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Abstract We determine the parity of the Langlands parameter of a conjugate self-dual supercuspidal
representation of GL(n) over a non-archimedean local field by means of the local Jacquet-Langlands
correspondence. It gives a partial generalization of a previous result on the self-dual case by Prasad and
Ramakrishnan.
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1. Introduction

Let F be a p-adic field. By the local Langlands correspondence, irreducible
smooth representations of GL,(F) are known to be parameterized by n-dimensional
representations of Wr x SLy(C), where Wr denotes the Weil group of F. For an irreducible
smooth representation 7w of GL, (F), we write recg (i) for the attached parameter, which
is called the Langlands parameter of 7.

Let us assume that 7 is self-dual, namely, 7 is isomorphic to its contragredient 7.
Since recp is compatible with dual, recg (;r) is again self-dual. Therefore, we can consider
the problem whether recr () is symplectic or orthogonal, under the condition that
recp () is irreducible; in other words, 7 is a discrete series representation. In [19], Prasad
and Ramakrishnan answered this question by means of the local Jacquet—Langlands
correspondence. Let D be a central division algebra of rank n over F. Recall that the
local Jacquet—Langlands correspondence [4, 22] gives a bijection between isomorphism
classes of irreducible discrete series representations of GL,(F) and those of irreducible
smooth representations of D*. We write JL(;r) for the representation of D> attached to
7 by this correspondence. The theorem of Prasad and Ramakrishnan is as follows:
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Theorem 1.1 [19, Theorem B]. Assume that 7 is self-dual. If n is odd, recp () is always
orthogonal (this part is clear). If n is even, then recp(m) is symplectic (respectively
orthogonal) if and only if JL(rr) is orthogonal (respectively symplectic).

The purpose of this paper is to extend this theorem to the conjugate self-dual
setting. Let F/F' be a quadratic extension of p-adic fields and T the generator of
Gal(F/F7T). A smooth representation (w, V) of GL,(F) is said to be conjugate self-dual
if 77 Z 7V, where 77 denotes the representation GL, (F) LN GL, (F) X GL(V). If 7 is
conjugate self-dual, its Langlands parameter recr () is also conjugate self-dual in the
following sense. Take ¢ € Wp+ \ Wr. For a representation ¢ of Wr x SLp(C), define a
new representation ¢¢ by ¢¢(w) = ¢(cwc™1); it is independent of the choice of ¢ up to
isomorphism. A representation ¢ is said to be conjugate self-dual if ¢¢ = ¢V holds. For
an irreducible conjugate self-dual representation ¢ of Wg x SL,(C), we can define its
parity Cy € {£1} in the similar way as in the self-dual case (for the detail, see [8, §3], [16,
§2.2] and §2 of this paper). If Cy =1, ¢ is said to be conjugate orthogonal, otherwise
conjugate symplectic. For an irreducible conjugate self-dual discrete series representation
7, the parity of recr () knows whether m comes from the standard base change lifting
or the twisted base change lifting from the quasi-split unitary group Ug,p+(n) (see [16,
§2).

In this paper, we determine the parity of recr(w) by means of JL(), under the
conditions that

— F/F* is at worst tamely ramified;
— the invariant of D is 1/n;
—and 7 is supercuspidal (in other words, recp (i) is trivial on the SL,(C)-factor).

Under the first two assumptions, we construct explicitly an automorphism 7: D* — D*
such that 7|px coincides with 7 € Gal(F/F¥), and t € D* such that t2(d) = tdt~" for
d € D* (Definition 2.10). For such a pair (z,t), we can define the conjugate self-duality
and the parity of an irreducible smooth representation of D* (see § 2). Our main theorem
is summarized as follows:

Theorem 1.2 (Main theorem, Theorem 2.12). Assume that F/FT is at worst tamely
ramified and the invariant of D is 1/n. Let w be an irreducible conjugate self-dual
supercuspidal representation of GL,(F). Then, JL() is conjugate self-dual with respect
to (t,1), and its parity CyL(r) satisfies

Crecp(ry = (=1)" ' Crrim).

Theorems 1.1 and 1.2 are useful in the study of recg(;r), because the determination of
JL(7r) is usually much easier than that of recg(;r). In §4, we apply Theorems 1.1 and 1.2
to compute the parity of recr (i) for conjugate (or usual) self-dual simple supercuspidal
representations of GL, (F) (for simple supercuspidal representations, see [9, 13, 21]). For
example, we prove that the Langlands parameter of a self-dual simple supercuspidal
representation of GLy, (F) is symplectic if and only if its central character is trivial. This
result plays a crucial role in the recent study of Oi [17] on the endoscopic lifting of simple
supercuspidal representations of SOy,4+1(F) to GLy, (F).
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Let us explain the strategy of our proof of Theorem 1.2. We use a geometric method.
The non-abelian Lubin-Tate theory [2, 3, 10] tells us that the correspondences recr
and JL for supercuspidal representations appear in the ¢-adic étale cohomology of the
Lubin—Tate tower, which is a projective system of universal deformation spaces of a
one-dimensional formal Op-module X of height n with suitable level structures. By using
the cup product of the cohomology and a result in [15], we can construct a perfect pairing

(JL(7w) Krecp(m)) x JL(7¥)Rrecr (")) — C

for an irreducible supercuspidal representation 7 of GL, (F). It enables us to compare the
parity of recy(;r) and that of JL(r), provided that 7 is self-dual. As in the introduction
of [19], this method had already been found by Fargues; he announced the supercuspidal
case of Theorem 1.1 in [6, §5] without proof. The new point of this paper is to adapt the
argument above to the conjugate self-dual case. In the conjugate self-dual case, we need
to make the pairing ‘Hermitian’. For this purpose, we introduce a new operator on the
Lubin-Tate tower, which we call the twisting operator. In the definition of it, we need
to fix an additional structure on the fixed formal Op-module X. This extra structure
naturally induces the pair (t, t) in Theorem 1.2, as D* can be identified with the group
of self-Op-isogenies of X.

Since our method is geometric, our theorem is also valid in the equal characteristic
case. On the other hand, we need to assume that the invariant of D is 1/n and 7
is supercuspidal, because this is the only case in which recr () and JL(7r) have nice
geometric descriptions. The author expects that Theorem 1.2 is true for any conjugate
self-dual discrete series representation ; in fact, we can easily verify it for a character
twist of the Steinberg representation (see Remark 2.13). It seems also an interesting
question to extend Theorem 1.2 to general division algebras. These problems will be
considered in our future works.

The outline of this paper is as follows. In §2, we give some basic definitions on
conjugate self-dual representations and their parity. We need a slightly general framework
than usual, in order to formulate Theorem 1.2. §3 is devoted to a proof of the main
theorem. After a brief review of the non-abelian Lubin—Tate theory, we introduce and
study the twisting operator, which is a key of our proof. To describe the pair (z,t)
explicitly, we also need some explicit computations of Dieudonné modules. In § 4, we apply
the main theorem to determine the parity of conjugate self-dual simple supercuspidal
representations of GL,, (F).

Notation For a field L and an integer m > 1, we write w, (L) for the set of mth roots
of unity in L. If L is a discrete valuation field, we denote the ring of integers of L by Op,
and the maximal ideal of Of, by pr. Every representation is considered over C.

2. Parity of conjugate self-dual representations

2.1. Basic definitions and properties

Let G be a totally disconnected locally compact topological group. We fix a continuous
automorphism t: G — G and an element ¢ € G satisfying

2 =Int(r), (1) =1,
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where Int(f): G — G denotes the isomorphism g +— tg¢~!. For a smooth representation
(7, V) of G, we write (w", V) for the smooth representation defined by 7% (g) = nw(z(g)).
We say that 7 is conjugate self-dual with respect to t if n* is isomorphic to the
contragredient representation V. If 7 is conjugate self-dual with respect to 7, we have
AV E@HV =@ (m%)" =" = 7 (the last isomorphism is given by 7 (t)~!). Hence
7 is admissible.

Let w be a smooth representation of G which is conjugate self-dual with respect
to 7. Then, there exists a non-degenerate bilinear pairing (,): V x V — C satisfying
(m(t(g))x, m(g)y) = (x,y) for every g € G and x, y € V. If 7 is irreducible, such a pairing
is unique up to scalar by Schur’s lemma (recall that 7 is admissible).

\/)T "E

Lemma 2.1. There exists C, € {£1} such that (m(t)y, x) = Cr{x,y) for every x,y € V.

