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1. Introduction

Let F be a p-adic field. By the local Langlands correspondence, irreducible

smooth representations of GLn(F) are known to be parameterized by n-dimensional

representations of WF ×SL2(C), where WF denotes the Weil group of F . For an irreducible

smooth representation π of GLn(F), we write recF (π) for the attached parameter, which

is called the Langlands parameter of π .

Let us assume that π is self-dual, namely, π is isomorphic to its contragredient π∨.

Since recF is compatible with dual, recF (π) is again self-dual. Therefore, we can consider

the problem whether recF (π) is symplectic or orthogonal, under the condition that

recF (π) is irreducible; in other words, π is a discrete series representation. In [19], Prasad

and Ramakrishnan answered this question by means of the local Jacquet–Langlands

correspondence. Let D be a central division algebra of rank n over F . Recall that the

local Jacquet–Langlands correspondence [4, 22] gives a bijection between isomorphism

classes of irreducible discrete series representations of GLn(F) and those of irreducible

smooth representations of D×. We write JL(π) for the representation of D× attached to

π by this correspondence. The theorem of Prasad and Ramakrishnan is as follows:
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Theorem 1.1 [19, Theorem B]. Assume that π is self-dual. If n is odd, recF (π) is always

orthogonal (this part is clear). If n is even, then recF (π) is symplectic (respectively

orthogonal) if and only if JL(π) is orthogonal (respectively symplectic).

The purpose of this paper is to extend this theorem to the conjugate self-dual

setting. Let F/F+ be a quadratic extension of p-adic fields and τ the generator of

Gal(F/F+). A smooth representation (π, V ) of GLn(F) is said to be conjugate self-dual

if π τ ∼= π∨, where π τ denotes the representation GLn(F)
τ
−→ GLn(F)

π
−→ GL(V ). If π is

conjugate self-dual, its Langlands parameter recF (π) is also conjugate self-dual in the

following sense. Take c ∈ WF+ \WF . For a representation φ of WF ×SL2(C), define a

new representation φc by φc(w) = φ(cwc−1); it is independent of the choice of c up to

isomorphism. A representation φ is said to be conjugate self-dual if φc ∼= φ∨ holds. For

an irreducible conjugate self-dual representation φ of WF ×SL2(C), we can define its

parity Cφ ∈ {±1} in the similar way as in the self-dual case (for the detail, see [8, §3], [16,

§2.2] and § 2 of this paper). If Cφ = 1, φ is said to be conjugate orthogonal, otherwise

conjugate symplectic. For an irreducible conjugate self-dual discrete series representation

π , the parity of recF (π) knows whether π comes from the standard base change lifting

or the twisted base change lifting from the quasi-split unitary group UF/F+(n) (see [16,

§2]).

In this paper, we determine the parity of recF (π) by means of JL(π), under the

conditions that

– F/F+ is at worst tamely ramified;

– the invariant of D is 1/n;

– and π is supercuspidal (in other words, recF (π) is trivial on the SL2(C)-factor).

Under the first two assumptions, we construct explicitly an automorphism τ : D×→ D×

such that τ |F× coincides with τ ∈ Gal(F/F+), and t ∈ D× such that τ 2(d) = tdt−1 for

d ∈ D× (Definition 2.10). For such a pair (τ, t), we can define the conjugate self-duality

and the parity of an irreducible smooth representation of D× (see § 2). Our main theorem

is summarized as follows:

Theorem 1.2 (Main theorem, Theorem 2.12). Assume that F/F+ is at worst tamely

ramified and the invariant of D is 1/n. Let π be an irreducible conjugate self-dual

supercuspidal representation of GLn(F). Then, JL(π) is conjugate self-dual with respect

to (τ, t), and its parity CJL(π) satisfies

CrecF (π) = (−1)n−1CJL(π).

Theorems 1.1 and 1.2 are useful in the study of recF (π), because the determination of

JL(π) is usually much easier than that of recF (π). In § 4, we apply Theorems 1.1 and 1.2

to compute the parity of recF (π) for conjugate (or usual) self-dual simple supercuspidal

representations of GLn(F) (for simple supercuspidal representations, see [9, 13, 21]). For

example, we prove that the Langlands parameter of a self-dual simple supercuspidal

representation of GL2n(F) is symplectic if and only if its central character is trivial. This

result plays a crucial role in the recent study of Oi [17] on the endoscopic lifting of simple

supercuspidal representations of SO2n+1(F) to GL2n(F).
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Let us explain the strategy of our proof of Theorem 1.2. We use a geometric method.

The non-abelian Lubin–Tate theory [2, 3, 10] tells us that the correspondences recF
and JL for supercuspidal representations appear in the `-adic étale cohomology of the

Lubin–Tate tower, which is a projective system of universal deformation spaces of a

one-dimensional formal OF -module X of height n with suitable level structures. By using

the cup product of the cohomology and a result in [15], we can construct a perfect pairing

(JL(π)� recF (π))× (JL(π∨)� recF (π
∨))→ C

for an irreducible supercuspidal representation π of GLn(F). It enables us to compare the

parity of recF (π) and that of JL(π), provided that π is self-dual. As in the introduction

of [19], this method had already been found by Fargues; he announced the supercuspidal

case of Theorem 1.1 in [6, §5] without proof. The new point of this paper is to adapt the

argument above to the conjugate self-dual case. In the conjugate self-dual case, we need

to make the pairing ‘Hermitian’. For this purpose, we introduce a new operator on the

Lubin–Tate tower, which we call the twisting operator. In the definition of it, we need

to fix an additional structure on the fixed formal OF -module X. This extra structure

naturally induces the pair (τ, t) in Theorem 1.2, as D× can be identified with the group

of self-OF -isogenies of X.

Since our method is geometric, our theorem is also valid in the equal characteristic

case. On the other hand, we need to assume that the invariant of D is 1/n and π

is supercuspidal, because this is the only case in which recF (π) and JL(π) have nice

geometric descriptions. The author expects that Theorem 1.2 is true for any conjugate

self-dual discrete series representation π ; in fact, we can easily verify it for a character

twist of the Steinberg representation (see Remark 2.13). It seems also an interesting

question to extend Theorem 1.2 to general division algebras. These problems will be

considered in our future works.

The outline of this paper is as follows. In § 2, we give some basic definitions on

conjugate self-dual representations and their parity. We need a slightly general framework

than usual, in order to formulate Theorem 1.2. § 3 is devoted to a proof of the main

theorem. After a brief review of the non-abelian Lubin–Tate theory, we introduce and

study the twisting operator, which is a key of our proof. To describe the pair (τ, t)
explicitly, we also need some explicit computations of Dieudonné modules. In § 4, we apply

the main theorem to determine the parity of conjugate self-dual simple supercuspidal

representations of GLn(F).

Notation For a field L and an integer m > 1, we write µm(L) for the set of mth roots

of unity in L. If L is a discrete valuation field, we denote the ring of integers of L by OL ,

and the maximal ideal of OL by pL . Every representation is considered over C.

2. Parity of conjugate self-dual representations

2.1. Basic definitions and properties

Let G be a totally disconnected locally compact topological group. We fix a continuous

automorphism τ : G → G and an element t ∈ G satisfying

τ 2
= Int(t), τ (t) = t,
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where Int(t) : G → G denotes the isomorphism g 7→ tgt−1. For a smooth representation

(π, V ) of G, we write (π τ , V ) for the smooth representation defined by π τ (g) = π(τ(g)).
We say that π is conjugate self-dual with respect to τ if π τ is isomorphic to the

contragredient representation π∨. If π is conjugate self-dual with respect to τ , we have

π∨∨ ∼= (π τ )∨ = (π∨)τ ∼= (π τ )τ = π t ∼= π (the last isomorphism is given by π(t)−1). Hence

π is admissible.

Let π be a smooth representation of G which is conjugate self-dual with respect

to τ . Then, there exists a non-degenerate bilinear pairing 〈 , 〉 : V × V → C satisfying

〈π(τ(g))x, π(g)y〉 = 〈x, y〉 for every g ∈ G and x, y ∈ V . If π is irreducible, such a pairing

is unique up to scalar by Schur’s lemma (recall that π is admissible).

Lemma 2.1. There exists Cπ ∈ {±1} such that 〈π(t)y, x〉 = Cπ 〈x, y〉 for every x, y ∈ V .

Proof. Put 〈x, y〉′ = 〈π(t)y, x〉. Let g ∈ G and x, y ∈ V be arbitrary elements, and we

put g′ = τ−1(g). Then we have

〈π(τ(g))x, π(g)y〉′ = 〈π(t)π(g)y, π(τ (g))x〉 = 〈π(τ(tg′))y, π(tg′t−1)x〉

= 〈y, π(t)−1x〉 = 〈π(t)y, x〉 = 〈x, y〉′.

Therefore, there exists Cπ ∈ C× such that 〈x, y〉′ = Cπ 〈x, y〉 for every x, y ∈ V .

For x, y ∈ V , we have

〈x, y〉 = 〈π(τ(t))x, π(t)y〉 = 〈π(t)x, π(t)y〉 = Cπ 〈π(t)y, x〉 = C2
π 〈x, y〉.

Hence we have C2
π = 1. This concludes the proof.

Remark 2.2. The sign Cπ depends not only on τ but also on t . Let t ′ ∈ G be another

element satisfying τ 2
= Int(t ′). Then z = t ′t−1 lies in the center of G and fixed by τ . It is

immediate to see that Cπ for t ′ equals ωπ (z)Cπ , where ωπ denotes the central character

of π .

We call Cπ the parity of π (with respect to (τ, t)). If Cπ = 1 (respectively Cπ = −1),

we say that π is conjugate orthogonal (respectively conjugate symplectic). If τ = id and

t = 1, this notion coincides with the standard one.

Remark 2.3. Consider the case where (π, V ) is finite-dimensional, and put m = dimC V .

