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High-Reynolds number gravity currents (GC) in a horizontal channel with
circular/semicircular side walls are investigated by comparing experimental data
and shallow-water (SW) theoretical results. We focus attention on a Boussinesq
system (salt water in fresh water): the denser fluid, occupying part of the depth or
the full depth of the ambient fluid which fills the remaining part of the channel, is
initially at rest in a lock separated by a gate from the downstream channel. Upon the
rapid removal of the gate (‘dam break’), the denser ‘current’ begins propagating into
the downstream channel, while a significant adjustment motion propagates upstream
in the lock as a bore or rarefaction wave. Using an experimental channel provided
by a tube of 19 cm diameter and up to 615 cm length, which could be filled to
various levels, we investigated both full-depth and part-depth releases, considered the
various stages of inertial-buoyancy propagation (in particular, the initial ‘slumping’
with constant speed, and the transition to the late self-similar propagation with time
to the power 3/4), and detected the transition to the viscous-buoyancy regime. A first
series of tests is focused on the motion in the lock while a second series of tests
is focused on the evolution of the downstream current. The speed of propagation of
the current in the slumping stage is overpredicted by the theory, by about the same
amount (typically 15 %) as observed in the classical flat bottom case. The length of
transition to viscous regime turns out to be ∼[Re0(h0/x0)]α (Re0 = (g′h0)

1/2h0/νc is
the initial Reynolds number, g′ is the reduced gravity, νc is the kinematic viscosity
of the denser fluid, h0 and x0 are the height of the denser current and the length of
the lock, respectively), with the theoretical α = 3/8 and experimental α ≈ 0.27.

Key words: geophysical and geological flows, gravity currents, shallow water flows

1. Introduction
Lock-released gravity currents (GC), with a denser fluid initially filling a reservoir

and moving under gravity action immediately after a fast lift up of the gate, are

† Email address for correspondence: sandro.longo@unipr.it
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widely studied since they model many geophysical flows such as avalanches, lava and
pyroclastic flows, sea breezes and industrial flows (see Simpson 1997, for a general
review). Numerous analytical and numerical approaches are discussed in literature
(see Huppert 2006; Ungarish 2009); furthermore, special laboratory experimental
investigations were carried out, with the aim of improving the understanding of the
phenomena providing verification and support to the theory.

Most of the studies of high-Reynolds number GC concern the propagation in
a rectangular (or laterally unbounded) channel. However, in nature and practical
applications the cross-section of the channel may show a more complicated
geometrical shape, e.g. flow in a V-shaped valley, or in a circular/semicircular tunnel.
It is therefore important to understand and model the effect of the non-rectangular
cross-section geometry on the flow of high-Reynolds-number GC.

The investigation of this branch of GC has started recently, even though a seminal
contribution was included in Benjamin (1968), as explained in § 5. In most cases a
box model or a single-layer shallow-water (SW) model for lock-exchange problems
is used (Monaghan et al. 2009b; Marino & Thomas 2011; Zemach & Ungarish 2013)
for Boussinesq systems; however, there are several limitations in the approximations
of these models, which become severe whenever the dynamics of the ambient fluid
cannot be neglected.

Ungarish (2013) developed a two-layer model for a high-Reynolds-number GC
propagating after a dam-break in a horizontal channel with a general cross-section
geometry. The method of characteristics is used to solve the problem, discerning
new features (e.g. internal jumps or bores) with respect to the single-layer problem.
The comparison of theory with some experiments performed in V- and power-law
cross-section channels by Monaghan et al. (2009b) and by Marino & Thomas (2011)
is satisfactory as concerning the GC front speed of propagation uN (other quantities
measured in those experiments were not amenable to clear-cut comparisons).

Additional experiments in the V-shaped cross-section channel were recently reported
by Ungarish, Mériaux & Kurz-Besson (2014). This work can be considered a
forerunner of the present investigation, because it considers comparisons with the
same theoretical model, uses the same fluids with similar density contrasts, and the
typical dimensions of the apparatus (length and height) are quite similar. However,
there are significant qualitative differences concerning the range of coverage and
quantitative differences concerning the effect of the geometry. In particular, the set-up
of Ungarish et al. (2014) did not allow measurements in the lock domain, and
the number of tested systems was seven. In these respects, the present work is a
significant extension because it investigates the flow in the lock, and considers 39
different combinations of the parameters with three different values of the relative
densities of the two fluids. The circular cross-section geometry is obviously at
significant difference with the V-triangle counterpart, and thus provides a test of the
theory in independent new circumstances.

Our investigation is concerned with GC of constant density contrast with the
ambient, called ‘homogeneous’ or ‘compositional driven’. The other related class,
of ‘particle-driven’ GC in non-rectangular geometry, has also been the topic of
recent investigations, see Monaghan et al. (2009a), Mériaux & Kurz-Besson (2012)
and Nasr-Azadani & Meiburg (2014), with the focus on V-shaped channels. The
sedimentation of particles produces major differences in many features of the
flow-field, and therefore there are no overlaps between these studies and the present
work.

To the aim of an experimental description of the current motion in the lock and
downstream for a non-rectangular cross-section horizontal channel, and of a more
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FIGURE 1. A schematic description of the lock release problem and a sketch of circle-
segment cross-section for three values of the parameter β. The point C is the centre of
the circle, the cross area of the channel is AT = A+ Aa.

stringent verification of the theory and of its limits, we designed and carried out a
new set of experiments in a circular cross-section horizontal channel. We performed
10 experiments in a short-lock and 29 in a long-lock condition, for both full- and
part-depth locks. The experiments in the short-lock configuration were used to analyse
the various stages of the currents by measuring the GC front speed, whereas those in
the long-lock configuration were used to measure the characteristics of the waves or
of the bores moving upstream or downstream (after reflection at the lock back-wall)
in the lock.

The adopted experimental techniques and analyses greatly improve the data accuracy
and resolution in time and space. Our conclusion is that the two-layer SW model
predicts well the overall dynamics of the system, with some quantitative discrepancies
between theory and experiments largely due to the unavoidable influence of viscous
effects (which were not included in the simplified model).

The paper is structured as follows. The theoretical model is briefly described in
§ 2. The laboratory experiments are detailed in § 3, with two subsections giving
details on the experimental set-up and protocol, the instruments employed, the data
elaboration procedure and the associated uncertainties. Section 4 contains the analysis
and discussion of the experimental results for the motion in the lock and downstream,
focusing attention on the kinematics of the bores/waves in the lock, and on xV , the
distance of transition to viscous regime downstream. In § 5 there are some concluding
remarks. The theoretical estimate of xV is derived in appendix A. Additional material
(some calculations for the theoretical model, figures, videos and raw data of the
experiments in the short-lock configuration) is available online as supplementary
material at http://dx.doi.org/10.1017/jfm.2014.701.