Proof. Put (x,y) = (mw(t)y, x). Let g € G and x,y € V be arbitrary elements, and we
put ¢’ = 17 (g). Then we have

(T (x(@)x, m(g)y) = (m()m(g)y, m(t(g))x) = (w(z(tg))y, m(tg't Hx)
= (y, ()" %) = (T(O)y, x) = (x,y).

Therefore, there exists C, € C* such that (x, y) = C,(x, y) for every x,y € V.
For x,y € V, we have

(x, ) = (T(xO)x, 7(O)y) = (T(D)x, T(D)y) = C (T(0)y, x) = C3(x, y).

Hence we have C2 = 1. This concludes the proof. O

Remark 2.2. The sign C,; depends not only on t but also on ¢. Let ' € G be another
element satisfying 2 = Int(t'). Then z = t't~! lies in the center of G and fixed by 7. It is
immediate to see that C, for ¢’ equals w;(z)Cy, where w, denotes the central character
of m.

We call C; the parity of w (with respect to (t,1)). If C; = 1 (respectively C, = —1),
we say that m is conjugate orthogonal (respectively conjugate symplectic). If T = id and
t = 1, this notion coincides with the standard one.

Remark 2.3. Consider the case where (7, V) is finite-dimensional, and put m = dim¢ V.

(i) Assume that m = 1, and identify V with C. Then, (, ): CxC — C; (x,y) — xy
gives a non-degenerate bilinear pairing satisfying (7 (t(g))x, w(g)y) = (x, y). From
this pairing we can deduce C, = 7 (t).

(ii) Let (,): VxV — C be a non-degenerate bilinear pairing as in the definition of
the parity. Put (detmr,det V) = (A" 7, A" V). Then, {, ) induces a pairing det V x
detV — C by

(KIA - Ads YA AYm) = D sgn@) (X1, Yo ) -+ (Xms Yor(m)-

eSS,
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It is non-degenerate and satisfies
((detm)(z(g))x, (detm)(g)y) = (x,y), ((detm)(t)y,x) = CF(x,y)
for x,y e detV and g € G. Hence we have Cgerr = CI.
In particular, if m is odd, the parity C,; can be computed as follows:
Cr = CF = Cyetr = detm(r).

In contrast, if m is even, the parity is a more subtle invariant.
We give two elementary lemmas.

Lemma 2.4. Assume that (G, t,t) is decomposed into (G X Ga, 71 X T, (t1, 7)), where
Gi s a totally disconnected locally compact topological group, ti: Gi — G; a continuous
automorphism and t; € G; satisfying riz = Int(t;). For each i = 1,2, let (m;, Vi) be an
irreducible smooth representation of G; conjugate self-dual with respect to t;. Then,
(1 W, VI ® Vo) is an irreducible smooth representation of G conjugate self-dual with
respect to T, and Cy Ry, 5 equal to Cy Cx,.

Proof. It is well known that the exterior tensor product of irreducible admissible
representations is irreducible. The parity can be computed by using the pairing
(x1 ® x2, y1 ® ¥2) = (x1, ¥y1)1{x2, ¥2)2, where (,);: V; x V; = C is an appropriate pairing
attached to ;. O

Lemma 2.5. Take an element h € G and put v/’ = Int(h)ot, t' = ht(h)t. Then we have
2 = Int(t). For an irreducible smooth representation w of G, w is conjugate self-dual
with respect to T if and only if it is conjugate self-dual with respect to t’. If = is conjugate
self-dual with respect to T and T/, its parity with respect to (t,t) coincides with that with
respect to (t/,1).

Proof. The claim > = Int(¢') is immediate. We write V for the representation space of
7. Assume that 7 is conjugate self-dual with respect to 7, and take a non-degenerate
pairing (, ): V x V — C satisfying (w(t(g))x, w(g)y) = (x, ¥). Let (, }p: VxV — C be
the pairing defined by (x, y), = (w(h)~'x, y). It is a non-degenerate pairing and satisfies

(T (@ (@)x, m(©)y)n = (m(h) ' w(ht(g)h ™ NHx, m(g)y) = (w(r(g)m (W) 'x, w(g)y)
= (m(h) "%, ¥) = (x, Y.

Therefore, = Y, that is, m is conjugate self-dual with respect to t’. Since t =
Int(h~") o 7/, the converse is also the case.

Let us denote by C (respectively C’) the parity of 7, which is assumed to be conjugate
self-dual, with respect to (z, r) (respectively (z/,¢')). We use the pairing (, ), to compute
C’. For x,y € V, we have

Cx, Yy = ((t)y, x)p = (W '1)y, x) = (w(r(WD)y, x) = (T(@)y, 7(h) ' x)
= C(m(h)'x,y) = C{x, y)n.
Hence we conclude that C = C’. O
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Let H be an open subgroup of G. Take a smooth character y: H — C* such that
T = c—Indg x is irreducible and admissible. Note that Indg x = c-Indf, x ! in this case.
Indeed, since 7 is irreducible and admissible, so is 7V = Indg x~ 1. As c-Indg x lis a
non-zero G-invariant subspace of Indg x~ 1, it equals Indg x L

We consider when 7 is conjugate self-dual with respect to 7, and how to compute the
parity of .

Proposition 2.6. Put H® = t~'(H), and write x* for the character H* — C*; h >
x(z(h)). Assume that there exists a € G which intertwines (H, x~') and (HT, x7);
namely, satisfies the following conditions:

aHa ' = HY, yx(h)~''= x"(aha™") for every h € H.

Then, the representation w = C-Indf] X is conjugate self-dual with respect to t.
Furthermore, an element z = t(a)ta lies in H, and the parity C; of w is given by x(z).

Proof. For f € c-Indg x, let fT: G — C be the function g — f(7(g)). Then, it is easy

to see that f* belongs to c-IndeI x%, and f — f7 gives an isomorphism (c-Indf] x)° =4
c-IndgI x© of G-representations. On the other hand, for f € c-Ind%. x7, let f¢: G —
C be the function g — f(ag). We can check that f“ belongs to c-Inde x !and f
f¢ gives an isomorphism c-Indg, X' = c—Indg x~!. Hence we have 7% = (c-Indg x)T =
c-IndgT X' = c-Indg x = Indg X
respect to 7.

Next we prove z € H. First we see that z normalizes (H, x). Since H* = aHa™', we
have H = t(a)t2(H)1(a) "' = t(a)tH t '1(a)~" = zHz~'. Therefore, z normalizes H.
Moreover, for h € H we have

-1 ~

= V. In other words, 7 is conjugate self-dual with

X 'h2) = xT(az hza™ )T = e @ Tt @) T = x@ e e (yra) !
= X"ttt = x(h).

Thus z fixes y.
Recall that we are assuming that = = C-Indg x is irreducible. Therefore,

Homg (, ) = Homp (x, (c-Ind} )| i) = Hompy (x. @ e-Indfy, 1. x)
geH\G/H

is one-dimensional (here x8 denotes the character h’ — x(gh'g™") on H ﬂg_ng). Since

c-IndZmz,l Hz x% = x, z must lie in H; otherwise the direct sum above contains x @ x.
Finally we compute the parity of 7. Define a pairing ( , ): C-Indg X X c-Inde x — C
by

(i h)= Y (fH@f@),
geH\G
where the sum is essentially finite since the support of f, is compact modulo H.

(1) -1

This pairing is the composite of (c-Indg x)T X c—Indg X = c-Indg XX c-Indg X =

Indg x 1 x c-Indg X o, C, where (1) denotes the isomorphism (f1, f2) = ((f{)“, f2)
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and (2) the canonical pairing. Hence (,) is a non-degenerate pairing satisfying

(m(z(2)) f1, 7 (g) f2) = (f1, f2) for every g € G and fi, f» € C-Il’ldg X-
By definition we can compute as follows:

(rf. 1) = Y. (D ENfile) = Y. frt(agh) fi(g)

8EH\G geH\G

Q3 pehaa T gy = Y A tag) A)
g'eH\G g'eH\G

= Y x@ 'AG@g) fg) = x@ AL ).
¢’ eH\G

At the equality (%), we put g’ = t(agt). As t(aHgt) = t(aHa ")t (agt) = Ht(agt), this
replacement is well defined. Hence the parity C, = C; U of 7 equals x(z). This completes
the proof. O

Proposition 2.6 will be used in § 4, in which case G is a p-adic reductive group. Suppose
that G is a p-adic reductive group. Then, every irreducible smooth representation of G
is known to be admissible. Therefore, to apply Proposition 2.6, we have only to check
the irreducibility of .

