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Wick polynomials in noncommutative
probability: a group-theoretical approach
Kurusch Ebrahimi-Fard, Frédéric Patras, Nikolas Tapia, and
Lorenzo Zambotti
Abstract. Wick polynomials and Wick products are studied in the context of noncommutative
probability theory. It is shown that free, Boolean, and conditionally free Wick polynomials can be
defined and related through the action of the group of characters over a particular Hopf algebra.
These results generalize our previous developments of a Hopf-algebraic approach to cumulants and
Wick products in classical probability theory.

1 Introduction

Moment-cumulant relations and Wick products play a central role in probability
theory and related fields [1, 22]. In classical probability, cumulant sequences (cn)n∈N∗

linearize the notion of independence of random variables: if two random variables,
X , Y , with moments of all orders are independent, then for n ≥ 1, cn(X + Y) =
cn(X) + cn(Y). Wick polynomials, Wick products, and chaos expansions are related
to cumulants. Indeed, recall, for example, that given a random variable X with
moments of all orders, the Wick polynomial W(Xn) is the coefficient of tn

n! in the
expansion of exp(tX − K(t)), where K(t) is the exponential generating series of
cumulants.

Voiculescu’s theory of free probability [28, 29] provides the paradigm of a non-
commutative probability theory, where the notion of freeness replaces the classical
concept of probabilistic independence. Speicher showed that free cumulants linearize
Voiculescu’s notion of freeness. See [21, 24] for detailed introductions. Following
Voiculescu’s ideas, various authors [8, 19, 20, 26, 27] considered different types of
independences (Boolean, monotone, and others), each characterized by particular
moment-cumulant relations with explicit combinatorial descriptions given in terms
of different types of set partitions. Relations between the different brands of cumu-
lants were thoroughly explored by Arizmendi et al. in [6]. Free and Boolean Wick
polynomials have been introduced in this setting by Anshelevich [2–4].
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In a previous paper [15], the authors presented a Hopf-algebraic framework
describing both the combinatorial structure of the classical moment-cumulant rela-
tions as well as the related notions of Wick polynomials and Wick products. The
approach is based on convolution products of linear functionals defined on a coal-
gebra and encompasses the multidimensional extension of the moment-cumulant
relations. In this framework, classical Wick polynomials result from a Hopf-algebraic
deformation under the action of linear automorphisms induced by multivariate
moments associated to an arbitrary family of random variables with moments of all
orders.

In a series of recent papers [10, 12, 14], two of us explored relations between
multivariate moments and free, Boolean, and monotone cumulants as well as relations
among latter in noncommutative probability theory by studying a particular graded
connected Hopf algebra H defined on the double tensor algebra over a noncom-
mutative probability space (A, φ). In this approach, the associated set partitions
(noncrossing, interval, and monotone, respectively) appear through the evaluation
of elements of the group G (Lie algebra g) of (infinitesimal) Hopf-algebraic characters
on words.

In the paper at hand, we revisit from a Hopf-theoretic point of view the theory of
free, Boolean, and conditionally free Wick polynomials. The relevance of shuffle group
actions and structures in the sense of [14] is also emphasized.

The article is organized as follows. In Section 2, we recall the definitions of
classical cumulants and Wick polynomials. In Section 3, we do the same for free
and Boolean cumulants. Section 4 defines free Wick polynomials using the Hopf-
algebraic approach. The new definition is shown to extend Anshelevich’s defini-
tion of multivariate free Appell polynomials. At the beginning of Section 5, we
introduce the shuffle-theoretic framework allowing to deal with noncommutative
moment-cumulant relations and the corresponding noncommutative Wick polyno-
mials. Section 5.1 revisits accordingly moment-cumulant relations in noncommutative
probability theory following mainly the references [10–12]. Section 5.2 develops
shuffle calculus for free Wick polynomials. In Section 6, Boolean Wick polynomi-
als are also introduced and analyzed from this point of view. Section 7 uses the
same approach to define conditionally free Wick polynomials. In Section 8, we
show how the three notions of noncommutative Wick polynomials can be related
through comodule structures and the induced group actions. Section 9 shows how
the classical notion of Wick products generalizes naturally to the noncommutative
setting, inducing three new associative algebra structures on the tensor algebra over
a noncommutative probability space. Finally, in Section 10, we show using a Hopf-
algebraic approach how the definition of classical cumulants lifts to the notion of
tensor cumulants for random variables in a noncommutative probability space. In
Section 10.1, we explain how this leads to the definition of tensor Wick polynomi-
als. These two sections extend the results of [15] from the classical to the tensor
framework.

Below, K denotes the base field of characteristic zero over which all algebraic
structures are defined. All (co)algebras are (co)associative and (co)unital unless
otherwise stated.
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2 Cumulants and Wick polynomials

Let us first recall briefly the definition of classical cumulants and Wick polynomials.
Let X be a real-valued random variable, defined on a probability space (Ω,F,P),
with finite moments of all orders, i.e., such that mn ∶= EXn < ∞ for all n > 0. Its
exponential moment-generating function is defined as a power series in t

M(t) ∶= E exp(tX) = 1 + ∑
n>0

mn
tn

n!
.(2.1)

If we assume suitable growth conditions on the coefficients mn so that the above
series has a positive radius of convergence, then this power series defines a function
of class C∞ around the origin, and the moments mn can be recovered from it by
differentiation.

The exponential cumulant-generating function

K(t) ∶= ∑
n>0

cn
tn

n!

is a power series in t defined through the classical exponential relation between
moments and cumulants

M(t) = exp (K(t)) .(2.2)

Using standard power series manipulations, this equation rewrites:

mn = ∑
π∈P(n)

∏
B∈π

c∣B∣ .(2.3)

Here, P(n) denotes the collection of all set partitions, π ∶= {B1 , . . . , B l}, of the set
[n] ∶= {1, . . . , n}, where the block B i ∈ π contains ∣B i ∣ elements. In general, for a finite
subset U ⊂N, we denote by P(U) the collection of all set partitions of U.

Let (X1 , . . . , Xp) be a finite collection of real-valued random variables defined
on a common probability space, such that all the moments mn ∶= E[Xn1

1 ⋯Xnp
p ]

exist, where n ∶= (n1 , . . . , np) ∈Np is a multi-index. We may consider a multivariate
extension of (2.1), namely

M(t1 , . . . , tp) ∶= E exp(t1 X1 +⋯+ tp Xp)

=∶ ∑
n

mn
tn

n!
,(2.4)

where tn ∶= tn1
1 ⋯tnp

p and n! ∶= n1!⋯np!. As before, the cumulant-generating function is
defined by a relation analogous to (2.2), and its coefficients are related to the moments
in a way analogous to (2.3). This relation will be revisited in the following sections.

There exists a particular family of polynomials associated to a random variable X
with finite moments of all orders, called Wick polynomials and denoted here by Wn(x),
n ≥ 0. It turns out to be the unique family of polynomials such that W0(x) = 1 and

EWn(X) = 0, d
dx

Wn(x) = nWn−1(x),
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for all n > 0. The latter defining property means that (Wn)n≥0 qualifies as a sequence
of Appell polynomials [5]. For example, if X is a standard Gaussian random variable,
this family coincides with the Hermite polynomials. These polynomials are interesting
for physics. In particular, the Wick exponential

∶exp∶(tX) ∶= ∑
n≥0

Wn(X) tn

n!
= exp(tX)
E exp(tX) = exp(tX − K(t))

is closely related to moment- and cumulant-generating functions. In fact, this relation
can be used to define Wick polynomials, because the exponential power series in t
serves as a generating function.

The polynomial

∶Xn ∶ ∶= Wn(X)
is called the nth Wick power of X. For example,

∶X ∶ = X −EX , ∶X2 ∶ = X2 − 2X EX + 2(EX)2 −EX2 , . . . .

In general, these explicit expansions can be recursively obtained from the change of
basis relation

xn =
n
∑
j=0

(n
j
)Wj(x)mn− j .(2.5)

The latter can be generalized to finite collections (X1 , . . . , Xp) of random variables in
a way analogous to (2.4).

