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Abstract

For the directed edge preferential attachment network growth model studied by Bollobás
et al. (2003) and Krapivsky and Redner (2001), we prove that the joint distribution of in-
degree and out-degree has jointly regularly varying tails. Typically, the marginal tails of
the in-degree distribution and the out-degree distribution have different regular variation
indices and so the joint regular variation is nonstandard. Only marginal regular variation
has been previously established for this distribution in the cases where the marginal tail
indices are different.
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1. Introduction

The directed edge preferential attachment model studied by Bollobás et al. (2003) and
Krapivsky and Redner (2001) is a model for a growing directed random graph. The dynamics
of the model are as follows. Choose as parameters nonnegative real numbers α, β, γ , δin,
and δout, such that α + β + γ = 1. To avoid degenerate situations we will assume that each of
the numbers α, β, γ is strictly smaller than 1.

At each step of the growth algorithm we obtain a new graph by adding one edge to an existing
graph. We will enumerate the obtained graphs by the number of edges they contain. We start
with an arbitrary initial finite directed graph with at least one node and n0 edges, denotedG(n0).
For n = n0 + 1, n0 + 2, . . . , G(n) will be a graph with n edges and a random number N(n)
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of nodes. If u is a node in G(n − 1), Din(u) and Dout(u) denote the in and out degree of u,
respectively. The graph G(n) is obtained from G(n− 1) as follows.

• With probability α we append to G(n − 1) a new node v and an edge leading from v to
an existing node w in G(n − 1) (denoted v �→ w). The existing node w in G(n − 1) is
chosen with probability depending on its in-degree:

p(w is chosen) = Din(w)+ δin

n− 1 + δinN(n− 1)
.

• With probability β we only append to G(n − 1) a directed edge v �→ w between two
existing nodes v and w of G(n − 1). The existing nodes v,w are chosen independently
from the nodes of G(n− 1) with probabilities

p(w is chosen) = Dout(v)+ δout

n− 1 + δoutN(n− 1)
, p(w is chosen) = Din(w)+ δin

n− 1 + δinN(n− 1)
.

• With probability γ we append to G(n − 1) a new node w and an edge v �→ w leading
from the existing node v inG(n− 1) to the new node w. The existing node v inG(n− 1)
is chosen with probability

p(w is chosen) = Dout(v)+ δout

n− 1 + δoutN(n− 1)
.

If either δin = 0 or δout = 0, we must have n0 > 1 for the initial steps of the algorithm to
make sense.

For i, j = 0, 1, 2, . . . and n ≥ n0, let Nij (n) be the (random) number of nodes in G(n)
with in-degree i and out-degree j . Bollobás et al. (2003, Theorem 3.2) showed that there are
nonrandom constants (fij ) such that

lim
n→∞

Nij (n)

n
= fij almost surely (a.s.) for i, j = 0, 1, 2, . . . .

Clearly, f00 = 0. Since we obviously have

lim
n→∞

N(n)

n
= 1 − β a.s.,

we see that the empirical joint in- and out-degree distribution in the sequence (G(n)) of growing
random graphs has as a nonrandom limit the probability distribution

lim
n→∞

Nij (n)

N(n)
= fij

1 − β
=: pij a.s. for i, j = 0, 1, 2, . . . . (1.1)

In Bollobás et al. (2003) it was shown that the limiting degree distribution (pij ) has, marginally,
regularly varying (in fact, power-like) tails. Specifically, Theorem 3.1 ibid. shows that for some
finite positive constants Cin and Cout, we have

pi(in) :=
∞∑
j=0

pij ∼ Cini
−αin as i → ∞,
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148 G. SAMORODNITSKY ET AL.

as long as αδin + γ > 0, and

pj (out) :=
∞∑
i=0

pij ∼ Coutj
−αout as j → ∞,

as long as γ δout + α > 0. Here,

αin = 1 + 1 + δin(α + γ )

α + β
, αout = 1 + 1 + δout(α + γ )

γ + β
. (1.2)

We will prove that the limiting degree distribution (pij ) in (1.1) has jointly regularly varying
tails and obtain the corresponding tail measure.