2.2. Division algebra setting

Let F' be a non-archimedean local field and F a separable extension of F* such that
[F : FT] < 2. Denote by t the generator of Gal(F/F™). Let ¢ (respectively ¢’) denote the
cardinality of the residue field of Of (respectively Op+). We denote the characteristic of
F, by p.

The extension F/F7T provides two well-known examples of (G, 7,t) in the previous
subsection.

Example 2.7. For an integer n > 1, put G = GL,(F). Let t: G — G be an automorphism
induced by 7 € Gal(F/F7). Then we have t2 = id, and we can set t = 1.

Example 2.8. Let G be the Weil group Wr of F. Fix an element ¢ € Wgr+ whose image
in Wg+/Wp is a generator, and let t: G — G be Int(c). Then ¢? lies in Wr, and we
can set t = c¢2. The conjugate self-duality and the parity are independent of the choice
of c¢. Indeed, another choice of ¢ is of the form wc with w € Wr. Use Lemma 2.5 to
7/ = Int(we) = Int(w) o7 and 7' = (we)? = wcwe N)e? = wr(w)t.

The conjugate self-duality and the parity in this case coincide with those in [8, §3] and
[16, §2.2].

The parity under the setting in Example 2.8 is interesting because of the following
theorem:

Theorem 2.9. Let w be an irreducible supercuspidal representation of GL, (F) and recg (i)

the corresponding n-dimensional irreducible smooth representation of Wr under the local
Langlands correspondence.
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(i) The representation w is conjugate self-dual under the setting in Example 2.7 if and
only if recg () is conjugate self-dual under the setting in Example 2.8.

(ii) Assume that F # F* and the characteristic of F is 0. The representation m
belongs to the image of the standard (respectively twisted) base change lift from
the quasi-split unitary group Up,p+(n) if and only if the parity Crecp(r) s equal to
(=11 (respectively (—1)" ). For the notion of the base change lift, see [16, §2].

In the following, we introduce another setting. Fix a separable closure F and a
uniformizer @ of F. For an integer n > 1, we denote by F, (respectively F,) the
unramified extension of degree n of F (respectively FT) contained in F, and by
o € Gal(F,/F) the arithmetic Frobenius lift. Let D be the central division algebra over
F with invariant 1/n. Recall that D can be written as F,[I1], where IT is an element
satisfying 1" = w and Ta = o (a)I1 for every a € F,. Assuming the tameness of F/F*,
we explicitly construct an isomorphism t: D — D whose restriction to the center F
coincides with 7 € Gal(F/F™).

Definition 2.10. Assume that F/F* is at worst tamely ramified.

(i) Suppose that F/F™T is an unramified quadratic extension. Then, t € Gal(F/F™) is
canonically extended to the arithmetic Frobenius lift in Gal(F,/F™), that is also
denoted by 7. It satisfies ¢ = t2. In this case, we take & in F+ and definet: D — D
by a +— t(a) (a € F,) and I1 +— II. We put ¢t = II.

(ii) Suppose that F/F* is a ramified quadratic extension (thus p # 2). Then, the
restriction map Gal(F,/F, ) — Gal(F/F*) is an isomorphism. We also write t for
the generator of Gal(F,/F, ). It commutes with o € Gal(F,/F).

In this case, we can (and do) take @w so that 7(w)= —w. Fix an element
BeF such that p9"!'=—1 and put a =89!, Since a7 ' = (=171 =1,
a belongs to pgn_1(F) = pgn_1(F,) and Nrg,/p(@) = ol tatete T = g =
—1. We define 7: D—> D by atr> t(a) (a € F,) and Il +— «ll. Note that
(@ID)" = Nrg,/r()[1" = —w = 1(w) and («lD)7(a) = ao (@)l = 1(0(a))(all),
which ensure the well-definedness of 7. We put r = 72 /an_l(f) = pgn—1(F).
(iii) If F = FT, then we define t: D — D to be the identity map. We put t = 1.

In each case we can check that t2(d) = tdt~! holds for every d € D. Therefore, the
triple (D*, 1, t) gives an example of the setting in §2.1.

Remark 2.11. (i) In the second case, the conjugate self-duality and the parity are
independent of the choice of B. Indeed, let B’ € F be another element such that
p'4" =1 = —1. Then y = B/p' lies in pgn_1(F) = pgn—1(F,"). We put &’ = g4~ and
write 7/, ¢’ for T, t attached to B, respectively. Since Il = y(aIl)y !, we have
v =Int(y)ot and t' = B/~2 = y?t = yt(y)t. Hence the independence follows from
Lemma 2.5.

(ii) In the second case, assume that n is odd. Take ¢ € F; \ (F )2 and n € F 2 such that
n? =&~ We have 9= = —1.
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n—1

Then, the unique lifting B € n,2_1(OF,) of n satisfies 'l = (=tatta"T =
—1. Under this choice of B, we have o = B4~! = —1. Moreover, the element t = 872
is the unique element of u,_1(OF) lifting e.

Our main theorem is as follows:

Theorem 2.12. Assume that F/F7T is at worst tamely ramified. Let w be an irreducible
supercuspidal representation of GL,(F) which is conjugate self-dual under the setting in
Ezample 2.7. We write JL(w) for the irreducible smooth representation of D* attached
to m under the local Jacquet—Langlands correspondence.

Then, JL(w) is conjugate self-dual with respect to t: D* — D* introduced in
Definition 2.10. Moreover, we have

Crecp(my = (=" Cr o).

Remark 2.13. (i) The case where F = FT and the characteristic of F is 0 has been
obtained in [19], in which a discrete series representation m is also treated. The
same statement for the case F = F* is also announced in [6, §5] without proof.

(ii) It is natural to expect that Theorem 2.12 remains true for conjugate self-dual
discrete series representations of GL,(F). For example, let us consider a twist of
the Steinberg representation w = St® () odet), where x: F* — C* is a smooth
character. Since St* = St = St¥, the representation 7 is conjugate self-dual if
and only if x* = x~!. The Langlands parameter recy () is given by (x oArt;l)
&Sym”_IStd: Wr x SLy(C) — GL,(C), where Artp: F* S Wj;b denotes the
isomorphism of the local class field theory, and Std the standard representation
of SLy(C). The parity of Sym" !Std equals (—1)*~'. By Remark 2.3(i), the
parity of x oArtIZ1 is given by X(Artgl(cz)) = X(Art;}, (¢)) (recall that the image
of ¢ under the transfer map Wf;b+ — Wf,b is cz). Hence we obtain Crecp(r) =
(—1)”_1)((Art;l(c)). On the other hand, we have JL(7) = x oNrd, where Nrd
denotes the reduced norm of D. Its parity C,onwa equals x (Nrd(z)). By definition,
both Art;l (¢) and Nrd(¢) lie in (FT)* \Nrg/p+(F>). Since x|(p+)x factors through
(F*)X/Nrp/,w(FX)7 we conclude that x(Art;i(c)) = x(Nrd(#)) and Crecp(r) =
(=)' Cr ).

3. Proof of the main theorem

3.1. Review of the non-abelian Lubin—Tate theory

To prove Theorem 2.12, we use the non-abelian Lubin—Tate theory, which is a geometric
realization of the local Langlands correspondence for GL,,. Here we recall it briefly. Let F
be a non-archimedean local field and @ its uniformizer. Take an integer n > 1. We write
F' for the maximal unramified extension of F inside the fixed separable closure F, and
F for the completion of F".

Let Nilp be the category of schemes over Oy on which @ is locally nilpotent. For
an object S of Nilp, we denote the structure morphism S — Spec O by ¢g. Put § =
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S®o; O/ . Recall that a formal Op-module over S is a formal group X over S endowed
with an Op-action (: O — End(X) such that the following two actions of Of on the Lie
algebra Lie(X) coincide:

— the action induced by ¢; and

— that induced by the Og-module structure of Lie(X) and the structure homomorphism
OF — Oﬁ e Os.

Fix a one-dimensional formal Op-module X of Ofp-height n over Fq = Op/pp- Such X
is unique up to isomorphism. Put D = Endp, (X) ®z Q, which is known to be a central
division algebra over F with invariant 1/n.

Let M: Nilp — Set be the functor that sends S to the set of isomorphism classes
of pairs (X, p), where X is a formal Op-module over S and p: Q%X — X x5 8§ is
an Op-quasi-isogeny. It is known that M is represented by a formal scheme over
O, which is non-canonically isomorphic to the disjoint union of countable copies of
Spt Ox[[Th, ..., Tu—11] (see [5, 14, 20]). The group of self-isogenies QIsogp, (X) = D*
naturally acts on M on the right; 7 € D> sends (X, p) to (X, po q%h). The formal scheme
M is endowed with another structure, called a Weil descent datum. It is an isomorphism
a: M — M that makes the following diagram commute:

M—sM

L

Spf O LA SpfOp.