(i) Assume that m = 1, and identify V with C. Then, 〈 , 〉 : C×C→ C; (x, y) 7→ xy
gives a non-degenerate bilinear pairing satisfying 〈π(τ(g))x, π(g)y〉 = 〈x, y〉. From

this pairing we can deduce Cπ = π(t).

(ii) Let 〈 , 〉 : V × V → C be a non-degenerate bilinear pairing as in the definition of

the parity. Put (detπ, det V ) = (
∧m

π,
∧m V ). Then, 〈 , 〉 induces a pairing det V ×

det V → C by

〈x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym〉 =
∑
σ∈Sm

sgn(σ )〈x1, yσ(1)〉 · · · 〈xm, yσ(m)〉.
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It is non-degenerate and satisfies

〈(detπ)(τ(g))x, (detπ)(g)y〉 = 〈x, y〉, 〈(detπ)(t)y, x〉 = Cm
π 〈x, y〉

for x, y ∈ det V and g ∈ G. Hence we have Cdetπ = Cm
π .

In particular, if m is odd, the parity Cπ can be computed as follows:

Cπ = Cm
π = Cdetπ = detπ(t).

In contrast, if m is even, the parity is a more subtle invariant.

We give two elementary lemmas.

Lemma 2.4. Assume that (G, τ, t) is decomposed into (G1×G2, τ1× τ2, (t1, t2)), where

Gi is a totally disconnected locally compact topological group, τi : Gi → Gi a continuous

automorphism and ti ∈ Gi satisfying τ 2
i = Int(ti ). For each i = 1, 2, let (πi , Vi ) be an

irreducible smooth representation of Gi conjugate self-dual with respect to τi . Then,

(π1�π2, V1⊗ V2) is an irreducible smooth representation of G conjugate self-dual with

respect to τ , and Cπ1�π2 is equal to Cπ1Cπ2 .

Proof. It is well known that the exterior tensor product of irreducible admissible

representations is irreducible. The parity can be computed by using the pairing

〈x1⊗ x2, y1⊗ y2〉 = 〈x1, y1〉1〈x2, y2〉2, where 〈 , 〉i : Vi × Vi → C is an appropriate pairing

attached to πi .

Lemma 2.5. Take an element h ∈ G and put τ ′ = Int(h) ◦ τ , t ′ = hτ(h)t. Then we have

τ ′2 = Int(t ′). For an irreducible smooth representation π of G, π is conjugate self-dual

with respect to τ if and only if it is conjugate self-dual with respect to τ ′. If π is conjugate

self-dual with respect to τ and τ ′, its parity with respect to (τ, t) coincides with that with

respect to (τ ′, t ′).

Proof. The claim τ ′2 = Int(t ′) is immediate. We write V for the representation space of

π . Assume that π is conjugate self-dual with respect to τ , and take a non-degenerate

pairing 〈 , 〉 : V × V → C satisfying 〈π(τ(g))x, π(g)y〉 = 〈x, y〉. Let 〈 , 〉h : V × V → C be

the pairing defined by 〈x, y〉h = 〈π(h)−1x, y〉. It is a non-degenerate pairing and satisfies

〈π(τ ′(g))x, π(g)y〉h = 〈π(h)−1π(hτ(g)h−1)x, π(g)y〉 = 〈π(τ(g))π(h)−1x, π(g)y〉

= 〈π(h)−1x, y〉 = 〈x, y〉h .

Therefore, π τ
′
∼= π∨, that is, π is conjugate self-dual with respect to τ ′. Since τ =

Int(h−1) ◦ τ ′, the converse is also the case.

Let us denote by C (respectively C ′) the parity of π , which is assumed to be conjugate

self-dual, with respect to (τ, t) (respectively (τ ′, t ′)). We use the pairing 〈 , 〉h to compute

C ′. For x, y ∈ V , we have

C ′〈x, y〉h = 〈π(t ′)y, x〉h = 〈π(h−1t ′)y, x〉 = 〈π(τ(h)t)y, x〉 = 〈π(t)y, π(h)−1x〉

= C〈π(h)−1x, y〉 = C〈x, y〉h .

Hence we conclude that C = C ′.
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Let H be an open subgroup of G. Take a smooth character χ : H → C× such that

π = c-IndG
H χ is irreducible and admissible. Note that IndG

H χ
−1
= c-IndG

H χ
−1 in this case.

Indeed, since π is irreducible and admissible, so is π∨ ∼= IndG
H χ
−1. As c-IndG

H χ
−1 is a

non-zero G-invariant subspace of IndG
H χ
−1, it equals IndG

H χ
−1.

We consider when π is conjugate self-dual with respect to τ , and how to compute the

parity of π .

Proposition 2.6. Put H τ
= τ−1(H), and write χ τ for the character H τ

→ C×; h 7→
χ(τ(h)). Assume that there exists a ∈ G which intertwines (H, χ−1) and (H τ , χ τ );

namely, satisfies the following conditions:

aHa−1
= H τ , χ(h)−1

= χ τ (aha−1) for every h ∈ H .

Then, the representation π = c-IndG
H χ is conjugate self-dual with respect to τ .

Furthermore, an element z = τ(a)ta lies in H , and the parity Cπ of π is given by χ(z).

Proof. For f ∈ c-IndG
H χ , let f τ : G → C be the function g 7→ f (τ (g)). Then, it is easy

to see that f τ belongs to c-IndG
H τ χ

τ , and f 7→ f τ gives an isomorphism (c-IndG
H χ)

τ
∼=
−→

c-IndG
H τ χ

τ of G-representations. On the other hand, for f ∈ c-IndG
H τ χ

τ , let f a
: G →

C be the function g 7→ f (ag). We can check that f a belongs to c-IndG
H χ
−1 and f 7→

f a gives an isomorphism c-IndG
H τ χ

τ
∼=
−→ c-IndG

H χ
−1. Hence we have π τ = (c-IndG

H χ)
τ ∼=

c-IndG
H τ χ

τ ∼= c-IndG
H χ
−1
= IndG

H χ
−1 ∼= π∨. In other words, π is conjugate self-dual with

respect to τ .

Next we prove z ∈ H . First we see that z normalizes (H, χ). Since H τ
= aHa−1, we

have H = τ(a)τ 2(H τ )τ (a)−1
= τ(a)t H τ t−1τ(a)−1

= zH z−1. Therefore, z normalizes H .

Moreover, for h ∈ H we have

χ(z−1hz) = χ τ (az−1hza−1)−1
= χ τ (t−1τ(a)−1hτ(a)t)−1

= χ(a−1t−1τ(h)ta)−1

= χ τ (t−1τ(h)t) = χ(h).

Thus z fixes χ .

Recall that we are assuming that π = c-IndG
H χ is irreducible. Therefore,

HomG(π, π) = HomH (χ, (c-IndG
H χ)|H )

∼= HomH

(
χ,

⊕
g∈H\G/H

c-IndH
H∩g−1 Hg χ

g
)

is one-dimensional (here χ g denotes the character h′ 7→ χ(gh′g−1) on H ∩ g−1 Hg). Since

c-IndH
H∩z−1 H z χ

z
= χ , z must lie in H ; otherwise the direct sum above contains χ ⊕χ .

Finally we compute the parity of π . Define a pairing 〈 , 〉 : c-IndG
H χ × c-IndG

H χ → C
by

〈 f1, f2〉 =
∑

g∈H\G

( f τ1 )
a(g) f2(g),

where the sum is essentially finite since the support of f2 is compact modulo H .

This pairing is the composite of (c-IndG
H χ)

τ
× c-IndG

H χ
(1)
−→
∼=

c-IndG
H χ
−1
× c-IndG

H χ =

IndG
H χ
−1
× c-IndG

H χ
(2)
−→ C, where (1) denotes the isomorphism ( f1, f2) 7→ (( f τ1 )

a, f2)
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and (2) the canonical pairing. Hence 〈 , 〉 is a non-degenerate pairing satisfying

〈π(τ(g)) f1, π(g) f2〉 = 〈 f1, f2〉 for every g ∈ G and f1, f2 ∈ c-IndG
H χ .

By definition we can compute as follows:

〈π(t) f2, f1〉 =
∑

g∈H\G

( f τ2 )
a(gt) f1(g) =

∑
g∈H\G

f2(τ (agt)) f1(g)

(∗)
=

∑
g′∈H\G

f2(g′) f1(a−1t−1τ(g′)) =
∑

g′∈H\G

f1(z−1τ(ag′)) f2(g′)

=

∑
g′∈H\G

χ(z)−1 f1(τ (ag′)) f2(g′) = χ(z)−1
〈 f1, f2〉.

At the equality (∗), we put g′ = τ(agt). As τ(aHgt) = τ(aHa−1)τ (agt) = Hτ(agt), this

replacement is well defined. Hence the parity Cπ = C−1
π of π equals χ(z). This completes

the proof.

Proposition 2.6 will be used in § 4, in which case G is a p-adic reductive group. Suppose

that G is a p-adic reductive group. Then, every irreducible smooth representation of G
is known to be admissible. Therefore, to apply Proposition 2.6, we have only to check

the irreducibility of π .

2.2. Division algebra setting

Let F+ be a non-archimedean local field and F a separable extension of F+ such that

[F : F+] 6 2. Denote by τ the generator of Gal(F/F+). Let q (respectively q ′) denote the

cardinality of the residue field of OF (respectively OF+). We denote the characteristic of

Fq by p.

The extension F/F+ provides two well-known examples of (G, τ, t) in the previous

subsection.

Example 2.7. For an integer n > 1, put G = GLn(F). Let τ : G → G be an automorphism

induced by τ ∈ Gal(F/F+). Then we have τ 2
= id, and we can set t = 1.

Example 2.8. Let G be the Weil group WF of F . Fix an element c ∈ WF+ whose image

in WF+/WF is a generator, and let τ : G → G be Int(c). Then c2 lies in WF , and we

can set t = c2. The conjugate self-duality and the parity are independent of the choice

of c. Indeed, another choice of c is of the form wc with w ∈ WF . Use Lemma 2.5 to

τ ′ = Int(wc) = Int(w) ◦ τ and t ′ = (wc)2 = w(cwc−1)c2
= wτ(w)t .