This paper is organized as follows. We start with a summary of multivariate regular variation
in Section 2. In Section 3 we show that the joint generating function of in-degree and out-
degree satisfies a partial differential equation. We solve the differential equation and obtain an
expression for the generating function. In Section 4 we represent the distribution corresponding
to the generating function as a mixture of negative binomial random variables where the mixing
distribution is Pareto. This allows direct computation of the tail measure of the nonstandard
regular variation of in- and out-degree without using transform methods. The tail measure is
absolutely continuous with respect to the two-dimensional Lebesgue measure, and we exhibit
its density. We also present in Section 4.1 graphical evidence of the variety of dependence
structures possible for the tail measure based on explicit formulae, simulation and iteration of
the defining difference equation for limiting frequencies.

Using the joint generating function of {pij }, an alternate route for studying heavy tail behavior
of in- and out-degree is to use transform methods and Tauberian theory. This approach was
reported in Resnick and Samorodnitsky (2015).

2. Multivariate regular variation

We briefly review the basic concepts of multivariate regular variation (Resnick (2007)) which
forms the mathematical framework for multivariate heavy tails. We restrict our attention to two
dimensions since this is the context for the rest of the paper.

A random vector (X, Y ) ≥ 0 has a distribution that is nonstandard regularly varying if there
exist scaling functions a(h) ↑ ∞ and b(h) ↑ ∞ and a nonzero limit measure ν(·) called the
limit or tail measure such that as h → ∞,

hP

[(
X

a(h)
,
Y

b(h)

)
∈ ·

]
v−→ ν(·), (2.1)

where ‘
v−→’ denotes vague convergence of measures inM+([0,∞]2 \ {0}) = M+(E), the space

of Radon measures on E. The exclusion of 0 from E guarantees that the natural tail regions
coincide with relatively compact sets bounded away from 0; this is explained further in Resnick
(2007, Section 6.1.3). The scaling functions will be regularly varying and we assume that their
indices are positive and therefore, without loss of generality, we may suppose a(h) and b(h) are
continuous and strictly increasing. The phrasing in (2.1) implies that the marginal distributions
have regularly varying tails.

In the a(h) = b(h) case, (X, Y ) has a distribution with standard regularly varying tails,
Resnick (2007, Section 6.5.6). Given a vector with a distribution which is nonstandard regularly
varying, there are at least two methods (Resnick (2007, Section 9.2.3)) for standardizing the
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vector so that the transformed vector has standard regular variation. The simplest is the power
method which is justified when the scaling functions are power functions:

a(h) = hγ1 , b(h) = hγ2 , γi > 0, i = 1, 2.

For instance with c = γ2/γ1,

hP

[(
Xc

hγ2
,
Y

hγ2

)
∈ ·

]
v−→ ν̃(·), (2.2)

where if T (x, y) = (xc, y), then ν̃ = ν ◦ T −1. Since the two scaling functions in (2.2) are
the same, the regular variation is now standard. The measure ν̃ will have a scaling property
and for an appropriate change of coordinate system, the correspondingly transformed ν̃ can
be factored into a product; for example, the polar coordinate transform is one such coordinate
system change which factors ν̃ into a product of a Pareto measure and an angular measure and
this is one way to describe the asymptotic dependence structure of the standardized (X, Y ),
Resnick (2007, Section 6.1.4). Another suitable transformation is given in Section 4 based on
ratios.

3. The joint generating function of in-degree and out-degree

Define the joint generating function of the limit distribution {pij } of in-degree and out-degree
in (1.1) by

ϕ(x, y) =
∞∑
i=0

∞∑
j=0

xiyjpij , 0 ≤ x, y ≤ 1. (3.1)

In the following lemma we show that the generating function satisfies a partial differential
equation.

Lemma 3.1. The function ϕ is continuous on the square [0, 1]2 and is infinitely continuously
differentiable in the interior of the square. In this interior it satisfies

[c1δin(1 − x)+ c2δout(1 − y)+ 1]ϕ + c1x(1 − x)
∂ϕ

∂x
+ c2y(1 − y)

∂ϕ

∂y

= α

α + γ
y + γ

α + γ
x, (3.2)

where

c1 = α + β

1 + δin(α + γ )
, c2 = β + γ

1 + δout(α + γ )
. (3.3)

Proof. Only the form of the partial differential equation in (3.2) requires justification. The
following recursive relation connecting the limiting probabilities (pij ) was established in the
appendix of Bollobás et al. (2003),

pij = c1(i − 1 + δin)pi−1,j − c1(i + δin)pij + c2(j − 1 + δout)pi,j−1

− c2(j + δout)pij + α

α + γ
1{i=0,j=1} + γ

α + γ
1{i=1,j=0} (3.4)

for i, j = 0, 1, 2, . . . with the understanding that any p with a negative subscript is equal
to 0. Rearranging the terms, multiplying both sides by xiyj , and summing up, we see that,
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150 G. SAMORODNITSKY ET AL.

