is the interpretation in G∗ of our distinguished internal set A⊆G.

Lemma 7.1.

(a) Suppose μ(A∗A−1∗ A∗)<∞. Then there is a countably type-definable subgroup � �G∗ such
that � ⊆ (A∗A−1∗ )2 and � has index at most 2ℵ0 in 〈A∗A−1∗ 〉.

(b) Suppose μ(A3∗)<∞. Then there is a countably type-definable subgroup � �G∗ such that
� ⊆ (A∗A−1∗ )2 ∩A2∗A−2∗ ∩ (A−1∗ A∗)2 ∩A−2∗ A2∗ and � has index at most 2ℵ0 in 〈A∗〉.

Proof. Set

(V ,W,�)=
{
(AA−1)2, (AA−1)2, 〈AA−1〉) in case (a),
(Ā4, (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2, 〈A〉) in case (b).

Let (V∗,W∗,�∗) be defined similarly, but with A∗ in place of A.
Working first in G, we apply Corollary 4.2 to find a sequence (Yn)∞n=0 of symmetric, internal

subsets of G such that Y0 ⊆W and, for any n ∈N, Y2
n+1 ⊆ Yn and V2 is covered by finitely many

�-translates of Yn. So, for any n ∈N, there is some kn ∈N such thatV2 is covered by finitely many
Vkn-translates of Yn.

Now in G∗, let Xn be the ∅-definable set given by the interpretation of the unary relation RYn .
By elementarity, X0 ⊆W∗ and, for any n ∈N, Xn is symmetric and internal, X2

n+1 ⊆ Xn, and V2∗ is
covered by finitely many Vkn∗ -translates of Xn.

Fix n ∈N, and let F ⊆�∗ be finite such that V2∗ ⊆ FXn. By induction on k� 1, we show that
Vk∗ ⊆ FkXn. The base case is given, so assume the result for k� 1. ThenVk+1∗ =Vk∗V∗ ⊆ FkXnV∗ ⊆
FkW∗V∗ ⊆ FkV2∗ ⊆ Fk+1Xn.

We have shown that, for any n ∈N, there is a countable set Fn ⊆�∗ such that �∗ = FXn. Let
� = ⋂∞

n=0 Xn, and note that � is a countably type-definable subgroup of G∗, which is contained
in W∗. Since �∗ is covered by countably many �∗-translates of Xn for all n� 1, it follows that �
has index at most 2ℵ0 in�∗.

Corollary 7.2.

(a) Suppose μ(A∗A−1∗ A∗)<∞. Then there is a countably type-definable subgroup � �G∗ such
that:
(i) � ⊆ (A∗A−1∗ )2,
(ii) � is normal in 〈A∗A−1∗ 〉, and
(iii) � has index at most 2ℵ0 in 〈A∗A−1∗ 〉.

(b) Suppose μ(A3∗)<∞. Then there is a countably type-definable subgroup � �G∗ such that:
(i) � ⊆ (A∗A−1∗ )2 ∩A2∗A−2∗ ∩ (A−1∗ A∗)2 ∩A−2∗ A2∗,
(ii) � is normal in 〈A∗〉, and
(iii) � has index at most 2ℵ0 in 〈A∗〉.

Proof. Set

(V ,W,�)=
{
A∗A−1∗ , (A∗A−1∗ )2, 〈A∗A−1∗ 〉) in case (a),
(Ā∗, (A∗A−1∗ )2 ∩A2∗A−2∗ ∩ (A−1∗ A∗)2 ∩A−2∗ A2∗, 〈A∗〉) in case (b).
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By Lemma 7.1, we have a countably type-definable subgroup �0 �G∗ such that �0 ⊆W and �0
has index at most 2ℵ0 in �. Let � = ⋂

g∈� g�0g−1. Then � is an intersection of at most 2ℵ0 con-
jugates g�0g−1 with g ∈�. So � is a type-definable subgroup of G∗, which is normal in� and has
index at most 22ℵ0 in�.