3 Free and Boolean cumulants

Voiculescu introduced free probability theory in the 1980s [28, 29].1 In this theory,
the classical notion of independence is replaced by the algebraic notion of freeness. A
family of unital subalgebras (B i ∶ i ∈ I) of a noncommutative probability space (A, φ)
is called freely independent (or free), if φ(a1 ⋅A ⋯ ⋅A an) = 0 whenever φ(a j) = 0 for all
j = 1, . . . , n and a j ∈ B i j for some indices i1 ≠ i2 ≠ ⋯ ≠ in .

Speicher introduced the notion of free cumulants [26] as the right analogue of the
classical cumulants in the theory of free probability, allowing for a more tractable
characterization of Voiculescu’s notion of freeness. Free cumulants are defined by a
formula analogous to (2.3) where the lattice P of set partitions is replaced by the lattice
NC of noncrossing partitions:

φ(a1 ⋅A ⋯ ⋅A an) = ∑
π∈NC([n])

∏
B∈π

k(aB).(3.1)

As above, we set k(aB) ∶= k(a i1 , . . . , a i∣B∣), for B = {i1 < ⋯ < i∣B∣}, to be the multivari-
ate free cumulant of order ∣B∣. Free cumulants reflect freeness in the sense that they
vanish whenever the involved random variables belong to different freely independent
subalgebras.

1The referee pointed us to the early reference [7] for construction of a free product state on the free
product of a family of C∗-algebras.
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Relation (3.1) between moments and free cumulants can be concisely expressed in
terms of their ordinary generating functions. Indeed, given a1 , . . . , an in A, introduce
noncommuting variables w1 , w2 , . . . , wn and the generating functions

M(w) ∶= 1 +∑
n

φ(an)wn , R(w) ∶= ∑
n

k(an)wn .

Here, we define φ(an) ∶= φ(an1 ⋅A ⋯ ⋅A anp) for the multi-index n ∶= (n1 , . . . , np) ∈
[n]p , p ∈N∗, and similarly for k(an) = k(an1 , . . . , anp). Then, (3.1) is summarized
by the intriguing identity [2, 21]

M(w) = 1 + R(z),

where the substitution

z i ∶= w i M(w)(3.2)

is in place on the right-hand side.
The fact that the random variables under consideration do not commute entails

that we are able to consider several other notions of independence in addition to
Voiculescu’s freeness. For example, the notion of Boolean cumulants appears naturally
in the context of the study of stochastic differential equations [30]. Speicher and
Woroudi [27] defined the multivariate Boolean cumulants, b(a1 , . . . , an), and the
corresponding relations with moments in the context of noncommutative probability
theory in terms of the following recursion:

φ(a1 ⋅A ⋯ ⋅A an) =
n
∑
j=1

b(a1 , . . . , a j)φ(a j+1 ⋅A ⋯ ⋅A an).

While the combinatorics of free cumulants is described by the lattice of noncrossing
partitions, the relation between moments and Boolean cumulants can be expressed by
using the lattice Int of interval partitions:

φ(a1 ⋅A ⋯ ⋅A an) = ∑
π∈Int([n])

∏
B∈π

b(aB), b(aB) ∶= b(a i1 , . . . , a i∣B∣).

Using the multi-index notation from above, these relations can be encapsulated in a
single identity by introducing the generating function

η(w) ∶= ∑
n

b(an)wn ,

yielding the simple expression [3, 21]

M(w) = 1 + η(w)M(w).

Observe that in this case, as opposed to the functional equation describing the
relation between moments and free cumulants, there is no substitution such as (3.2)
to be made.

Surprisingly, the relation between moments and the different types of cumulants
can be described concisely as the action of linear maps on the double tensor algebra.
For this, two of us introduced, in [10], a different coproduct which allows to express
these relations in a way similar to the presentation of the preceding sections.
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4 Free Wick polynomials

In [10, 12, 15], an approach in terms of Hopf algebras to the moment-cumulant
relations in both classical and noncommutative probability was introduced. It permits
to describe moment-cumulant relations in a rather different way, avoiding the use of
generating functions.

Definition 4.1 A noncommutative probability space (A, φ) consists of a unital
algebra A together with a unital map φ∶A →K, i.e., φ(1A) = 1.

To avoid ambiguities, we also denote the product of elements a, b in the algebra A
by mA(a ⊗ b) =∶ a ⋅A b. We still write mA for the iterates

mA∶ a1 ⊗ ⋅ ⋅ ⋅ ⊗ an �→ a1 ⋅A ⋅ ⋅ ⋅ ⋅A an .

Notice that we do not require the algebra A to be commutative. The elements of A
should be thought of in general as noncommutative random variables, and the map φ
plays then the role of the expectation map. Elements in A can represent, for example,
operator-valued random variables such as those appearing in the Fock space approach
to Quantum Field Theory [16].

We consider the nonunital tensor algebra over A

T(A) ∶= ⊕
n>0

A⊗n ,

and we denote elements of T(A) using word notation (a1⋯an = a1 ⊗ ⋅ ⋅ ⋅ ⊗ an). It is
graded by the number of letters, i.e., the length of a word. The unitalization of T(A)
follows from adding the empty word 1 and is denoted by T(A) = T0(A) ⊕ T(A) ∶=
K1 ⊕ T(A). The product on T(A) (resp. T(A)) is given by concatenation of words,
conc(w1 ⊗ w2) ∶= w1w2, for w1 , w2 ∈ T(A) (with the empty word 1 being the unit). Let
A be an algebra and consider the double tensor algebra T(T(A))over A. On T(T(A)),
we also consider the concatenation product, but we denote it with a vertical bar in
order to distinguish it from concatenation in T(A), i.e., conc(w1 ⊗ w2) = w1∣w2 for
w1 , w2 ∈ T(T(A)).

Given a subset U ⊂N, an interval or connected component of U is a maximal
sequence of successive elements in U. For a subset S ⊆ [n], we denote by JS

1 , . . . , JS
k(S)

the connected components of [n]/S, ordered in increasing order of their minimal
element. For notational convenience, we will often omit making explicit the depen-
dency on S of the number of these connected components and, when there is no risk
of confusion, will write simply JS

1 , . . . , JS
k for JS

1 , . . . , JS
k(S).

Definition 4.2 The map Δ∶T(A) → T(A) ⊗ T(T(A)) is defined by

Δ(a1⋯an) ∶= a1⋯an ⊗ 1 + 1 ⊗ a1⋯an + ∑
S⊊[n]
S≠∅

aS ⊗ aJS
1
∣⋯∣aJS

k
.(4.1)

It has a unique multiplicative extension Δ∶T(T(A)) → T(T(A)) ⊗ T(T(A)) such
that Δ(1) = 1 ⊗ 1.

Note that in the sum on the right-hand side of (4.1), we have inserted the con-
catenation product in T(T(A)) between the words corresponding to the connected
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components JS
1 , . . . , JS

k associated to the nonempty set S ⊊ [n], that is, whereas aS ∈
T(A), we have aJS

1
∣⋯∣aJS

k
∈ T(T(A)).

Theorem 4.3 [10] The unital double tensor algebra T(T(A)) equipped with Δ is a
noncommutative noncocommutative connected graded Hopf algebra.

Extending our approach to classical Wick polynomials into the noncommutative
realm, we introduce an endomorphism of the double tensor algebra T(T(A)). This
provides, among others, a new way of introducing the noncommutative Wick (a.k.a.
free Appell) polynomials appearing in the work of Anshelevich [2], as explained below.

Suppose that (A, φ) is a probability space. We define the map Φ∶T(T(A)) →
K as the unique unital multiplicative extension of the linear map ϕ defined on
T(A) by ϕ(a1⋯an) ∶= φ(a1 ⋅A ⋯ ⋅A an). Because Φ is—by definition—a Hopf-algebraic
character, it is an invertible element in the corresponding convolution algebra. Its
convolution inverse, denoted Φ−1, is the unique character on the double tensor
algebra such that Φ−1 ∗ Φ = Φ ∗ Φ−1 = ε. Here, ε∶T(T(A)) →K denotes the counit,
defined as the unique multiplicative map such that ker ε = T(T(A)), and which acts
as the neutral element for the convolution product. In other words, the map ε is
such that ε(1) = 1 and vanishes otherwise, and ε(w1∣w2) = ε(w1)ε(w2) for all w1 , w2 ∈
T(T(A)).

