
Robotica (2009) volume 27, pp. 249–257. © 2008 Cambridge University Press
doi:10.1017/S0263574708004645 Printed in the United Kingdom

Fall detection in walking robots by multi-way principal
component analysis
J. G. Daniël Karssen* and Martijn Wisse
Department of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands.

(Received in Final Form: April 3, 2008. First published online: May 8, 2008)

SUMMARY
Large disturbances can cause a biped to fall. If an upcoming
fall can be detected, damage can be minimized or the fall
can be prevented. We introduce the multi-way principal
component analysis (MPCA) method for the detection of
upcoming falls. We study the detection capability of the
MPCA method in a simulation study with the simplest
walking model. The results of this study show that the MPCA
method is able to predict a fall up to four steps in advance
in the case of single disturbances. In the case of random
disturbances the MPCA method has a successful detection
probability of up to 90%.

KEYWORDS: Bipeds; Legged robots; Humanoid robots;
Robot dynamics; Pose estimation and registration.

1. Introduction
All two-legged (bipedal) walking systems, humans and
robots alike, will occasionally encounter disturbances that
are so large that a fall is inevitable. To minimize damage,
the upcoming fall must be detected and a proper “bracing”
action must be taken. Or, in a milder form, perhaps the fall
detection can activate a (costly) emergency response which
can still prevent the fall, see Fig. 1. Irrespective of the type
of reaction, this paper focuses on the detection part only.

This paper presents a new method for fall detection in
bipedal robots. It seems that no such method exists yet,
and that it is unknown how the human brain performs this
type of pattern recognition. In the development of the new
method, we assume that the robot has full state information
(all relevant positions, angles, and velocities).

Our interest in fall detection arises from our research
into limit cycle walking.1 With this concept, base on
passive dynamic walking,2 we build bipedal robots with
unprecedented low energetic cost of transport.3 The early
limit cycle walking prototypes were optimized for low
energy usage and consequently they had little resistance
against disturbances. We are now building bipeds with more
actuation capabilities and better robustness.4−7 Motions that
would have resulted in a fall can now be counteracted at the
cost of some extra energy usage. That is why a fall detection
algorithm has our interest. Nevertheless, we are convinced
that such an algorithm will be useful for all biped walking

* Corresponding author. E-mail: j.g.d.karssen@tudelft.nl

systems using any type of stability control, such as the well
known “Zero Moment Point” based control.8,9 At the very
least, the algorithm can sound an alarm and alert the robot
researcher to catch the robot.

All bipedal robots are complex dynamic systems and this
gives a couple of challenges for the monitoring of a walking
robot. The main challenges are:

High dimensionality. Modern walking robots have up to 32
degrees-of-freedom (DoF)10 and each DoF represents two
states (position and velocity). The high dimensionality can
result in large computational times or memory requirements
due to the “curse of dimensionality”. For example, a lot of
tests can be required to test for every possible state if the robot
is going to fall or not. For a system with M state variables
and N grid points at each dimension are NM tests required.

Not steady state. Walking is a cyclic motion, so the system
goes through a sequence of states each cycle. It is therefore
not possible to monitor the system as a steady-state system.
Thus, one cannot use fixed limits on the state variables for
all detections.

Different units. The state variables have different units, for
example meters for position and radians per second for
angular velocity. This difference in units causes problems
when calculating Euclidean distances in state space. A
problem can be that one state variable has more effect than
another. To remove this effect the state variables can be
scaled.

No fixed cycle duration. The motion of a walking robot is
quasi-periodic, but it can have variation on the period. Due
to this variation it is not possible to compare cycles with a
fixed time scale.

Discontinuous state transitions. In walking there is at least
one impact every step, when the swing leg hits the ground.
During an impact, the velocities change rapidly and this
causes a jump in state space.

Nonlinear behavior. The dynamics of a walking robot are
highly nonlinear. This means that linear analyzing methods
can not be used before the nonlinearity in the data is removed.