for 0 < x, y < 1,

∞∑
i=0

∞∑
j=0

(c1δin + c2δout + 1 + c1i + c2j)x
iyjpij

= α

α + γ
y + γ

α + γ
x + c1

∞∑
i=1

∞∑
j=0

(i − 1 + δin)x
iyjpi−1,j

+ c2

∞∑
i=0

∞∑
j=1

(j − 1 + δout)x
iyjpi,j−1. (3.5)

Since
∂ϕ

∂x
(x, y) =

∞∑
i=1

∞∑
j=0

ixi−1yjpij ,
∂ϕ

∂y
(x, y) =

∞∑
i=0

∞∑
j=1

jxiyj−1pij ,

we can rearrange the terms in (3.5) to obtain (3.2). �
The next theorem gives an explicit formula for the joint generating function ϕ in (3.1). It

shows, in particular, that the joint distribution of the in-degree and the out-degree is a mixture
of laws with independent negative binomial marginals. The mixture is over the outcome of a
binomial trial as well as a common random probability for success, which is the reciprocal of a
Pareto random variable. This representation is related to the recent work of Ross (2013). The
author considered the in-degree of a node in a related model, and provided actual bounds on the
total variation distance between the in-degree in the nth graph and a mixture a negative binomial
law over a random probability for success. The reciprocal of this probability has a Pareto law.
It may be possible to prove Theorem 3.1 using an approach similar to that of Ross (2013); if
so, the result would come with distance bounds in addition to a representation of the limit. We
do not know at present how to do that in the bivariate case of this paper. We give an alternative
and possibly more direct argument using generating functions that is of separate interest and
applicable to other models. An alternative transform using Tauberian theory can be found in
Resnick and Samorodnitsky (2015).

Theorem 3.1. Let a = c2/c1, where c1 and c2 are given in (3.3). Then for 0 ≤ x, y ≤ 1,

ϕ(x, y) = α

α + γ
c−1

1 y

∫ ∞

1
z−(1+1/c1)(x + (1 − x)z)−δin(y + (1 − y)za)−(δout+1) dz

+ γ

α + γ
c−1

1 x

∫ ∞

1
z−(1+1/c1)(x + (1 − x)z)−(δin+1)(y + (1 − y)za)−δout dz.

(3.6)

Proof. The partial differential equation in (3.2) is a linear equation of the form of John
(1971, Equation (6), p. 6), and to solve it we follow the procedure suggested ibid. Specifically,
we write (3.2) in the form

a(x, y)
∂ϕ

∂x
+ b(x, y)

∂ϕ

∂y
= c(x, y)ϕ + d(x, y) (3.7)

with a(x, y) = c1x(1 − x), b(x, y) = c2y(1 − y), c(x, y) = c1δinx + c2δouty − ρ, and
d(x, y) = α(α + γ )−1y + γ (α + γ )−1x, where ρ = c1δin + c2δout + 1. Consider the family
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of characteristic curves for (3.7) defined by

dy

dx
= b(x, y)

a(x, y)
.

It is elementary to check that the characteristic curves form a one-parameter family, {Cθ , θ > 0},
with the curve Cθ given by

y = 1

1 + θx−a(1 − x)a
, 0 < x < 1.

Along each characteristic curve Cθ the function u(x) = ϕ(x, y(x)), 0 < x < 1, satisfies the
ordinary differential equation

du

dx
= c(x, y)u+ d(x, y)

a(x, y)
= uψ1(x)+ ψ2(x), (3.8)

where

ψ1(x) = c1δinx + c2δout(1 + θx−a(1 − x)a)−1 − ρ

c1x(1 − x)
,

ψ2(x) = γ x + α(1 + θx−a(1 − x)a)−1

(α + γ )c1x(1 − x)
.

Let H be a function satisfying

H ′(x) = ψ1(x), 0 < x < 1, (3.9)

and define A(x) = u(x)e−H(x), 0 < x < 1. From (3.8), it follows that

A′(x) = ψ2(x)e
−H(x), 0 < x < 1. (3.10)

We compute the function u by solving (3.9) and (3.10).
To solve (3.9), first write it in the form

H ′(x) = δin

1 − x
− ρ/c1

x(1 − x)
+ c2δout/c1

1 + θx−a(1 − x)a

1

x(1 − x)
.