Definition 4.4 The free Wick map W∶T(T(A)) → T(T(A)) is defined by

W ∶= (id ⊗ Φ−1)Δ,

or, implicitly, by

id = (W ⊗ Φ)Δ.

We call free Wick polynomials the family {W(a1⋯an), a i ∈ A, i = 1, . . . , n}.

Proposition 4.5 The free Wick map is multiplicative, i.e., for words w , w′ ∈ T(A),

W(w∣w′) = W(w)∣W(w′).

We recall that a∣b denotes the concatenation of a and b in T(T(A)).

Proof As the identity map id and Φ−1 are both multiplicative, using Sweedler’s
notation, Δ(w) = ∑w(1) ⊗ w(2), for the coproduct defined in (4.1):

W(w∣w′) = (id ⊗ Φ−1)Δ(w∣w′)
= (id ⊗ Φ−1)(Δ(w)Δ(w′))

= ∑∑(w(1)∣w′(1))Φ−1(w(2))Φ−1(w′(2)) = W(w)∣W(w′). ∎

The compositional inverse of W, denoted W○−1, is given by

W○−1 = (id ⊗ Φ)Δ.

https://doi.org/10.4153/S0008414X21000407 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000407


1680 K. Ebrahimi-Fard, F. Patras, N. Tapia, and L. Zambotti

From Definition 4.4, we also obtain that the usual monomials in T(A) can be
expressed in terms of free Wick polynomials:

a1⋯an = ∑
S⊆[n]

W(aS)Φ(aJS
1
)⋯Φ(aJS

k
).(4.2)

Note that W restricts to an automorphism of T(A). By [2, Proposition 3.12], our
free Wick polynomials agree with Anshelevich’s free Appell polynomials, because our
formula (4.2) coincides with formula [2, Formula (3.42)].

Here are some low-degree computations:

W(a1) = a1 − φ(a1)1,
W(a1a2) = a1a2 − φ(a2)a1 − φ(a1)a2 − (φ(a1 ⋅A a2) − 2φ(a1)φ(a2))1,

W(a1a2a3) = a1a2a3 − φ(a3)a1a2 − φ(a2)a1a3 − φ(a1)a2a3

− (φ(a2 ⋅A a3) − 2φ(a2)φ(a3))a1 + φ(a1)φ(a3)a2 − (φ(a1 ⋅A a2)
− 2φ(a1)φ(a2))a3 − (φ(a1 ⋅A a2 ⋅A a3) − 2φ(a1)φ(a2 ⋅A a3)
− 2φ(a3)φ(a1 ⋅A a2) − φ(a2)φ(a1 ⋅A a3) + 5φ(a1)φ(a2)φ(a3))1.(4.3)

The computation of the third order polynomial (4.3) is somewhat subtle and should
be compared with the expression (10.5) below.

The free Wick polynomials inherit immediately from their Hopf-algebraic defini-
tion a key property of classical Wick polynomials.

Lemma 4.6 The Wick polynomials W in Definition 4.4 are centered. That is,

Φ ○ W = (Φ ⊗ Φ−1)Δ = Φ ∗ Φ−1 = ε.

Definition 4.7 Let us call universal polynomial P = P(x1 , . . . , xn ; γ) for noncommu-
tative probability spaces any linear combination of symbols

γ(X●J1
)⋯γ(X●Jp

)XI ,

where I ∐ J1 ∐⋯∐ Jp is a partition of [n] and γ takes values in K.

To a universal polynomial P together with a noncommutative probability space
(A, φ) and elements a1 , . . . , an ∈ A, we associate the element P(a1 , . . . , an ; φ) ∈ T(A)
obtained from P by replacing XI with the tensor monomial a i1⋯a ik , where I =
{i1 , . . . , ik}, and X●J with a j1 ⋅A ⋯ ⋅A a j l , where J = { j1 , . . . , j l}.

A family ( f(A,φ)) of linear endomorphisms of T(A), where (A, φ) runs over
noncommutative probability spaces, is called universal if its action on words a1⋯an is
given by universal polynomials. The Wick map, W, the inverse Wick map, W○−1, the
moment map, and the cumulant maps are examples of universal families.

Now, given (A, φ), we define a formal derivation with respect to an element a ∈ A
as follows. Fix a decomposition A =Ka ⊕ A′. Denote by ζa ∶T(A) →K the linear map
defined by ζa(a) ∶= 1, ζa(b) ∶= 0 for b ∈ A′, and ζa(w) ∶= 0 for every word w = a1⋯an ,
a i ∈ A, n ≥ 2. This map (which depends on the chosen direct sum decomposition of
A) is then extended as an infinitesimal character to the double tensor algebra. We set

∂a ∶T(T(A)) → T(T(A)), ∂a ∶= (ζa ⊗ id)Δ.
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Observe that for any word w = a1⋯an ∈ T(A) where a j = a or a j ∈ A′, we then get

∂a(w) = ∑
j∶a j=a

a1⋯a j−1∣a j+1⋯an .

For example, if w , w1 , w2 ∈ T(A′), then

∂a(aw) = w = ∂a(wa), ∂a(w1aw2) = w1∣w2 , ∂a(awa) = aw + wa.

Because ζa is infinitesimal, ∂a turns out to be a derivation on T(T(A)).

Theorem 4.8 The Wick map W is the unique family of algebra automorphisms of
T(T(A)), where (A, φ) runs over noncommutative probability spaces, such that
• The restrictions of W to T(A) form a universal family.
• The map W is centered, Φ ○ W = ε, with W(1) = 1 in particular.
• For any a ∈ A and any direct sum decomposition A =Ka ⊕ A′,

∂a ○ W = W ○ ∂a .

Proof The first two statements were already shown. The third one follows from the
coassociativity of the coproduct:

∂a ○ W = (∂a ⊗ Φ−1)Δ
= (ζa ⊗ id ⊗ Φ−1)(Δ ⊗ id)Δ
= (ζa ⊗ id ⊗ Φ−1)(id ⊗ Δ)Δ
= W ○ ∂a .

Uniqueness follows from the fact that these three properties define the universal family
W by induction. Given an integer n, choose, for example, a family a1 , . . . , an of linearly
independent free random variables in a noncommutative probability space (A, φ). Use
then an adapted direct sum decomposition A =Ka1 ⊕ ⋅ ⋅ ⋅ ⊕Kan ⊕ A′′ to define the
derivations. The knowledge of the

∂a i W(a1⋯an) = W(a1⋯a i−1)∣W(a i+1⋯an)

and the centering property determine then uniquely W(a1⋯an). The identities

∂a i ∂a j W(a1⋯an) = ∂a j ∂a i W(a1⋯an)

ensure the consistency of the formulas. ∎

5 Shuffle algebra

In this section, we briefly recall the definition of shuffle algebra, thereby setting
the notation used in the rest of the paper. We follow references [10, 12] and refer
to these articles for further bibliographical indications on the subject. We use in
the present article the topologists’ convention and call shuffle products that are not
necessarily commutative (see the definitions below). See also the recent survey [13] on
the appearance of shuffle algebras (a.k.a. dendriform algebras) and related structures
in the theory of iterated integrals and more generally chronological calculus.
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Definition 5.1 A shuffle algebra is a vector space D endowed with two bilinear
products ≺∶D ⊗ D → D and ≻∶D ⊗ D → D, called the left and right half-shuffles,
respectively, satisfying the shuffle relations

(a ≺ b) ≺ c = a ≺ (b ∗ c), a ≻ (b ≻ c) = (a ∗ b) ≻ c,
(a ≻ b) ≺ c = a ≻ (b ≺ c),

(5.1)

where we have set a ∗ b ∶= a ≻ b + a ≺ b.

These relations imply that (D, ∗) is a nonunital associative algebra. We also
consider its unitization D ∶=K1 ⊕ D by extending the half-shuffles: 1 ≺ a ∶= 0 =∶ a ≻ 1
and 1 ≻ a ∶= a =∶ a ≺ 1 for all a ∈ D. This entails that 1 ∗ a = a ∗ 1 for all a in D; note,
however, that the products 1 ≺ 1 and 1 ≻ 1 are not defined; we put, however, 1 ∗ 1 ∶= 1.