The conjugate self-duality and the parity in this case coincide with those in [8, §3] and

[16, §2.2].

The parity under the setting in Example 2.8 is interesting because of the following

theorem:

Theorem 2.9. Let π be an irreducible supercuspidal representation of GLn(F) and recF (π)

the corresponding n-dimensional irreducible smooth representation of WF under the local

Langlands correspondence.
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(i) The representation π is conjugate self-dual under the setting in Example 2.7 if and

only if recF (π) is conjugate self-dual under the setting in Example 2.8.

(ii) Assume that F 6= F+ and the characteristic of F is 0. The representation π

belongs to the image of the standard (respectively twisted) base change lift from

the quasi-split unitary group UF/F+(n) if and only if the parity CrecF (π) is equal to

(−1)n−1 (respectively (−1)n). For the notion of the base change lift, see [16, § 2].

In the following, we introduce another setting. Fix a separable closure F and a

uniformizer $ of F . For an integer n > 1, we denote by Fn (respectively F+n ) the

unramified extension of degree n of F (respectively F+) contained in F , and by

σ ∈ Gal(Fn/F) the arithmetic Frobenius lift. Let D be the central division algebra over

F with invariant 1/n. Recall that D can be written as Fn[5], where 5 is an element

satisfying 5n
= $ and 5a = σ(a)5 for every a ∈ Fn . Assuming the tameness of F/F+,

we explicitly construct an isomorphism τ : D→ D whose restriction to the center F
coincides with τ ∈ Gal(F/F+).

Definition 2.10. Assume that F/F+ is at worst tamely ramified.

(i) Suppose that F/F+ is an unramified quadratic extension. Then, τ ∈ Gal(F/F+) is

canonically extended to the arithmetic Frobenius lift in Gal(Fn/F+), that is also

denoted by τ . It satisfies σ = τ 2. In this case, we take$ in F+ and define τ : D→ D
by a 7→ τ(a) (a ∈ Fn) and 5 7→ 5. We put t = 5.

(ii) Suppose that F/F+ is a ramified quadratic extension (thus p 6= 2). Then, the

restriction map Gal(Fn/F+n )→ Gal(F/F+) is an isomorphism. We also write τ for

the generator of Gal(Fn/F+n ). It commutes with σ ∈ Gal(Fn/F).
In this case, we can (and do) take $ so that τ($) = −$ . Fix an element

β ∈ F such that βqn
−1
= −1 and put α = βq−1. Since αqn

−1
= (−1)q−1

= 1,

α belongs to µqn−1(F) = µqn−1(F+n ) and NrFn/F (α) = α
1+q+···+qn−1

= βqn
−1
=

−1. We define τ : D→ D by a 7→ τ(a) (a ∈ Fn) and 5 7→ α5. Note that

(α5)n = NrFn/F (α)5
n
= −$ = τ($) and (α5)τ(a) = ασ(τ(a))5 = τ(σ (a))(α5),

which ensure the well-definedness of τ . We put t = β−2
∈ µqn−1(F) = µqn−1(F+n ).

(iii) If F = F+, then we define τ : D→ D to be the identity map. We put t = 1.

In each case we can check that τ 2(d) = tdt−1 holds for every d ∈ D. Therefore, the

triple (D×, τ, t) gives an example of the setting in § 2.1.

Remark 2.11. (i) In the second case, the conjugate self-duality and the parity are

independent of the choice of β. Indeed, let β ′ ∈ F be another element such that

β ′q
n
−1
= −1. Then γ = β/β ′ lies in µqn−1(F) = µqn−1(F+n ). We put α′ = β ′q−1 and

write τ ′, t ′ for τ , t attached to β ′, respectively. Since α′5 = γ (α5)γ−1, we have

τ ′ = Int(γ ) ◦ τ and t ′ = β ′−2
= γ 2t = γ τ(γ )t . Hence the independence follows from

Lemma 2.5.

(ii) In the second case, assume that n is odd. Take ε ∈ F×q \ (F×q )2 and η ∈ Fq2 such that

η2
= ε−1. We have ηq−1

= −1.
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Then, the unique lifting β ∈ µq2−1(OF2) of η satisfies βqn
−1
= (−1)1+q+···+qn−1

=

−1. Under this choice of β, we have α = βq−1
= −1. Moreover, the element t = β−2

is the unique element of µq−1(OF ) lifting ε.

Our main theorem is as follows:

Theorem 2.12. Assume that F/F+ is at worst tamely ramified. Let π be an irreducible

supercuspidal representation of GLn(F) which is conjugate self-dual under the setting in

Example 2.7. We write JL(π) for the irreducible smooth representation of D× attached

to π under the local Jacquet–Langlands correspondence.

Then, JL(π) is conjugate self-dual with respect to τ : D×→ D× introduced in

Definition 2.10. Moreover, we have

CrecF (π) = (−1)n−1CJL(π).

Remark 2.13. (i) The case where F = F+ and the characteristic of F is 0 has been

obtained in [19], in which a discrete series representation π is also treated. The

same statement for the case F = F+ is also announced in [6, §5] without proof.

(ii) It is natural to expect that Theorem 2.12 remains true for conjugate self-dual

discrete series representations of GLn(F). For example, let us consider a twist of

the Steinberg representation π = St⊗ (χ ◦ det), where χ : F×→ C× is a smooth

character. Since Stτ ∼= St ∼= St∨, the representation π is conjugate self-dual if

and only if χ τ = χ−1. The Langlands parameter recF (π) is given by (χ ◦Art−1
F )

�Symn−1Std : WF ×SL2(C)→ GLn(C), where ArtF : F×
∼=
−→ W ab

F denotes the

isomorphism of the local class field theory, and Std the standard representation

of SL2(C). The parity of Symn−1Std equals (−1)n−1. By Remark 2.3(i), the

parity of χ ◦Art−1
F is given by χ(Art−1

F (c2)) = χ(Art−1
F+(c)) (recall that the image

of c under the transfer map W ab
F+ → W ab

F is c2). Hence we obtain CrecF (π) =

(−1)n−1χ(Art−1
F+(c)). On the other hand, we have JL(π) = χ ◦Nrd, where Nrd

denotes the reduced norm of D. Its parity Cχ◦Nrd equals χ(Nrd(t)). By definition,

both Art−1
F+(c) and Nrd(t) lie in (F+)× \NrF/F+(F×). Since χ |(F+)× factors through

(F+)×/NrF/F+(F×), we conclude that χ(Art−1
F+(c)) = χ(Nrd(t)) and CrecF (π) =

(−1)n−1CJL(π).

3. Proof of the main theorem

3.1. Review of the non-abelian Lubin–Tate theory

To prove Theorem 2.12, we use the non-abelian Lubin–Tate theory, which is a geometric

realization of the local Langlands correspondence for GLn . Here we recall it briefly. Let F
be a non-archimedean local field and $ its uniformizer. Take an integer n > 1. We write

Fur for the maximal unramified extension of F inside the fixed separable closure F , and

F̆ for the completion of Fur.

Let Nilp be the category of schemes over OF̆ on which $ is locally nilpotent. For

an object S of Nilp, we denote the structure morphism S→ SpecOF̆ by φS . Put S =
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S⊗OF̆
OF̆/pF̆ . Recall that a formal OF -module over S is a formal group X over S endowed

with an OF -action ι : OF → End(X) such that the following two actions of OF on the Lie

algebra Lie(X) coincide:

– the action induced by ι; and

– that induced by the OS-module structure of Lie(X) and the structure homomorphism

OF → OF̆ → OS .

Fix a one-dimensional formal OF -module X of OF -height n over Fq = OF̆/pF̆ . Such X
is unique up to isomorphism. Put D = EndOF (X)⊗ZQ, which is known to be a central

division algebra over F with invariant 1/n.

Let M : Nilp→ Set be the functor that sends S to the set of isomorphism classes

of pairs (X, ρ), where X is a formal OF -module over S and ρ : φ∗
S
X→ X ×S S is

an OF -quasi-isogeny. It is known that M is represented by a formal scheme over

OF̆ , which is non-canonically isomorphic to the disjoint union of countable copies of

SpfOF̆ [[T1, . . . , Tn−1]] (see [5, 14, 20]). The group of self-isogenies QIsogOF
(X) = D×

naturally acts on M on the right; h ∈ D× sends (X, ρ) to (X, ρ ◦φ∗
S
h). The formal scheme

M is endowed with another structure, called a Weil descent datum. It is an isomorphism

α :M→M that makes the following diagram commute:

M α //

��

M

��
SpfOF̆

σ ∗ // SpfOF̆ .

Here σ : OF̆ → OF̆ is induced from the unique element σ ∈ Gal(Fur/F) lifting the

arithmetic Frobenius automorphism σ : Fq → Fq , as in § 2.2. In order to describe this

isomorphism, it suffices to construct a bijection α : M(S)→M(Sσ ) for each S ∈ Nilp
compatibly, where Sσ denotes the object S

φS
−→ SpecOF̆

σ ∗

−→ SpecOF̆ of Nilp. For (X, ρ) ∈
M(S), we define α(X, ρ) = (X, ρ ◦φ∗

S
Frob−1

X ), where FrobX : X→ (σ ∗)∗X denotes the qth

power Frobenius morphism, which is an OF -isogeny of OF -height 1.

Next we consider level structures. For m > 0, let Mm : Nilp→ Set be the functor that

sends S to the set of isomorphism classes of triples (X, ρ, η), where (X, ρ) ∈M(S) and

η is a Drinfeld m-level structure on X (for its definition, see [5, §4] and [10, §II.2]). It is
represented by a formal scheme finite and flat over M, and {Mm}m>0 form a projective

system called the Lubin–Tate tower. The action of D× and the Weil descent datum on M
naturally extend to Mm , and they are compatible with the transition morphisms of the

tower. Further, the group GLn(F) acts on {Mm}m>0 on the right as a pro-object (see [23,

§2.2] for the definition). This action is called the Hecke action. The principal congruence

subgroup Km = Ker(GLn(OF )→ GLn(OF/p
m
F )) of GLn(F) acts trivially on Mm .