It is elementary to check by differentiation that∫
1

1 + θx−a(1 − x)a

1

x(1 − x)
dx = − log(1 − x)+ a−1 log(xa + θ(1 − x)a)+ C1

with C1 ∈ R. Therefore, for 0 < x < 1,

H(x) = c−1
1 log(1 − x)− ρc−1

1 log x + δout log(xa + θ(1 − x)a)+ C1, (3.11)

implying that

A′(x) = e−C1
γ x + α(1 + θx−a(1 − x)a)−1

(α + γ )c1x(1 − x)
(1 − x)−1/c1xρ/c1(xa + θ(1 − x)a)−δout

= e−C1

(α + γ )c1
γ (1 − x)−(1+1/c1)xδin+1/c1(1 + θx−a(1 − x)a)−δout

+ e−C1

(α + γ )c1
(1 − x)−(1+1/c1)xδin−1+1/c1(1 + θx−a(1 − x)a)−(1+δout).
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We can now write

A(x) = e−C1
γ

(α + γ )c1

∫ x

0
(1 − t)−(1+1/c1)tδin+1/c1(1 + θt−a(1 − t)a)−δout dt

+ e−C1
α

(α + γ )c1

∫ x

0
(1 − t)−(1+1/c1)tδin−1+1/c1(1 + θt−a(1 − t)a)−(1+δout) dt

+ C2 (3.12)

with C2 ∈ R. Using (3.11) and (3.12), we obtain the following expression for the function
u(x) = ϕ(x, y(x)), 0 < x < 1 along the characteristic curve Cθ :

u(x) = A(x)eH(x)

= γ

α + γ
c−1

1 (1 − x)1/c1x−(δin+1/c1)(1 + θx−a(1 − x)a)δout

×
∫ x

0
(1 − t)−(1+1/c1)tδin+1/c1(1 + θt−a(1 − t)a)−δout dt

+ α

α + γ
c−1

1 (1 − x)1/c1x−(δin+1/c1)(1 + θx−a(1 − x)a)δout

×
∫ x

0
(1 − t)−(1+1/c1)tδin−1+1/c1(1 + θt−a(1 − t)a)−(1+δout) dt

+ C3(1 − x)1/c1x−(δin+1/c1)(1 + θx−a(1 − x)a)δout

with C3 = C3(θ) ∈ R. Multiply both sides of this equation by xaδout+ρ/c1 and let x → 0.
Using the fact that the generating function is bounded, we see that C3 = 0. We can now obtain
an expression for the joint generating function ϕ everywhere in (0, 1)2 by noting that a point
(x, y), 0 < x, y < 1, lies on the characteristic curve Cθ with

θ = (1 − y)/y

((1 − x)/x)a
.

We conclude that

ϕ(x, y) = γ

α + γ
c−1

1 (1 − x)1/c1x−(δin+1/c1)y−δout

×
∫ x

0
(1 − t)−(1+1/c1)tδin+1/c1

(
1 + (1 − y)/y

((1 − x)/x)a
t−a(1 − t)a

)−δout

dt

+ α

α + γ
c−1

1 (1 − x)1/c1x−(δin+1/c1)y−δout

×
∫ x

0
(1 − t)−(1+1/c1)tδin−1+1/c1

(
1 + (1 − y)/y

((1 − x)/x)a
t−a(1 − t)a

)−(1+δout)

dt.

Changing the variable in both integrals to

z = x(1 − t)

t (1 − x)

and rearranging the terms, we obtain (3.6) for 0 < x, y < 1. Now we can extend this equation
for the joint generating function to the boundary of the square [0, 1]2 by continuity. �
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4. Joint regular variation of the distribution of in-degree and out-degree

In this section we analyze the explicit form (3.6) of the joint generating function of the limit-
ing distribution of in-degree and out-degree obtained in Theorem 3.1 to prove the nonstandard
joint regular variation of in-degree and out-degree. We also obtain an expression for the density
of the tail measure.

We start by writing the joint generating function in (3.6) as

ϕ(x, y) = γ

α + γ
xϕ1(x, y)+ α

α + γ
yϕ2(x, y), (4.1)

with

ϕ1(x, y) = c−1
1

∫ ∞

1
z−(1+1/c1)(x + (1 − x)z)−(δin+1)(y + (1 − y)za)−δout dz, (4.2)

ϕ2(x, y) = c−1
1

∫ ∞

1
z−(1+1/c1)(x + (1 − x)z)−δin(y + (1 − y)za)−(δout+1) dz

for 0 ≤ x, y ≤ 1. Each of these functions ϕi is a mixture of a product of negative binomial
generating functions of possibly fractional order. On some probability space we can find
nonnegative integer-valued random variables Xj , Yj , j = 1, 2 such that

ϕj (x, y) = E(xXj yYj ), 0 ≤ x, y ≤ 1, j = 1, 2.