2. Theoretical model
The model is detailed in Ungarish (2013) and is briefly outlined here.
We consider (figure 1) the flow in a horizontal channel with cross-section

characterized by the lower boundary consisting of a circular tube of radius r∗, cut
by the top plane at height H∗ (the superscript asterisk denotes dimensional variables).
The first relevant dimensionless geometrical parameter is β = H∗/r∗ (β 6 2). The
full-circle cross-section is given by β = 2, while a half-circle channel is represented
by β = 1; β 6 1 cases are roughly referred to as ‘semicircle’.

A denser fluid is initially at rest in a lock of length x0 and height h0, separated
by a gate from the downstream channel, occupied by a lighter fluid. Hence, a
second relevant parameter is H = H∗/h0: the H = 1 case is usually referred to as
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‘full-depth lock’ (and the initial stage as lock exchange); the other cases, with H> 1,
as part-, or fractional-depth.

We introduce the density ratio parameter R= ρa/ρc of light to heavy fluid, and the
reduced gravity g′= [(ρc− ρa)/ρc]g≡ (1−R)g, where ρa and ρc are the ambient fluid
density and the current fluid density, respectively, and g is the gravity acceleration.

The reference velocity U and time T are

U = (g′h0
)1/2 ; T = x0/U. (2.1a,b)

The x-lengths are scaled with x0, height and width with h0. Dimensionless variables
are used hereafter unless stated otherwise.

If the initial Reynolds number Re0 = Uh0/νc, where νc is the kinematic viscosity
of the current (dense) fluid, is sufficiently large, the propagation after the release at
t = 0 is in the buoyancy-inertia (inviscid) regime. In addition, we assume that the
current is thin (the aspect ratio h0/x0 is small, practically less than one). Consequently
the Navier–Stokes equations can be simplified into the SW approximation. The model
provides the governing equations for the position of the interface h measured from the
bottom line of the channel, and the area-averaged velocity u of the denser fluid, as
functions of the independent variables t, x for the circular cross-section. The equations
are partial-differential of hyperbolic type. The cross-area occupied by the current is
denoted by A, the cross-area of the channel by AT and the area ratio by ϕ=A/AT (see
figure 1). The calculations of A,AT, ϕ are performed by analytical formulae, which we
present as supplementary material.

The GC front (or nose, for which we use the subscript N) propagates with speed
uN and the SW equations indicate that this is a discontinuity (shock) of height hN .
Therefore, at the GC front x = xN(t) we apply the extension of Benjamin’s (1968)
jump condition to the present geometry (Ungarish 2012),

uN = 1
R1/2

Frh1/2
N ; Fr2 = 2(1− ϕ)

1+ ϕ
[

1− ϕ + 1
hAT

∫ h

0
z f (z)dz

]
, (2.2a,b)

where the Froude number Fr is calculated for h = hN and ϕ = ϕN , and f (z) =
2[2(H/β)z − z2]1/2, 0 6 z 6 H, is the dimensionless width function for a circular
cross-section, with all lengths being scaled by h0.

The evaluations of Fr involve integrals of the width function f (z), which can
be easily obtained analytically as detailed in the supplementary material. Here
uN is subcritical (or critical) when smaller than (or equal to) the speed c+ of
the characteristic that reaches the GC front. Supercritical dam-break flows are
non-physical.

The SW model is self-contained and does not use adjustable constants. The analysis
and solution discussed here are performed by reliable (‘exact’) mathematical tools: the
methods of characteristics and similarity.

Some general insights for the circle cross-section can be derived and here a short
summary is provided, with the full details presented in Ungarish (2013).

Consider the initial stage of propagation, after the sudden opening of the gate
located at x = 0 (a ‘dam-break’ situation). The analysis indicates that four types of
flow can be distinguished, as sketched in figure 2. A disturbance propagates into the
lock (reservoir). For H <Hcrit(β) the left-moving c− characteristics, which carry this
perturbation into the stagnant fluid, intersect, and a moving jump appears. The solution
of this jump provides the speed Vf (to the left, into the lock) and amplitude h∗. For
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FIGURE 2. (Colour online) Schematic description of the types of flow fields. (a) Type 1:
rarefaction wave into the reservoir (position L) and subcritical GC front (position N).
(b) Type 2: moving jump (bore) at position L, subcritical GC front. (c) Type 3: moving
jump (bore) at position L, critical GC front. (d) Type 4: same as type 3, with additional
stationary jump at position x= 0. The type 4 flow is a rare occurrence, for β very close
to 2 and H very close to 1 only. Here z is scaled with h0, x with x0. Point L denotes
the transition from the reservoir to the activated (moving) domain, N the GC front on the
opposite boundary of the activated domain; M denotes the left boundary of the core, and
Q the left boundary of the expansion domain following the GC front (when present).

larger H, this perturbation is a rarefaction wave of speed c− (and amplitude zero). We
note in passing that there is no standard term for this flow-field component. Rottman
& Simpson (1983) discussed this effect in the rectangular channel as ‘hydraulic drop,
a type of internal bore’, and referred to the reflected jump simply as ‘bore’, but there
are variations in other related papers. We shall use ‘bore’ for a jump moving to the
left in the lock, and ‘wave’ for a smooth profile, defined also as ‘rarefaction wave’ if
it is left-moving (generated by an expansion fan of the c− characteristics). The bore
and the rarefaction wave after reflection from the back-wall at x=−1 are defined as
‘reflected bore’ and ‘reflected wave’.

The speed and amplitude of the wave into the reservoir are predicted to be
time-independent until the wave hits the back-wall x = −1. Then, reflection occurs:
the left-moving bore turns into a reflected bore with a new speed Vb (to the right)
and amplitude h∗∗; the rarefaction wave changes direction (to the right). The theory
provides the values of these effects. We note that the reflected bore/wave is not
expected to move with constant speed (actually, it is expected to accelerate to a
speed larger than uN while the GC front moves with the constant uN).

In realistic flows the interface between the current and the ambient is not sharp due
to the presence of unavoidable local vortices, viscous smearing and mixing. Moreover,
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at the bottom and sidewalls the realistic current is restricted by no-slip condition.
Consequently, a global comparison of interfaces is a quite inconclusive test for the
theoretical prediction. Nevertheless, we expect (and confirm later) that some salient
properties, such as the speed of propagation and the amplitude of the disturbances into
the lock, and the speed of propagation of the current, can be measured with sufficient
accuracy for making useful comparisons with the theoretical predictions.

The SW theory predicts that the front (nose) of the current displays an initial
‘slumping’ stage of propagation with constant velocity uN , over a significant
distance xs. The value of the slumping uN can be obtained analytically.