We now show that � is countably type-definable of index at most 2ℵ0 in�. For the first part, let
L0 ⊆L be a countable language containing the language of groups, and unary predicates defining
A and Yn for n ∈N, where Yn are the predicates used to obtain �0 (via the proof of Lemma 7.1).
Then � is L0-type-definable. Moreover, �0 is L0-type-definable over ∅, and so σ (�0)= �0 for any
σ ∈AutL0 (G∗). Since � is AutL0 (G∗)-invariant, σ (�)= � for any σ ∈AutL0 (G∗), and so � is
L0-type-definable over ∅. Since L0 is countable, � is countably type-definable.

Finally, let � = ⋂∞
n=0 Dn, where eachDn is definable and (without loss of generality) contained

in �. Since � has bounded index in �, we may fix some bounded set C ⊂� such that � = C�.
Fix m, n ∈N. Then Vm ⊆� = C� = CDn. By saturation of G∗, it follows that there is some finite
Cn,m ⊆ C such that Vm ⊆ Cn,mDn. So, if Cn = ⋃

m∈N Cn,m, then Cn is countable and � = CnDn.
Once again, this implies that � has index at most 2ℵ0 in�.

Corollary 7.2 is a non-standard Bogolyubov–Ruzsa-type statement about pseudofinite sets of
small alternation or small tripling. However, since the subgroup � is not necessarily definable, it
cannot be directly transferred to statements about internal subsets ofG (which are needed in order
to transfer to the finite groupsGs). For this, we need thematerial in Section 6 on approximate Bohr
neighbourhoods.

7.2 Ultraproduct argument
We now prove parts (1) and (2) of Theorem 2.4 simultaneously. Given a group G and a set A⊆G,
let

�(A)=
{

〈AA−1〉
〈A〉 U(A)=

{
AA−1A
A3 V(A)=

{
AA−1 in part (1)
Ā in part (2)

and W(A)=
{
(AA−1)2 in part (1),
(AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2 in part (2).

The ambient group G is suppressed from the notation, but this should cause no confusion in the
following proof.

The next result is a restatement of Theorem 2.4, which we will prove by taking an ultraproduct
of counterexamples, and using the material in Section 6 in order to transfer Bohr neighbourhoods
through ultraproducts and saturated extensions.

Theorem 7.3. For any positive integers k and m, there is an integer s= s(k,m) such that the fol-
lowing holds. Suppose G is a group and A⊆G is finite such that |U(A)|� k|A| and�(A)=V(A)m.
Then there are:

• a normal subgroup H ��(A), of index at most s, and
• a (δ, n)-Bohr neighbourhood B in H, with δ−1, n� s,

such that B⊆W(A). Moreover, if�(A) is abelian then we may assume H =�(A).

Proof. Suppose not. Then for any s ∈N, we may fix a group Gs and a finite set As ⊆Gs such that
|U(As)|� k|As|, �(As)=V(As)m, and there does not exist a normal subgroup H ��(As) and a
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(δ, n)-Bohr neighbourhood B in H such that [�(As) : H], δ−1, n� s and H ⊆W(As). Note that
|�(As)|>max{s,m}, since otherwise we could take H = {1}.

Let U be a non-principal ultrafilter on N and set G= ∏
U Gs. Let A= ∏

U As, and note that A
is an internal subset of G. We also have

U(A)=
∏
U

U(As), V(A)=
∏
U

V(As), W(A)=
∏
U

W(As),

and
�(A)=

⋃
n∈N

V(A)n =
⋃
n∈N

∏
U

V(As)n =
∏
U

V(As)m =V(A)m

Note, in particular, that �(A)= ∏
U �(As) is infinite, and so G is infinite. Let μ be the |A|-

normalized pseudofinite counting measure on internal subsets ofG. By Łoś’s theorem,μ(U(A))�
k<∞.