By taking the rigid generic fiber, we obtain a projective system {Mm}m>0 of rigid spaces,

whose transition maps are finite and étale. Each Mm is an n− 1-dimensional smooth rigid

space over F̆ . For a compact open subgroup K of GLn(OF ), we can define the rigid space

MK as the quotient of Mm by K/Km , where m > 0 is an integer satisfying Km ⊂ K . It is
independent of the choice of m, and MKm coincides with Mm . These rigid spaces form a
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projective system {MK }K⊂GLn(OF ) with finite étale transition maps. The actions of D×

and GLn(F), and the Weil descent datum naturally extend to it.

For a discrete torsion-free cocompact subgroup 0 of F× (e.g.,$ dZ for an integer d > 1),

we may consider the quotient towers {Mm/0}m and {MK /0}K , where 0 is regarded as a

discrete subgroup of D× by F× ⊂ D×. It is known that the actions of GLn(F) on these

towers are trivial on 0 ⊂ F× ⊂ GLn(F) (see [20, Lemma 5.36]).

Now we take a prime number ` 6= p and consider the `-adic étale cohomology of the

Lubin–Tate tower

H i
LT/0,c = lim

−→
K

H i
c
(
(MK /0)⊗F̆ F̂,Q`

)
, H i

LT/0 = lim
−→

K

H i ((MK /0)⊗F̆ F̂,Q`
)
,

where F̂ denotes the completion of F . The groups GLn(F) and D× act on H i
LT/0,c

and H i
LT/0. The actions of GLn(F) on both spaces are obviously smooth, and moreover

admissible. The action of D× on H i
LT/0,c is also known to be smooth (see [23, Lemma

2.5.1]). Furthermore, by using the Weil descent datum α, we can define the actions of

WF on H i
LT/0,c and H i

LT/0 as follows. For w ∈ WF , let ν(w) denote the integer satisfying

w|Fur = σ ν(w). By taking the fiber product of diagrams

Spa(F̂,O
F̂
)

w∗ //

��

Spa(F̂,O
F̂
)

��
Spa(F̆,OF̆ )

(σ ∗)ν(w)// Spa(F̆,OF̆ ),

MK /0
αν(w) //

��

MK /0

��
Spa(F̆,OF̆ )

(σ ∗)ν(w)// Spa(F̆,OF̆ ),

we obtain an isomorphism αw : (MK /0)⊗F̆ F̂ → (MK /0)⊗F̆ F̂ of adic spaces. The

action of w is defined to be α∗w. By these constructions, we obtain two representations

H i
LT/0,c and H i

LT/0 of GLn(F)× D××WF .

Recall that any admissible representation V of GLn(F)/0 is decomposed canonically

into V = (
⊕

π Vπ )⊕ Vnon-cusp, where

– π runs through irreducible supercuspidal representations of GLn(F) whose central

characters are trivial on 0;

– Vπ is a direct sum of finitely many copies of π ;

– and Vnon-cusp has no supercuspidal subquotient

(see [1, 1.11, Variantes c)]). We call Vπ the π -isotypic component of V . By definition we

have (Vπ )∨ = (V∨)π∨ and (Vnon-cusp)
∨
= (V∨)non-cusp.

We fix an isomorphism Q` ∼= C and identify them. Here is a form of the non-abelian

Lubin–Tate theory.

Theorem 3.1 [2, 10, 15]. For an irreducible supercuspidal representation π of GLn(F)
whose central character is trivial on 0, we have

Hn−1
LT/0,c,π

(
n− 1

2

)
= π � JL(π)∨� recF (π)

∨
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as representations of GLn(F)× D××WF . Here ( n−1
2 ) denotes the twist by the character

WF → C×;w 7→ q
n−1

2 ν(w), and JL(π) denotes the irreducible smooth representation of

D× attached to π under the local Jacquet–Langlands correspondence. Unless i = n− 1,

we have H i
LT/0,c,π = 0.

The following theorem was obtained in [15], in the course of the proof of the latter part

of Theorem 3.1.

Theorem 3.2. For every integer i , the kernel and cokernel of the natural map H i
LT/0,c →

H i
LT/0 have no supercuspidal subquotient as representations of GLn(F). In particular, for

every irreducible supercuspidal representation π of GLn(F) whose central character is

trivial on 0, the induced map H i
LT/0,c,π → H i

LT/0,π is an isomorphism.

Definition 3.3. For a compact open subgroup K of GLn(OF ), put TrK = (GLn(OF ) :

K )−1 TrMK , where TrMK denotes the trace map H2(n−1)
c ((MK /0)⊗F̆ F̂,Q`)(n− 1)→ Q`.

It is easy to see that TrK is compatible with the change of K . We write Tr for the

homomorphism H2(n−1)
LT/0,c (n− 1)→ Q` induced from {TrK }K .

Proposition 3.4. Let π be an irreducible supercuspidal representation of GLn(F) whose

central character is trivial on 0. Then, the cup product pairing

Tr(−∪−) : Hn−1
LT/0,c

(
n− 1

2

)
× Hn−1

LT/0,c

(
n− 1

2

)
→ Q`

induces a D××WF -invariant pairing Hn−1
LT/0,c,π∨(

n−1
2 )× Hn−1

LT/0,c,π (
n−1

2 )→ Q` satisfying

the following condition:

for every compact open subgroup K of GLn(F), the restriction of it to

(Hn−1
LT/0,c,π∨)

K ( n−1
2 )× (Hn−1

LT/0,c,π )
K ( n−1

2 ) is a perfect pairing.

Proof. First, by the Poincaré duality for MK /0, we know that the cup product pairing

(Hn−1
LT/0,c)

K ( n−1
2 )× (Hn−1

LT/0)
K ( n−1

2 )→ Q` is perfect for every compact open subgroup K
of GLn(OF ). This tells us that the induced map

Hn−1
LT/0

(
n− 1

2

)
→

(
Hn−1

LT/0,c

(
n− 1

2

))∨
is an isomorphism. By taking π -isotypic parts and composing with the isomorphism in

Theorem 3.2, we obtain an isomorphism

Hn−1
LT/0,c,π

(
n− 1

2

)
∼=
−→ Hn−1

LT/0,π

(
n− 1

2

)
∼=
−→

(
Hn−1

LT/0,c,π∨

(
n− 1

2

))∨
.

Therefore, for every compact open subgroup K of GLn(F), we have an isomorphism

(Hn−1
LT/0,c,π )

K
(

n− 1
2

)
∼=
−→

(
(Hn−1

LT/0,c,π∨)
K
(

n− 1
2

))∨
.

It is easy to see that this isomorphism is induced from the restriction of the cup product

pairing to (Hn−1
LT/0,c,π∨)

K ( n−1
2 )× (Hn−1

LT/0,c,π )
K ( n−1

2 ). This concludes the proof.
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3.2. Twisting operator

Here we use the notation introduced in the beginning of § 2.2. We construct the twisting

operator θ :Mm →Mm .

First we consider the case where F/F+ is an unramified quadratic extension. In this case

we have Fur
= (F+)ur. We write τ for the unique element of Gal(Fur/F+) lifting the q ′th

power Frobenius automorphism τ on Fq = Fq ′ . It extends τ ∈ Gal(F/F+), and satisfies

τ 2
= σ . For an object S of Nilp, we write Sτ for the object S→ SpecOF̆

τ∗

−→ SpecOF̆ of

Nilp.

We write τ ∗X for the pull-back of the formal OF -module X by τ ∗ : SpecFq → SpecFq .

On the other hand, we denote by Xτ the formal group X endowed with the OF -action

twisted by τ (that is, OF
τ
−→ OF → End(X)). It is easy to see that τ ∗X and Xτ are

one-dimensional formal OF -modules of OF -height n over (SpecFq)
τ
∈ Nilp. Hence these

are isomorphic as formal OF -modules. We fix an isomorphism ι : τ ∗X
∼=
−→ Xτ between

them. This isomorphism induces an automorphism on D:

Definition 3.5. (i) An element h ∈ D = EndOF (X)⊗ZQ determines an element τ(h) =
ι ◦ τ ∗h ◦ ι−1

∈ EndOF (Xτ )⊗ZQ = EndOF (X)⊗ZQ = D. This gives an isomorphism

τ : D→ D such that τ |F = τ ∈ Gal(F/F+).

(ii) We denote the composite of OF -isogenies

X FrobX
−−−→ σ ∗X = τ 2

∗X
τ∗ι
−→ τ ∗Xτ

ι
−→ X

by t . It is an element of D×.

Lemma 3.6. The element t ∈ D× satisfies τ 2
= Int(t) and τ(t) = t.

Proof. For h ∈ D, we have

τ 2(h) = ι ◦ τ ∗(ι ◦ τ ∗h ◦ ι−1) ◦ ι−1
= (ι ◦ τ ∗ι) ◦ σ ∗h ◦ (ι ◦ τ ∗ι)−1

= (t ◦Frob−1
X ) ◦ σ ∗h ◦ (t ◦Frob−1

X )−1

= t ◦ (Frob−1
X ◦σ ∗h ◦FrobX) ◦ t−1.

By the functoriality of the relative Frobenius morphisms, the following diagram is

commutative:

X
FrobX //

h
��

σ ∗X

σ ∗h
��

X
FrobX // σ ∗X.

Hence we have τ 2(h) = t ◦ h ◦ t−1, as desired.

Next consider τ(t). We have

τ(t) = ι ◦ τ ∗(ι ◦ τ ∗ι ◦FrobX) ◦ ι−1
= ι ◦ τ ∗ι ◦ σ ∗ι ◦ τ ∗ FrobX ◦ι−1

= ι ◦ τ ∗ι ◦ σ ∗ι ◦Frobτ∗X ◦ι
−1 (∗)
= ι ◦ τ ∗ι ◦FrobX = t.
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The equality (∗) follows from the functoriality of the relative Frobenius morphisms with

respect to ι : τ ∗X→ X. This completes the proof.