Definition 5.2 A commutative shuffle algebra is a shuffle algebra where the left and
right half-shuffles are identified by the identity:

a ≻ b − b ≺ a = 0,

so that, in particular, (D, ∗) becomes a commutative algebra and the knowledge of the
left half-shuffle ≺ (or the right half-shuffle ≻) is enough to determine the full structure.

Shuffle products are frequently denoted , as we do further below in this article
(10.2). Fundamental examples of such products are provided by the shuffle product of
simplices in geometry and topology (see the first part of [13] for a modern account)
as well as the commutative shuffle product of words defined inductively on T(X):

x1⋯xn ≺ y1⋯ym ∶= x1(x2⋯xn y1⋯ym).

The latter is dual to the unshuffle coproduct Δ . This example is generic in the sense
that the tensor algebra over an alphabet B equipped with this product is the free
commutative shuffle algebra over B [25]. The shuffle algebras we will study in the
present article are noncommutative variants of the tensor algebra.

Dual to the notion of shuffle algebra is the concept of unshuffle coalgebra [17]. An
unshuffle coalgebra is a vector space C equipped with two linear maps Δ≺∶C → C ⊗ C
and Δ≻∶C → C ⊗ C, called the left and right half-unshuffles, such that

(Δ≺ ⊗ id)Δ≺ = (id ⊗ Δ)Δ≺,(5.2)

(Δ≻ ⊗ id)Δ≺ = (id ⊗ Δ≺)Δ≻,(5.3)

(Δ ⊗ id)Δ≻ = (id ⊗ Δ≻)Δ≻,(5.4)

where Δ ∶= Δ≺ + Δ≻. As before, these axioms imply that (C , Δ) is a noncounital
coassociative coalgebra.

Definition 5.3 An unshuffle bialgebra is a vector space B =K1 ⊕ B together with
linear maps Δ≺∶B → B ⊗ B, Δ≻∶B → B ⊗ B, and m∶B ⊗ B → B such that:

(1) (B, Δ≺ , Δ≻) is an unshuffle coalgebra,
(2) (B, m) is an associative algebra, and
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(3) the following compatibility relations are satisfied:

Δ+≻(ab) = Δ+≻(a)Δ(b), Δ+≺(ab) = Δ+≺(a)Δ(b),

where we have set

Δ+≺(a) ∶= Δ≺(a) + a ⊗ 1, Δ+≻(a) ∶= Δ≻(a) + 1 ⊗ a

and

Δ(a) ∶= Δ+≺(a) + Δ+≻(a) = Δ(a) + a ⊗ 1 + 1 ⊗ a.

Given an unshuffle bialgebra, we adjoin a counit ε∶B →K, which is the unique
linear map such that ker ε = B and ε(1) = 1. We observe that, in particular, for any
unshuffle bialgebra, the triple (B, m, Δ) becomes a bialgebra in the usual sense. Thus,
its graded dual space D ∶= B∗ becomes an algebra under the convolution product

φ ∗ ψ ∶= (φ ⊗ ψ)Δ.(5.5)

Moreover, (5.2)–(5.4) imply that D =K1 ⊕ B∗ is an unital shuffle algebra, because the
convolution product splits

φ ∗ ψ = φ ≺ ψ + φ ≻ ψ,(5.6)

where φ(1) = ψ(1) = 0, φ ≺ ψ ∶= (φ ⊗ ψ)Δ+≺ , and φ ≻ ψ ∶= (φ ⊗ ψ)Δ+≻ . The counit of B
plays the role of the unit for this shuffle product, and one sets for φ ∈ D, φ(1) = 0,

ε ≺ φ = (ε ⊗ φ)Δ+≺ = 0,
φ ≻ ε = (φ ⊗ ε)Δ+≻ = 0,

φ ≺ ε = (φ ⊗ ε)Δ+≺ = φ,
ε ≻ φ = (ε ⊗ φ)Δ+≻ = φ.

By definition, an unshuffle coalgebra is cocommutative if τ ○ Δ≺ = Δ≻, where τ is
the usual switch map τ(x ⊗ y) ∶= y ⊗ x. An example is given by the algebra T(A)
equipped with unshuffle coproduct, Δ , defined in (10.1) below.

5.1 Shuffle approach to moments and cumulants

We consider an example of Definition 5.3, which is also the main setting for the shuf-
fle algebra approach to moment-cumulant relations in noncommutative probability
theory.

We note that the coproduct Δ can be split into two parts: the left half-coproduct

Δ+≺(a1⋯an) ∶= ∑
1∈S⊆[n]

aS ⊗ aJS
1
∣⋯∣aJS

k
,

and we set

Δ≺(a1⋯an) ∶= Δ+≺(a1⋯an) − a1⋯an ⊗ 1.

The right half-coproduct is defined by

Δ+≻(a1⋯an) ∶= ∑
1/∈S⊂[n]

aS ⊗ aJS
1
∣⋯∣aJS

k
,(5.7)
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and we define

Δ≻(a1⋯an) ∶= Δ+≻(a1⋯an) − 1 ⊗ a1⋯an .

This is extended to the double tensor algebra by defining

Δ+≺(w1∣⋯∣wm) ∶= Δ+≺(w1)Δ(w2)⋯Δ(wm),
Δ+≻(w1∣⋯∣wm) ∶= Δ+≻(w1)Δ(w2)⋯Δ(wm).

Theorem 5.4 [10] The bialgebra T(T(A)) equipped with Δ≺ and Δ≻ is an unshuffle
bialgebra.

We recall now from reference [10, 12] how the unshuffle bialgebra T(T(A))
provides an algebraic structure for encoding the relation between free, Boolean, and
monotone cumulants and moments in noncommutative probability theory from the
point of view of shuffle products.

The group of characters is denoted by G, and its Lie algebra of infinitesimal charac-
ters g consists of linear maps that send 1 ∈ T(T(A)) as well as any nontrivial product
in T(T(A)) to zero. The convolution exponential exp∗ defines a bijection between g

and G. We recall that the map Φ∶T(T(A)) →K is the unique unital multiplicative
extension of the linear map ϕ defined on T(A) by ϕ(a1⋯an) ∶= φ(a1 ⋅A ⋯ ⋅A an). We
are going to define three different exponential-type bijections between the group G
and its Lie algebra g, corresponding, respectively, to the convolution product ∗ and
to the right and left half-shuffles (see equations (5.5) and (5.6)). As a result, we can
associate to the character Φ ∈ G three different infinitesimal characters ρ,κ, β ∈ g.
The three exponential-type bijections encode the three moment-cumulant relations
(monotone, free, and Boolean).

The free and Boolean cumulants can be represented in terms of infinitesimal
characters as the unique maps satisfying the so-called left and, respectively, right half-
shuffle fixed point equations

Φ = ε + κ ≺ Φ and Φ = ε + Φ ≻ β.(5.8)

These equations define bijections between the Lie algebra g and the group G, i.e., the
so-called left and right half-shuffle exponentials such that

Φ = E≺(κ) = E≻(β).

Hence, we see that Φ is the left (or free) half-shuffle exponential of the infinitesimal
characterκ ∈ g. Analogously, Φ is the right (or Boolean) half-shuffle exponential of the
infinitesimal character β ∈ g. It can be shown [10, Theorem 5.2] that the free moment-
cumulant relation of order n is given by computing

E≺(κ)(a1⋯an) = ∑
π∈NC([n])

∏
B∈π

κ(aB).

Analogously, E≻(β) gives the Boolean moment-cumulant relations [12, Theorem 4]

E≻(β)(a1⋯an) = ∑
π∈Int([n])

∏
B∈π

β(aB),
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due to the fact that β ∈ g, together with the right half-shuffle operation defined in
terms of (5.7), implies that

E≻(β)(a1⋯an) =
n
∑
j=1

Φ(a j+1⋯an) β(a1⋯a j).