Let G∗ be a saturated elementary extension of G in the internal language of G (see Section 6),
and let A∗ be the interpretation in G∗ of the predicate defining A in G. By Lemma 7.1, there is a
countably type-definable subgroup � �G∗ such that � ⊆W(A∗) and � has index at most 2ℵ0 in
�(A∗). Note also that�(A∗)=V(A∗)m. In particular,�(A∗) is G-definable and pseudofinite.

By Proposition 6.2 and saturation of G∗, there is a definable finite-index normal subgroup
H ��(A∗) and a definable homomorphism π : H →T

n, for some n ∈N, such that � ⊆ ker π ⊆
H ∩W(A∗). By Lemma 6.4, there is a definable (3, π)-approximate Bohr chain (Yi)∞i=0 in H.
By saturation, Yi ⊆W(A∗) for sufficiently large i ∈N. So we may fix δ < θ , where θ is as in
Proposition 6.5, and a definable δ-homomorphism f : H →T

n such that Y := {x ∈H : d(f (x), 0)<
3δ} ⊆W(A∗).

Let�= f (H), and note that� is finite (see Definition 6.3(3)). Given λ ∈�, let F(λ)= f−1(λ)⊆
H. Then each F(λ) is definable. Set r = [�(A∗) : H]<∞.

Fix L-formulas φ(x; ȳ), ψ(x; z̄) and ζλ(x; ūλ) for λ ∈�, such that H is defined by an instance
of φ(x; ȳ), Y is defined by an instance of ψ(x; z̄), and, for λ ∈�, F(λ) is defined by an instance of
ζλ(x; ūλ). Let I ⊆N be the set of s ∈N such that, for some tuples ās, b̄s and c̄λ,s (for λ ∈�) from
Gs, we have:

(i) φ(x; ās) defines a normal subgroup Hs of�(As)=V(As)m of index r,
(ii) for all λ ∈�, ζλ(x; c̄λ,s) defines a subset Fs(λ) of Hs,
(iii) if fs : Hs →� is defined so that fs(x)= λ if and only if x ∈ Fs(λ), then fs is a well-defined

δ-homomorphism (from Hs to Tn),
(iv) ψ(x; b̄s) defines a subset Ys of Hs, and Ys = {x ∈Hs : d(fs(x), 0)< 3δ},
(v) Ys ⊆W(As).

Then I ∈ U by Łoś’s theorem and elementarity (checking that (i)–(v) are first-order expressible
is somewhat cumbersome, but fairly routine; see the proof of [10, Lemma 5.6]). So we may fix
some s ∈ I such that r, n, δ−1 � s. For this s, Ys is a δ-approximate (3δ, n)-Bohr set in Hs. By
Proposition 6.5, there is a (δ, n)-Bohr set B⊆ Ys. So B⊆W(As), which contradicts the choice of
Gs and As.

Finally, if we assume �(A) is abelian then, in the above proof, we may take H =�(A∗) by
Proposition 6.2, and thus assume Hs =�(As) for all s ∈N.

Remark 7.4. Suppose that in Theorem 7.3 we further assumeG is abelian and |A|� c|G| for some
fixed c> 0. Then we have 〈A〉 = Ām, where m� �3c−1 + 1�), and [G: 〈A〉]� �c−1�. Therefore, in
the proof of the theorem,�(A∗) has finite index inG∗, and so� has index at most 2ℵ0 inG∗. So we
can carry out the rest of the proof with G∗ in place of�(A∗), obtainingHs =Gs in the conclusion.
Consequently, in Theorem 1.2(b), if G is abelian then we may take H =G.
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8. Arithmetic regularity and VC-dimension
The goal of this section is to prove Theorem 1.6. As indicated in the Introduction, the only ingredi-
ent in the work of Alon, Fox and Zhao [3] requiring abelian groups is Theorem 1.1(a). The (quali-
tative) non-abelian version of this result for sets of small tripling, provided by Corollary 1.4(a), will
be sufficient to essentially carry out the same proof as in [3] (see also Remark 9.3). The only extra
work is in specifying the numerics and clarifying the ‘regularity’ aspect of the result (i.e. condition
(ii) of Theorem 1.6). We also make some similar (but mostly qualitative) statements for purely
non-abelian finite groups, and finite simple groups.