Here o: Op — O is induced from the unique element o € Gal(F"'/F) lifting the
arithmetic Frobenius automorphism o : Fq — Fq, as in §2.2. In order to describe this
isomorphism, it suffices to construct a bijection o: M(S) - M(S?) for each S € Nilp

compatibly, where S° denotes the object S gs, Spec O LAN Spec O of Nilp. For (X, p) €
M(S), we define a(X, p) = (X, po qb%Frob;gl), where Frobx : X — (*)*X denotes the gth
power Frobenius morphism, which is an Og-isogeny of Op-height 1.

Next we consider level structures. For m > 0, let M,, : Nilp — Set be the functor that
sends S to the set of isomorphism classes of triples (X, p, n), where (X, p) € M(S) and
7 is a Drinfeld m-level structure on X (for its definition, see [5, §4] and [10, §II.2]). It is
represented by a formal scheme finite and flat over M, and {M,, },,>0 form a projective
system called the Lubin—Tate tower. The action of D* and the Weil descent datum on M
naturally extend to M,,, and they are compatible with the transition morphisms of the
tower. Further, the group GL, (F) acts on {M,,},>0 on the right as a pro-object (see [23,
§2.2] for the definition). This action is called the Hecke action. The principal congruence
subgroup K, = Ker(GL,(Of) — GL,(OFf/p)) of GL,(F) acts trivially on M,y,.

By taking the rigid generic fiber, we obtain a projective system {M,;},,>0 of rigid spaces,
whose transition maps are finite and étale. Each M,, is an n — 1-dimensional smooth rigid
space over F.For a compact open subgroup K of GL,(OF), we can define the rigid space
Mg as the quotient of M, by K/K,,, where m > 0 is an integer satisfying K,, C K. It is
independent of the choice of m, and Mk,, coincides with M,,. These rigid spaces form a
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projective system {Mg}gcGL,©p) With finite étale transition maps. The actions of D>
and GL,(F), and the Weil descent datum naturally extend to it.

For a discrete torsion-free cocompact subgroup I' of F* (e.g., @ for an integer d > 1),
we may consider the quotient towers {M,,/I'},, and {Mg/ T}k, where I' is regarded as a
discrete subgroup of D* by F* C D*. It is known that the actions of GL, (F) on these
towers are trivial on I' C F* C GL,(F) (see [20, Lemma 5.36]).

Now we take a prime number £ # p and consider the £-adic étale cohomology of the
Lubin—Tate tower

HﬁT/r,c = h_r>anl ((MK/ ) ®ﬁf’ @K) HﬁT/r = ﬁ_r>nHi((MK/ ) ®ﬁf’ @K)
K K

where % denotes the completion of F. The groups GL,(F) and D* act on H]iT /T
and Hjp /T The actions of GL,(F) on both spaces are obviously smooth, and moreover
admissible. The action of D* on Hjy . is also known to be smooth (see [23, Lemma
2.5.1]). Furthermore, by using the Weil descent datum «, we can define the actions of
Wr on HﬁT/ Ie and HﬁT/F as follows. For w € W, let v(w) denote the integer satisfying
w|pe = o”™ . By taking the fiber product of diagrams

C\lv(w)

Spa(F, 0z) —> Spa(F, 0=) My /T —"" o Me/T

| ! | l

. ) J - CA o
Spa(F, 0;) @7 Spa(F, 0}), Spa(F, Op) — Spa(F, Op),

we obtain an isomorphism o« : (Mg/T) ®ﬁf—> (Mg /T) ®ﬁf of adic spaces. The
action of w is defined to be «j. By these constructions, we obtain two representations
HﬁT/F,c and HﬁT/F of GL,(F) x D* x Wg.

Recall that any admissible representation V of GL,(F)/T is decomposed canonically
into V = (B, V) ® Vion-cusp, Where

— 7 runs through irreducible supercuspidal representations of GL,(F) whose central
characters are trivial on I';

— Vy is a direct sum of finitely many copies of ;
— and Vhon-cusp has no supercuspidal subquotient

(see [1, 1.11, Variantes ¢)]). We call V; the m-isotypic component of V. By definition we
have (V)" = (Vv)7rv a«ndLVnon-cusp)v = (Vv)non-cusp-

We fix an isomorphism Q, = C and identify them. Here is a form of the non-abelian
Lubin-Tate theory.

Theorem 3.1 [2, 10, 15]. For an irreducible supercuspidal representation mw of GL,(F)
whose central character is trivial on T', we have

-1
HfT_/lr’c’n <HT) =7 XJL(7)Y Rrecp ()Y
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as representations of GL,(F) x D* x Wg. Here ("771) denotes the twist by the character
Wr — C* w q"T_l"(w), and JL() denotes the irreducible smooth representation of
D* attached to w under the local Jacquet—Langlands correspondence. Unless i =n—1,
we have HiT/F’m =0.

The following theorem was obtained in [15], in the course of the proof of the latter part
of Theorem 3.1.

Theorem 3.2. For every integer i, the kernel and cokernel of the natural map HI’;T/ re =

HﬁT/F have no supercuspidal subquotient as representations of GL,(F). In particular, for
every irreducible supercuspidal representation w of GL,(F) whose central character is
trivial on T, the induced map HﬁT/F x> HﬁT/F . 5 an isomorphism.

Definition 3.3. For a compact open subgroup K of GL,(Or), put Trx = (GL,(OF) :
K)! Trar, , where Try, denotes the trace map ch("_l)((MK/ D ®g F, @g)(l’l —-1) — @g.
It is easy to see that Trgx is compatible with the change of K. We write Tr for the
homomorphism Hff’/l}lz (n—1) - Q, induced from {Trg}k.

Proposition 3.4. Let w be an irreducible supercuspidal representation of GL,(F) whose
central character is trivial on I'. Then, the cup product pairing

. 1 n— 1 -1 n— 1 —
Tr(=U—): HfT/r,c<T> X Hi't/r . <T) - Q

induces a D* x Wg-invariant pairing HET_/IF,C,TL’V(%) X Hf’r_/lr,c,n(%) — Qy satisfying
the following condition:
for every compact open subgroup K of GL,(F), the restriction of it to
(HfT_/lr’cﬂv)K(%) X (HI'J’]T/IF’CJ)K(%) 18 a perfect pairing.
Proof. First, by the Poincaré duality for Mg /I', we know that the cup product pairing
(HITT_/IF,C)K(%) X (H&T/IF)K %) — Qg is perfect for every compact open subgroup K
of GL,(OF). This tells us that the induced map

n—1 n—1 n—1 n—1 Y
Hir/p ) =\ Hipyrpe )

is an isomorphism. By taking m-isotypic parts and composing with the isomorphism in
Theorem 3.2, we obtain an isomorphism

1 n—1\ =z .., (n—1)\ = _1 n—1\\"
HfT/r,c,n<_2 )_)HIiIT/F,ﬂ< ) >_)(H£T/F,C,JTV< ) :

Therefore, for every compact open subgroup K of GL, (F), we have an isomorphism

-1 k(n—ly = -1 k(m=1\)’
(HﬁT/r,c,n) ( ) >_><(H€T/r,c,nv) ( ) )) :

It is easy to see that this isomorphism is induced from the restriction of the cup product

pairing to (HE{/F . nv)’((%) X (Hlil’lj/ll",c,zr)K(%)' This concludes the proof. O
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3.2. Twisting operator

Here we use the notation introduced in the beginning of §2.2. We construct the twisting
operator 6: M,, — M,,.

First we consider the case where F/F™ is an unramified quadratic extension. In this case
we have FY = (F)". We write t for the unique element of Gal(F"/F*) lifting the ¢'th
power Frobenius automorphism T on Fq = Fq/. It extends t € Gal(F/F™), and satisfies

72 = ¢. For an object S of Nilp, we write S? for the object S — Spec O = Spec O of

Nilp.

We write T,X for the pull-back of the formal Op-module X by 7#: Spec Fq — Spec Fq.
On the other hand, we denote by X’ the formal group X endowed with the Op-action
twisted by t (that is, Of L 0p > End(X)). It is easy to see that 7T,X and X" are
one-dimensional formal Op-modules of Of-height n over (Spec Fq)f € Nilp. Hence these
are isomorphic as formal Op-modules. We fix an isomorphism ¢: 7T,X — X’ between
them. This isomorphism induces an automorphism on D:

Definition 3.5. (i) An element & € D = Endp, (X) ®z Q determines an element t(h) =
toTyhot ™l e Endp, (X*) ®z Q = Endp, (X) ®2 Q = D. This gives an isomorphism
7: D — D such that t|r =t € Gal(F/F™1).