In this paper we present in this paper the multi-way
principal component analysis (MPCA) detection method for
fall detection in bipedal robots. Nomikos and MacGregor11

introduced the MPCA method for the monitoring of batch
processes. The monitoring of batch processes has similar
problems as the monitoring of walking robots. A batch

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


250 Fall detection in walking robots

Fig. 1. Normal controller with added emergency system to prevent
falling when encountering large disturbances.

process is, just like a walking robot, a nonlinear cyclic
process and has a high number of state variables with
different units. Since its introduction, the MPCA method
is successfully implemented in industrial applications12 and
a quite a few variations on the MPCA method have been
introduced. The large variety of successful implementations
shows the success of the MPCA method. This success and
the similarities between batch processes and walking robots
show the potential of the MPCA method for walking robots.

The goal of this paper is to study the performance of MPCA
detection method for fall detection in walking robots. We
study the performance with a simulation. The model used in
this simulation is described in Section 3. But first we discuss,
in Section 2, how the MPCA monitoring method works and
how it can be implemented for walking robots. The results
of the simulation study are shown in Section 4. These results
are discussed in Section 5 and conclusions are drawn in
Section 6.

2. MPCA Monitoring
The main assumption behind MPCA monitoring is that the
probability for failure can be estimated by the error of the
current trajectory with respect to the nominal trajectory
scaled by the nominal variation around the trajectory. The
scaling with the nominal variation is done so that a larger
error is allowed in parts of the cycle that have large variation
during normal operation. For this scaling only the relative
shape of the variation is important and not the absolute value.
Before the monitoring can take place, the nominal trajectory
and the nominal variation around this trajectory have to be
found. This is done with a set of “good” cycles. These cycles
are generated by running the system for a number of cycles
with small disturbances. The small disturbances are large
enough to create variation between the cycles but are small
enough to not create a failure.

In the remainder of this section we will look further into
the MPCA monitoring. In Section 2.1 the origin of the MPCA
monitoring method and the different modeling methods are
discussed. In the next section we show how one of these
modeling methods can create a model out of the data from the
“good” cycles. This model is used in Section 2.3 to construct

a measure for monitoring. And in the final section of this
paper we will discuss a couple practical issues.

2.1. Origin of MPCA monitoring
The MPCA method for monitoring presented in this
paper is based on a monitoring method by Nomikos and
MacGregor.11 They introduced MPCA monitoring for the
monitoring of batch processes in the production of chemicals.
In a batch process, a reactor is loaded with raw materials and a
reaction takes place. After the reaction is finished, the product
is collected and the reactor can be loaded for the next batch.
This cyclical process has to be monitored to ensure safe
operation and to get consistent high-quality products. The
monitoring method of Nomikos and MacGregor predicts if
the quality of a batch is within a normal quality range.

For the monitoring, a model of the normal behavior of the
system is used. This model is obtained from a set of “good”
cycles. There are a couple of ways to construct this model.
Nomikos and MacGregor used the global modeling method.
This means that they used one model to describe the whole
trajectory. Opposite to the global modeling method is the
local modeling method.13 The local method uses a model
for each point in the trajectory. The main difference between
monitoring with the global model and the local model is
in the measurements that are used. With the local model
only the current measurements are used to predict failure.
With the global model all the measurements since the start
of the run are used. Besides local and global modeling there
are other methods suggested in literature. These are methods
that are between the local and global modeling method like
adaptive modeling,14 time evolving modeling13 and variable-
wise unfolding.15

The choice for a modeling method depends on the amount
of state information that can be measured. With our walking
robots the complete state can be measured. With the complete
state available at every moment there is no need for using
other measurements than the current measurements and so
the local modeling method is best suited.

2.2. Modeling
With the local modeling method, a model can be constructed
that consists of the nominal trajectory and the nominal
variation around the nominal trajectory. This model is
constructed with a set of “good” cycles. This set consists
of I trajectories in J -dimensional space.