At some distance xs (when the reflected bore/wave reaches the GC front) the
inviscid current begins to decelerate, and undergoes transition to a self-similar stage
of propagation xN(t)∼ Kt3/4, with K being a constant. There is no simple analytical
prediction for xs, but a qualitative analysis indicates that xs decreases with H, and is
approximately 3 for large H (deep current). Although the transition from slumping to
self-similar stage is not sharp, we can attempt to detect this effect in our experiments.
To this end we must use long channels (in terms of lock-lengths). In the self-similar
stage the speed and thickness decrease with t, and the typical inertia term u2

N/xN
decays significantly. The current becomes prone to viscous influence.

The SW model becomes invalid after the current spreads to xV , where the viscous
forces become influential. The estimate (appendix A) is

xV = 0.5
[
Re0(h0/x0)

]3/8
. (2.3)

We shall attempt to verify this prediction in our experiments.
For simplicity of analysis, we shall use the Boussinesq SW results. The Boussinesq

approximation relative error is approximately 0.5(1 − R), which in our experiments
was typically 2–5 %, in the range of the experimental uncertainties.

3. Laboratory experiments
3.1. Experimental set-up

Figure 3 shows the schematic description of the experimental apparatus and its main
components.

The experiments were carried out in a polymethyl methacrylate (PMMA, a
transparent thermoplastic) circular tube with internal radius r∗ = 9.5 cm in which
a guillotine gate was inserted to separate the upstream portion (the lock) from the
downstream channel. In different experiments, the length of the lock x0 varied between
6, 15 or 100 cm, while the length of the downstream pipe was 200, 400 or 600 cm.
The horizontality of the tube was checked with an electronic spirit level accurate to
0.1◦.

The ambient fluid, of density ρa, was tap water treated with a softener; the current
fluid, of density ρc, was salt water added with aniline dye to enable flow visualization.
In the set-up of the experiments, the tube was first partially filled with the fresh water
and subsequently the saline fluid was gently added near the bottom of the lock, with
the gate lifted but leaving an upper connection between the lock and the rest of the
tube (for the specific gate adopted, completely lifted indicates that the lock and the
rest of the channel are disconnected).

This set-up allowed us to consider different height ratios H of ambient to lock.
The levels of the fluids were obtained by carefully observing the interface, avoiding
parallax errors, and measuring the position of the meniscus by means of a ruler
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FIGURE 3. (Colour online) Schematic description of the experimental apparatus.

stuck to the tube. After filling the lock and the downstream tube, the temperature
of both fluids was measured by using a 0.02 ◦C accurate thermometer, waiting for
the temperature to reach an equilibrium before starting the experiment. In most
experiments the temperature was between 17 and 18 ◦C, and the measured value was
used for the computation of the kinematic viscosity of the current fluid. The density
of the current fluid was measured by using a 10−3 g cm−3 accurate pycnometer.

By varying the salinity, densities of the intruding fluid equal to 1.042, 1.085,
1.117 g cm−3 were obtained, resulting in density ratios 1 − R = (ρc − ρa)/ρc of
4.1, 7.9, 10.6 %, respectively. These density differences render the flow in the
Boussinesq regime. The corresponding kinematic viscosities were 1.17× 10−2, 1.30×
10−2, 1.40× 10−2 cm2 s−1. Each experiment was recorded by several photo cameras
with a data rate up to 2 f.p.s. (frames per second) and by a full HD video camera
at 25 f.p.s. controlled by a PC. The start of the acquisition was triggered by a micro
switch closed by the gate, with the time t= 0 corresponding to the complete opening.
It took approximately 0.8 s to completely open the gate with a full-depth release
system, H = 1, and β = 2, and less for a partial-depth release system.

Video image analysis was used to detect the GC front position and the profiles in
the lock. A grid was stuck to the bottom of the tube and could be observed reflected
in mirrors providing a bottom view. Another grid was stuck to the side of the lock and
could be directly observed by a high-resolution photo camera. A Matlabr proprietary
software for calibrating the camera allowed the evaluation of the function to convert
the pixel coordinates to metric coordinates, including the correction for lens distortion
and curvature of the tube. The resolution was usually better than 0.01 cm/pixel, with
an overall uncertainty less than 0.2 cm.
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FIGURE 4. (Colour online) Pictures of the motion (left to right) in the lock (a) and
downstream (b). Experiment 2, β = 1, H = 1.1, (ρc − ρa)/ρc = 4.1 %, Re0 = 13.8 × 103,
type 3 profile (see figure 2).

High-frequency neon lights were used to provide a uniform and stable illumination,
in order to improve the automatic detection of the interface between the ambient fluid
and the current. Since the cameras had restricted intervals of movements, subsequent
frames were not perfectly overlapped and it was necessary to resize the frames and
correct the pixel position with a second Matlabr proprietary software. As shown in
figure 4, images were generally of good quality; the interface between the two fluids
was observed to be quite sharp especially when the density difference was larger (1−
R= 7.9, 10.6 %).

The motion of the current was recorded over a length of 200 or 400 cm downstream
for a lock length x0 = 100 cm, and over 600 cm for x0 = 15 cm or x0 = 6 cm. The
motion in the lock was recorded only in the experiments with x0 = 100 cm. In the
analysis of the downstream flow, the interface between the current and the ambient
fluid was detected and averaged over a 1.0 cm wide strip across the bottom of the
pipe, with a time step coincident with the time interval between two subsequent
frames (0.5–1 s for photo cameras, 1/25 s for the video camera) or a multiple of
said time interval for cross-sections far from the lock gate, where the current had
already decelerated. For this reason, the data rate in the recorded time series of the
front position is variable within the same experiment (these data are available as
supplementary material for the 10 experiments in the short-lock configuration).

The video camera was triggered with an LED controlled by the PC and visible in
the FOV (field of view), giving a negligible delay with respect to the micro switch
signal. The photo cameras (Canon EOS, reflex models) had a systematic delay of less
than 0.1 s in acquiring the images, correspondent to the time of reversal of the internal
mirror before the opening of the shutter. The FOVs of the photo cameras and of the
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1.2, type 2

1.0, type 41.1, type 3

(a) (b)

(c) (d )

type 2

FIGURE 5. (Colour online) The shape of the left-moving profiles for different values of
H and for 1− R= 7.9 %. The experiment with H = 1.0 refers to β = 2 (Experiment 34)
whereas the other three experiments refer to β = 1.5 (Experiments 16, 18 and 20). The
type is in figure 2.

video camera were overlapped in order to detect the correct timing of the images by
comparing the two records. Some gaps in the time series were due to the presence of
struts and supports of the tube which hid the view.

We performed two sets of experiments focused, respectively, on: (i) the motion
in the lock; (ii) the motion of the GC front and the transition between the inertial-
buoyancy phase (slumping and self-similar) and the viscous-buoyancy phase.