(ii) We denote the composite of Op-isogenies

Frobx __ _ Tl _ l
X —5 57X =72X 5 7.X" 5 X

by t. It is an element of D*.

Lemma 3.6. The element t € D* satisfies t> = Int(t) and (1) =1t.
Proof. For h € D, we have
T2(h) = 10Ty (toTshot o™ = (1oTw) 0Tsho(toTy) ™!
= (t o Frobg') 0@ hi o (t o Froby ') ™!

=to (Frob;gl 00 +h o Frobx) o L

By the functoriality of the relative Frobenius morphisms, the following diagram is

commutative:

Frobx _
X——0,X

j h l oyh
Frobyx

———— 0 X.

Hence we have t2(h) =tohot~!, as desired.
Next consider t(z). We have

T(t) = 1o T4(t o T4t o Frobx) ol = LOT4L 00« 0Ty4Frobx ot

— — — * —
= 10T4l 004t oFrobz,x ot ! (—_) toTyloFrobx =t.
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The equality () follows from the functoriality of the relative Frobenius morphisms with
respect to ¢: 7,X — X. This completes the proof. O

Now we construct an isomorphism 6: M,, - M, that makes the following diagram
commute:

0
Mm EEEE—— Mm

L

SpfO; ——= SpfO .

Definition 3.7. Let S be an object of Nilp. For (X, p, n) € M,,(S), we put 6(X, p,n) =
(X", podlt.n") € Myu(ST), where

— X7 is the formal group X over S endowed with the Op-action twisted by t;
o _

-p od%t is the Op-quasi-isogeny ¢)§7X = Q%(T*X) BRI ¢§XT L oxr Xs S;

—and n° is the composite of (Of/pE)" 5 (OF/p)" and 7.

This gives a bijection 8 : M,,(S) = M,,(S7), and an isomorphism 6 : M,, = M,, which
covers *: SpfOp — Spf Op.

The isomorphism 6 is compatible with the transition maps of the tower {M,,}. Hence
it induces automorphisms of the towers {M,,} and {M,,}.

Lemma 3.8. (i) For g€ GL,(F), we have go® =60o1(g), where t: GL,(F)—
GL, (F) is the isomorphism in Example 2.7.

(ii) For h € D*, we have ho0 = 0 ot(h), where T: D* — D* is the isomorphism in
Definition 3.5(i).
(iii) We have 6> = aot andaof =6 oa.

Proof. The claim (i) is clear from the definition of 6.
As for (ii), take (X, p, n) € M, (S). Then we have

(ho6)(X. p.n) = (X7, podiiodih. ).
Since ¢§L o¢%h = q%(t oT4h) = ¢§(r (h)ot) = q%(r(h)) 0¢§[, we have
(ho0)(X, p,m) = (X7, pog(r(h) o gL, n™) = (0 o T(M)(X, p, 7).

Thus ho6 = 6 o1(h), as desired.

We prove (iii). For (X, p,n) € Mu(S), 6*(X,p,n) equals (X,p oq%t o¢;—1t, n).
Since q%to ;7[ = q%(t 0T4l) = q‘%(t oFrob;gl) = q‘%(t) o¢§Fr0b;§1, we have 02(X, p,n) =
a(t(X, p,n)). Hence 62 = a ot. Finally, by (ii) and Lemma 3.6 we conclude that

a0 =0%ct"00=0%0tt) ' =030t =00a. O
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We fix ¢ € Wg+ such that ¢|por = 7. Assume that the subgroup I' C F* is stable under
7. Then, 6: M,,/T" — M,/ is induced. By taking the fiber product of diagrams

Spa(F, 0=) —~ Spa(F, 0=) My/T — ~ M,/T

| ! | l

! N ! o * o
Spa(F, 0) ——>Spa(F, 0;),  Spa(F, Op) ——Spa(F, Op),

we obtain an isomorphism 6.: (M, /T) ® F — (M,,/T) ®p F of adic spaces. It induces
an automorphism 6 on the cohomology Hj T for which we simply write 6.

Corollary 3.9. The following equalities of automorphisms on HﬂT/ r. hold.
(i) For g € GL,(F), we have fog =1(g)0o6, where t: GL,(F) — GL,(F) is the
isomorphism in Example 2.7.
(ii) For h € D*, we have 6 oh = t(h) 00, where T: D* — D* is the isomorphism in
Definition 3.5(3).
(iii) We have 62> =toc? and 0 ow = cwe™' 00 for every w € Wr.
Proof. The claims (i) and (ii) follow from Lemma 3.8(i), (ii), respectively. For (iii),

it suffices to show 6> =aaot and @y o6, =6, 0a,,.-1. These are consequences of
Lemma 3.8(iii), the definitions of &, and 6, and the equality v(cwe™ ) = v(w). O

Next we consider the case where F/F¥ is a ramified quadratic extension (here we do
not need the tameness assumption). We also write t for the unique non-trivial element of
Gal(F"/(F*)'r). It gives an extension of the original t € Gal(F/F7). Note that 7% =1
and T = 1, where T denotes the automorphism of the residue field Fq of Opu induced by
7. Further, we have 0 ot = t oo as automorphisms of F". For an object S of Nilp, we

write S for the object § — Spec O BN Spec O of Nilp.
As in the unramified case, we fix an isomorphism ¢: X 2 X* between formal

Op-modules over (SpecF,)® = SpecF, € Nilp.

Definition 3.10. (i) An element h e D =Endp,(X)®zQ determines an
element t(h) = tohot™! € Endp, (X*) ®7 Q = Endp,.(X) ®2 Q = D. This gives an
isomorphism 7: D — D such that 7| =1 € Gal(F/F™).

(ii) We denote the composite X = X* - X by 7. It is an element of D*.

Lemma 3.11. The element t € D* satisfies t> = Int(¢t) and t(t) = 1.

Proof. Clear from definition. O
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Exactly in the same way, we can construct an isomorphism 6: M,, — M,, that makes
the following diagram commute:

Mm;Mm

L

SpfO; ——= SpfO .
It induces automorphisms of the towers {M,,} and {M,,}.

Lemma 3.12. (i) For g € GL,(F), we have go6 =0o1(g), where t: GL,(F) —
GL, (F) is the isomorphism in FExample 2.7.

(ii) For h € D*, we have ho6 = 0 ot (h), where T: D* — D* is the isomorphism in
Definition 3.10(i).
(iii) We have > =t and €08 =6 oa.

Proof. As in the proof of Lemma 3.8, it suffices to show 62 = ¢. For an object S of Nilp
and (X, p,n) € My, (S), we have

0> (X, p,m) = (X, podliodit, n) = (X, podist, ) = 1(X, p, 1),
as desired (note that ST = §). O

We fix ¢ € Wp+ such that c[pur = 7. Assume that I' C F* is stable under 7. As in the
unramified case, we obtain an isomorphism 6.: (M;,/ ") ® 3 F - (M,,/T) ®I;f of adic
spaces. It induces an automorphism 6% on the cohomology H{ T for which we simply
write 6.

Corollary 3.13. The following equalities of automorphisms on HI’;T/ r.c hold.

(i) For g € GL,(F), we have fog =1(g)06, where t: GL,(F) = GL,(F) is the
isomorphism in Example 2.7.

(ii) For h € D*, we have @ oh = t(h) 06, where t: D* — D* is the isomorphism in
Definition 3.10(1).
(iii) We have 62> =toc? and § ow = cwe™' 08 for every w € Wr.

Proof. Similar as Corollary 3.9. O

Finally, consider the case F = F*.

Definition 3.14. We put t =idpx,t =1€ D*,c =1 € Wg+ and 6 = id on HﬁT/rc. Then
the same statements as in Corollaries 3.9, 3.13 obviously hold.

Now we return to a general separable extension F/F* with [F : FT] < 2.
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Lemma 3.15. Assume that T' C F* is stable under T. The cup product pairing

n—1 n—1 —
Tr(—U—): HLT/ e T X HLT/ I,c ) — Q

in Proposition 3.4 satisfies Tr(0x, 0y) = q*%”("z) Tr(xUy).

Proof. Recall that the isomorphism 6.: (M;/I')®3 % —- (M) T) ®I;f covers
c*: Spa(%, O?) — Spa(%, Oﬁ).