2.2.1. Slicing the trajectories. We like to analyze the
trajectories with the principal component analysis (PCA)
method. PCA is a data analyzing method that removes
the linear correlation between the variables by rotating the
coordinate system. It is impossible to analyze the trajectories
directly with the linear PCA method because the trajectories
can be very nonlinear (Fig. 2A). To remove the nonlinearities
we look only at the position in state space with respect
to the nominal trajectory. This is done by slicing the
trajectories perpendicular to the nominal trajectory with K

planes (Fig. 2B). These planes are (J − 1)-dimensional, one
dimension lower than the space of the trajectories. The planes
can be seen as cross sections of the trajectories. Each of these

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


Fall detection in walking robots 251

Fig. 2. (A) A set of 50 nonlinear trajectories in a three-dimensional state space. The dotted lines indicate that the trajectories make a jump
in state space. (B) Planes slice the trajectories perpendicular. The points in these planes can be analyzed without the nonlinearities of the
trajectories. (C) With the points in the planes the average trajectory and the boundary is estimated. The boundary in a plane is an ellipse.
The ellipses of all the planes combined results in a tube. Note that the shown tube is created with more planes than are shown.

cross sections separately can be analyzed with PCA because
the nonlinearity of the trajectory is removed.

A problem with this slicing perpendicular to the nominal
trajectory is that the nominal trajectory is not known (yet).
The nominal trajectory can be estimated with the average
of the “good” trajectories in time. The time of each of the
trajectories is normalized with its cycle duration to prevent
problems with differences in cycle duration.

The slicing planes are equally spaced over the nominal
trajectory. The measurement samples of the trajectories will
never lie exactly on these planes. We use a linear interpolation
between the two closest samples to find the intersection of
the trajectory with the slicing plane.

2.2.2. Analyzing the slices. Each of the K slices consist of
I points on a (J − 1)-dimensional plane in a J -dimensional
space. For each of these slices we want to find two things: the
average point and the boundary of the cloud of points. The
average points of all the K slices will be used as an estimation
of the nominal trajectory and the boundary as an estimation
the variation with respect to the nominal trajectory. For the
normal trajectory we could also use the fixed point trajectory
instead of the average trajectory. However, we will only use
the average trajectory, because in a physical system the fixed
point trajectory cannot be determined due to the inevitable
presence of noise.

The average point, for each slice, is found by taking the
average over all the points for each of the J dimensions
separately,

X̄k
j = 1

I

I∑

i=1

Xk
ij for j = 1, . . . , (J − 1), (1)

in which Xk
ij is the j th coordinate of point i and X̄k

j is the
j th coordinate of the average point. The index k refers to the
slice k.

The boundary can also be estimated for each dimension j

separately, but this will result in large errors if the dimensions
are correlated (Fig. 3). Therefore we will first apply a PCA
to remove all the linear correlation. The PCA rotates the
coordinate axes in such a way that the correlation between
variables is placed on a single rotated axis. Before the rotation
of the axes, the data is mean-centered so that the average point

Fig. 3. A random set of points with linear correlation between
the two variables. The Min–Max boundary determined for the two
variables separately results in a large error due to the correlation.
With the correlation removed the error is much smaller.

does not move when rotating the axes. In matrix notation the
rotation of the coordinate system can be written as

Tk = Pk(Xk − X̄k) (2)

in which Tk is the data in the new coordinate system and Pk

the transformation matrix. For a detailed description of the
PCA see ref. [16].

We assume that the points have a nominal distribution
after the correlation is removed. This assumption is based on
the fact that a linear combination of random variables tends
toward a normal distribution.17 A normal distribution does
not have a boundary, but a 95% interval can be found by
taking two times the standard deviation in both directions.
The standard deviation σ for each of the uncorrelated
dimensions is

σ k
j = 1

I − 1

I∑

i=1

Tk
ij for j = 1, . . . , (J − 1). (3)

The normal distribution for each of the dimensions results
in a multivariate normal distribution. For this multivariate
normal distribution the 95% interval is an ellipsoid. This
(J − 1)-dimensional ellipsoid has its axes on the rotated axes
after PCA and can be rotated back into the original coordinate
frame (Fig. 4).

The ellipsoids found for the K slices can be combined in
a tube around the nominal trajectory. Figure 2C shows an
example of such a tube for a three-dimensional system. The

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


252 Fall detection in walking robots

Fig. 4. A random set of points (the same as in Fig. 3). With PCA the coordinate system is rotated so that linear correlation between the
variables is removed. With the correlation removed the boundary of the multivariate normal distribution is estimated with an ellipse.

tube is the boundary of the “good” cycles and shows the
nominal variation around the nominal trajectory. In the next
section we will discuss how this tube can be used for the
monitoring of the system.