Shuffle algebra permits to show that half-shuffle exponentials entail the following left
and right half-shuffle logarithms:

κ = L≺(Φ) ∶= (Φ − ε) ≺ Φ−1 , β = L≻(Φ) ∶= Φ−1 ≻ (Φ − ε)

as well as the relation between the Boolean and free cumulants through the shuffle
adjoint action

β = ΘΦ(κ) ∶= Φ−1 ≻ κ ≺ Φ.(5.9)

With these notations in place, one can show that the convolutional inverse of Φ can
be also described in terms of the half-shuffle exponentials

Φ−1 = E≻(−κ) = E≺(−β),(5.10)

yielding solutions to the half-shuffle fixed point equations

Φ−1 = ε − Φ−1 ≻ κ, Φ−1 = ε − β ≺ Φ−1 .(5.11)

5.2 Shuffle calculus for free Wick polynomials

The Wick map W can be related to the free cumulants by using (5.10), whence we
obtain from Definition 4.4

W = (id ⊗ E≻(−κ))Δ.

Evaluating both sides on a word from T(A) yields
W(a1⋯an) = (id ⊗ E≻(−κ))Δ(a1⋯an).

Hence, from Definition 4.2 of the coproduct, we obtain an explicit formula for the
Wick polynomial W(a1⋯an), in terms of free cumulants (cf. [2])

W(a1⋯an) = ∑
S⊆[n]

aS ∑
π∈Int([n]/S)
π∪S∈NC([n])

(−1)∣π∣∏
B∈π

κ(aB),

which coincides with [2, Formula (3.44)]. Note that the combination of the factor
(−1)∣π∣ and the sum over interval partitions on the right-hand side stems from the
fact that Φ−1 is expressed in terms of the right (or Boolean) half-shuffle exponential
evaluated on the infinitesimal character −κ corresponding to negative values of free
cumulants. This is the reason for calling these polynomials free Wick polynomials, and
W is called the free Wick map.

Proposition 5.5 The free Wick polynomials satisfy the following recursion in terms of
the free cumulants:

W = e + (id − e) ≺ Φ−1 − W ≻ κ,(5.12)

where e ∶= η ○ ε and η is the unit map on T(T(A)).
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Proof This follows from the relations satisfied by the shuffle operations and (5.11):

W = (id ⊗ Φ−1)Δ
= e + (id − e) ≺ Φ−1 + id ≻ (Φ−1 − ε)
= e + (id − e) ≺ Φ−1 − id ≻ (Φ−1 ≻ κ)
= e + (id − e) ≺ Φ−1 − W ≻ κ. ∎

We remark that by observing that the left half-coproduct, Δ≺, can be expressed in
terms of the coproduct Δ, i.e., Δ≺(a1⋯an) = (a1⋅ ⊗ id)Δ(a2⋯an), we recover from
(5.12) the elegant recursive formula [2, Formula (3.43)]

W(a1⋯an) = a1W(a2⋯an) −
n−1
∑
j=0

κ(a1⋯a j)W(a j+1⋯an).

6 Boolean Wick polynomials

It is natural to ask whether one could also relate Wick map, W, to Boolean cumulants.
Indeed, by using once again (5.10) and Definition 4.4, we obtain

W = (id ⊗ E≺(−β))Δ.

Expanding the left half-shuffle exponential, E≺(−β), on the right-hand side, we see
that

W = id − id ≺ β − id ≻ β + id ≻ (β ≺ β) + id ≺ (β ≺ β) +⋯
= e + (id − e) ≺ (ε − β + β ≺ β +⋯) − (id ≻ β) ≺ (ε − β + (β ≺ β) +⋯)
= e + (id − e − id ≻ β) ≺ Φ−1 ,

where we have used, in the last identity, the recursion (5.11) and relations (5.1) to
rearrange the iterated half-shuffle products. This argument can be made precise with
the help of Proposition 5.5.

Proposition 6.1 The Wick map can be expressed in terms of Boolean cumulants as

W = e + (id − e − id ≻ β) ≺ Φ−1 .

Proof From Proposition 5.5, we have the identity

W = e + (id − e) ≺ Φ−1 − W ≻ κ = e + (id − e) ≺ Φ−1 − id ≻ (Φ−1 ≻ κ).

But (5.9) implies that Φ−1 ≻ κ = β ≺ Φ−1, so that

W = e + (id − e) ≺ Φ−1 − id ≻ (β ≺ Φ−1).

Because a ≻ (b ≺ c) = (a ≻ b) ≺ c from (5.1), we get

W = e + (id − e − id ≻ β) ≺ Φ−1 . ∎
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We now introduce another map, which allows to recover in a similar way the
Boolean Appel Polynomials [3, Section 3].

Definition 6.2 The Boolean Wick map W′∶T(T(A)) → T(T(A)) is defined by
W′ ∶= id − id ≻ β.(6.1)

We call as usual Boolean Wick polynomials the W′(a1⋯an), a i ∈ A, i = 1, . . . , n. In
particular, we immediately obtain the explicit expression [3, Formula (3.1)]

W′(a1⋯an) = a1⋯an −
n
∑
j=1

β(a1⋯a j) a j+1⋯an .(6.2)

Proposition 6.3 The Boolean Wick polynomials are centered.

Proof By definition, we have that
Φ ○ W′ = Φ − Φ ≻ β = ε

using (5.8). ∎

Proposition 6.1 entails the relation
W′ = e + (W − e) ≺ Φ

between the Boolean and free Wick maps. This gives the following rewriting rule for
the corresponding polynomials:

W′(a1⋯an) = ∑
1∈S⊆[n]

W(aS)Φ(aJS
1
)⋯Φ(aJS

k
).(6.3)

From (6.1), we deduce that
id = W′ + id ≻ β,(6.4)

which leads to the expansion
id = W′ + W′ ≻ β + (W′ ≻ β) ≻ β + ((W′ ≻ β) ≻ β) ≻ β +⋯.

Observe that the expansion terminates after n + 1 terms when applied to a word w ∈
T(A) with ∣w∣ = n letters, thanks to β being an infinitesimal character, i.e.,

w = W′(w) +
∣w∣

∑
i=1

R(i)≻β (W′)(w),(6.5)

where R(i)≻β (W′) ∶= R(i−1)
≻β (W′) ≻ β and R(0)≻β (W′) = W′. The first few terms are

a1 = W′(a1) + β(a1),
a1a2 = W′(a1a2) + W′(a2)β(a1) + β(a1a2) + β(a2)β(a1),

a1a2a3 = W′(a1a2a3) + W′(a2a3)β(a1) + W′(a3)β(a1a2) + W′(a3)β(a2)β(a1)
+ β(a1a2a3) + β(a1a2)β(a3) + β(a1)β(a2a3) + β(a1)β(a2)β(a3)

= W′(a1a2a3) + W′(a2a3)β(a1) + W′(a3)(β(a1a2) + β(a2)β(a1))
+ Φ(a1a2a3)

= W′(a1a2a3) +
3
∑
j=1

Φ(a1⋯a j)W′(a j+1⋯a3),
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a1a2a3a4 = W′(a1a2a3a4) + W′(a4)(β(a1a2a3) + β(a1a2)β(a3) + β(a1)β(a2a3)

+ β(a1)β(a2)β(a3)) + W′(a3a4)(β(a1a2) + β(a1)β(a2))

+ W′(a2a3a4)β(a1) + Φ(a1a2a3a4).

Here, we used the Boolean moment-cumulant relations, which say that Φ(a1⋯an) =
∑I∈Int([n])∏π∈I β(aπ).

Proposition 6.4 Let w = a1⋯an ∈ T(A),

w = W′(w) +
n
∑
j=1

Φ(a1⋯a j)W′(a j+1⋯an).

Proof For the word w = a1⋯an ∈ T(A), we find from (6.5)

w = W′(w) +
n
∑
j=1

W′(a j+1⋯an) ∑
I∈Int([ j])

∏
π∈I

β(aπ)

= W′(w) +
n
∑
j=1

Φ(a1⋯a j)W′(a j+1⋯an).

The essential input here is that the Boolean cumulants are given by β, which is an
infinitesimal character. ∎

Eventually, from (6.4), we deduce the inverse Boolean Wick map.

Proposition 6.5 The inverse Boolean Wick map is given as solution to the fixed point
equation

W′○−1 = id + W′○−1 ≻ β.(6.6)

Proof Note that the definition of the Boolean Wick map (6.1) implies that it is
invertible. We show explicitly that W′○−1 ○ W′ = W′ ○ W′○−1 = id. Indeed, we see that

W′ ○ W′○−1 = W′ + (W′ ○ W′○−1) ≻ β.