If F/F T is an unramified quadratic extension, c¢ induces the ¢’th power map on
wok (F) = g (F1). Therefore, we have Tr(6x, 8y) = ¢/~ D Tr(x U y). Since ¢ = ¢’ and
v(c?) = 1, this equals q’%”("z) Tr(x Uy).

Otherwise ¢ acts trivially on (F) = Mek(ﬁ+), and v(c?) =0. Hence we have
Tr(@x, 0y) = Tr(x Uy) = ¢~ "7 Tr(x U y). O

Theorem 3.16. Here we consider (t,t) as in Definitions 3.5, 3.10, 3.14. Let w be an
irreducible supercuspidal representation of GL,(F) which is conjugate self-dual under the
setting in Example 2.7. Then, JL(7) is conjugate self-dual with respect to t. Moreover,
we have

Crecr(m) = (=) CrL iy,

where Cy(x) denotes the parity of JL(7) with respect to (z,t).
Proof. Since 7 is conjugate self-dual, its central character w, satisfies wy (7(z)) = wy (z) ™!
for every z € F* C GL,(F). Hence, for a uniformizer @’ of F*, we have wy(w'?) = 1.
Put I = w2 c (Ft)* c F*. Tt is a t-stable discrete cocompact subgroup of F* on
which wy is trivial.

Let 7: GL,(F) - GL,(F) be as in Example 2.7, v =Int(c): Wr — Wr as in
Example 2.8, and 7= (tr,1,7): GL,(F)x D* x W — GL,(F) x D* x Wr. Then,

Corollaries 3.9, 3.13 tell us that 6 gives an isomorphism HfT_/lr,c = (Hff/lp,c)r-

n—1 =
Since the character Wr — C*; w — qu(w) is t-invariant, we have Hﬁ‘{/]rc(%) -
(H{’T_/IF C(%))’ by twisting. By taking 7 V-isotypic parts and using 7% = 7", we obtain

an isomorphism 6: H£’T71F . nv(%) > (H]i'T_/lF . 7T(%))T of representations of GL, (F) x
D* x Wg.

Take a t-stable compact open subgroup K of GL,, (F). Then, 6 induces an isomorphism

(H{‘{/IF . ﬂv(%))’( =4 ((H]i‘{/lr’cyn(%))K)r of representations of D* x Wg. Consider the

pairing
K K
. -1 n—1 -1 n—1
() <H€T/r,c,n< ) )) x (HI’jT/I‘,c,n< ) ))
0~ xid - n—1\\% _ n—1\\¥ Tr(—U—) —
=~ <HI’_1T/ r,c,nV< 3 )) X HI’jT/ Fer\ 75 Q-
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It satisfies ((t(h), T(w))x, (h, w)y) = (x,y) for every h € D* and w € Wg. Moreover,
Proposition 3.4 tells us that it is a perfect pairing. We have

(y.x) = Tr@ " () Ux) = (=1 Trx U (1) 2 (=11 T Y Te@(x) U y)

= ()" T2 (), y) 2 (— 1) g T (g T O (1 (), y)
= ()" N, Ax, y).

Here (1) follows from Lemma 3.15, and (2) from the identity 62 =t oc? on HI’fo/lr’c’”

(Corollary 3.9(iii) and Corollary 3.13(iii)); the factor q_%”(cz) arises from the twist
(5.

Now we specify K. Since m is supercuspidal, it is generic. Hence by [12, §5,
Théoreme|, there exists an integer m > 0 such that dim7 %10 = 1. Here Ki(m) is
the subgroup of GL,(OF) consisting of matrices (g;;) with gu1,...,gnn—1 € pp and
gnn € 1+pg. Clearly Ki(m) is t-stable. We take K as Kj(m). Then, Theorem 3.1

tells us that (HI’LIT‘_/IF,C,JT(%))K = JL(w)Y Mrecp(w)Y as representations of D* x Wpg.
VYK = (7K)V is also one-dimensional, the existence of 8: (H"> (%))K >

Since (& LT/T,c,mV

((I‘I{fT_/lr’c,,,(%))K)r tells us that

(

JL(m)Xrecp(m) = JL(@Y)Y Rrecp(r)Y = JL(7)Y" Nrecr(m)"".

Thus JL() is conjugate self-dual with respect to t. Finally, by the existence of the pairing
(,), we conclude that the parity of the irreducible representation JL(7)Y Mrecp (7)Y of
D* x W with respect to (t x 7, (¢, ¢?)) is equal to (—1)"~!. Replacing 7 by 7V, we get
the same result for JL(;r) Mrecp (). Therefore, by Lemma 2.4 we have Cjp(x)Crecy(xr) =
(—1)"‘1, and Crecy(r) = (—1)"‘1CJL(7,). This completes the proof. O

3.3. Formal Op-module over Fq and division algebra

Our remaining task for proving Theorem 2.12 is to describe (r,t) in Definitions 3.5
and 3.10 explicitly, under the assumption that F/F¥ is at worst tamely ramified and
quadratic.

First we consider the easier case where F has equal characteristic. In this case, we have
F =F,((w)). We can take a one-dimensional formal Op-module X over Fq as follows:

X= @a as a formal group, [alx(X)=aX (@ eF,), [zlx(X) = x4,

Any element a € Fyn gives an endomorphism X — aX of X. On the other hand, we
write IT for the endomorphism X +— X7 of X. Note that Ila = a“Il for a € Fy» and
1" = @ in Endp, (X). These elements are known to generate Endp, (X), and we have
Endp, (X) = Fyn[I1] = OF,[I1], which is a maximal order of the central division algebra
over F with invariant 1/n.

Assume that F/F* is an unramified quadratic extension. We may assume that FT =
Fy((@)). Then, T,X and X* are described explicitly as follows:

lale,x(X) =T@X) =a’ X (a €Fy), [wlrx(X) =7(X!") = X",
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lalx: (X) = [F@]x(X) =a? X (a € Fy), [olx-(X) = X7".
Hence we may take ¢ = idx: 7,X = XT. The following lemma is immediate.

Proposition 3.17. The pair (t,t) constructed from « = idx as in Definition 3.5 coincides
with that in Definition 2.10(i).

Next assume that p # 2 and F/F7T is a ramified quadratic extension. We may assume
that FT = Fq((wz)). Then X7 is described as follows:

lalx: (X) =aX (a €Fy), [owlx(X)=[-wlx(X)=—-X7".

Take 8 € Fq such that 84" ~! = —1, and put @ = B¢~!. Then, we may take an isomorphism
XS X5 X e BlX.

Proposition 3.18. The pair (t,1) constructed from t: X — B~'X as in Definition 3.10
coincides with that in Definition 2.10(ii).

Proof. For a € Fyn C O, [I1], we have 7(a): X > B~ lapX = aX; that is, 7(a) = a. On
the other hand, we have t(IT): X — B~1(BX)? = X4, and thus t(IT) = «I1. Clearly we
have t = 2. Hence the pair (, t) coincides with that in Definition 2.10(ii). O

Now we consider the case where F is a p-adic field. We regard formal Op-modules
over Fq as w-divisible Op-modules. We use the Dieudonné theory for ww-divisible
Op-modules over Fq developed in [7, Chapitre I, §B.8]. Here we identify O with
W@F(Fq) = Or ®w,) W(Fq). Let D = (’)'I’E be a free Og-module of rank n. We define

a o-linear map F: D — D and a o~ '-linear map V: D — D by

wejl] I #£n, ei_1 1 1,
i+ 75 V(e,')z 2 7’é

el i =n, we, =1,

F(e;) =

where (eq, ..., e,) denotes the standard basis of D. Then, by [7, Chapitre I, Proposition
B.8.2], we can find a w-divisible Op-module X of Op-height n over Fq satisfying
Do, (X) = (D, F, V). Since V is topologically nilpotent and dimﬁq D/VD=1, X is a
one-dimensional formal Og-module.

Let D = F,[I1] be the central division algebra over F with invariant 1/n as in §2.2,
and Op = OF,[I1] its maximal order. We construct a homomorphism Op — Endp, (X).
First, any a € Op, defines an Op-linear endomorphism on D by e; o' (a)e;. Since it
commutes with F and V, it gives an element of Endp, (X). Let IT be the Oy-linear
endomorphism on D such that

ei_ i #1,
H(e,') _ i—1 7&

we, [ =1.

It also commutes with F and V, and gives an element of Endp, (X). It is immediate to
observe that Ila = o (a)Il for a € OF, and I1" = @ as endomorphisms of . Therefore,
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we obtain a homomorphism Op = OF,[I1] — Endp, (X), which is in fact an isomorphism.
In the following, we identify Op and Endp, (X) by this isomorphism.