2.3. Monitoring
In the last section, we estimated the nominal trajectory
and the nominal variation around this trajectory with the
trajectories of a set of “good” cycles. In this section, we
will use the nominal trajectory and the nominal variation
to monitor the system. For the monitoring we look at the
error between the current state of the system and the nominal
trajectory and scale this error by the nominal variation. The
scaling is done so that on parts of the trajectory where the
“good” cycles had a lot of variation the error is allowed to be
bigger than on parts with small variations. If the scaled error
becomes above a set limit, the monitoring system thinks that
the failure change is too high and an emergency action is
applied.

2.3.1. Slice selection. The first step in determining the
error is to determine to which of the modeling slices the
current state belongs. This is determined with two measures,
the distance between the current state and the slice and
the distance between the current state and the intersection
between the slice and the nominal trajectory. The first
measure indicates how close the current state is to the plane.
The second measure is added to prevent that a slice is selected
that intersected the nominal trajectory far from the current
state (Fig. 5).

2.3.2. D-statistic. With the slice selected, the next step is to
determine the error between the current state and the nominal
trajectory. This is done as follows:

ej = xj − X̄k
j for j = 1, . . . , (J − 1), (4)

in which xj is the j th coordinate of the current state, X̄k
j is the

j th coordinate of the intersection between the selected slice
k and the nominal trajectory and ej is the error in dimension
j . The error vector e has to be scaled. The scaling is done in
the rotated coordinate system of the slice. To get the error in
the rotated coordinate system, the error vector e is multiplied
with the rotation matrix P of the selected slice k,

ẽ = Pke. (5)

Fig. 5. A trajectory (solid line) in a two-dimensional state space
with two slices (dashed and dotted lines). The current state (star)
has equal distance to both slices. The dashed slice is selected,
because it has the shortest distance between the current state and
the intersection slice-trajectory (dot).

The rotation matrix P is the same as the rotation matrix used
in equation (2) to remove the correlation between the good
trajectories. The error ẽj for each rotated dimension is scaled
by dividing it with the standard deviation σ k of the “good”
set

ěj = ẽj

σ k
j

for j = 1, . . . , (J − 1). (6)

By taking the mean of squared error vector ě we get the
D-statistic,

D = 1

J − 1

J−1∑

j=1

ě
2

j . (7)

This D-statistic gives how far the current state is off the
nominal trajectory with respect to the variation in the set of
“good” cycles. So it is a measure for how well the current
state fits in the normal behavior of the system.

2.3.3. Limit. The next thing we want to know is how far
the system can deviate from its nominal trajectory before
it is going to fail. In other words, above which value for
the D-statistic is an emergency action required. The setting
of maximal value of the D-statistic Dmax depends on the
size and frequency of the expected disturbances, because the

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


Fall detection in walking robots 253

probability depends, besides on the current state, also on the
future disturbances.

There is also a trade-off in the maximal value of the
D-statistic between an early detection and as few as possible
unnecessary actions. Early detection of a system failure
is necessary to have enough time to take an emergency
action. Early detection can be achieved by a low Dmax. A
disadvantage of a low Dmax is that it can cause unnecessary
emergency actions. A solution for this trade-off is to set the
Dmax as high as possible while ensuring that there is enough
time for the emergency action.

These two aspects show that the choice of the Dmax

depends on the system properties, such as emergency action
time. Because of the dependency on the system properties it
is not possible to give a general setting of the maximal value
of the D-statistic. In Section 4 we will discuss how to set the
maximal value for a walking robot.

2.4. Practical issues
2.4.1. Scaling. The state variables can be measured using
a variety of units. A difference in used units for the state
variables can cause a difference in the D-statistic. This
difference is caused by the fact that a slicing plane that is
perpendicular to a trajectory for one set of units does not
have to be perpendicular for another set of units. To eliminate
this effect, the state variables are scaled to get dimensionless
units. The most common way of scaling is to scale mass with
the total mass of the system, length with the leg length, and
time with the nominal step time.