Induction on the length of words in T(A) gives for a ∈ A

W′ ○ W′○−1(a) = W′(a) + β(a) = a.

On a word w = a1⋯an ∈ T(A), n > 1, we find

W′ ○ W′○−1(w) = W′(w) +
n
∑
i=1
(W′ ○ W′○−1)(a i+1⋯an)β(a1⋯a i)

= W′(w) +
n
∑
i=1

a i+1⋯an β(a i+1⋯an)

= w .

Here, we used the induction hypothesis, (W′ ○ W′○−1)(a i+1⋯an) = a i+1⋯an , for i >
0. An analogue computation gives the opposite, i.e., W′○−1 ○ W′ = id. ∎
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From (6.6), it follows that

W′○−1(a1⋯an) =
n
∑
j=0

Φ(a1⋯a j)a j+1⋯an .

Remark 6.6 In [3], the Boolean cumulants were defined by the relation between
generating functions G of Boolean Wick polynomials and Boolean cumulants η,

G(x , z) = (1 − x ⋅ z)−1(1 − η(z)),

which implies an expression similar to (6.2) but with β applied to the other half of
the word. In principle, one could take either relation as a starting point, because there
is a choice here due to the noncommutativity of the series, and neither choice seems
to be more natural than the other. However, we decided to work with (6.2) instead,
because the polynomials so obtained are more naturally described from the shuffle
algebra point of view. The relation (6.3) also has its counterpart in terms of generating
functions, which involves a particular kind of variable substitution.

7 Conditionally free Wick polynomials

Note the apparent asymmetry in the definitions of the free and Boolean Wick poly-
nomials. There is a third family of polynomials that generalizes both the free and
Boolean cases. Indeed, we may consider the notion of conditional freeness [9] which
generalizes Voiculescu’s notion of freeness in the context of two states. Recall that a
two-state noncommutative probability space (A, φ, ψ) is a noncommutative probability
space (A, φ) endowed with a second unital linear map ψ∶A →K. We denote by Ψ
the canonical character extension of ψ to the double tensor algebra T(T(A)). We
denote by βφ the Boolean infinitesimal character associated to φ (and define similarly
βψ ,κφ ,κψ).

In the shuffle algebra approach, we have the following characterization of condi-
tionally (or c-)free cumulants [11]: the corresponding infinitesimal character Rφ ,ψ ∈ g
is defined through shuffle adjoint action:

Rφ ,ψ ∶= Ψ ≻ βφ ≺ Ψ−1 .(7.1)

This means that βφ = Ψ−1 ≻ Rφ ,ψ ≺ Ψ, such that

Φ = ε + Φ ≻ (Ψ−1 ≻ Rφ ,ψ ≺ Ψ).(7.2)

Following [11, Proposition 6.1], the evaluation of formula (7.2) on a word, i.e.,
computing Φ(a1⋯an) = φ(a1 ⋅A ⋯ ⋅A an),

Φ(a1⋯an) = Φ ≻ (Ψ−1 ≻ Rφ ,ψ ≺ Ψ)(a1⋯an),

gives back the formula discovered in reference [9] and recalled in the next theorem.

Theorem 7.1 [9] The following relation between moments and conditionally free cumu-
lants holds:

φ(a1 ⋅A ⋯ ⋅A an) = ∑
π∈NC([n])

∏
B∈Outer(π)

Rφ ,ψ(aB) ∏
B∈Inner(π)

κψ(aB).(7.3)
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Here, a block π i of a noncrossing partition π ∈ NCn is “Inner” if there exists a π j
and a, b ∈ π j such that a < c < b for all c ∈ π i . A block which is not an inner one is
“Outer.”

Conditionally free cumulants contain both free and Boolean cumulants as limiting
cases. More precisely, if we consider the case ψ = φ, then (7.1) entails

Rφ ,φ = Φ ≻ βφ ≺ Φ−1 = κφ

by (5.9). On the other hand, if ψ = ε is the trivial state, then

Rφ ,ε = βφ .

Theorem 7.2 [14] Let α1 , α2 be two infinitesimal characters of the double tensor algebra
and denote by E≻(α1) and E≻(α2) the corresponding right half-shuffle exponentials. The
right half-shuffle Baker–Campbell–Hausdorff formula holds:

L≻(E≻(α1) ∗ E≻(α2)) = α2 + ΘE≻(α2)(α1),

where Θ stands for the (shuffle) adjoint action:

ΘE≻(α2)(α1) = E−1
≻ (α2) ≻ α1 ≺ E≻(α2).

Proof Let X = E≻(α1) and Y = E≻(α2). By definition of the shuffle product, we have
that

X ∗ Y − ε = (X − ε) ≺ Y + X ≻ (Y − ε)
= (X ≻ α1) ≺ Y + X ≻ (Y ≻ α2)
= (X ≻ α1) ≺ Y + (X ∗ Y) ≻ α2 .

Now, observe that

(X ≻ α1) ≺ Y = ((X ∗ Y ∗ Y−1) ≻ α1) ≺ Y
= (X ∗ Y ≻ (Y−1 ≻ α1)) ≺ Y
= X ∗ Y ≻ (Y−1 ≻ α1 ≺ Y).

This implies the result using the definition of L≻. ∎

Returning to Definition 4.4, because Φ = E≻(ΘΨ(Rφ ,ψ)) and Φ−1 =
E≺(−ΘΨ(Rφ ,ψ)), we may now express the free Wick map W = id ∗ Φ−1 in terms of
the conditionally free cumulants Rφ ,ψ as

W = (id ⊗ E≺(−ΘΨ(Rφ ,ψ)))Δ.

A computation similar to the Boolean case yields

W = (id ⊗ E≺(−ΘΨ(Rφ ,ψ)))Δ
= e + (id − e − id ≻ ΘΨ(Rφ ,ψ)) ≺ Φ−1

= e + ((id − e) ≺ Ψ−1 − id ≻ (Ψ−1 ≻ Rφ ,ψ)) ≺ (Φ ∗ Ψ−1)−1 .

Definition 7.3 The conditionally free Wick polynomials are defined to be

Wc ∶= e + (W − e) ≺ Φ ∗ Ψ−1 .(7.4)
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This means

Wc ∶= e + (id − e) ≺ Ψ−1 − id ≻ (Ψ−1 ≻ Rφ ,ψ)
= e + (id − e) ≺ Ψ−1 − (id ∗ Ψ−1) ≻ Rφ ,ψ

= e + (id − e − id ≻ ΘΨ(Rφ ,ψ)) ≺ Ψ−1 .

From (7.4), we deduce a—intricate—recursion for the inverse of conditionally free
Wick map:

Wc○−1(a1⋯an) = a1⋯an − Wc○−1 ○ (W − id)(a1⋯an)
− ∑

1∈S⊊[n]
Wc○−1 ○ W(aS)(Φ ∗ Ψ−1)(aJS

1
)⋯(Φ ∗ Ψ−1)(aJS

l
).(7.5)

Starting again from the identity

W = id ∗ Φ−1 = id ∗ E≺(−ΘΨ(Rφ ,ψ)),

we obtain, after some simple manipulations,

W = id ∗ Ψ−1 ∗ Ψ ∗ E≺(−ΘΨ(Rφ ,ψ))
= Wψ ∗ E≺(κψ) ∗ E≺(−ΘΨ(Rφ ,ψ))
= Wψ ∗ E≺(κψ − Rφ ,ψ),

where we have used Theorem 7.2 in the last equality. Hence, we have that the free Wick
maps W and Wψ ∶= (id ∗ Ψ−1) are related:

W = Wψ ∗ (Ψ ∗ Φ−1)
= Wψ ∗ E≺(κψ − Rφ ,ψ).

Finally, we observe from (7.4) that, in the cases Ψ = Φ and Ψ = ε, we recover the
free and Boolean Wick maps W and W′, respectively.