We assume that F/F7 is an unramified quadratic extension, and take @ in F*. Recall
that in this case 7 also denotes the unique element of Gal(F“r/F+) lifting the ¢’th
power Frobenius automorphism 7 on IFq = ]F . We describe 7,X and X* by means of
the Dieudonné module as follows.

Proposition 3.19. Let tw: W(Fq) — W(Fq) denote the homomorphism induced from
Fq N Fq. We also write tw for the composite W (IFy) - W(Fq) LA W(Fq). Note that the
Dieudonné module of a formal Op-module over (SpecF,)* € Nilp s a free Of ®W(F,).tw
W(Fq)—module endowed with F and V. We identify Or Qw ).ty W(Fq) with Op by the

. . = id =
isomorphism Op QwE,),rw W(EFg) % OF Qw,) WTy) = Oy

(i) For a formal Op-module Y over Fq, we have Do, (T+Y) = Do, (Y) and
Do, (Y*) = Do, (Y), where T, denotes the base change by t: O — Op.

(ii) For X introduced above, we have Do, (T X) = Do, (X).

Proof. We prove (i). By functorlahty we have Do, (7+Y) = (id @tw)+Do, (Y). Under the
identification Of ®w ¥,y W(F,) = O, this equals

(T ®id)«(id ®@7w)+ Do, (V) = t:Do, (V).

On the other hand, we have Do, (Y*) = '® id)+«IDp,. (Y). Under the identification, this
clearly corresponds to the O z-module Do, (Y).
The assertion (ii) is clear from the definition of X and the identification

D ED; (x1,...,x,) = (T(x1), ..., 7(xn)),

as T(w) = . O]

Proposition 3.20. Let ¢: T,X Sx be the isomorphism that induces the isomorphism in
Proposition 3.19(ii) on the Dieudonné modules. The pair (t,t) constructed from this v as
in Definition 3.10 coincides with that in Definition 2.10(i).

Proof. The claim on 7 is clear from the definition. We prove ¢ o Tt o Frobx = IT. Recall
that Frobx: X — 7,X induces V: Do, (X) = 0:D0,.(X) = D@, (0+X). On the other

D(T« D .
hand, the composite 0.D = Do, (0+X) —— (T & Do, (T+X7) —9) Do, (X) =D is equal to

(X1, ..., xp) = (o(x1),...,0(xp)). Since Il(e;) = V(e;) for every i, we conclude that
to T4t oFrobx = II. O

Next we assume that p # 2 and F/FT is a ramified quadratic extension, and take @ so
that t(@w) = —w. Recall that in this case t also denotes the unique non-trivial element
of Gal(F" /(FT)").

Proposition 3.21. (i) For a formal Op-module Y over Fq, we have Do, (Y') =
‘L'*_I]D)(')F(Y), where r*_l denotes the base change by t': Op — Of. For
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every Op-homomorphism h: Y — Y between formal Op-modules over Fq, the
homomorphism Do, (Y") = Do, (Y'") induced by h: Y* — YT coincides with
D).

(ii) For X introduced above, we have Do, (X*) = D, F', V'), where F' and V' are
determined by

—weir| I #£n, ei_1 i#1,
i+ 7é V’(ei)z i 7é

el i=n, —we, I=1.

F'(ej) =

(iii) For an element h € Endp, (X), regard D(h): D — D as a matriz (h;j) € M,(Op).
Then, the homomorphism D = Do, (X*) - Do, (X*) =D induced by h: X* — X*
is given by the matrix (r_l(hij)).

Proof. The first assertion is clear from functoriality. The second is obvious from the
definition of X and the identification

D= ' (x1, ..., x0) = (T(x1)s ..., T(X0)),

as T(w) = —w. Let h and (h;;) be as in (iii). Under the identification D = 7, 'D above,
T, ID(h) corresponds to (t~ ! (h; 7)). The third assertion immediately follows from this. [J

Proposition 3.22. As in Definition 2.10(ii), we take B € Op such that 9"~ = —1 and

put @ = B471. Let 1: X S X be the isomorphism such that the induced homomorphism
D =D, (X) - Do, (X7) =D is given by e; = o' ()" le;.

Then, the pair (t,t) constructed from this ¢ as in Definition 3.10 coincides with that
in Definition 2.10(ii).
Proof. For a € Of, C Op, the composite D = Dp, (X*) Deoacr” ) Do, (X*) =D maps
e; to o'(a)e;. Hence, by Proposition 3.21(iii), toaor! € Endp, (X*) corresponds to
7(a) € OF, C Endp, (X) under the identification Endp, (X) = Endp, (X*). Similarly, the

D(toIor~!
composite D = Do, (X7) M Do, (X*) = D maps e; to

B
EEICES
o (P) we i=1
B

Since B € uagr-1y(Op), we have o(B)/B=pI""'=a. Hence o'(B)/oc'" ()
equals o'~!(«). Similarly, we have o(8)/c"(B) = B9/B? = p1/(—p) = -4~ = —a.
Noting that o € ug—1(Op) C Op+ is fixed by 7, we can conclude that tollo
e Endp, (X*) corresponds to aIl € Endp, (X) under the identification Endp, (X) =

Endp, (X7).
We can observe that the composite X 5 XTS5 X equals B2 in the same way, by using
the fact that B € puan—1)(Of) C O(p+yu is fixed by . O
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By Theorem 3.16 and Propositions 3.17, 3.18, 3.20, 3.22, we complete the proof of
Theorem 2.12.

4. The case of simple supercuspidal representations

4.1. Conjugate self-dual simple supercuspidal representations

Here we apply our main theorem to simple supercuspidal representations. Let the notation
be as in §2.2. We briefly recall the notion of simple supercuspidal representations of
GL,(F) and D*. See [9, 11, 13, 21] for detail. Throughout this section, we fix a non-trivial
additive character v : F, — C* which factors through Tr]Fq JF, " Fy — F,.

First consider the case of GL, (F). Let us denote by Iw the standard Iwahori subgroup of
GL, (F), namely, the subgroup of GL, (OF) consisting of matrices whose image in GL, (F,)
is upper triangular. We write Iw; for the pro-p unipotent radical of Iw; it consists of
matrices in Iw whose diagonal entries lie in 1+ pr. Each element ¢ € IF; gives rise to a
character

Ve Iwy — C (@) > Y@ +an+...+ain+¢ o lay).

Here we denote the image of a € Of in Fq by a.
Let ¢; denote the matrix

0 10---0
0 01---0
0 00---1
[ 00---0

where E denotes the unique element of u,_{(F) lifting ¢. It normalizes Iw . Put H, =
(9;«;}? Iwy. It is an open conpact—mod—center subgroup of GL,(F) (note that it contains
the center F*, since (pg’ = {w). We write (IE‘;)v for the set of characters IE‘;; — C*. For
a triple (¢, x,c¢) € IF;‘ X (IF;‘)V x C*, define the character Ay .: Hr — C* by

Ag,x,c(x) =xX) (x € O;(*)’ A;,x,c(@;) =, Ag,x‘chw_,_ = lﬁ;-

We put 7 y,c = c-IndgL"(F) A¢ y.e, which turns out to be an irreducible supercuspidal

representation of GL,(F). A representation obtained in this way is called a simple
supercuspidal representation of GL,(F). For another triple (¢’ x',¢") € Fy x (Fy)" x
C*, one can prove that m; = v if and only if (¢, x,¢) = (&', x', ¢') (see [11,
Proposition 1.3]). Thus simple supercuspidal representations of GL, (F) are parameterized
by the set Fy x (IF‘qX)v x C*.

Remark 4.1. Note that 7 , . implicitly depends on the choice of the uniformizer @ of
F. Later we take it as in Definition 2.10.

The contragredient of n; , . can be computed as follows:

Proposition 4.2. For (¢, x.c) € Fy x (F;)V x C*, we have ”;\fx,c ST iyne g (=e -
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Proof. For a = diag(1, —1,..., (—1)*1), we have a(p;a_l = —@(—1y»¢- As a normalizes
(9; Iw, we obtain aH;a_1 = H_1yn;. Moreover, we can directly check that A . c(h)_1
A(_l)ng-’x—l’x(_l)c—l(ah(l_l) for h € H;. Therefore, a intertwines (H;, A {X .) and

(H=1ynzs AZiyng,x=1 g (=1)e-1)- By the same way as in the proof of Proposition 2.6, we
conclude that

GL,(F)

_ GLi(F) x—1 ~ _v
”(—1)”§,x*1,x(—1)c*1 = C_IndH(,”n; A(—l)”{ -1 x(=Dc— 1 = =c- Ind A = ]T; ¢ D

&.x.c

Corollary 4.3. Let (¢, . ¢) be an element of F7 x (IE‘;)v x C*.