Definition 8.1. Let G be a finite group. Given a subset A⊆G and some ε > 0, define the
ε-stabilizer of A to be the set Stabε (A) := {x ∈G : |xA�A|� ε|G|}.

The following lemma, which we have extracted from the counting techniques done in [3],
makes explicit the connection between ε-stabilizers and strong arithmetic regularity involving
subgroups.

Lemma 8.2. Let G be a finite group and fix a subset A⊆G and some ε > 0. Suppose H is a subgroup
of G contained in Stabε (A).

(a) There is D⊆G, which is a union of right cosets of H, such that |A�D|� ε|G|.
(b) There is Z ⊆G, with |Z|< 1

2ε
1/2|G|, such that, for any x ∈G\Z, either |Hx ∩A|� ε1/4|H|

or |Hx\A|� ε1/4|H|.

Proof. Let C be the set of right cosets of H in G. Given C ∈ C, define PC = (C ∩A)× (C\A). Let
P =

⋃
C∈C

PC = {(a, g) ∈A×G\A : ga−1 ∈H},

and note that PC ∩ PC′ = ∅ for distinct C, C′ ∈ C. From the proof of [3, Lemma 2.4], we obtain

2
∑
C∈C

|PC| = 2|P| =
∑
x∈H

|xA�A|� ε|G||H|. (†)

For part (a), we continue to follow [3]. Let

D=
⋃

{C ∈ C : |C ∩A|� |H|/2}.
Then, by ( † ),

|A�D| =
∑
C∈C

min{|C ∩A|, |C| − |C ∩A|}�
∑
C∈C

2
|H| |PC|� ε|G|.

For part (b), let

Z = {C ∈ C : |PC|> ε1/2|H|2}.
By ( † ),

1
2
ε|G||H|�

∑
C∈C

|PC|> ε1/2|H|2|Z|.

So |Z|< 1
2ε

1/2|G|/|H|. Now set Z = ⋃
C∈Z C. Then |Z|< 1

2ε
1/2|G|. Moreover, if x ∈G\Z then

Hx �∈Z , and thus |PHx|� ε1/2|H|2, which implies |Hx ∩A|� ε1/4|H| or |Hx\A|� ε1/4|H|.

We can now prove Theorem 1.6, following the same steps as in [3].
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Proof of Theorem 1.6. Fix positive integers r and d, and real numbers ε, ν > 0. Suppose G is a
finite group of exponent at most r, and A⊆G has VC-dimension at most d. Let S= Stabδ (A),
where δ = (ε/4)(d+ν)/d/30ν/d. Note that S is symmetric. Set k= (30/δ)d and p= d(d + ν)/ν.
It is an immediate consequence of Haussler’s Packing Lemma [17], for set systems of finite
VC-dimension, that |S|� |G|/k (see Lemmas 2.1 and 2.2 of [3]). Therefore we cannot have
|S3i+1 |> 3p|S3i | for all i� log3p (k). So we may fix some t� log3p (k) such that, setting B= S3t ,
we have |B3|� 3p|B|. By Corollary 1.4(a), there is a subgroup H �G such that H ⊆ B4 and B
is covered by Or,d,ν(1) left translates of H. Since |G|� k|B|, we see that H has index at most
Or,d,ν(k)=Or,d,ν((1/ε)d+ν).

To finish the proof, it suffices by Lemma 8.2 to show that H ⊆ Stabε (A). We have |xA�A|�
δ|G| for all x ∈ S, and H ⊆ B4 = S4·3t . So, for any x ∈H,

|xA�A|� 4 · 3tδ|G|� 4k1/pδ|G| = ε|G|.