If (I,O) is a random vector with generating function given in (4.1), then we can represent in
distribution (I,O) as

(I,O)
d= B(1 +X1, Y1)+ (1 − B)(X2, 1 + Y2), (4.3)

where B is a Bernoulli switching variable independent of Xj , Yj , j = 1, 2 with

P[B = 1] = 1 − P[B = 0] = γ

α + γ
.

In Theorem 4.1 below we show that each of the random vectors (Xj , Yj ), j = 1, 2, has a
bivariate regularly varying distribution. The decomposition (4.1) then gives the joint regular
variation of in-degree and out-degree.

Theorem 4.1. Let αin and αout be given by (1.2). Then for each j = 1, 2 there is a Radon
measure Vj on [0,∞]2 \ {0} such that

hP((h−1/(αin−1)Xj , h
−1/(αout−1)Yj ) ∈ ·) v−→ Vj (·) (4.4)

as h → ∞ vaguely in [0,∞]2 \ {0}. Furthermore, V1 and V2 concentrate on (0,∞)2 where
they have Lebesgue densities given, respectively, by

f1(x, y) = c−1
1 (�(δin + 1)�(δout))

−1xδinyδout−1
∫ ∞

0
z−(2+1/c1+δin+aδout)e−(x/z+y/za) dz

(4.5)

and

f2(x, y) = c−1
1 (�(δin)�(δout + 1))−1xδin−1yδout

∫ ∞

0
z−(1+a+1/c1+δin+aδout)e−(x/z+y/za) dz.

(4.6)
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Therefore, a random vector (I,O) with the joint probabilities given by (pij ) in (1.1) satisfies

hP((h−1/(αin−1)I, h−1/(αout−1)O) ∈ ·) v−→ γ

α + γ
V1(·)+ α

α + γ
V2(·) (4.7)

as h → ∞ vaguely in [0,∞]2 \ {0}.
Proof. It is enough to prove (4.4) and (4.5). We treat the j = 1 case. The j = 2 case is

analogous and is omitted.
Let Tδ(p) be a negative binomial integer-valued random variable with parameters δ > 0 and

p ∈ (0, 1). We abbreviate this as NB(δ, p). The generating function of Tδ(p) is

EsTδ(p) = (s + (1 − s)p−1)−δ.

It is well known and elementary to prove by switching to Laplace transforms that as p ↓ 0,

pTδ(p) �⇒ �δ,

where �δ is a gamma random variable with distribution Fδ(x) and density

F ′
δ(x) = e−xxδ−1

�(δ)
, x > 0.

Now suppose that {Tδ1(p), p ∈ (0, 1)} and {T̃δ2(p), p ∈ (0, 1)} are two independent families
of NB random variables. We can represent the mixture in (4.2) as

(X1, Y1) = (Tδin+1(Z
−1), T̃δout (Z

−a)),

where Z is a Pareto random variable on [1,∞) with index c−1
1 , independent of the NB random

variables. To ease writing, we set δ1 = δin + 1 and δ2 = δout.
Define the measure νc on (0,∞] by νc(x,∞] = x−c, x > 0. We now claim, as h → ∞, in

M+((0,∞] × [0,∞]2),

hP

[(
Z

hc1
, (Z−1Tδ1(Z

−1), Z−aT̃δ2(Z
−a))

)
∈ ·

]
v−→ ν

c−1
1

× P[�δ1 ∈ ·] × P[�δ2 ∈ ·]. (4.8)

To prove this, suppose that x > 0 and let g(u, v) be a function bounded and continuous on
[0,∞]2. It suffices to show that

hE(1{Z/hc1>x} g(Z−1Tδ1(Z
−1), Z−aTδ2(Z

−a))) → x−c−1
1 E(g(�δ1 , �̃δ2)), (4.9)

where �δ1 ⊥⊥ �̃δ2 .
Observe that as p ↓ 0,

E(g(pTδ1(p), p
aT̃δ2(p

a))) → E(g(�δ1 , �̃δ2))

and so, given ε > 0, there exists η > 0 such that

sup
p<η

|E(g(pTδ1(p), p
aT̃δ2(p

a)))− E(g(�δ1 , �̃δ2))| < ε.
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Bound the difference between the left-hand side and right-hand side of (4.9) by