(i) If F/F™T is an unramified quadratic extension and w € FT, then mz 4 o is conjugate
self-dual with respect to t if and only if T(¢) = (—=1)"¢, x* = x ! and ? = x(-1),
where T denotes the q'th power Frobenius automorphism on Fy.

(ii) If p #2, F/F" is a ramified quadratic extension and @ satisfies T(w) = —w, then
¢ x.c 15 conjugate self-dual with respect to T if and only if n is odd, x2=1 and
2
¢t =x(=1.

(iii) If F = FT, then g y ¢ is conjugate self-dual with respect to T = id (that is, self-dual)
if and only if n is even, x> =1 and ¢* = y(—1).

Proof. In the proof of Proposition 2.6, we obtained an isomorphism (c-Indg X)) =
c-IndZI x©. We can use it to determine (7r¢ 4 ,.)° in each case as follows:

(1) (40" = Te-1(0), ¢t = Mo (@), x"he (note that ¥ (t(x)) = ¥ (x) for x € Fy).
(ii) (g, 0,0)" =gy c-
(i) (g x.e)" = T x.c-
Together with Proposition 4.2, we conclude the proof. O

Next we consider the case of D*. Let (¢, x, ¢) be an element of IF‘; X (F;)V x C*. Take
& e IFqX,, such that Nr]Fq,, /F,(§) = ¢, and wri&e b for the unique element of pyn_1(OF,)
lifting ¢. Note that (bI1)" = Nrg,,r(D)[1" = (.

Put HD o5 (bH)Z(l +Op). It is an open compact-mod-center subgroup of D*.
We deﬁne the character Aé,x,c‘ D C* by

AL, () =x®xe0f), AP, (N)=c,
Agx,c(l +0I1d) = ¥ (Trr, /F, @) (d € Op).

Here, d denotes the image of d under Op — Op/IOp £ OF,/pF, =F4. We put

P =c- IndD

txc which turns out to be an irreducible smooth representation of

E x,c’
D> whose 1som0rph1sm class depends only on (¢, x, ¢). A representation of D>, which
is automatically supercuspidal, obtained in this way is called a simple supercuspidal
representation of D*.

The following theorem is proved in [11, Theorem 3.5].

Theorem 4.4. For (¢, x,c) € ]F>< X (]FX)v x C*, we have JL(7¢ 4 c) = rrg (e Dy-le
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4.2. Computation of parity

Here we compute the parity of recr (¢ , ) for a conjugate self-dual simple supercuspidal
representation 7; , .. We use Proposition 2.6 to compute the parity of 7t{DX —1y-let
Proposition 4.5. Let (¢, x,¢) be an element of F7 x (]F;)v x C* such that m¢ . is
conjugate self-dual with respect to T under the setting in Example 2.7.

(i) Suppose that F/FT is an unramified quadratic extension and w € FT. Let ¢ be
an element of IF‘; satisfying €9 ' = —1. Then the parity of JTCDX 1yl 1s equal to
D" x(e)e.

(ii) Suppose that p # 2, F/F" is a ramified quadratic extension and t(w) = —w . Then

. D .
the parity of T (e 8 equal to

1 if x is trivial,

—1 if x is non-trivial.

(iii) Suppose that F = FT. Then, the parity of T[CDX (—1y-le is equal to

1 if x is trivial,

—1 if x is non-trivial.

Proof. For simplicity, we put ¢/ = (=1)""!¢ and W = AP . In each case we find

.(=Dn—le
a € pgn—1(OF,) C D* which intertwines (H, ¥~ andg()éliISD))’, wr),

Consider the case (i). Corollary 4.3 tells us that ;‘1/’1 = (=", x"=x"! and
¢2 = x(—1). Therefore, we have (g.§)<1+‘1+"'+¢1”_1)(q/*1) = (—1)1+‘1+'“+‘1n_l;‘1/*1 =(—D".
(=1)" = 1. Hence there exists n € ]F;,, satisfying nq’+1 = ¢&. Let agp be the unique element
of pgn_1(OF,) lifting n and put a = 1 (ap). Since nl_qg"/ = (85)1_‘1%‘1/ = —£, we have
aé_qb‘/ = —b. Thus aot(bl'l)ao_1 = aobq/ao_ql'[ = —pIl and a(dMa~! = —r~1(I). In
particular we have aHSDafl = (HSD)T.

Let us prove that W(h)~! = W' (aha™') for every h e HED. If he O;, we have
W)= x) ' = xT(h) = W (aha™"), as x® = x~'. If h =bIlI, we have W(h)~' =
¢~V and WT(aha=') = W(=bII) = x(—1)¢. These are equal since ¢Z = ¢ = x(—1). If
h=1+4bId € 1+ TOp, we have W(h)~" = ¢ (Trr,, /5, ()" and W7 (@ha™") = W7 (1 +
a(bMa~' ada™") = v - bHaot(a’)aa]) = lﬁ(Tr]Fq,,/]Fq @4))~!. Since Y factors through
Trr, [Fyr they are equal.

Therefore, a intertwines (HP, ¥~!) and ((HSD)I, W), In this case, the element z in

Proposition 2.6 becomes agIlt ™! (ap) = (ag/+1b_1)~(bl'l). Note that the reduction of

ag -1 ¢ mgn—1(OF,) is equal to nq/+1$_1 =c¢cc IF;, and thus ag p=1 lies in Or.
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Therefore, by Proposition 2.6 the parity of nZDX .~ 18 equal to

W(agTr " (ap)) = (! "'b"HWOHI) = x(e)c’ = (=1)" ' x(e)c,

as desired.

Consider the case (ii). Corollary 4.3 tells us that n is odd, x?> =1 and ¢* = x(—1).
Fix ¢ € IF; \(]F;)z. As in Remark 2.11(ii), we can take t: D — D so that t(IT) = —TII,
and ¢ as the unique element of g1 (OF) lifting e. Since b € ugn—1(OF,) C F,;", we have
t(bIT) = —bII, and thus HED = (HED)T. By the similar computation as in (i), we can
observe that W(h)~! = WT(h) for every h € HED. Therefore, 1 intertwines (P, ¥~!) and
((HSD)T, W), and z = t. By Proposition 2.6 the parity of ”;l,)x,c/ is equal to W(t) = x(¢) €
{£1}. Since x? =1, x(¢) = 1 if and only if yx is trivial.

Finally consider the case (iii). Corollary 4.3 tells us that n is even, x> =1 and ¢? =
x(—1). Take ¢ € IF;z such that ¢7~! = —1, and let a be the unique element of wq2—1(OF,)
lifting €. Since n is even, a belongs to ug—1(OF,). We have a(bMa~! = a'~9pI1 = —bII.
Therefore, a normalizes HsD . By the similar computation as in (i), we can observe that
W(h)~! = W(aha ") for every h € HED. Therefore, a intertwines (HP, U=1) and (HP, W),
and z =d?% € tgn—1(OF,). Since (€2)7=1 = 1, the reduction &2 of z lies in IF;, and thus z
lies in py—1(OF). Hence, by Proposition 2.6 the parity of nfx‘c, is equal to W(z) = x (¢2).
As e2 e Fy \(]F;)2 and x2 =1, x(2) =1 if and only if x is trivial. This completes the
proof. U

Corollary 4.6. Let (¢, x, ¢) be as in Proposition 4.5.

(i) Suppose that F/F* is an unramified quadratic extension and w € FT. Let ¢ be
an element of 7 satisfying ¢4~V = —1. Then the parity of recr(me ) 5 equal to
x(€)c.

(ii) Suppose that p # 2, F/F" is a ramified quadratic extension and t(w) = —w . Then
the parity of recp (5 .c) is equal to

1 if x is trivial,
—1 if x is non-trivial.

(iii) Suppose that F = FT. Then the parity of recp (s y ) is equal to

—1 if x s trivial,
1 if x is non-trivial.
Proof. Clear from Theorems 2.12, 4.4 and Proposition 4.5. Recall that in the case (ii)

(respectively (iii)), n is odd (respectively even). O

Remark 4.7. By Corollary 4.6(iii), if a simple supercuspidal representation 7 of GLy, (F)
is self-dual and has trivial central character, recr () is symplectic and 7 comes from
SO(2n + 1) by the endoscopic lifting. It is a starting point of a recent work of Oi [17].
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On the other hand, if F has characteristic 0 and p # 2, Corollary 4.6(i) has been
obtained in [18] by using the endoscopic character relation.
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