2.4.2. Discontinuous trajectories. The trajectory of a system
can have discontinuities, for example an instantaneous
change in the velocity caused by an impact. These
discontinuities cause problems for the slicing of the set
of “good” trajectories. A discontinuity in a trajectory is
a jump in state space. This jump can cause that not all
of the trajectories are sliced by a slicing plane, because a
trajectory can pass the plane by the jump in state space.
If not all the trajectories are sliced there will be less data
points in the plane. The remaining data points will not have
a normal distribution, because the trajectories that are not
sliced are not a random selection out of all the trajectories.
This is not random, because the place of the discontinuity
is a function of the state. Without a normal distribution,
the boundary of the points can not be estimated with the
standard deviation. If in this case, the boundary of the points
is estimated with the standard deviation, the D-statistic will
be incorrect. An incorrect D-statistic due to a discontinuity
can trigger an unnecessary emergency action. To prevent
this, the D-statistic will be ignored when the selected plane
is passed by one of the “good” trajectories.

2.4.3. Number of “good” trajectories and number of slices.
When applying the MPCA monitoring method there are
two choices that have to be made: the number of “good”
trajectories I used for the modeling and the number of slices
K used for the slicing of the trajectories. For both of these
choices, it applies that the higher the number, the more
accurate the method becomes. In practice, there are time
and memory restrictions. There are two time restrictions,
one on the time used for the generation of the model and

one on the time used during monitoring. The time for the
model generation is only limited by the time the researcher
is willing to spend on it. The major part of this time is
used to generate the “good” trajectories. The time used
during monitoring is restricted by the available computing
time and the monitoring frequency. To give an indication of
the processing time: the calculation of the D-statistic in a
system with 4 state variables and 1000 slices takes about 0.3
ms in a MATLAB environment on a 1.66 GHz Intel Core
Duo processor. The number of slices is mainly limited by
a memory constraint. The memory required is linear related
with the number of slices. The data of each slice consists
of (J + J 2 + (J − 1)) numbers, to represent respectively the
center point, the orientation of the coordinate system, and the
standard deviations, with J the number of state variables. In
case of a system with 8 state variables, 1000 slices, and single
precision numbers, the total memory required is 0.63 MB.

3. Test Method
The ability of the MPCA monitoring method to predict the
fall of a walking robot is tested on a model of a walking
robot. On this model a set of disturbances are applied and the
D-statistic is compared with the behavior of the model. The
next sections describe the model and the set of disturbances.

3.1. Model
The model used for this study is the simplest walking model
by Garcia et al.18 This two-dimensional model consists of
two rigid links, which are connected at the hip. There are
three point masses in the model, one point mass at the hip
and two infinitesimally small masses at the feet. The lengths
and masses are scaled with the leg length and hip mass
to get dimensionless units. The feet are point feet and the
impacts of the feet with the ground are modeled as fully
plastic collisions. Foot scuffing at mid stance is ignored so
that the swing leg can swing from the rear to the front. The
model has no control or actuation and it gains energy by
walking down a slope of 0.004 rad.

The model has two DoF, the stance leg can rotate with
respect to the floor around its point foot and the swing leg
can rotate around the hip. The two DoF of this second-order
system results in a four-dimensional state space. We define
the four state dimensions as the angle and angle rate for both
the stance leg and the swing leg, [φst , φ̇st , φsw, φ̇sw] (Fig. 6).

It has been shown that the simplest walking model can walk
in a stable cycle on a flat surface and can overcome small
disturbances.5 The largest single step-down it can overcome
has a height difference of 0.13% of its leg length. A higher
step-down will result in a state at which the deviation of
the nominal trajectory becomes larger every step and finally
results in a fall.

3.2. Disturbances
In this study we use floor irregularities as disturbance source.
Floor irregularities are the most common disturbances for
walking robots. The irregularities are implemented as a
height difference in the floor. This height difference can be
positive or negative resulting in a step-down or a step-up.
Two types of disturbance patterns are used: a single

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


254 Fall detection in walking robots

Fig. 6. The simplest walking model walking down a slope γ of 0.004 rad. The model is disturbed by random floor irregularities.

impulsive disturbance and a Gaussian disturbance pattern.
The impulsive disturbance is a single step-down followed
by disturbance-free floor. The Gaussian disturbance pattern
is a randomly generated floor with step-ups and step-downs
having a Gaussian distribution with a zero average and a
standard deviation of σ .