|hE(1{Z/hc1>x} g(Z−1Tδ1(Z
−1), Z−aT̃δ2(Z

−a)))− hE(1{Z/hc1>x} E(g(�δ1 , �̃δ2))|
+ |hE(1{Z/hc1>x} E(g(�δ1 , �̃δ2))− x−c−1

1 E(g(�δ1 , �̃δ2))|
= A+ B,

where B = o(1) and is henceforth neglected. Write E
Z(·) = E(· | Z) for the conditional

expectation and bound A by

E(h 1{Z/hc1>x} |EZg(Z−1Tδ1(Z
−1), Z−aT̃δ2(Z

−a))− E(g(�δ1 , �̃δ2))|). (4.10)

As soon as h is large enough so that h−c1x−1 < η, then (4.10) is bounded by

E(h 1{Z/hc1>x})ε → εx−c−1
1 .

Let ε → 0 and we have verified (4.9) and therefore (4.8).
The next step is to apply a mapping to the convergence in (4.8). Define χ : (0,∞] ×

[0,∞]2 �→ (0,∞] × [0,∞]2 by

χ(x, (y1, y2)) = (x, (xy1, x
ay2)).

This transformation satisfies the compactness condition in Resnick (2007, Proposition 5.5,
p. 141) or the bounded away condition in Lindskog et al. (2014, Section 2.2). Following the
product discussion of Lindskog et al. (2014, Example 3.3) or Maulik et al. (2002, Corollary 2.1,
p. 682), we apply χ to the convergence in (4.8) which yields in M+((0,∞] × [0,∞]2), as
h → ∞,

hP

[(
Z

hc1
,

(
Tδ1(Z

−1)

hc1
,
T̃δ2(Z

−a)
hc2

))
∈ ·

]
v−→ (ν

c−1
1

× P[�δ1 ∈ ·] × P[�δ2 ∈ ·]) ◦ χ−1(·),
(4.11)

where we used the fact that ac1 = c2.
We must extract from (4.11) the desired convergence in M+([0,∞]2 \ {0}),

hP

[(
Tδ1(Z

−1)

hc1
,
T̃δ2(Z

−a)
hc2

)
∈ ·

]
v−→ (ν

c−1
1

× P[�δ1 ∈ ·] × P[�δ2 ∈ ·]) ◦ χ−1((0,∞] × (·)).
(4.12)

Assuming (4.12), we evaluate the convergence in (4.12) on a set of the form (x,∞] × (y,∞]
for x > 0, y > 0 to obtain

hP

[
Tδ1(Z

−1)

hc1
> x,

T̃δ2(Z
−a)

hc2
> y

]
→

∫∫∫
(u,v,w):uv>x,uaw>y

ν
c−1

1
(du)Fδ1(dv)Fδ2(dw)

=
∫ ∞

0
F̄δ1

(
x

u

)
F̄δ1

(
y

ua

)
ν
c−1

1
(du).

The right-hand side is the limit measure of the distribution of (X1, Y1) evaluated on (x,∞] ×
(y,∞] for x > 0, y > 0. Differentiating first with respect to x and then with respect to y
yields, after some algebra, the limit measure’s density f1(x, y) in (4.5).
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To prove that (4.12) can be obtained from (4.11), we need the following result about negative
binomial random variables whose proof is deferred. Suppose that Tδ(p) is NB(δ, p). For any
δ > 0, k = 1, 2, . . . there is c(δ, k) ∈ (0,∞) such that

E(Tδ(p))
k ≤ c(δ, k)p−k for all 0 < p < 1. (4.13)

Suppose that g : [0,∞]2 \ {0} �→ [0,∞) is continuous, bounded by ‖g‖ with compact
support in ([0, ε] × [0, ε])c for some ε > 0. Using a Slutsky-style argument, (4.11) implies
(4.12) if

0 = lim
x→0

lim sup
h→∞

∣∣∣∣hE 1{Z/hc1≥x} g
(
Tδ1(Z

−1)

hc1
,
T̃δ2(Z

−a)
hc2

)
− hEg

(
Tδ1(Z

−1)

hc1
,
T̃δ2(Z

−a)
hc2

)∣∣∣∣
= lim
x→0

lim sup
h→∞

hE 1{Z/hc1≤x} g
(
Tδ1(Z

−1)

hc1
,
T̃δ2(Z

−a)
hc2

)
.