8 Wick polynomials as group actions

Observe that the coproduct defined in Definition 4.2 is linear on the left and polyno-
mial on the right factor when restricted to T(A), i.e., Δ∶T(A) → T(A) ⊗ T(T(A)).
This means, in particular, that T(A) is a right comodule over T(T(A)), simply by
coassociativity. Thus, we can induce an action of the group G of characters over
T(T(A)) on the space End(T(A)) of linear endomorphisms of T(A) by setting

L.Ψ = (L ⊗ Ψ)Δ.

More precisely, we have the following proposition.

Proposition 8.1 Given Ψ ∈ G and L ∈ End(T(A)), define L.Ψ ∈ End(T(A)) as above.
Then, (Ψ, L) ↦ L.Ψ defines a (right) action of G on End(T(A)).

Proof Let Ψ1 , Ψ2 ∈ G and L ∈ End(T(A)). Clearly, L.Ψ ∈ End(T(A)) and

(L.Ψ1).Ψ2 = (L ⊗ Ψ1 ⊗ Ψ2) ○ (Δ ⊗ id) ○ Δ
= (L ⊗ Ψ1 ⊗ Ψ2) ○ (id ⊗ Δ) ○ Δ
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= (L ⊗ Ψ1 ∗ Ψ2) ○ Δ
= L.(Ψ1 ∗ Ψ2),

so the mapping (Ψ1 , L) ↦ L.Ψ1 is an action of G on End(T(A)). ∎

In the following, we identify implicitly the (various) notions of Wick polynomials
with the (various) restrictions of the Wick maps to T(A). So, in this section and the
following, W denotes the restriction of W to T(A), and so on (as should be anyway
clear from the context).

As we have seen above, the orbit of the identity map id ∈ Aut(T(A)) consists only
of automorphisms of T(A) and we have the inversion formula for the composition of
endomorphisms (id.Ψ)−1 = id.Ψ−1 where, on the right-hand side, Ψ is inverted with
respect to convolution. The free Wick polynomials W = id.Φ−1 are elements in the
orbit of the identity endomorphism by the group action of G on End(T(A)).

Regarding the left half-unshuffle coproduct Δ+≺ , we get from (5.2) that (T(A), Δ≺)
is also a right-comodule over (T(T(A)), Δ). At the level of endomorphisms, we
obtain the following proposition.

Proposition 8.2 Let L ∈ End(T(A)) and Ψ ∈ G. The composition (Ψ, L) ↦ LΨ ∶=
(L ⊗ Ψ)Δ≺ defines a (right) action.

Thus, we might reinterpret the Boolean Wick polynomials W′ = e + (W − e) ≺ Φ
as being given on T(A) by a combined action W′ = e + (id.Φ−1 − e)Φ . More generally,
the relation between the conditionally free and free Wick polynomials can be re-
expressed on T(A) as

Wc = e + (id.Φ−1 − e)Φ∗Ψ−1
= e + [(id.Φ−1 − e)Φ]

Ψ−1

.

Neglecting the degree zero (that is, the e) terms, the relations between free, Boolean,
and conditionally free Wick polynomials are encoded by the following diagram:

id W W′ Wc ..Φ−1 ()Φ ()Ψ−1

9 Free, Boolean, and conditionally free Wick products

Let (A, φ) be a noncommutative probability space. Let F∶T(A) → T(A) be an invert-
ible linear map such that F(1A) = 1A. One can induce a modified product ● on T(A)
by conjugacy, that is, setting w ● w′ ∶= F(F−1(w)F−1(w′)). Associativity follows from
associativity of the concatenation product on T(A). Therefore, F becomes a unital
algebra morphism from (T(A),⊗) to (T(A), ●).

Because the maps W, W′, and Wc are all invertible when acting on T(A), we obtain
from this construction three new products on T(A).

Definition 9.1 The three associative products on T(A) induced by the three Wick
maps W, W′, and Wc are denoted by ●, ⊙, and × and called the free, Boolean, and
conditionally free Wick products, respectively. The Wick maps are morphisms of
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algebras when T(A) is equipped with either of these new products. In particular, for
a ∈ A,

W(an) = W(a)●n ,

and similarly for the other cases.

The conjugacy formula gives the rule for computing the new products. For example,
in the free and Boolean cases, we find the following:

Proposition 9.2 (1) The free Wick product ● admits the following closed-form for-
mula: for words w = a1⋯an and w′ = an+1⋯an+m in T(A), we find

w ● w′ = ∑
S⊆[n+m]

W(aS)Φ(aKS
1
)⋯Φ(aKS

l
),

where the KS
i , i = 1, . . . , l , run over the connected components of [n] − ([n] ∩ S)

and (n + [m]) − (n + [m] ∩ S).
(2) The Boolean Wick product ⊙ admits the following closed-form formula: for words

w = a1⋯an and w′ = b1⋯bm in T(A), we find
w ⊙ w′ = ∑

0≤i≤n
0≤ j≤mΦ(a1⋯a i ∣b1⋯b j)W′(a i+1⋯an b j+1⋯bm).

Proof (1) Set b i ∶= an+i , i = 1, . . . , m. Because the inverse free Wick map is the map
W○−1 = (id ⊗ Φ)Δ, we have that
W○−1(w)W○−1(w′) = ∑

S⊆[n]
∑

S′⊆[m]
aS bS′ Φ(aJS

1
)⋯Φ(aJS

k(S)
)Φ(bJS′

1
)⋯Φ(bJS′

k(S′)
).

By re-expressing in terms of the a i , we get
W○−1(w)W○−1(w′) = ∑

S⊆[n+m]
aS Φ(aKS

1
)⋯Φ(aKS

l
).

The conclusion then follows by applying W to both sides of this identity.
(2) Recall Proposition 6.5 stating that the inverse Boolean Wick map is given recur-

sively W′○−1 = id + W′○−1 ≻ β such that

W′○−1(a1⋯an) =
n
∑
j=0

Φ(a1⋯a j)a j+1⋯an .

Then, we have
W′○−1(a1⋯an)W′○−1(b1⋯bm) = ∑

0≤i≤n
0≤ j≤m

Φ(a1⋯a i ∣b1⋯b j)a i+1⋯anb j+1⋯bm .

The conclusion then follows by applying W′ to both sides of this identity. ∎

Remark 9.3 A closed formula for the conditionally free Wick products follows from
using the recursion (7.5):

Wc○−1(a1⋯an)Wc○−1(b1⋯bm)

= (a1⋯an − Wc○−1 ○ (W − id)(a1⋯an)
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− ∑
1∈S⊊[n]

Wc○−1 ○ W(aS)(Φ ∗ Ψ−1)(aJS
1
)⋯(Φ ∗ Ψ−1)(aJS

l
))

(b1⋯bm − Wc○−1 ○ (W − id)(b1⋯bm)

− ∑
1∈S⊊[m]

Wc○−1 ○ W(bS)(Φ ∗ Ψ−1)(bJS
1
)⋯(Φ ∗ Ψ−1)(bJS

l
)).

Applying Wc on both sides gives the conditionally free Wick product

a1⋯an × b1⋯bm = Wc(Wc○−1(a1⋯an)Wc○−1(b1⋯bm)).

10 Tensor cumulants

We now briefly show how our approach allows to lift the classical notion of cumulants
to the noncommutative setting and to revisit the notion of tensor cumulants [21] as a
warm up for the definition of tensor Wick polynomials.

As before, we work on a noncommutative probability space (A, φ) (see Definition
4.1). On T(A), the unshuffle coproduct Δ ∶T(A) → T(A) ⊗ T(A) is defined by
declaring elements in A ↪ T(A) to be primitive and extending it multiplicatively to
all of T(A). As a result, one gets that for any a1 , . . . , an ∈ A,

Δ (a1⋯an) = Δ (a1)⋯Δ (an)
= ∑

S⊆[n]
aS ⊗ a[n]/S ,(10.1)

where we have set a∅ ∶= 1 and

aU ∶= au1⋯aup

for U = {u1 < ⋯ < up} ⊆ [n]. This endows the unital tensor algebra with the structure
of a cocommutative graded connected Hopf algebra. The antipode reverses the order
of the letters in a word and multiplies it by a minus sign if the word has odd length.