Remark 8.3. Wemake some comments to follow up on Remark 1.7.

(1) Note that, in the proof of Theorem 1.6, if K = ⋂
g∈G gHg−1 then K is normal of index at

most [G: H]! and K ⊆ Stabε (A). So, if [G: H]�Or,d,ν((1/ε)d+ν), for some chosen ε, ν > 0,
then log [G: K]�Or,d,ν(ε−(d+ν) log (ε−1)). Altogether, we have a statement identical to
Theorem 1.6, but with a normal subgroup of index 2Or,d,ν ((1/ε)d+ν ). One reason a normal
subgroup is desirable in this situation is that it implies a very strong graph regularity con-
clusion for the bipartite graph xy ∈A on G, in which the pieces of the regular partition are
the cosets of H (see [10, Corollary 3.3]).

(2) A non-effective version of Theorem 1.6, with a normal subgroup, can also be proved by
applying Corollary 1.4(b) directly to Stabε (A). Together with Haussler’s Packing Lemma,
this would directly yield a normal subgroup of index Or,d,ε(1) contained in Stabε (A). It is
interesting to note that a qualitative version of Theorem 1.6, with a normal subgroup, was
already shown in [10] using fairly different techniques (although there are some aspects of
the work in [10] which are not recovered here, including definability of the subgroup H
and a stronger regularity statement).

Finally, we prove similar results about purely non-abelian finite groups and finite simple
groups. To motivate our interest in this setting, we recall some of the previous work on arith-
metic regularity for subsets of finite groups satisfying extra tameness properties. One example of
such a property is bounded VC-dimension, which we have already discussed. Another important
example is that of a d-stable subset A of a group G, for some integer d� 1, which means there do
not exist a1, . . . , ad, b1, . . . , bd ∈G such that aibj ∈A if and only if i� j. Note that a d-stable set
has VC-dimension at most d − 1. Both of these properties were previously studied in the setting
of Szemerédi regularity for graphs (see [2], [23]).

In [9] (joint with Pillay and Terry), we showed that, given d� 1 and ε > 0, if G is a finite group
and A⊆G is d-stable, then there is a normal subgroup H �G, of index Od,ε(1), and a union D
of cosets of G such that |A�D|� ε|H|. Informally, stable subsets of finite groups are structurally
approximated by cosets of a bounded-index normal subgroup. In the setting of finite groups, this
phenomenon was first investigated by Terry andWolf [38], who proved a similar result forG= F

n
p

with strong quantitative bounds, but with the approximation |A�D|� ε|G|. (This was recently
generalized to arbitrary finite abelian groups in [39].)
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In contrast, easy examples show that subgroups are not sufficient to control sets of bounded
VC-dimension. For example, as noted in [3], if p� 3 is prime and G=Z/pZ and A=
{1, . . . , (p− 1)/2}, then A has VC-dimension 2, but A cannot be approximated by cosets of a
non-trivial subgroup of G. This is one reason to use Bohr neighbourhoods in the formulation
of arithmetic regularity for sets of bounded VC-dimension, which was done by Sisask in the
abelian setting [34], and independently in [10] for general finite groups. As we have seen above,
if one introduces a uniform bound on the exponent of the groups, then subgroups can be used
to approximate sets of bounded VC-dimension. So this motivates the following result that purely
non-abelian groups (see Corollary 1.3) also exhibit this behaviour.

Theorem 8.4. Fix a positive integer d. Suppose G is a purely non-abelian finite group, and A⊆G
has VC-dimension at most d. Then, for any ε > 0, there is a normal subgroup H of G, of index
Od,ε(1), which satisfies the following properties.

(i) (Structure) There is a set D⊆G, which is a union of cosets of H, such that |A�D|� ε|G|.
(ii) (Regularity) There is a set Z ⊆G, with |Z|< 1

2ε
1/2|G|, such that for any x ∈G\Z, either

|xH ∩A|� ε1/4|H| or |xH\A|� ε1/4|H|.