Keeping in mind the support of g, the previous expectation is bounded by

‖g‖hP

[
Z ≤ hc1x,

[
Tδ1(Z

−1)

hc1
> ε

]
∪

[
Tδ2(Z

−a)
hc2

> ε

]]
.

Bounding the probability of the union by the sum of two probabilities, we show how to deal
with the first since the second is analogous. Then neglecting the factor ‖g‖, we have

hP

[
Z ≤ hc1x,

Tδ1(Z
−1)

hc1
> ε

]
= hE

(
1{Z≤hc1x} P

[
Tδ1(Z

−1)

hc1
> ε | Z

])

and picking k > c−1
1 and using (4.13), we obtain the bound

≤ hE(1{Z≤hc1x} c(δ1, k)

(
Z

hc1

)k
ε−k

= c(δ1, k)ε
−k

∫ x

0
ukhP

[
Z

hc1
∈ du

]

and by Karamata’s theorem or direct calculation, as h → ∞, we obtain the limit

= c(δ1, k)ε
−k c−1

1

k − c−1
1

xk−c1
−1

which converges to 0 as x → 0 as desired.
Finally, we verify (4.13). Begin with δ = 1 so T1(p) is geometric with success probabilityp.

It is enough to prove that for some constant C(k) ∈ (0,∞),

E

(k−1∏
j=0

(T1(p)− j)

)
≤ C(k)p−k.

Differentiating the generating function, we obtain

E

(k−1∏
j=0

(T1(p)− j)

)
= k! (1 − p)kp−k ≤ k!p−k.
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Next, for integer δ = 1, 2, . . . , and independent copies T̃1,1(p), T̃1,2(p), . . . , of T1(p)

random variables, we have

E(Tδ(p))
k = E(T̃1,1(p)+ T̃1,2(p)+ · · · + T̃1,δ(p))

k

and applying the cr inequality in Loève (1977, p. 177), we obtain

≤ δk−1
E(T1(p)

k) ≤ δk−1C(k)p−k.

Finally, for any δ > 0,

E(Tδ(p))
k ≤ E(T�δ�(p))k ≤ �δ�k−1C(k)p−k,

proving (4.13) and completing the proof. �

Remark 4.1. A change of variables in the integrals in (4.5) and (4.6) shows that the random
vector (I,O) is bivariate regular varying with marginal exponents αin − 1 and αout − 1
accordingly, and with tail measure having density of the form

f (x, y) = c−1
1

γ /(α + γ )

�(δin + 1)�(δout)
xδinyδout−1

∫ ∞

0
t1/c1+δin+aδout e−(xt+yta) dt

+ c−1
1

α/(α + γ )

�(δin)�(δout + 1)
xδin−1yδout

∫ ∞

0
ta−1+1/c1+δin+aδout e−(xt+yta) dt (4.14)

for 0 < x, y < 1.

The powers of h used in the scaling functions in (4.4) are, in general, not equal and thus the
regular variation in (4.7) is nonstandard. However, as the scaling functions are pure powers,
the vector (I a,O) is standard regularly varying. One can then transform to the familiar polar
coordinates. We consider the alternative transformation (I a,O) �→ (O/Ia, I )which gives the
immediate conclusion by Theorem 4.1 that out-degree is roughly proportional to a power of the
in-degree when either degree is large. We calculate the limiting density of ratio R := O/Ia

given I is large.

Corollary 4.1. As m → ∞, the conditional distribution of the ratio O/Ia given that I > m

converges to a distribution FR on (0,∞) with density

fR(r) = θ1r
δout−1I1(r)+ θ2r

δoutI2(r), r > 0, (4.15)

where

I1(r) =
∫ ∞

0
t1/c1+δin+aδout e−(t+rta) dt, I2(r) =

∫ ∞

0
ta−1+1/c1+δin+aδout e−(t+rta) dt,

and
θ1 = γ

�(δin + 1)�(δout)D
, θ2 = α

�(δin)�(δout + 1)D
,

with

D = γ
�(1/c1 + δin + 1)

�(δin + 1)
+ α

�(1/c1 + δin)

�(δin)
.
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Proof. Let hm = mαin−1. Note that for every λ > 0,

P

(
O

I

a

≤ λ | I > m

)
= hmP(h

−1/(αin−1)
m I > 1, h−1/(αout−1)

m O/(h
−1/(αin−1)
m I )a ≤ λ)

hmP(h
−1/(αin−1)
m I > 1)