3.2. The uncertainty in measurements and in parameters
Here we estimate the experimental uncertainties affecting the problem parameters. The
mass density of the fluids was measured with a pycnometer having an uncertainty
of 10−3 g cm−3, hence the parameter R = ρa/ρc had an uncertainty 1R/R = 0.2 %.
The level of the fluids was detected with an accuracy of 0.1 cm, inducing a relative
uncertainty 1H/H 6 6 % and 1β/β 6 2.5 %. The velocity and the time scales had an
uncertainty 1U/U 6 2.5 % and 1T/T 6 3 %, respectively, and Re0 had an uncertainty
1Re0/Re0 6 8 %. These relative uncertainties were used to derive the error affecting
the experimental results presented in the sequel.

4. Results and discussion
4.1. The motion in the lock

The motion in the lock was analysed by performing 29 experiments using the long
lock configuration of length x0 = 100 cm. Different combinations of geometrical
parameters were assembled, resulting in three different values of β = H∗/r∗ equal
to 1, 1.5 or 2, and in a range of height ratios H = H∗/h0 of ambient to lock
varying between 1 and 3. These were combined with the three density ratios
1 − R = (ρc − ρa)/ρc = 4.1, 7.9, 10.6 %. In all experiments the initial Reynolds
number Re0 was larger than 3000, ensuring the existence of an inviscid regime
for several lock lengths before evolving gradually into a viscous regime. Table 1
summarizes the main parameters of the experiments.

A qualitative analysis of the current profile in the lock was first conducted. Figure 5
shows the profile for various values of H and 1 − R = 7.9 %. In all cases a bore is
predicted (see figure 2). The photographs were taken with the head of the upstream
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Experiment 1− R β H h0 g′ Re0 x0/h0 U T Type
(%) (cm) (cm s−2) (×103) (cm s−1) (s)

2 4.1 1 1.1 8.6 40 13.8 11.6 18.7 5.35 3
6 4.1 1 1.2 7.9 40 12.2 12.6 17.9 5.59 2
7 4.1 1 1.5 6.3 40 8.7 15.8 16.0 6.25 2
8 4.1 1 2 4.8 40 5.6 21.1 13.9 7.21 1
9 4.1 1 3 3.2 40 3.1 31.6 11.3 8.83 1
1 7.9 1 1.1 8.6 78 17.2 11.6 25.9 3.86 3
4 7.9 1 1.2 7.9 78 15.1 12.6 24.8 4.03 2

10 7.9 1 1.5 6.3 78 10.8 15.8 22.2 4.51 2
11 7.9 1 2 4.8 78 7.0 21.1 19.2 5.20 1
12 7.9 1 3 3.2 78 3.8 31.6 15.7 6.37 1
3 10.6 1 1.1 8.6 104 18.5 11.6 29.9 3.34 3
5 10.6 1 1.2 7.9 104 16.2 12.6 28.6 3.49 2

13 10.6 1 1.5 6.3 104 11.6 15.8 25.6 3.90 2
14 10.6 1 2 4.8 104 7.5 21.1 22.2 4.51 1
15a 10.6 1 3 3.2 104 4.1 31.6 18.1 5.52 1
16 7.9 1.5 1.1 13.0 78 31.6 7.7 31.7 3.15 3
18 7.9 1.5 1.2 11.9 78 27.8 8.4 30.4 3.29 2
20 7.9 1.5 1.5 9.5 78 19.9 10.5 27.2 3.68 2
19 7.9 1.5 2 7.1 78 12.9 14.0 23.5 4.25 1
17 7.9 1.5 3 4.8 78 7.0 21.1 19.2 5.20 1
37 10.6 2 1 19.0 104 60.2 5.3 44.4 2.25 4
38 10.6 2 1.5 12.7 104 32.8 7.9 36.2 2.76 2
39 10.6 2 2 9.5 104 21.3 10.5 31.4 3.19 1
34 7.9 2 1 19.0 78 56.2 5.3 38.4 2.60 4
35 7.9 2 1.5 12.7 78 30.6 7.9 31.4 3.19 2
36 7.9 2 2 9.5 78 19.9 10.5 27.2 3.68 1
42 4.1 2 1 19.0 40 37.6 5.3 27.7 3.61 4
41a 4.1 2 1.5 12.7 40 20.5 7.9 22.6 4.42 2
40 4.1 2 2 9.5 40 16.0 10.5 19.6 5.10 1

TABLE 1. Parameters of the experiments in the long lock configuration. The internal
radius of the cross-section is r∗ = 9.5 cm, the length of the lock is x0 = 100 cm. Here
1− R= (ρc − ρa)/ρc, g′ = (1− R)g is the reduced gravity, Re0 = Uh0/νc is the Reynolds
number with νc the kinematic viscosity of the denser fluid, U =√g′h0 and T = x0/U are
the velocity and the time scale, respectively. The type refers to the classification sketched
in figure 2. The superscript a in the first column indicates that a video is available as
supplementary material.

moving current located roughly in the same position within the lock. The structure
of the profile depends on the relative velocity between the two currents (the denser
fluid current below and the lighter fluid current), which increases for decreasing H.
While for H > 1.5 the profile is regular and smooth and no instabilities develop at
the interface, for 1.1<H < 1.5 some billows are present behind the smooth head of
the current at a distance progressively reduced for decreasing H. A strong mixing is
also evident behind the billows. For H = 1 the current becomes turbulent at the very
beginning of the motion, and its shape is strongly affected by turbulent mixing. This
sequence is typical of all tests, with minor differences for different values of R. When
the density difference between the currents is smaller, mixing is enhanced.
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(a) (b)

(c) (d )

1.2

1.01.1

FIGURE 6. (Colour online) The shape of the right-moving reflected bore/wave. Caption
as in figure 5.

The corresponding profiles after reflection from the back-wall of the lock are shown
in figure 6. It is noted that the observed shape depends on the evolution of the left-
moving profile. For H = 1.5 some billows develop near the gate; these become more
evident with the increase of Re0. Moreover, it is observed that for H=1.5 a significant
portion of the interface does not show any appreciable mixing, while for H 6 1.1 the
mixing affects all of the lock length.

The predicted stationary jump at x = 0 for type 4 flow (full-circle full-depth
geometry β = 2, H = 1, see figure 2d), could not be observed because of the
limitations of the experimental set-up. Since the jump is a stationary height change
of small amplitude (4.8 % of the diameter), its detection among the unavoidable
moving eddies and billows at the interface is a difficult task, which is left for future
experiments.

To provide quantitative results, the detection of the profile of the current was
conducted through the image analysis of the frames captured at a constant time
interval. Since the algorithm detects the boundary between the fluids according to a
threshold value of the greyscale level, an adequate accuracy and repeatability could
be obtained only with uniform lightening. Choosing a proper threshold allowed us to
distinguish between the core of the current and the billows or eddies generally present
for currents with high Re0. A typical sequence of automatically detected profiles is
shown in figure 7. Notably, their shape was conserved upon translation, indicating a
progressive permanent profile. However, it is difficult to visually detect the jump, and
in practice we analysed the second derivative of the instantaneous profile in order to
calculate where a sharp change of inclination takes place. The location of the change
has been considered as the start/end section of the moving jump.