Proof. Fix a purely non-abelian finite group G, a subset A⊆G of VC-dimension at most d, and
ε > 0. As in Theorem 1.6, if S= Stabε/4 (A) then |S|� (ε/120)d|G|. By Corollary 1.3 there is a
normal subgroup H �G, of index Od,ε(1), such that H ⊆ S4. So |xA�A|� ε|G| for any x ∈H.
Now apply Lemma 8.2.

Remark 8.5. The previous theorem can also be deduced from [10, Theorem 5.7], yielding further
information as discussed in Remark 8.3(2). On the other hand, the proof here seems more direct,
and certainly uses a more acute application of VC-theory. (Both proofs involve identical uses of
[1] and [28]).

The work in [9] on stable regularity implies that, for any d� 1 and ε > 0, if G is a finite simple
group of size �d,ε(1) and A⊆G is d-stable, then |A|� ε|G| or |A|� (1− ε)|G|.5 For the abelian
case (i.e. G=Z/pZ), a quantitative lower bound on p= |G|, in terms of d and ε, could be deduced
from [39]. On the other hand, the example above, which shows that subgroups are not sufficient
to approximate sets of bounded VC-dimension, takes place in abelian finite simple groups. This
motivates the following corollary of Theorem 8.4.

Corollary 8.6. For any integer d and any ε > 0, there is an integer n= n(d, ε) such that, if G is a
non-abelian finite simple group of size greater than n, and A⊆G has VC-dimension at most d, then
|A|� ε|G| or |A|� (1− ε)|G|.

Remark 8.7. Using a similar strategy, we can give a direct proof of the previous corollary, which
yields log (n(d, ε))�O((ε/90)−6d) as an explicit bound. Namely, by the work of Gowers [14] dis-
cussed in Remark 2.8, there is some c> 0 such that if G is a non-abelian finite simple group with
log |G|� c(ε/90)−6d, and S⊆G is such that |S|� (ε/90)−d|G|, then G= S3. So fix such a G, and
suppose A⊆G is of VC-dimension at most d. By Haussler’s Packing Lemma, and choice of c, we
have G= ( Stabε/3 (A))3 = Stabε (A). Now apply Lemma 8.2.6

5This is a finitary analogue of the older fact that any definable subset of an (infinite) definably-connected stable group has
measure 0 or 1 with respect to the unique Keisler measure.

6As in Remark 2.8, the work in [8] implies n(d, ε)� (�(ε/90)−3d� + 1)! in Corollary 8.6.
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9. Final remarks
9.1 Quantitative bounds
An obvious question at this point is on effective bounds for Theorems 1.2, 2.3 and 2.4. Our proof
of Theorem 2.4 used an ultraproduct construction, and did not give explicit bounds of any kind.
While ultraproducts do not appear explicitly in our proof of Theorem 2.3, they are used similarly
in previous work on approximate groups (in both [7] and [19]).

It is sometimes possible, with enough work, to reverse-engineer effective bounds from argu-
ments with ultraproducts, but these bounds are usually very bad (see e.g. [36, Chapter 7] for some
discussion of this topic). Altogether, it seems that in order to obtain efficient bounds for the above
results, one would need efficient bounds for results on approximate groups, or a different proof
strategy altogether.

9.2 Small tripling versus approximate groups
For the sake of completeness, we note that weaker versions of our main results can be obtained
without the revised Sanders–Croot–Sisask analysis in Section 4. This is because of the following
result of Tao, which follows from the proof of [35, Theorem 3.9] (or see [7, Corollary 5.2]).

Theorem 9.1 ([35]). Suppose A is a non-empty finite subset of a group G. If |A3|� k|A| then Ā2 is
an O(kO(1))-approximate group containing A.