Now we construct an isomorphism θ :Mm →Mm that makes the following diagram

commute:

Mm
θ //

��

Mm

��
SpfOF̆

τ∗ // SpfOF̆ .

Definition 3.7. Let S be an object of Nilp. For (X, ρ, η) ∈Mm(S), we put θ(X, ρ, η) =
(X τ , ρ ◦φ∗

S
ι, ητ ) ∈Mm(Sτ ), where

– X τ is the formal group X over S endowed with the OF -action twisted by τ ;

– ρ ◦φ∗
S
ι is the OF -quasi-isogeny φ∗

Sτ
X = φ∗

S
(τ ∗X)

φ∗
S
ι

−−→ φ∗
S
Xτ ρ
−→ X τ ×S S;

– and ητ is the composite of (OF/p
m
F )

n τ
−→ (OF/p

m
F )

n and η.

This gives a bijection θ :Mm(S)
∼=
−→Mm(Sτ ), and an isomorphism θ :Mm

∼=
−→Mm which

covers τ ∗ : SpfOF̆ → SpfOF̆ .

The isomorphism θ is compatible with the transition maps of the tower {Mm}. Hence

it induces automorphisms of the towers {Mm} and {Mm}.

Lemma 3.8. (i) For g ∈ GLn(F), we have g ◦ θ = θ ◦ τ(g), where τ : GLn(F)→
GLn(F) is the isomorphism in Example 2.7.

(ii) For h ∈ D×, we have h ◦ θ = θ ◦ τ(h), where τ : D×→ D× is the isomorphism in

Definition 3.5(i).

(iii) We have θ2
= α ◦ t and α ◦ θ = θ ◦α.

Proof. The claim (i) is clear from the definition of θ .

As for (ii), take (X, ρ, η) ∈Mm(S). Then we have

(h ◦ θ)(X, ρ, η) = (X τ , ρ ◦φ∗
S
ι ◦φ∗

Sτ
h, ητ ).

Since φ∗
S
ι ◦φ∗

Sτ
h = φ∗

S
(ι ◦ τ ∗h) = φ∗S(τ (h) ◦ ι) = φ

∗

S
(τ (h)) ◦φ∗

S
ι, we have

(h ◦ θ)(X, ρ, η) = (X τ , ρ ◦φ∗
S
(τ (h)) ◦φ∗

S
ι, ητ ) = (θ ◦ τ(h))(X, ρ, η).

Thus h ◦ θ = θ ◦ τ(h), as desired.

We prove (iii). For (X, ρ, η) ∈Mm(S), θ2(X, ρ, η) equals (X, ρ ◦φ∗
S
ι ◦φ∗

Sτ
ι, η).

Since φ∗
S
ι ◦φ∗

Sτ
ι = φ∗

S
(ι ◦ τ ∗ι) = φ

∗

S
(t ◦Frob−1

X ) = φ∗
S
(t) ◦φ∗

S
Frob−1

X , we have θ2(X, ρ, η) =

α(t (X, ρ, η)). Hence θ2
= α ◦ t . Finally, by (ii) and Lemma 3.6 we conclude that

α ◦ θ = θ2
◦ t−1

◦ θ = θ3
◦ τ(t)−1

= θ3
◦ t−1

= θ ◦α.

https://doi.org/10.1017/S1474748019000045 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000045


Parity of the Langlands parameters of conjugate self-dual representations 2031

We fix c ∈ WF+ such that c|Fur = τ . Assume that the subgroup 0 ⊂ F× is stable under

τ . Then, θ : Mm/0→ Mm/0 is induced. By taking the fiber product of diagrams

Spa(F̂,O
F̂
)

c∗ //

��

Spa(F̂,O
F̂
)

��
Spa(F̆,OF̆ )

τ∗ // Spa(F̆,OF̆ ),

Mm/0
θ //

��

Mm/0

��
Spa(F̆,OF̆ )

τ∗ // Spa(F̆,OF̆ ),

we obtain an isomorphism θc : (Mm/0)⊗F̆ F̂ → (Mm/0)⊗F̆ F̂ of adic spaces. It induces

an automorphism θ∗c on the cohomology H i
LT/0,c, for which we simply write θ .

Corollary 3.9. The following equalities of automorphisms on H i
LT/0,c hold.

(i) For g ∈ GLn(F), we have θ ◦ g = τ(g) ◦ θ , where τ : GLn(F)→ GLn(F) is the

isomorphism in Example 2.7.

(ii) For h ∈ D×, we have θ ◦ h = τ(h) ◦ θ , where τ : D×→ D× is the isomorphism in

Definition 3.5(i).

(iii) We have θ2
= t ◦ c2 and θ ◦w = cwc−1

◦ θ for every w ∈ WF .

Proof. The claims (i) and (ii) follow from Lemma 3.8(i), (ii), respectively. For (iii),

it suffices to show θ2
c = αc2 ◦ t and αw ◦ θc = θc ◦αcwc−1 . These are consequences of

Lemma 3.8(iii), the definitions of αw and θc, and the equality ν(cwc−1) = ν(w).

Next we consider the case where F/F+ is a ramified quadratic extension (here we do

not need the tameness assumption). We also write τ for the unique non-trivial element of

Gal(Fur/(F+)ur). It gives an extension of the original τ ∈ Gal(F/F+). Note that τ 2
= 1

and τ = 1, where τ denotes the automorphism of the residue field Fq of OFur induced by

τ . Further, we have σ ◦ τ = τ ◦ σ as automorphisms of Fur. For an object S of Nilp, we

write Sτ for the object S→ SpecOF̆
τ∗

−→ SpecOF̆ of Nilp.

As in the unramified case, we fix an isomorphism ι : X
∼=
−→ Xτ between formal

OF -modules over (SpecFq)
τ
= SpecFq ∈ Nilp.

Definition 3.10. (i) An element h ∈ D = EndOF (X)⊗ZQ determines an

element τ(h) = ι ◦ h ◦ ι−1
∈ EndOF (Xτ )⊗ZQ = EndOF (X)⊗ZQ = D. This gives an

isomorphism τ : D→ D such that τ |F = τ ∈ Gal(F/F+).

(ii) We denote the composite X ι
−→ Xτ ι

−→ X by t . It is an element of D×.

Lemma 3.11. The element t ∈ D× satisfies τ 2
= Int(t) and τ(t) = t.

Proof. Clear from definition.
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Exactly in the same way, we can construct an isomorphism θ :Mm →Mm that makes

the following diagram commute:

Mm
θ //

��

Mm

��
SpfOF̆

τ∗ // SpfOF̆ .

It induces automorphisms of the towers {Mm} and {Mm}.

Lemma 3.12. (i) For g ∈ GLn(F), we have g ◦ θ = θ ◦ τ(g), where τ : GLn(F)→
GLn(F) is the isomorphism in Example 2.7.

(ii) For h ∈ D×, we have h ◦ θ = θ ◦ τ(h), where τ : D×→ D× is the isomorphism in

Definition 3.10(i).

(iii) We have θ2
= t and α ◦ θ = θ ◦α.

Proof. As in the proof of Lemma 3.8, it suffices to show θ2
= t . For an object S of Nilp

and (X, ρ, η) ∈Mm(S), we have

θ2(X, ρ, η) = (X, ρ ◦φ∗
S
ι ◦φ∗

S
ι, η) = (X, ρ ◦φ∗

S
t, η) = t (X, ρ, η),

as desired (note that Sτ = S).

We fix c ∈ WF+ such that c|Fur = τ . Assume that 0 ⊂ F× is stable under τ . As in the

unramified case, we obtain an isomorphism θc : (Mm/0)⊗F̆ F̂ → (Mm/0)⊗F̆ F̂ of adic

spaces. It induces an automorphism θ∗c on the cohomology H i
LT/0,c, for which we simply

write θ .

Corollary 3.13. The following equalities of automorphisms on H i
LT/0,c hold.

(i) For g ∈ GLn(F), we have θ ◦ g = τ(g) ◦ θ , where τ : GLn(F)→ GLn(F) is the

isomorphism in Example 2.7.

(ii) For h ∈ D×, we have θ ◦ h = τ(h) ◦ θ , where τ : D×→ D× is the isomorphism in

Definition 3.10(i).

(iii) We have θ2
= t ◦ c2 and θ ◦w = cwc−1

◦ θ for every w ∈ WF .

Proof. Similar as Corollary 3.9.

Finally, consider the case F = F+.

Definition 3.14. We put τ = idD× , t = 1 ∈ D×, c = 1 ∈ WF+ and θ = id on H i
LT/0,c. Then

the same statements as in Corollaries 3.9, 3.13 obviously hold.

Now we return to a general separable extension F/F+ with [F : F+] 6 2.
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Lemma 3.15. Assume that 0 ⊂ F× is stable under τ . The cup product pairing

Tr(−∪−) : HLT/0,c

(
n− 1

2

)
× HLT/0,c

(
n− 1

2

)
→ Q`

in Proposition 3.4 satisfies Tr(θx, θy) = q−
n−1

2 ν(c2) Tr(x ∪ y).

Proof. Recall that the isomorphism θc : (Mm/0)⊗F̆ F̂ → (Mm/0)⊗F̆ F̂ covers

c∗ : Spa(F̂,O
F̂
)→ Spa(F̂,O

F̂
).

If F/F+ is an unramified quadratic extension, c induces the q ′th power map on

µ`k (F̂) = µ`k (F̆+). Therefore, we have Tr(θx, θy) = q ′−(n−1) Tr(x ∪ y). Since q = q ′2 and

ν(c2) = 1, this equals q−
n−1

2 ν(c2) Tr(x ∪ y).
Otherwise c acts trivially on µ`k (F̂) = µ`k (F̆+), and ν(c2) = 0. Hence we have

Tr(θx, θy) = Tr(x ∪ y) = q−
n−1

2 ν(c2) Tr(x ∪ y).