Once the profiles of the denser current moving in the lock were detected, the speed
and the height of the bore/wave could be readily computed.

Figure 8(a) shows the experimental speed Vf of the bore moving to the left in the
lock, compared with the theoretical prediction. The value reported for each experiment
is the average speed of experimental profiles (i.e. the mean horizontal translation of
the interface profile detected in two subsequent frames, divided by the time interval,
typically 0.5 s, separating the frames). In most experiments, 5–6 pairs of profiles
were available for the averaging procedure, since those recorded immediately after
the gate opening were still influenced by the gate movement; in Experiment 1 the
video camera was used to record the lock motion, and with a time interval between
frames of 1/25 s, several tens of profiles were available. In a number of cases, the
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FIGURE 7. (Colour online) Detection of the interface profiles in the lock with a time
step of 0.5 s. Experiment 3 with β = 1, H = 1.1, 1− R= 10.6 %, Re0 = 18.4× 103.

0.8(a) (b) 0.4
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FIGURE 8. (Colour online) Velocity Vf (a) and height h∗ (b) of the bore or rarefaction
wave in the lock as a function of H for β = 1, 1.5, 2.0. For the rarefaction wave, h∗= 0.
Symbols and lines represent experimental results and theoretical predictions, respectively.
The type of profile is indicated as t2–t4. The error bars indicate one standard deviation.

experimental profiles were strongly distorted by billows and curls, with a strong
turbulent diffusion able to smooth out the jump; these profiles could not be reliably
used and were discarded. The speed estimated with the aforementioned procedure is
not constant, but generally increases immediately after the gate opening, reaches a
maximum and then decreases. The experimental speed is lower than its theoretical
counterpart, with a very good agreement at low H and a discrepancy of approximately
25 % for H = 3. The trend that the speed increases with H is consistent with the
theory.

Figure 8(b) shows the height of the left-moving bore h∗. For H> 2 (approximately)
there is no jump, in agreement with the theory; however, the measured height of the
rarefaction wave can be compared with the difference (1− hX), hX being the height of
the current at the gate (x = 0). Since the experimental measurements of the profiles
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FIGURE 9. (Colour online) The relative error in predicting the speed of the left-moving
bore or rarefaction wave as a function of the initial Reynolds number of the current Re0
(a) and of the non-dimensional group Re0(h0/x0) (b).

start at x≈−20 cm, we expect that the measured height is always less than (1− hX).
The results indicate that for Experiments 8 and 11, he−w = 0.316 ± 0.03 < 0.465
(theoretical SW evaluation), and for Experiments 39 and 40, he−w = 0.347 ± 0.01 <
0.482, where he−w is the measured height of the rarefaction wave in a type 1 profile.
This is not a sharp comparison between experiments and theory, but the observed
consistency supports the model.

For a deeper understanding of the prediction of speed of the bore or rarefaction
wave, we depict in figure 9 the relative error against Re0 (figure 9a) and against
Re0(h0/x0) (figure 9b). It is seen that an increment of both parameters (the latter with
a better correlation than the former) implies a reduction of the discrepancy between
theory and experiments. Physically, this is an indication of the role of viscosity and
of the combined role of viscosity and of the lock length x0 with respect to the initial
height of the denser fluid, h0. These effects were also observed in the numerical
simulations reported in Bonometti, Ungarish & Balachandar (2011).

Figure 10(a) shows the experimental speed of the reflected bore compared with
theoretical results. The experimental value is always larger than the theoretical
prediction, with a difference generally below 25 %. A remarkable exception is
observed for H= 1.5 and β6 1.5, where the discrepancy is much larger. We could not
find a suitable explanation for the large difference between theory and experiments at
H= 1.5. The relative error in predicting the speed of the reflected bore as a function
of Re0 and of Re0(h0/x0) (shown in figure SM.2 in the supplementary material), did
not reveal a useful correlation. A possible explanation is that the theory predicts the
speed of the bore immediately after its appearance; afterward, this bore is expected
to accelerate.

Figure 10(b) shows the height of the reflected bore, with a very good agreement
between theory and experiments.

Figure 11 shows the speed of the bore and of the reflected bore for Experiments
4 and 18. The available data points show an acceleration of the reflected bore, with
an overshoot in Experiment 4. The measured value of Vb represents an average over
a time interval, and is therefore larger than the initial speed.
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FIGURE 10. (Colour online) Speed Vb (a) and height h∗∗ (b) of the reflected bore/wave in
the lock as a function of H for β = 1, 1.5, 2.0. For the reflected wave, h∗∗= 0. Symbols
and lines represent experimental results and theoretical predictions, respectively. The error
bars indicate one standard deviation.
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FIGURE 11. (Colour online) The speed of the bore (empty circles) and of the reflected
bore (filled squares) as functions of time for Experiment 4 (a) and Experiment 18 (b).
The dashed lines are the average values.

4.2. The propagation of the current and its different phases/regimes
The propagation of the downstream current was studied by performing 10 experiments
with a lock length x0 of 6 or 15 cm, with various combinations of fluid heights
and densities: β was either 1, 1.5, 2, while H varied between 1.5 and 3.3, and
1−R was either 7.9 or 10.6 %. Table 2 summarizes the experimental parameters. The
observed features of the head of the GC (not shown here) are strongly influenced by
the parameters β and H, the Reynolds number and the length of the lock. There is no
evident effect of the shape of the channel on the observed profile of the head of the
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Experiment x0 1− R β H h0 g′ Re0 x0/h0 U T
(cm) (%) (cm) (cm s−2) (×103) (cm s−1) (s)

24 15 7.9 1 1.5 6.3 78 10.8 2.4 22.2 0.676
23 15 7.9 1 3 3.2 78 3.8 4.7 15.7 0.956
25 6 7.9 1 2 4.8 78 7.0 1.3 19.2 0.312
27 6 7.9 1 3 3.2 78 3.8 1.9 15.7 0.382
29 6 7.9 1.5 2 7.1 78 12.9 0.8 23.5 0.255
28 6 7.9 1.5 3 4.8 78 7.0 1.3 19.2 0.312
30 6 10.6 1.5 2 7.1 104 13.8 0.8 27.2 0.221
31 6 10.6 1.5 3 4.8 104 7.5 1.3 22.2 0.270
32 6 10.6 1.5 2.2 6.5 104 12.0 0.9 25.9 0.232
33 6 7.9 2 3.3 5.8 78 9.4 1.0 21.2 0.284

TABLE 2. Parameters for all experiments in the short lock configuration. The internal
radius of the circular cross-section is r∗ = 9.5 cm, x0 is the length of the lock, 1 − R =
(ρc − ρa)/ρc, g′ = (1− R)g is the reduced gravity, Re0 = Uh0/νc is the Reynolds number
with νc the kinematic viscosity of the denser fluid, U = √g′h0 and T = x0/U are the
velocity and the time scale, respectively.

current, and the overall structure of the current is similar to that reported by Marino
& Thomas (2011) for currents of comparable Re0 in triangular, concave and convex
cross-section channels. A relevant input parameter is the length of the lock and more
precisely x0/h0, because long locks can sustain a truly long and thin current behind
the advancing head, whereas short locks can produce only a relatively short current
in the domain following the head. This effect in the standard geometry was analysed
by Bonometti et al. (2011).