For the estimation of the nominal trajectory and the
variation, a set of “good” cycles is required. This set is
generated by a single test run of 50 steps with the Gaussian
disturbance pattern with a standard deviation σ of 0.02%. At
this disturbance level the model walks on average 61 steps
without failures, so the generation of the 50 “good” cycles is
not a problem. For the slicing of trajectories, 1000 planes are
used. This amount of slices gives an accurate model with a
memory use of about 0.3 MB.

4. Results
Figure 7 shows the D-statistic of two test runs during a couple
of steps. At the beginning of the third step (t = 7.6 s) a step-
down disturbance is applied. The height difference of step-
downs are 0.13% and 0.14% of the leg length for respectively

the first and second test run. The simplest walking model is
able to keep on walking after the disturbance of 0.13%, but
falls down after the disturbance of 0.14%. For both runs the
D-statistic shows an impulsive increase at the moment
the disturbance was applied. After the impulsive increase,
the D-statistic for the first run decreases and after a couple
of steps the D-statistic is back at the original level. The
D-statistic for the second run shows a different behavior,
it keeps increasing after the first impulsive increase. Three
steps after the disturbance (t = 15.6 s) the model starts falling
and the D-statistic rapidly increases. At t = 18.7 s the model
lays on the floor with a D-statistic of about 106.

Figure 8 shows the D-statistic of 20 test runs on three
irregular floors. The floor irregularities have a Gaussian
distribution with a zero average and a standard deviation
of 0.020%, 0.025%, and 0.030% of the leg length for
respectively the first, second, and third test set. In each of
the test runs the disturbances cause the model to fall. In the
figure, the time axes are shifted to synchronize the falls. The
D-statistic shows similar behavior for the three floors. Until
approximately 20 s before the fall, the D-statistic is more
or less constant with an average of around 2. In the last

Fig. 7. The D-statistic in time for two test runs with a disturbance at t = 7.6 s. In the first run (top) the disturbance is so small that the
model can recover. In the second run (bottom) the disturbance is slightly larger and causes the model to fall. The dashed vertical lines
indicate stance leg transition. Note the gaps in the D-statistic graph. At these gaps, the D-statistic cannot be used and is therefore ignored,
as explained in Section 2.4.2.

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


Fall detection in walking robots 255

Fig. 8. The D-statistic of 20 test runs on three irregular floors. The floor irregularities have a Gaussian distribution with a zero average and
a standard deviation of 0.020%, 0.025%, and 0.030% respectively for the first, second, and third test set. The runs are shifted in time so
that they all end at t = 0 in a fall of the model.

four steps before the fall, approximately between t = 20 and
t = 0, the D-statistic of all the runs start increasing and reach
values up to 106 at t = 0. There is a difference between the
D-statistic of the three floors in the amount and the height
of the spikes in the part before the last 20 s. The D-statistic
of the floor with a standard deviation of 0.020% has less
high spikes then the two other test sets. Another difference
is the minimal D-statistic during the last 10 s. This minimal
D-statistic increases the fastest for the 0.020% test run and
the slowest for the 0.030% test run.

5. Discussion
The MPCA monitoring method was introduced to predict
the fall of a walking robot, so that an emergency action can
be taken to prevent the fall. To predict a fall the monitoring
system should be able to distinguish between states that lead
to a fall and states that lead to a walking cycle. The area
of all the states that lead to a walking cycle is called the
basin of attraction (BoA). The MPCA monitoring method
distinguishes between states with a D-statistic below a
maximum Dmax and states with a D-statistic above Dmax.