Theorem 3.16. Here we consider (τ, t) as in Definitions 3.5, 3.10, 3.14. Let π be an

irreducible supercuspidal representation of GLn(F) which is conjugate self-dual under the

setting in Example 2.7. Then, JL(π) is conjugate self-dual with respect to τ . Moreover,

we have

CrecF (π) = (−1)n−1CJL(π),

where CJL(π) denotes the parity of JL(π) with respect to (τ, t).

Proof. Since π is conjugate self-dual, its central character ωπ satisfies ωπ (τ (z)) = ωπ (z)−1

for every z ∈ F× ⊂ GLn(F). Hence, for a uniformizer $ ′ of F+, we have ωπ ($
′2) = 1.

Put 0 = $ ′2Z ⊂ (F+)× ⊂ F×. It is a τ -stable discrete cocompact subgroup of F× on

which ωπ is trivial.

Let τ : GLn(F)→ GLn(F) be as in Example 2.7, τ = Int(c) : WF → WF as in

Example 2.8, and τ = (τ, τ, τ ) : GLn(F)× D××WF → GLn(F)× D××WF . Then,

Corollaries 3.9, 3.13 tell us that θ gives an isomorphism Hn−1
LT/0,c

∼=
−→ (Hn−1

LT/0,c)
τ .

Since the character WF → C×; w 7→ q
n−1

2 ν(w) is τ -invariant, we have Hn−1
LT/0,c(

n−1
2 )

∼=
−→

(Hn−1
LT/0,c(

n−1
2 ))τ by twisting. By taking π∨-isotypic parts and using π τ = π∨, we obtain

an isomorphism θ : Hn−1
LT/0,c,π∨(

n−1
2 )

∼=
−→ (Hn−1

LT/0,c,π (
n−1

2 ))τ of representations of GLn(F)×
D××WF .

Take a τ -stable compact open subgroup K of GLn(F). Then, θ induces an isomorphism

(Hn−1
LT/0,c,π∨(

n−1
2 ))K ∼=

−→ ((Hn−1
LT/0,c,π (

n−1
2 ))K )τ of representations of D××WF . Consider the

pairing

〈 , 〉 :

(
Hn−1

LT/0,c,π

(
n− 1

2

))K

×

(
Hn−1

LT/0,c,π

(
n− 1

2

))K

θ−1
×id

−−−−→
∼=

(
Hn−1

LT/0,c,π∨

(
n− 1

2

))K

×

(
Hn−1

LT/0,c,π

(
n− 1

2

))K
Tr(−∪−)
−−−−−→ Q`.
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It satisfies 〈(τ (h), τ (w))x, (h, w)y〉 = 〈x, y〉 for every h ∈ D× and w ∈ WF . Moreover,

Proposition 3.4 tells us that it is a perfect pairing. We have

〈y, x〉 = Tr(θ−1(y)∪ x) = (−1)n−1 Tr(x ∪ θ−1(y))
(1)
= (−1)n−1q

n−1
2 ν(c2) Tr(θ(x)∪ y)

= (−1)n−1q
n−1

2 ν(c2)
〈θ2(x), y〉

(2)
= (−1)n−1q

n−1
2 ν(c2)

〈q−
n−1

2 ν(c2)(t, c2)(x), y〉

= (−1)n−1
〈(t, c2)x, y〉.

Here (1) follows from Lemma 3.15, and (2) from the identity θ2
= t ◦ c2 on Hn−1

LT/0,c,π

(Corollary 3.9(iii) and Corollary 3.13(iii)); the factor q−
n−1

2 ν(c2) arises from the twist

( n−1
2 ).

Now we specify K . Since π is supercuspidal, it is generic. Hence by [12, §5,

Théorème], there exists an integer m > 0 such that dimπK1(m) = 1. Here K1(m) is

the subgroup of GLn(OF ) consisting of matrices (gi j ) with gn,1, . . . , gn,n−1 ∈ pm
F and

gn,n ∈ 1+ pm
F . Clearly K1(m) is τ -stable. We take K as K1(m). Then, Theorem 3.1

tells us that (Hn−1
LT/0,c,π (

n−1
2 ))K ∼= JL(π)∨� recF (π)

∨ as representations of D××WF .

Since (π∨)K
= (πK )∨ is also one-dimensional, the existence of θ : (Hn−1

LT/0,c,π∨(
n−1

2 ))K ∼=
−→

((Hn−1
LT/0,c,π (

n−1
2 ))K )τ tells us that

JL(π)� recF (π) = JL(π∨)∨� recF (π
∨)∨ ∼= JL(π)∨τ � recF (π)

∨τ .

Thus JL(π) is conjugate self-dual with respect to τ . Finally, by the existence of the pairing

〈 , 〉, we conclude that the parity of the irreducible representation JL(π)∨� recF (π)
∨ of

D××WF with respect to (τ × τ, (t, c2)) is equal to (−1)n−1. Replacing π by π∨, we get

the same result for JL(π)� recF (π). Therefore, by Lemma 2.4 we have CJL(π)CrecF (π) =

(−1)n−1, and CrecF (π) = (−1)n−1CJL(π). This completes the proof.

3.3. Formal OF -module over Fq and division algebra

Our remaining task for proving Theorem 2.12 is to describe (τ, t) in Definitions 3.5

and 3.10 explicitly, under the assumption that F/F+ is at worst tamely ramified and

quadratic.

First we consider the easier case where F has equal characteristic. In this case, we have

F = Fq(($)). We can take a one-dimensional formal OF -module X over Fq as follows:

X = Ĝa as a formal group, [a]X(X) = aX (a ∈ Fq), [$ ]X(X) = Xqn
.

Any element a ∈ Fqn gives an endomorphism X 7→ aX of X. On the other hand, we

write 5 for the endomorphism X 7→ Xq of X. Note that 5a = aq5 for a ∈ Fqn and

5n
= $ in EndOF (X). These elements are known to generate EndOF (X), and we have

EndOF (X) = Fqn [5] = OFn [5], which is a maximal order of the central division algebra

over F with invariant 1/n.

Assume that F/F+ is an unramified quadratic extension. We may assume that F+ =
Fq ′(($)). Then, τ ∗X and Xτ are described explicitly as follows:

[a]τ∗X(X) = τ(aX) = aq ′X (a ∈ Fq), [$ ]τ∗X(X) = τ(X
qn
) = Xqn

,
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[a]Xτ (X) = [τ(a)]X(X) = aq ′X (a ∈ Fq), [$ ]Xτ (X) = Xqn
.

Hence we may take ι = idX : τ ∗X
∼=
−→ Xτ . The following lemma is immediate.

Proposition 3.17. The pair (τ, t) constructed from ι = idX as in Definition 3.5 coincides

with that in Definition 2.10(i).

Next assume that p 6= 2 and F/F+ is a ramified quadratic extension. We may assume

that F+ = Fq(($
2)). Then Xτ is described as follows:

[a]Xτ (X) = aX (a ∈ Fq), [$ ]Xτ (X) = [−$ ]X(X) = −Xqn
.

Take β ∈ Fq such that βqn
−1
= −1, and put α = βq−1. Then, we may take an isomorphism

ι : X
∼=
−→ Xτ ; X 7→ β−1 X .

Proposition 3.18. The pair (τ, t) constructed from ι : X 7→ β−1 X as in Definition 3.10

coincides with that in Definition 2.10(ii).

Proof. For a ∈ Fqn ⊂ OFn [5], we have τ(a) : X 7→ β−1aβX = aX ; that is, τ(a) = a. On

the other hand, we have τ(5) : X 7→ β−1(βX)q = αXq , and thus τ(5) = α5. Clearly we

have t = β−2. Hence the pair (τ, t) coincides with that in Definition 2.10(ii).

Now we consider the case where F is a p-adic field. We regard formal OF -modules

over Fq as $ -divisible OF -modules. We use the Dieudonné theory for $ -divisible

OF -modules over Fq developed in [7, Chapitre I, §B.8]. Here we identify OF̆ with

WOF (Fq) = OF ⊗W (Fq ) W (Fq). Let D = On
F̆

be a free OF̆ -module of rank n. We define

a σ -linear map F : D→ D and a σ−1-linear map V : D→ D by

F(ei ) =

$ei+1 i 6= n,

e1 i = n,
V (ei ) =

 ei−1 i 6= 1,

$en i = 1,

where (e1, . . . , en) denotes the standard basis of D. Then, by [7, Chapitre I, Proposition

B.8.2], we can find a $ -divisible OF -module X of OF -height n over Fq satisfying

DOF (X) ∼= (D, F, V ). Since V is topologically nilpotent and dimFq
D/VD = 1, X is a

one-dimensional formal OF -module.

Let D = Fn[5] be the central division algebra over F with invariant 1/n as in § 2.2,

and OD = OFn [5] its maximal order. We construct a homomorphism OD → EndOF (X).
First, any a ∈ OFn defines an OF̆ -linear endomorphism on D by ei 7→ σ i (a)ei . Since it

commutes with F and V , it gives an element of EndOF (X). Let 5 be the OF̆ -linear

endomorphism on D such that

5(ei ) =

 ei−1 i 6= 1,

$en i = 1.

It also commutes with F and V , and gives an element of EndOF (X). It is immediate to

observe that 5a = σ(a)5 for a ∈ OFn and 5n
= $ as endomorphisms of D. Therefore,
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we obtain a homomorphism OD = OFn [5] → EndOF (X), which is in fact an isomorphism.

In the following, we identify OD and EndOF (X) by this isomorphism.

We assume that F/F+ is an unramified quadratic extension, and take $ in F+. Recall

that in this case τ also denotes the unique element of Gal(Fur/F+) lifting the q ′th
power Frobenius automorphism τ on Fq = Fq ′ . We describe τ ∗X and Xτ by means of

the Dieudonné module as follows.