→ (γ V1 + αV2)({(x, y) : x > 1, y/xa ≤ λ})
(γ V1 + αV2)({(x, y) : x > 1})

as m → ∞ by Theorem 4.1. The numerator of this ratio can be written as
∫ ∫

x>1,y/xa≤λ
f (x, y) dx dy,

and the same can be done to the denominator in this ratio. Using the density f in (4.14) and
performing an elementary change of variable shows that the ratio can be written in the form

∫ λ

0
fR(r) dr,

with fR as in (4.15). This completes the proof. �
4.1. Plots, simulation, iteration

For fixed values of (αin, αout), we investigate how the dependence structure of (I,O) in
(4.3) depends on the remaining parameters. We generate plots of fR(r) and the spectral density
for various values of the input parameters using the explicit formulae and compare such plots
to histograms obtained by network simulation and iteration of (3.4).

4.1.1. The distribution of R. We fix two values of (αin, αout); namely, (7, 5) and (5, 7), and
then plot fR(r) for several values of the remaining parameters to see the variety of possible
shapes. Since α + β + γ = 1, fixing values for (α, γ ) also determines β and because of (1.2),
assuming values for αin, αout, α, γ determine values for δin, δout. The density plots are shown
in Figure 1.

Additionally, we employ two numerical strategies based on the convergence of the condi-
tional distribution of O/Ia given I > m as m → ∞. The first strategy simulates a network

Figure 1: The density fR(r) for (αin, αout) = (7, 5) (left) and (αin, αout) = (5, 7) (right) for various
values of α, γ .
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of 106 nodes using software provided by JamesAtwood (University of Massachusetts, Amherst)
and then computes the histogram of O/Ia for nodes whose in-degree I exceeds some large
threshold m. For the network simulation illustration, we chose m to be the 99.95th quantile of
the in-degrees. The second strategy computes pij on a grid (i, j) using the recursion given in
(3.4) and then estimates the density of O/Ia using only the grid points with i larger than m,
the m chosen to be the same value as used for the network simulation.

We observe from Figure 1 that the mode of fR(r) can drift away from the origin depending
on parameter values. So we transform R using the arctan function which gives all plots the
same compact support [0, π/2], instead of an infinite domain as in Figure 1. We compare the
density of R with the histogram based on network simulation and the density approximation
provided by iteration across varying sets of parameter values. The density of arctanR with the
plots from the alternative strategies based on simulation and iteration are displayed in Figure 2
for various choices of (δin, δout) with α = β = 0.5 and γ = 0. For these parameter choices,
the plots of the theoretical density with those resulting from network simulation and probability
iteration are in good agreement.

4.1.2. Density of the angular measure. A traditional way to describe the asymptotic dependence
structure of a standardized heavy-tailed vector is by using the angular measure. We transform
the standardized vector (I a,O) �→ (arctan(O/Ia),

√
O2 + I 2a) to polar coordinates and then

the distribution of arctan(O/Ia), givenO2 +I 2a > m, converges asm → ∞ to the distribution
to a random variable �. The distribution of � is called the angular measure. The density of �

Figure 2: Comparison of the true density with the estimated densities of arctanR over various values of
(αin, αout).
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Figure 3: Comparison of the true angular density with estimates for various values of (αin, αout).

can be calculated from Theorem 4.1 in a similar fashion as in Corollary 4.1 and is given by

f�(θ) ∝ γ

δin
(cos θ)δin/a+1/a−1(sin θ)δout−1

∫ ∞

0
tc

−1
1 +δin+aδout e−t (cos θ)1/a−ta sin θ dt

+ α

δout
(cos θ)δin/a−1(sin θ)δout

∫ ∞

0
ta−1+c−1

1 +δin+aδout e−t (cos θ)1/a−ta sin θ dt.

Two density approximations for the spectral density using network simulation and numerical
iteration of the pij are obtained in the same way as in Section 4.1.1. Using the same sets of
parameters values as in Figure 2, we overlay the density approximations with the theoretical
density in Figure 3. The truncation level was the 99.95th percentile ofO2 +I 2a . The agreement
between the theoretical and estimated densities is quite good across the range of parameter
values used.

The main difference between Figures 2 and 3 is the choice of conditioning set. In the first, I a

was conditioned to be large, while in the second the sum of squares of the in- and out-degrees
(I 2a +O2) was conditioned to be large. Since the latter conditioning set is bigger and allows
for the case that the in-degree is small relative to the out-degree, the density function in a
neighborhood 0 will have less weight in Figure 3 than Figure 2.
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