Together with Theorem 5.1, one obtains a weaker version of Theorem 2.3.

Corollary 9.2 ([7], [35]). Fix positive integers k and r. Let G be a group of exponent r, and fix a
finite subset A⊆G. Suppose |A3|� k|A|. Then there is H � 〈A〉 such that Ā2 is covered by Ok,r(1)
left cosets of H and H � Ā8.

Remark 9.3. Corollary 9.2 could be used instead of Corollary 1.4(a) in the proof of Theorem 1.6.

Remark 9.4. Recall that ifA⊆G is finite and non-empty, with |AA−1A|� k|A|, then |(A−1A)3|�
kO(1)|A−1A| by Proposition 3.2(b), and so (AA−1)2 is an O(kO(1))-approximate group by
Theorem 9.1. Altogether, this is essentially the ‘discrete case’ of [19, Corollary 3.11].

A weaker version of Theorem 2.4 can also be formulated using Theorem 9.1, but the proof
would still require our work with saturated extensions and approximate Bohr neighbourhoods,
and so we will not go into it any further. On the other hand, the following statement about sets
of small tripling in arbitrary groups follows by combining Theorem 9.1 with the main structure
theorems for approximate groups from Breuillard, Green and Tao [7].

Theorem 9.5 ([7, 35]). Fix a positive integer k. Suppose G is a group and A⊆G is finite and non-
empty, with |A3|� k|A|. Then there is a subgroup H of G and a finite normal subgroup N of H with
the following properties:

(i) A is covered by Ok(1) left cosets of H,
(ii) H/N is nilpotent and finitely generated of rank and step Ok(1),
(iii) Ā8 contains N and a generating set for H.

Moreover, there is a coset nilprogression P ⊆ Ā8 of rank and step Ok(1) such that A is covered by
Ok(1) left translates of P.
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The final clause of the previous theorem is a non-abelian analogue of the Bogolyubov–Ruzsa
lemma for finite abelian groups, which was stated after Theorem 1.1. However, we have the quali-
tative discrepancy between Ā8 in condition (iii) and 2A− 2A in the abelian case. Given our earlier
results, one naturally wonders if Ā8 can be replaced by (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.
This also raises a similar question about small alternation. So we observe that these issues can be
addressed simply by combining the results in [7] with Lemma 4.1.

Theorem 9.6. Fix a positive integer k. Suppose G is a group and A⊆G is finite and non-empty.
Furthermore,

(a) assume |AA−1A|� k|A| and set V =AA−1 and W = (AA−1)2, or
(b) assume |A3|� k|A| and set V = Ā and W = (AA−1)2 ∩A2A−2 ∩ (A−1A)2 ∩A−2A2.

Then there is a subgroup H of G and a finite normal subgroup N of H with the following properties:

(i) for all m� 1, Vm is covered by Ok,m(1) left cosets of H,
(ii) H/N is nilpotent and finitely generated of rank and step Ok(1),
(iii) W contains N and a generating set for H.

Moreover, there is a coset nilprogression P ⊆W of rank and step Ok(1) such that, for all m� 1, Vm

is covered by Ok,m(1) left translates of P.

Proof. By Lemma 4.1, there is a symmetric set Y ⊆G such that Y8 ⊆W and V3 is covered by
Ok(1) left translates of Y . Since Y ⊆V2, it follows that for allm� 1, Vm is covered by Ok,m(1) left
translates of Y . Note also that Y is an Ok(1)-approximate group. So by [7, Theorem 1.6], there
are N �H �G such that Y is covered by Ok(1) left cosets of H, H/N is nilpotent and finitely
generated of rank and step Ok(1), and Y4 contains N and a generating set for H. Moreover, by
[7, Theorem 2.10], there is a coset nilprogression P ⊆ Y8 of rank and step Ok(1) such that |Y|�
Ok(|P|) and Y is covered by Ok(1) left translates of P. Altogether, the result follows by choice
of Y .
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