Proposition 3.19. Let τW : W (Fq)→ W (Fq) denote the homomorphism induced from

Fq
τ
−→ Fq . We also write τW for the composite W (Fq)→ W (Fq)

τW
−→ W (Fq). Note that the

Dieudonné module of a formal OF -module over (SpecFq)
τ
∈ Nilp is a free OF ⊗W (Fq ),τW

W (Fq)-module endowed with F and V . We identify OF ⊗W (Fq ),τW W (Fq) with OF̆ by the

isomorphism OF ⊗W (Fq ),τW W (Fq)
τ⊗id
−−→
∼=

OF ⊗W (Fq ) W (Fq) = OF̆ .

(i) For a formal OF -module Y over Fq , we have DOF (τ ∗Y) = τ∗DOF (Y) and

DOF (Yτ ) = DOF (Y), where τ∗ denotes the base change by τ : OF̆ → OF̆ .

(ii) For X introduced above, we have DOF (τ ∗X) ∼= DOF (X).

Proof. We prove (i). By functoriality we have DOF (τ ∗Y) = (id⊗τW )∗DOF (Y). Under the

identification OF ⊗W (Fq ),τW W (Fq) = OF̆ , this equals

(τ ⊗ id)∗(id⊗τW )∗DOF (Y) = τ∗DOF (Y).

On the other hand, we have DOF (Yτ ) = (τ−1
⊗ id)∗DOF (Y). Under the identification, this

clearly corresponds to the OF̆ -module DOF (Y).
The assertion (ii) is clear from the definition of X and the identification

τ∗D ∼= D; (x1, . . . , xn) 7→ (τ (x1), . . . , τ (xn)),

as τ($) = $ .

Proposition 3.20. Let ι : τ ∗X
∼=
−→ Xτ be the isomorphism that induces the isomorphism in

Proposition 3.19(ii) on the Dieudonné modules. The pair (τ, t) constructed from this ι as

in Definition 3.10 coincides with that in Definition 2.10(i).

Proof. The claim on τ is clear from the definition. We prove ι ◦ τ ∗ι ◦FrobX = 5. Recall

that FrobX : X→ σ ∗X induces V : DOF (X)→ σ∗DOF (X) = DOF (σ ∗X). On the other

hand, the composite σ∗D = DOF (σ ∗X)
D(τ∗ι)
−−−→ DOF (τ ∗Xτ )

D(ι)
−−→ DOF (X) = D is equal to

(x1, . . . , xn) 7→ (σ (x1), . . . , σ (xn)). Since 5(ei ) = V (ei ) for every i , we conclude that

ι ◦ τ ∗ι ◦FrobX = 5.

Next we assume that p 6= 2 and F/F+ is a ramified quadratic extension, and take $ so

that τ($) = −$ . Recall that in this case τ also denotes the unique non-trivial element

of Gal(Fur/(F+)ur).

Proposition 3.21. (i) For a formal OF -module Y over Fq , we have DOF (Yτ ) =
τ−1
∗ DOF (Y), where τ−1

∗ denotes the base change by τ−1
: OF̆ → OF̆ . For
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every OF -homomorphism h : Y→ Y′ between formal OF -modules over Fq , the

homomorphism DOF (Yτ )→ DOF (Y′τ ) induced by h : Yτ → Y′τ coincides with

τ−1
∗ D(h).

(ii) For X introduced above, we have DOF (Xτ ) = (D, F ′, V ′), where F ′ and V ′ are

determined by

F ′(ei ) =

−$ei+1 i 6= n,

e1 i = n,
V ′(ei ) =

 ei−1 i 6= 1,

−$en i = 1.

(iii) For an element h ∈ EndOF (X), regard D(h) : D→ D as a matrix (hi j ) ∈ Mn(OF̆ ).

Then, the homomorphism D = DOF (Xτ )→ DOF (Xτ ) = D induced by h : Xτ → Xτ
is given by the matrix (τ−1(hi j )).

Proof. The first assertion is clear from functoriality. The second is obvious from the

definition of X and the identification

D ∼= τ−1
∗ D; (x1, . . . , xn) 7→ (τ (x1), . . . , τ (xn)),

as τ($) = −$ . Let h and (hi j ) be as in (iii). Under the identification D ∼= τ−1
∗ D above,

τ−1
∗ D(h) corresponds to (τ−1(hi j )). The third assertion immediately follows from this.

Proposition 3.22. As in Definition 2.10(ii), we take β ∈ OF̆ such that βqn
−1
= −1 and

put α = βq−1. Let ι : X
∼=
−→ Xτ be the isomorphism such that the induced homomorphism

D = DOF (X)→ DOF (Xτ ) = D is given by ei 7→ σ i (β)−1ei .

Then, the pair (τ, t) constructed from this ι as in Definition 3.10 coincides with that

in Definition 2.10(ii).

Proof. For a ∈ OFn ⊂ OD, the composite D = DOF (Xτ )
D(ι◦a◦ι−1)
−−−−−−→ DOF (Xτ ) = D maps

ei to σ i (a)ei . Hence, by Proposition 3.21(iii), ι ◦ a ◦ ι−1
∈ EndOF (Xτ ) corresponds to

τ(a) ∈ OFn ⊂ EndOF (X) under the identification EndOF (X) = EndOF (Xτ ). Similarly, the

composite D = DOF (Xτ )
D(ι◦5◦ι−1)
−−−−−−→ DOF (Xτ ) = D maps ei to

σ i (β)

σ i−1(β)
ei−1 i 6= 1,

σ (β)

σ n(β)
$en i = 1.

Since β ∈ µ2(qn−1)(OF̆ ), we have σ(β)/β = βq−1
= α. Hence σ i (β)/σ i−1(β)

equals σ i−1(α). Similarly, we have σ(β)/σ n(β) = βq/βqn
= βq/(−β) = −βq−1

= −α.

Noting that α ∈ µqn−1(OF̆ ) ⊂ OF+n is fixed by τ , we can conclude that ι ◦5 ◦

ι−1
∈ EndOF (Xτ ) corresponds to α5 ∈ EndOF (X) under the identification EndOF (X) =

EndOF (Xτ ).
We can observe that the composite X ι

−→ Xτ ι
−→ X equals β−2 in the same way, by using

the fact that β ∈ µ2(qn−1)(OF̆ ) ⊂ O(F+)ur is fixed by τ .
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By Theorem 3.16 and Propositions 3.17, 3.18, 3.20, 3.22, we complete the proof of

Theorem 2.12.

4. The case of simple supercuspidal representations

4.1. Conjugate self-dual simple supercuspidal representations

Here we apply our main theorem to simple supercuspidal representations. Let the notation

be as in § 2.2. We briefly recall the notion of simple supercuspidal representations of

GLn(F) and D×. See [9, 11, 13, 21] for detail. Throughout this section, we fix a non-trivial

additive character ψ : Fq → C× which factors through TrFq/Fp : Fq → Fp.

First consider the case of GLn(F). Let us denote by Iw the standard Iwahori subgroup of

GLn(F), namely, the subgroup of GLn(OF ) consisting of matrices whose image in GLn(Fq)

is upper triangular. We write Iw+ for the pro-p unipotent radical of Iw; it consists of

matrices in Iw whose diagonal entries lie in 1+ pF . Each element ζ ∈ F×q gives rise to a

character

ψζ : Iw+→ C×; (ai j ) 7→ ψ(a12+ a23+ . . .+ an−1,n + ζ
−1$−1an1).

Here we denote the image of a ∈ OF in Fq by a.

Let ϕζ denote the matrix 
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
ζ̃$ 0 0 · · · 0

 ,
where ζ̃ denotes the unique element of µq−1(F) lifting ζ . It normalizes Iw+. Put Hζ =
O×Fϕ

Z
ζ Iw+. It is an open compact-mod-center subgroup of GLn(F) (note that it contains

the center F×, since ϕn
ζ = ζ̃$ ). We write (F×q )∨ for the set of characters F×q → C×. For

a triple (ζ, χ, c) ∈ F×q × (F×q )∨×C×, define the character 3ζ,χ,c : Hζ → C× by

3ζ,χ,c(x) = χ(x) (x ∈ O×F ), 3ζ,χ,c(ϕζ ) = c, 3ζ,χ,c|Iw+ = ψζ .

We put πζ,χ,c = c-IndGLn(F)
Hζ 3ζ,χ,c, which turns out to be an irreducible supercuspidal

representation of GLn(F). A representation obtained in this way is called a simple

supercuspidal representation of GLn(F). For another triple (ζ ′, χ ′, c′) ∈ F×q × (F×q )∨×
C×, one can prove that πζ,χ,c ∼= πζ ′,χ ′,c′ if and only if (ζ, χ, c) = (ζ ′, χ ′, c′) (see [11,

Proposition 1.3]). Thus simple supercuspidal representations of GLn(F) are parameterized

by the set F×q × (F×q )∨×C×.

Remark 4.1. Note that πζ,χ,c implicitly depends on the choice of the uniformizer $ of

F . Later we take it as in Definition 2.10.

The contragredient of πζ,χ,c can be computed as follows:

Proposition 4.2. For (ζ, χ, c) ∈ F×q × (F×q )∨×C×, we have π∨ζ,χ,c
∼= π(−1)nζ,χ−1,χ(−1)c−1 .
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Proof. For a = diag(1,−1, . . . , (−1)n−1), we have aϕζa−1
= −ϕ(−1)nζ . As a normalizes

O×F Iw+, we obtain aHζa−1
= H(−1)nζ . Moreover, we can directly check that3ζ,χ,c(h)−1

=

3(−1)nζ,χ−1,χ(−1)c−1(aha−1) for h ∈ Hζ . Therefore, a intertwines (Hζ ,3−1
ζ,χ,c) and

(H(−1)nζ ,3(−1)nζ,χ−1,χ(−1)c−1). By the same way as in the proof of Proposition 2.6, we

conclude that

π(−1)nζ,χ−1,χ(−1)c−1 = c-IndGLn(F)
H(−1)nζ

3(−1)nζ,χ−1,χ(−1)c−1 ∼= c-IndGLn(F)
Hζ 3−1

ζ,χ,c
∼= π

∨
ζ,χ,c.