Figure 12 shows the profiles of the head of a GC at different times for Experiment
39, with x0 = 100 cm and x0/h0 = 10.5. A series of eddies develops behind the head,
initially advancing with the same speed of the head. Then these eddies progressively
decelerate due to the opposite flow of the lighter fluid while the current of the
denser fluid below the eddies is continuously refilled. A similar sequence is shown
in figure 13 for Experiment 29, with a short-lock x0 = 6 cm and x0/h0 = 0.8. Since
Re0 is very high for both tests, the profiles look very similar except for the much
deeper troughs between the eddies crests that can be observed for the short-lock
configuration.

The shape of the head of the current observed from below, shown in figure 14, is
in quite good agreement with similar experiments in triangular channels; Monaghan
et al. (2009b), also recorded a rounded shape of the head with lobes and clefts. This
is expected since the shape of the head is influenced by the small length scales and
is much less related to the macro length scales. However, the shrinkage of the current
behind the head is an effect of the geometry of the tank: in a tank that does not have
a flat bottom, a larger depth requires a larger width, hence the variable depth of the
current near the head is observed as a variable width, unless strong lateral mixing and
diffusing is present. The three-dimensional structure of the current is also evident in
the wake which develops behind the head, with eddies rolling with the axis inclined
with respect to the transverse direction.

For quantitative analysis purposes, the initial Re0 (>3800) and the length of
the channel downstream were high enough to guarantee that all of the phases of
propagation predicted by the theory were reproduced. In the first phase (slumping) of
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(a)

(b)

(c)

(d )

FIGURE 12. (Colour online) Photographs showing profiles of the head of the GC in
Experiment 39, Re0 = 21.3 × 103, x0 = 100 cm, x0/h0 = 10.5. The vertical dashed lines
are 20 cm apart and the times since release are 1, 2, 3 and 4 s.

(a)

(b)

(c)

(d )

FIGURE 13. (Colour online) Photographs showing profiles of the head of the GC in
Experiment 29, Re0 = 12.9 × 103, x0 = 6 cm, x0/h0 = 0.8. The vertical dashed lines are
20 cm apart and the times since release are 1, 2, 3 and 4 s.
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(a)

(b)

(c)

(d )

FIGURE 14. (Colour online) Photographs showing the bottom view of the head of the GC
in Experiment 15 (see the online supplementary movie), Re0=4.1×103, x0=100 cm. The
dashed curves are 20 cm apart and the times since release are 1.6, 3.2, 4.8 and 6.4 s.
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FIGURE 15. (Colour online) The distance of propagation of the currents measured from
the gate. The solid line represents the slumping phase with xN ∝ t, the dotted line is the
inertial-buoyancy phase with xN ∝ t3/4 and the dashed line is the viscous-buoyancy phase
with xN ∝ t1/4.

the inertial-buoyancy regime, the GC front propagates at a constant speed uN . Then
a (quite long) transition follows to the stage of inertial self-similar propagation with
xN ∝ t3/4. Finally, the current enters the buoyancy-viscous regime where xN ∝ t1/4

(Takagi & Huppert 2007). Figure 15 shows the dimensionless data pooled together
for all of the experiments in a log–log plot (one experimental point out of ten is
drawn for a clear visualization), together with the theoretical trends. Inspection of
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FIGURE 16. (Colour online) The experimental speed of the GC front versus distance of
propagation.

figure 15 clearly demonstrates a gradual, continuous transition from the slumping to
the viscous phase.

The speed of the GC front, computed via finite differences, is depicted in figure 16;
the symbols are again diluted for a better visualization. An almost constant speed is
observed for all experiments in the first stage, with fluctuations that can be attributed
to imperfect gate movement, random modulation of the current due to turbulence, and
lobe and cleft instabilities. After the first stage, the speed of the current progressively
decays.

The speed in the slumping phase is shown in figure 17 as a function of H, which
compares experiments (symbols) and theory (curves). The theory always overpredicts
the experimental speed, with an error that depends on the experimental parameters. In
an attempt to elucidate the source of the error, the correlation of the relative error with
Re0 and Re0(h0/x0) has been analysed (see figure SM.3 in the supplementary material).
The experimental data are well grouped in both cases and the error diminishes with
increasing Re0 or Re0(h0/x0), even though the former correlation seems sharper.
Furthermore, assuming that the error decays as log[Rea

0 (h0/x0)
b], a best-fit procedure

yields a≈ 2 and b≈ 1; hence, the error can be expressed as ∝ log[Re2
0 (h0/x0)]. The

conclusion is that the SW uN predictions are a fair approximation (from above) for
Re0 ' 5× 104 and Re0(h0/x0)' 2× 104; otherwise, a speed reduction larger than 20 %
is expected.

For the detection of the various phases of motion, we proceed as follows. Assuming
that xN =Ktγ , the local values of the exponent γ can be evaluated by observing that
ẋN = Kγ tγ−1, hence γ = ẋN t/xN , with ẋN estimated using finite difference (the upper
dot denotes time derivative). The value of K is computed as K = xN/tγ . Figure 18
shows the computed values of γ and K for the short lock experiments. The plot for γ
indicates values close to unity near the gate, followed by a progressive reduction down
to 0.25 in the farthest sections. The plot for the coefficient K indicates that the space
variation of the coefficient is controlled by the non-dimensional group Re0(h0/x0), with
an asymptotic independence at large values of Re0(h0/x0). The line of Experiment
33 deviates significantly from the slumping pattern displayed by the other records in
figure 18(a). We have no explanation for this strange behaviour; we speculate there
was some mechanical or electrical problem with the gate-opening device.
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FIGURE 17. (Colour online) The experimental speed of the GC front during the slumping
phase. The filled symbols refer to experiments with long lock (x0 = 100 cm), the open
symbols refer to experiments with short lock (x0 = 6–15 cm). The three curves are the
theoretical solution. The error bars indicate one standard deviation.
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FIGURE 18. (Colour online) The experimental exponent γ (a) and coefficient K (b) for an
advancement of the GC front of the form xN =Ktγ . In (a) the dash-dot line corresponds to
γ = 1, typical of the slumping stage, the dotted line corresponds to γ = 3/4, typical of the
propagation in the self-similar inertial-buoyancy regime, while the dashed line corresponds
to γ = 1/4, typical of the propagation in the buoyancy-viscous regime. Experiments with
short lock, x0 = 6–15 cm.
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FIGURE 19. (Colour online) Transition to viscous regime as a function of Re0(h0/x0). The
bold line represents the theoretical estimate xV = 0.5[Re0(h0/x0)]3/8, the dashed lines are
the best-fit curves of equation xV = 0.43[Re0(h0/x0)]0.47, xV = 1.20[Re0(h0/x0)]0.28 and xV =
1.20[Re0(h0/x0)]0.27 calculated assuming an exponent γ = 0.5 (circles), γ = 0.7 (squares)
and γ = 0.75 (crosses), respectively.