The relation between the D-statistic and states inside and
outside the BoA can be seen in the results of the single
step-down tests (Fig. 7). In the second test (step-down of
0.14%) the state of the system outside the BoA after the step-
down disturbance, because without anymore disturbances the
system fails. This system has a higher D-statistic than the
system in the first test run, which state is inside the BoA for
the complete run. Ideally, the D-statistic of any state outside
the BoA should be higher than the D-statistic of any state
inside the BoA. This is not the case in these tests, because
the minimum of the part of the second run that is outside the
BoA is 7.2, which is lower than the maximum of 21.6 of the
first run. But it is still possible to predict the fall in the second
run without causing a false alarm in the first run. With a Dmax

of 22 the fall in the second run will be predicted at t = 10 s
and this gives more than two steps to prevent the fall.

For walking on an irregular floor the current state
information is not enough for predicting falls, because the up-
coming irregularities in the floor also affect whether the robot
is going to fall or not. For example, if the robot is outside
the BoA it can go back into the BoA by a floor disturbance.
The floor irregularities are assumed to be unknown, so we

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


256 Fall detection in walking robots

Fig. 9. The limit for the D-statistic Dmax vs. the percentage of
good, too late, and false detections. The detection probabilities are
estimated with a set of 20 test runs (the same as for Fig. 8 (top)).
Good detections predict the fall at least one step and maximal four
steps before the fall.

can make only a prediction on the probability of a fall. Due
to this uncertainty the setting of the Dmax will be a trade-off
between the amount of false positives and false negatives.
A false positive is when a fall is predicted too late and a
false negative is when a fall is predicted but does not occur.
Figure 9 shows this trade-off based on the data from the
20 test runs with an irregular floor. For this example false
positives are counted if the fall was not detected at least
one step before the fall. The false negatives are harder to be
determined because all the test runs ended with a fall. False
negatives are counted if there were more than four steps

between the detection and the fall. The four steps limit is
taken, because the single step-down test shows that it takes
less than four steps to go from a state just outside the BoA to
a fall.

The trade-off shown in Fig. 9 has no optimum. It is not
always the best to select the Dmax value with the highest
probability on good detection, because the setting of the Dmax

depends also on if the false positives or the false negatives
should be avoided. For example if a fall has to be avoided at
all times, because it causes a lot of damage, no false positives
should be allowed. To avoid false positives the Dmax should
be low. In the example of Fig. 9 the Dmax should be maximal
11. The Dmax should be at least 18 if false negatives have to
be avoided.

The ability of the MPCA method to predict a fall depends
on the kind of disturbances that are encountered. Figure 10
shows the detection probability versus Dmax for three levels
of disturbance. For the lowest disturbance level (standard
deviation of 0.020%) the accurate detection probability is up
to 90%. So for this disturbance level the MPCA method is
good in predicting falls on time. With increasing disturbance
levels the maximal good detection probability decreases. This
is an effect that is expected, because with higher disturbance
levels the system can go faster from a state inside the BoA
to a fall. This can also be seen in Fig. 8, where the time from
a low D-statistic to a fall is shorter for higher disturbance
levels than for lower disturbance levels.

6. Conclusion
In this paper, we introduced the MPCA method for
the monitoring of the gait of walking robots. The
MPCA monitoring method was introduced to estimate the
probability of a fall of a walking robot, so that if a fall is

Fig. 10. Same plot as Fig. 9 for three disturbance levels. The lower the disturbance level the better the MPCA method is able to detect a
fall on time.

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645


Fall detection in walking robots 257

likely to occur an emergency action can be taken. The MPCA
method works by comparing the current state of the walking
robot to a set of “good” walking cycles. The ability of the
MPCA method to predict a fall was studied with the simplest
walking model. Out of the results of this study we can draw
the following conclusions:

• The MPCA method is able to predict whether the model is
going to fall or not, but cannot make an absolute distinction
between states inside and outside the BoA.

• In the case of a single disturbance, the MPCA method can
predict if the system is going to fall within one step after
the disturbance.

• The ability of the MPCA method to predict the fall of the
model walking on an irregular floor depends on the size of
the irregularities. The smaller the irregularities, the better
the predictions.

• The MPCA method can have successful detection
probability up to 90% for walking on irregular floor.

• The MPCA method has a low implementation complexity
and a low number of test runs is required.