Corollary 4.3. Let (ζ, χ, c) be an element of F×q × (F×q )∨×C×.

(i) If F/F+ is an unramified quadratic extension and $ ∈ F+, then πζ,χ,c is conjugate

self-dual with respect to τ if and only if τ(ζ ) = (−1)nζ , χ τ = χ−1 and c2
= χ(−1),

where τ denotes the q ′th power Frobenius automorphism on Fq .

(ii) If p 6= 2, F/F+ is a ramified quadratic extension and $ satisfies τ($) = −$ , then

πζ,χ,c is conjugate self-dual with respect to τ if and only if n is odd, χ2
= 1 and

c2
= χ(−1).

(iii) If F = F+, then πζ,χ,c is conjugate self-dual with respect to τ = id (that is, self-dual)

if and only if n is even, χ2
= 1 and c2

= χ(−1).

Proof. In the proof of Proposition 2.6, we obtained an isomorphism (c-IndG
H χ)

τ ∼=

c-IndG
H τ χ

τ . We can use it to determine (πζ,χ,c)
τ in each case as follows:

(i) (πζ,χ,c)
τ ∼= πτ−1(ζ ),χτ ,c = πτ(ζ ),χτ ,c (note that ψ(τ(x)) = ψ(x) for x ∈ Fq).

(ii) (πζ,χ,c)
τ ∼= π−ζ,χ,c.

(iii) (πζ,χ,c)
τ
= πζ,χ,c.

Together with Proposition 4.2, we conclude the proof.

Next we consider the case of D×. Let (ζ, χ, c) be an element of F×q × (F×q )∨×C×. Take

ξ ∈ F×qn such that NrFqn /Fq (ξ) = ζ , and write b for the unique element of µqn−1(OFn )

lifting ζ . Note that (b5)n = NrFn/F (b)5n
= ζ̃$ .

Put H D
ξ = O×F (b5)

Z(1+5OD). It is an open compact-mod-center subgroup of D×.

We define the character 3D
ξ,χ,c : H D

ξ → C× by

3D
ξ,χ,c(x) = χ(x)(x ∈ O×F ), 3D

ξ,χ,c(b5) = c,

3D
ξ,χ,c(1+ b5d) = ψ(TrFqn /Fq (d)) (d ∈ OD).

Here, d denotes the image of d under OD � OD/5OD
∼=
← OFn/pFn = Fqn . We put

πD
ζ,χ,c = c-IndD×

H D
ξ

3D
ξ,χ,c, which turns out to be an irreducible smooth representation of

D× whose isomorphism class depends only on (ζ, χ, c). A representation of D×, which

is automatically supercuspidal, obtained in this way is called a simple supercuspidal

representation of D×.

The following theorem is proved in [11, Theorem 3.5].

Theorem 4.4. For (ζ, χ, c) ∈ F×q × (F×q )∨×C×, we have JL(πζ,χ,c) = πD
ζ,χ,(−1)n−1c.
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4.2. Computation of parity

Here we compute the parity of recF (πζ,χ,c) for a conjugate self-dual simple supercuspidal

representation πζ,χ,c. We use Proposition 2.6 to compute the parity of πD
ζ,χ,(−1)n−1c.

Proposition 4.5. Let (ζ, χ, c) be an element of F×q × (F×q )∨×C× such that πζ,χ,c is

conjugate self-dual with respect to τ under the setting in Example 2.7.

(i) Suppose that F/F+ is an unramified quadratic extension and $ ∈ F+. Let ε be

an element of F×q satisfying εq ′−1
= −1. Then the parity of πD

ζ,χ,(−1)n−1c is equal to

(−1)n−1χ(ε)c.

(ii) Suppose that p 6= 2, F/F+ is a ramified quadratic extension and τ($) = −$ . Then

the parity of πD
ζ,χ,(−1)n−1c is equal to

 1 if χ is trivial,

−1 if χ is non-trivial.

(iii) Suppose that F = F+. Then, the parity of πD
ζ,χ,(−1)n−1c is equal to

 1 if χ is trivial,

−1 if χ is non-trivial.

Proof. For simplicity, we put c′ = (−1)n−1c and 9 = 3D
ζ,χ,(−1)n−1c. In each case we find

a ∈ µqn−1(OFn ) ⊂ D× which intertwines (H D
ξ , 9

−1) and ((H D
ξ )

τ , 9τ ).

Consider the case (i). Corollary 4.3 tells us that ζ q ′−1
= (−1)n , χ τ = χ−1 and

c2
= χ(−1). Therefore, we have (εξ)(1+q+···+qn−1)(q ′−1)

= (−1)1+q+···+qn−1
ζ q ′−1

= (−1)n ·
(−1)n = 1. Hence there exists η ∈ F×qn satisfying ηq ′+1

= εξ . Let a0 be the unique element

of µqn−1(OFn ) lifting η and put a = τ−1(a0). Since η1−qξq ′
= (εξ)1−q ′ξq ′

= −ξ , we have

a1−q
0 bq ′

= −b. Thus a0τ(b5)a−1
0 = a0bq ′a−q

0 5 = −b5 and a(b5)a−1
= −τ−1(b5). In

particular we have aH D
ξ a−1

= (H D
ξ )

τ .

Let us prove that 9(h)−1
= 9τ (aha−1) for every h ∈ H D

ξ . If h ∈ O×F , we have

9(h)−1
= χ(h)−1

= χ τ (h) = 9τ (aha−1), as χ τ = χ−1. If h = b5, we have 9(h)−1
=

c′−1 and 9τ (aha−1) = 9(−b5) = χ(−1)c′. These are equal since c′2 = c2
= χ(−1). If

h = 1+ b5d ∈ 1+5OD, we have 9(h)−1
= ψ(TrFqn /Fq (d))

−1 and 9τ (aha−1) = 9τ (1+
a(b5)a−1

· ada−1) = 9(1− b5a0τ(d)a−1
0 ) = ψ(TrFqn /Fq (d

q ′))−1. Since ψ factors through

TrFq/Fq′
, they are equal.

Therefore, a intertwines (H D
ξ , 9

−1) and ((H D
ξ )

τ , 9τ ). In this case, the element z in

Proposition 2.6 becomes a05τ
−1(a0) = (a

q ′+1
0 b−1) · (b5). Note that the reduction of

aq ′+1
0 b−1

∈ µqn−1(OFn ) is equal to ηq ′+1ξ−1
= ε ∈ F×q , and thus aq ′+1

0 b−1 lies in O×F .
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Therefore, by Proposition 2.6 the parity of πD
ζ,χ,c′ is equal to

9(a05τ
−1(a0)) = 9(a

q ′+1
0 b−1)9(b5) = χ(ε)c′ = (−1)n−1χ(ε)c,

as desired.

Consider the case (ii). Corollary 4.3 tells us that n is odd, χ2
= 1 and c2

= χ(−1).
Fix ε ∈ F×q \ (F×q )2. As in Remark 2.11(ii), we can take τ : D→ D so that τ(5) = −5,

and t as the unique element of µq−1(OF ) lifting ε. Since b ∈ µqn−1(OFn ) ⊂ F+n , we have

τ(b5) = −b5, and thus H D
ξ = (H

D
ξ )

τ . By the similar computation as in (i), we can

observe that 9(h)−1
= 9τ (h) for every h ∈ H D

ξ . Therefore, 1 intertwines (H D
ξ , 9

−1) and

((H D
ξ )

τ , 9τ ), and z = t . By Proposition 2.6 the parity of πD
ζ,χ,c′ is equal to 9(t) = χ(ε) ∈

{±1}. Since χ2
= 1, χ(ε) = 1 if and only if χ is trivial.

Finally consider the case (iii). Corollary 4.3 tells us that n is even, χ2
= 1 and c2

=

χ(−1). Take ε ∈ F×q2 such that εq−1
= −1, and let a be the unique element of µq2−1(OF2)

lifting ε. Since n is even, a belongs to µqn−1(OFn ). We have a(b5)a−1
= a1−qb5 = −b5.

Therefore, a normalizes H D
ξ . By the similar computation as in (i), we can observe that

9(h)−1
= 9(aha−1) for every h ∈ H D

ξ . Therefore, a intertwines (H D
ξ , 9

−1) and (H D
ξ , 9),

and z = a2
∈ µqn−1(OFn ). Since (ε2)q−1

= 1, the reduction ε2 of z lies in F×q , and thus z
lies in µq−1(OF ). Hence, by Proposition 2.6 the parity of πD

ζ,χ,c′ is equal to 9(z) = χ(ε2).

As ε2
∈ F×q \ (F×q )2 and χ2

= 1, χ(ε2) = 1 if and only if χ is trivial. This completes the

proof.

Corollary 4.6. Let (ζ, χ, c) be as in Proposition 4.5.

(i) Suppose that F/F+ is an unramified quadratic extension and $ ∈ F+. Let ε be

an element of F×q satisfying εq ′−1
= −1. Then the parity of recF (πζ,χ,c) is equal to

χ(ε)c.

(ii) Suppose that p 6= 2, F/F+ is a ramified quadratic extension and τ($) = −$ . Then

the parity of recF (πζ,χ,c) is equal to 1 if χ is trivial,

−1 if χ is non-trivial.

(iii) Suppose that F = F+. Then the parity of recF (πζ,χ,c) is equal to−1 if χ is trivial,

1 if χ is non-trivial.

Proof. Clear from Theorems 2.12, 4.4 and Proposition 4.5. Recall that in the case (ii)

(respectively (iii)), n is odd (respectively even).

Remark 4.7. By Corollary 4.6(iii), if a simple supercuspidal representation π of GL2n(F)
is self-dual and has trivial central character, recF (π) is symplectic and π comes from

SO(2n+ 1) by the endoscopic lifting. It is a starting point of a recent work of Oi [17].
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On the other hand, if F has characteristic 0 and p 6= 2, Corollary 4.6(i) has been

obtained in [18] by using the endoscopic character relation.
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