We have rechecked the assumption that the Boussinesq approximation errors are
small. First, we found that the scaled experimental results for different density
contrasts collapse within the estimated 0.5(1−R) error, which is also in the range of
the experimental error. Second, using the SW theoretical model, we compared typical
predictions for R= 0.9 and R= 1. The theoretical speeds uN, Vf in the first case are
slightly larger than in the second, but the differences are at most 4 %. This is, again,
in agreement with the estimate that the relative error of the Boussinesq simplification
is approximately 0.5(1 − R). Evidently, the investigation of non-Boussinesq effects
requires significantly larger density contrasts than the 10.6 % of our experiments.

Even though a plateau of the exponent γ is observed in figure 18 for a few lock-
lengths, which is a strong indication of the existence of the constant-speed slumping
phase, the scatter of the data prevents an accurate evaluation of the extent of the
slumping phase xs. The typical values are 4–7, and the maximum is approximately 10;
the larger values correspond in general to smaller H. This is consistent with theoretical
estimates based on the speed of the bores/waves in the lock and after reflection.

The transition to the viscous regime is amenable to a sharper analysis. Figure 19
shows the distance of transition according to the theoretical estimation (equation (2.3))
and to the experimental data. The latter is evaluated assuming that the transition is
marked by a threshold value of the exponent γ taken to be equal to 0.5, 0.7 or
0.75. Changing the threshold from 0.7 to 0.75 reduces xV but does not modify
significantly the exponent of Re(h0/x0), whose measured value is 0.275, while the
theory overpredicts 3/8= 0.375. The threshold 0.5 indicates a transition length almost
twice the theoretical one. The discrepancy between theory and experiments can be
attributed to: first, the theoretical estimation is based on asymptotic formulae valid
for long propagations, that are applied here at a finite distance from the gate; this
introduces an error, that is not uniform in the different experiments; second, the
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experimental evaluation of xV is also prone to uncertainties (mainly because the
transition point lacks a rigorous definition in terms of a sharp measurable property).
There is evidence that the trend of xV is correctly predicted, as xV indeed increases
with a power of Re0(h0/x0). However, the theory apparently overpredicts it (in our
experiments by approximately 33 %). The present experimental power 0.275 is actually
close to the value 2/7 = 0.286 predicted for a flat bottom. In our opinion, this is
just coincidence because there are really significant differences between the viscous
flows on flat and curved bottoms (Takagi & Huppert 2007). More experiments are
necessary for a clarification of this issue.

5. Conclusions

In this paper we have analysed in detail the propagation of a high-Reynolds-
number GC released from a lock (of length x0 and height h0) in a channel of
circular/semicircular cross-section, in the Boussinesq regime. We have conducted two
series of experiments in which we have measured the speed and amplitude of the
waves or bores in the lock (29 experiments), and the time-dependent propagation
of the current downstream (10 experiments). The denser fluid was a saline solution,
released from a lock by rapidly removing a vertical gate in a horizontal channel with
circular cross-section. The ambient fluid was fresh water. The addition of aniline dye
to the denser fluid enabled the recording of its motion with photo and video cameras.
The novelties of our work are: (i) the shape of the channel; (ii) the systematic
analysis of the effects of the ratio H = H∗/h0 on the speed of propagation of the
current downstream; (iii) the experimental validation of the dynamics of the flow
in the lock as described by a two-layer SW model (left-moving jump/rarefaction
wave into the stagnant fluid, and the reflection); (iv) the theoretical and experimental
determination of the distance xV where the transition to viscous regime occurs. We
used a channel of 615 cm length which allowed a propagation of up to 100 lock
lengths.

The observed flow in the lock is close to the theoretical prediction of SW (inviscid
flow) model. The speed of the bore/rarefaction wave is overestimated by the model,
but the discrepancy decreases as the Reynolds numbers Re0 or Re0(h0/x0) increase,
and is within the range of the experimental error for Re0 ' 3× 104 or Re0(h0/x0)'
5× 103.

There are, however, some theoretical predictions that could not be corroborated in
our experiments. The predicted stationary jump at x = 0 in the full-circle full-depth
β = 2, H = 1 geometry, see figure 2(d), could not be observed because of a built-
in obstacle. Moreover, in our experiments it was not possible to distinguish between
flows of type 2 and type 3; it is well known that in practice, under the influence of the
no-slip condition, the GC front is not a sharp vertical jump, but rather a curved head.
Therefore, Navier–Stokes numerical simulation with a free-slip bottom condition must
be used for the verification of the types 2–3 differences predicted by the SW theory.

The parameter β = H∗/r∗ (height of ambient to radius, 62) has a rather small
influence on the behaviour of the current (except for β close to 2). This is in
agreement with theoretical predictions. The measured speed of the current downstream
shows that the high-Reynolds-number (Re0 � 1) buoyancy-inertial current eventually
transits to the viscous regime investigated by Takagi & Huppert (2007). The distance
xV where viscosity becomes dominant increases like [Re0(h0/x0)]α as predicted by the
theoretical estimate developed in this paper, but the experimental α ≈ 0.27 is smaller
than the predicted 0.375. The discrepancy is attributed mostly to the fact that the xV
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estimate assumes fully developed ideal self-similar flows, while in practice the inertial
flow is contaminated by the no-slip condition from an early stage. The Boussinesq
approximation is acceptable for the tested cases, and hence the present results can be
used with confidence also for a ‘light’ (top) current by redefining g′ as (1−R)g, and
measuring z from the upper side.

Our work elucidates similarities and differences between the propagation of the
current in the circle/semicircle cross-section and in the classical rectangular case.
The same main stages of propagation occur: first slumping with constant uN , then
self-similar with decaying uN ∼ tγ−1, and eventually transition to the viscous regime
at xV ∼ [Re0(h0/x0)]α. The main governing parameters are the same, and the trends of
influence are consistent: as H increases, the speed increases, and the slumping distance
decreases; also, xV ∝ [Re0(h0/x0)]α. The differences are mostly on the quantitative
side: here the uN is larger, the transition between stages is over a longer time/length
interval, γ = 3/4 (instead of 2/3) and α = 3/8 (instead of 2/7, theoretically; in our
experiment the larger value of α was not confirmed). The input parameter β has no
counterpart in the classical flat-bottom channel; however, as mentioned above, this
parameter is quite insignificant.