Based on these conclusions, we recommend to use MPCA
for fall detection in bipedal robots. We tested the MPCA
method on a model of a limit cycle walker, but we expect
that the same results holds for other kinds of bipedal
robots, such as ZMP walkers. In the near future, we intend
to implement this method on a physical prototype. The
simulation results presented in this paper suggest that a
practical implementation will be successful.

Acknowledgments
The work presented in this paper has been carried out with
financial support from the Commission of the European
Union, within Framework Programme 6, RTD programme
IST, under contract no. FP6-2005-IST-61-045301-STP. The
authors would like to thank Frans van der Helm for
proofreading.

References
1. D. G. E. Hobbelen and M. Wisse. “Limit Cycle Walking,”

In: Humanoid Robots, Human-like Machines (M. Hackel, ed.)
Chapter 14. (I-Tech Education and Publishing, Vienna, Austria,
2007).

2. T. McGeer. “Passive dynamic walking,” Int. J. Rob. Res. 9(2),
62–82 (1990).

3. S. H. Collins, A. Ruina, R. Tedrake and M. Wisse. “Efficient
bipedal robots based on passive-dynamic walkers,” Science
307(5712), 1082–1085 (2005).

4. D. G. E. Hobbelen and M. Wisse. “A disturbance rejection
measure for limit cycle walkers: The gait sensitivity norm,”
IEEE Trans. Rob. 23(6), 1213–1224 (2007).

5. D. G. E. Hobbelen and M. Wisse, “Swing leg retraction for limit
cycle walkers improves disturbance rejection,” IEEE Trans. Rob.
24(2), 377–389 (2008).

6. D. G. E. Hobbelen and M. Wisse, “Ankle actuation for limit
cycle walkers,” Int. J. Rob. Res. (in press).

7. D. G. E. Hobbelen and M. Wisse. “Upper body feedback and
feedforward control in limit cycle walkers,” IEEE Trans. Rob.
(in review).

8. M. Vukobratovic, A. Frank and D. Juricic. “On the stability
of biped locomotion,” IEEE Trans. Biomed. Eng. 17(1), 25–36
(1970).

9. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki
and M. Fujita. “The intelligent Asimo: System Overview
and Integration,” Proceedings of International Conference on
Intelligent Robots and Systems, Lausanne, Switzerland (Sep.
30–4 Oct. 2002) pp. 2478–2483.

10. J. Yamaguchi, E. Soga, S. Inoue and A. Takanishi.
“Development of a bipedal humanoid robot-control method of
wholebody cooperative dynamic biped walking,” Proceedings
of 1999 IEEE International Conference on Robotics and
Automation, Detroit, MI, pp. 368–374 (1999).

11. P. Nomikos and J.F. MacGregor. “Monitoring batch processes
using multiway principal component analysis,” AIChE J. 40(8),
1361–1375 (1994).

12. T. Kourti, J. Lee and J. F. MacGregor, “Experiences with
industrial applications of projection methods for multivariate
statistical process control,” Comput. Chem. Eng. 20, 745–750
(1996).

13. H. J. Ramaker, E. N. M. van Sprang, J. A. Westerhuis and
A. K. Smilde, “Fault detection properties of global, local and
time evolving models for batch process monitoring,” J. Process
Control 15(7), 799–805 (2005).

14. J. F. MacGregor, S. Rannar and S. Wold, “Adaptive batch
monitoring using hierarchical PCA,” Chemomet. Intell. Lab.
Sys. 41, 73–81 (1998).

15. P. Nomikos, “Statistical Process Control of Batch Processes”,
Chem. Eng. Dept., (McMaster University, Hamilton, ON,
Canada (1995).

16. P. Geladi and B. R. Kowalski. “Partial least-squares regression:
A tutorial,” Anal. Chim. Acta 185, 1–17 (1986).

17. G. Hahn and W. Meeker, “Statistical Intervals: A Guide for
Practitioners”, Wiley, New York (1991).

18. M. S. Garcia, A. Chatterjee, A. Ruina and M. J. Coleman,
“The simplest walking model: Stability, complexity, and
scaling,” ASME J. Biomech. Eng. 120(2), 281–288 (1998).

https://doi.org/10.1017/S0263574708004645 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004645