In particular, we found that the initial slumping speed displays the predicted
dependency on the height ratio H, but the values were by typically 15 % below
the SW model predictions. This could be expected: the GC front is affected by the
viscous no-slip condition, which is not incorporated in the model. Again, the slumping
propagation in a semicircle is faster than in a rectangle. For example, for H = 1: in
a circle β = 2 the measured slumping speed is uN = 0.54, while in a rectangle (Lowe,
Rottman & Linden 2005) the measured uN = 0.42 (the theoretical predictions are
0.57 and 0.54, respectively). The reason for the larger speed is readily attributed to
geometrical influence: for a given H, the area ratio of ambient to current fluid is
larger in the typical circular channel, and thus the propagating current encounters a
smaller return-flow effect. In other words, the current in the circle, for a given H,
propagates like one in a rectangle of larger H. The first theoretical indication to this
result is the fact that Fr(a) is larger for a circle, where a = hN/H (see figure SM.1
in the supplementary material).

The fact that the experiments provide fair support to the theoretical predictions in
this system is, in our opinion, of some general importance to the methodology of
understanding and modeling of GC. The investigation of non-rectangular cross-section
currents is a relatively new topic, and it is not clear a priori if and how well this
problem can be connected to the classical flat-bottom-current methodology and
insights.

We found that the agreements between the theoretical predictions and the
experimental observations in the new problem are essentially the same as in the
classical problem. We recall that the measured speed of propagation in the slumping
stage in a rectangular channel, for which a large body of data is available (see
Rottman & Simpson 1983; Shin, Dalziel & Linden 2004; Lowe et al. 2005), is
typically 20 % below the rigorous SW prediction. In the present case, the measured
values are typically 15 % below the predictions. This is an encouraging outcome, with
some practical benefit. Unlike the rectangular case which can be simulated by 2D
codes, the current in a circular/semicircular cross-section channel must be simulated
by time and memory consuming 3D codes. The need for the simplified model is thus
enhanced, and the information that the predictions agree with physical observations
provides confidence.

The experience with classical-rectangular GC indicates that it is possible to improve
the agreement between the theoretical speed predictions and measurements by using
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instead of the theoretical Fr of Benjamin (1968) an empirically adjusted Fr (e.g. the
formula of Huppert & Simpson (1980)). However, such a formula is unavailable for
the circle cross-section. Whether and how such improvements work in the present
problem is a topic of further research.

Our experiments suggest that a better agreement with theory could be expected for
significantly larger Re0(h0/x0), while keeping h0/x0 small. This would produce both a
larger uN and a longer xV ; the latter will allow a sharper self-similar inertia-buoyancy
stage of propagation. Unfortunately, data acquisition in this parameter range requires
a significant, and very expensive, scale-up of the experimental apparatus in height,
width and length. This is beyond the capability of the typical academic-institute
fluid-mechanics laboratory. The more feasible alternative is to attempt ‘numerical
experiments’; an advantage of this option is that free-slip boundary condition can
be used for a sharper assessment of the Fr condition. Although neither cheap
nor straightforward, such simulations are expected to be more advantageous than
large-scale laboratory experiments. The numerical ‘state of the art’ seems ripe for
such simulation (Constantinescu 2014; Nasr-Azadani & Meiburg 2014) and we hope
that the present investigation will provide both motivation and reference data for such
a numerical study in the near future.

Finally, we recall that a current in full-circle full-depth channel β = 2, H = 1 was
discussed briefly in Benjamin’s (1968) classical paper. The solution for the steady-state
half-infinite current was presented only for the non-dissipative propagation. The speed
is, in our notation, uN = 0.542. It is remarkable that our experimental result for the
slumping speed in the β = 2, H = 1 channel is 0.54. The SW dam-break solution,
which allows dissipation, produces the slightly larger uN=0.57. The apparently perfect
agreement with the experiment does not demonstrate that Benjamin’s theoretical result
is the ‘better’ one. Since there certainly is a viscous no-slip speed reduction in the real
current, the ‘correct’ inviscid uN result must be larger than the measured speed. The
clarification of this issue must be left, again, to Navier–Stokes simulation in which a
free-slip boundary condition can be tested.

Supplementary material

Some calculations on the theoretical model, two figures related to the reflected bores
and the GC front speed, two videos of the experiments with superscript ‘a’ in table 2
and the experimental time series of the GC front position for the 10 experiments listed
in the same table, in .txt format.

Supplementary material is available at http://dx.doi.org/10.1017/jfm.2014.701.

Appendix A. Theoretical estimate of xV

We use dimensionless variables as defined in § 2, unless stated otherwise.
Let xV be the length where the current changes regime from inertial to viscous.

Suppose that in both regimes a similarity solution is relevant,

xN(t)=Kjtγj (A 1)

where j= I for inertial and j= V for viscous and the values of Kj and γj are known.
The speed of propagation is

uN = ẋN = γjKjtγj−1. (A 2)
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Note that t= (xN/K)1/γ . Hence, equation (A 2) can be rewritten as

uN = γjK
1/γj
j x1−1/γj

N . (A 3)

We assume that the transition from inertial to viscous regimes is between two
self-similar forms. We argue that the transition is smooth and, hence, at this
occurrence, both regimes display the same speed of propagation. We therefore write,
for the transition

γIK
1/γI
I x1−1/γI

N = γVK1/γV
V x1−1/γV

N . (A 4)

The value of xN which satisfies this equation is the transition xV . We obtain

xV =
[
γIK

1/γI
I

γVK1/γV
V

]q

; q= γIγV

γV − γI
. (A 5)

For the circle we note the following.
(i) The viscous regime was solved by Takagi & Huppert (2007, (2.19b)). This

provides γV = 1/4 and, after scaling, also

KV = [P Re0(h0/x0)]γV (A 6)

where
P= 210/(105π2)≈ 0.99. (A 7)

In this evaluation we used the approximation V2/r= 32h3
0x2

0/9 where V and r are the
dimensional volume of the current and radius of the channel (valid for r > h0).

(ii) For a thin current (compared to the radius of the channel) the inertial solution
for the circle is well approximated by the power-law width function bz1/2. For the
latter case, Zemach & Ungarish (2013) derived the self-similar solution and provide
γI = 3/4,KI = 1.765. Substitution into (A 5) and some algebra yields

xV = 0.50 (Re0h0/x0)
3/8 . (A 8)

We recall that for a standard rectangular cross-section the estimated transition from
inertial to viscous regime is given by xV = C1[Re0(h0/x0)]2/7, where C1 is a constant
of order unity (see Ungarish (2013, §2.7), and the references therein). It is interesting
to note that in both cases the relevant Reynolds number is actually Re0(h0/x0).

It is surprising that, for a given Re0(h0/x0) the flat-bottom current becomes viscous
at a shorter propagation than the counterpart in the semicircle. Upon propagation, the
height of the current decreases faster in the first case, and therefore the speed and
inertia effects decay faster, in favour of the viscous hindrance.
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