Its dual T(A)∗ is a commutative algebra with the convolution product defined for
linear maps μ, ν∶T(A) →K by the commutative shuffle product

μ ν ∶= (μ ⊗ ν)Δ .(10.2)

The unit for this product is the counit ε∶T(A) →K, which is uniquely defined by
ker ε = T(A) and ε(1) = 1. See, e.g., [23] for details.

The generalized expectation map φ permits to define a linear map ϕ∶T(A) →K by
setting ϕ(a1⋯an) = φ(a1 ⋅A ⋯ ⋅A an) and ϕ(1) = 1.

The grading on T(A) permits to think of ϕ as a graded series

ϕ = ∑
n≥0

ϕn ,

where ϕn ∶T(A) →K is a linear map vanishing outside Tn(A), the degree n com-
ponent of T(A). In this way, we may regard the map ϕ as being some kind of
generalized moment-generating function. Because the algebra T(A) is graded by the
length of words and connected (T0(A) =K1), the exponential and logarithm maps
define inverse bijections between unital linear maps on T(A) and reduced maps (maps
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that vanish on K, the degree zero component). In particular, there exists a unique
linear map c ∈ T(A)∗ with c(1) = 0 such that

ϕ = exp (c), ϕ−1 = exp (−c),

where ϕ−1 is the inverse of ϕ for the shuffle product (10.2).

Definition 10.1 The tensor cumulant map associated to ϕ is the linear application
c∶T(A) →K defined by

c ∶= log (ϕ).

Its evaluations c(a1⋯an) ∈K are also written c(a1 , . . . , an) and are called the multi-
variate tensor cumulants associated to the sequence (a1 , . . . , an) of noncommutative
random variables.

The defining relation c ∶= log (ϕ) is a version in a noncommutative context of the
usual formula relating the moment- and cumulant-generating functions (see (2.3)).
From (10.1), we see that for any j > 0, the iterated reduced coproduct Δ j−1∶T(A) →
T(A)⊗ j is given by Δ0 = id and

Δ j−1(a1⋯an) = ∑
π∈P j(n)

∑
σ∈S j

aBσ(1) ⊗⋯⊗ aBσ( j) ,(10.3)

where Pj(n) is the collection of all set partitions π = {B1 , . . . , B j} of [n] ∶= {1, . . . , n}
into j disjoint subsets and S j is the jth symmetric group (recall that for x ∈ T(A),
Δ (x) ∶= Δ (x) − x ⊗ 1 − 1 ⊗ x). From c(1) = 0, we deduce

ϕ = exp (c) = c + 1
2
(c ⊗ c)Δ1 + 1

6
(c ⊗ c ⊗ c)Δ2 + 1

24
(c ⊗ c ⊗ c ⊗ c)Δ3 +⋯ ,

giving the multidimensional version of formula (2.3):

ϕ(a1⋯an) = φ(a1 ⋅A ⋯ ⋅A an) = ∑
π∈P(n)

∏
B∈π

c(aB).(10.4)

Recall that c(aB) ∶= c(a i1 , . . . , a i∣B∣), for B = {i1 < ⋯ < i∣B∣}, is the multivariate cumu-
lant of order ∣B∣ and P(n) is the collection of all set partitions of [n]. In fact, many
other versions of this relation can be recovered from the properties of the underlying
Hopf algebra. See [10, 15] for further details. The important point here is that set
partitions appear naturally in (10.4) through formula (10.3) due to the definition of
the coproduct in (10.1).

10.1 Tensor Wick polynomials

It turns out that the same Hopf-algebraic framework used for describing the tensor
moment-cumulant relations allows to get an explicit description of tensor Wick
polynomials (that can be understood as a natural noncommutative lift of classical
Wick polynomials).

Definition 10.2 The tensor Wick map WT ∶T(A) → T(A) is defined by

WT ∶= (id ⊗ ϕ−1)Δ .

https://doi.org/10.4153/S0008414X21000407 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000407


1696 K. Ebrahimi-Fard, F. Patras, N. Tapia, and L. Zambotti

Its inverse W−1
T ∶T(A) → T(A) is given by

W−1
T = (id ⊗ ϕ)Δ .

Given a sequence (a1 , . . . , an) ∈ A, WT(a1⋯an) is called the tensor Wick polynomial
associated to this sequence.

Let us compute a few examples using the reduced unshuffle coproduct (10.3) and
the fact that the inverse ϕ−1∶T(A) →K is given by the Neumann series

ϕ−1 = ε + ∑
n>0

(−1)n ϕ⊗n Δn−1 .

Then, the first three tensor Wick polynomials in T(A) are

WT(a1) = a1 − φ(a1)1,
WT(a1a2) = a1a2 − a2φ(a1) − a1φ(a2) + ( − φ(a1 ⋅A a2) + 2φ(a1)φ(a2))1,

WT(a1a2a3) = a1a1a3 − a2a3φ(a1) − a1a3φ(a2) − a1a2φ(a3) + a1( − φ(a2 ⋅A a3)
+ 2φ(a2)φ(a3)) + a2(−φ(a1 ⋅A a3) + 2φ(a1)φ(a3)) + a3( − φ(a1 ⋅A a2)
+ 2φ(a1)φ(a2)) + ( − φ(a1 ⋅A a2 ⋅A a3) + φ(a1)φ(a2 ⋅A a3)
+ φ(a2)φ(a1 ⋅A a3) + φ(a3)φ(a1 ⋅A a2) − 6φ(a1)φ(a2)φ(a3))1.

(10.5)

Remark 10.3 The tensor Wick map WT associates to a w ∈ T(A) a noncommutative
polynomial WT(w) in T(A). Saying this, if the algebra A is commutative, then those
noncommutative polynomials map by the evaluation ev∶ a1⋯an �→ a1 ⋅A ⋅ ⋅ ⋅ ⋅A an to
the classical multivariate Wick polynomials. In particular, we have that, in this case,

ev(WT(a⊗n)) = Wn(a)

for a single element a ∈ A [15].

Observe that, by definition, we have that id = (WT ⊗ ϕ)Δ , so we get a tensor
version of relation (2.5):

a1⋯an = ∑
S⊆[n]

WT(aS)ϕ(a[n]/S)

= ∑
S⊆[n]

WT(aS) ∑
π∈P([n]/S)

∏
B∈π

c(aB).

Applying the evaluation map, the resulting relation is sometimes used as a recursive
definition of the Wick polynomials [18] in terms of moments or cumulants.

Because ϕ is not a character on T(A) (it is not multiplicative: ϕ(a1a2) = ϕ(a1 ⋅A
a2) is different from the product ϕ(a1)ϕ(a2) in general), it is not an element in the
group of characters, i.e., the group-like elements in the completion of the dual graded
Hopf algebra. Therefore, the exp / log correspondence between tensor cumulants and
moments cannot be analyzed from a Lie theoretic point of view. We refer the reader to
[14] for a discussion of the group and Lie algebra correspondence in the context of free
probability. The map ϕ has then a unique extension Φ∶T(T(A)) →K as an algebra

https://doi.org/10.4153/S0008414X21000407 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000407


Wick polynomials in noncommutative probability 1697

character. The unshuffle coproduct on the tensor algebra T(A) also admits a unique
extension Δ ∶T(T(A)) → T(T(A)) ⊗ T(T(A)) as an algebra morphism:

Δ (w1∣ . . . ∣wn) ∶= Δ (w1) ⋅ ⋅ ⋅ ⋅ ⋅ Δ (wn),

where the unit of T(A) is implicitly identified with the unit of T(T(A)).
The following proposition and theorem are variants of the corresponding results in

[15], where they were obtained in the case where the algebra A is commutative.

Proposition 10.4 The double tensor algebra T(T(A)) with the coproduct Δ is a
graded connected Hopf algebra, where deg(w1∣⋯∣wn) = deg(w1) +⋯ + deg(wn). Its
antipode S is the unique algebra anti-automorphism of T(T(A)) such that

S(a1⋯an) = ∑
π∈P(n)

(−1)∣π∣ ∑
σ∈S ∣π∣

aBσ(1) ∣⋯∣aBσ(∣π∣)

for all a1 , . . . , an ∈ A.

As a consequence, we obtain using either Proposition 10.4 and lifting the compu-
tation of WT to T(T(A)) or directly the definition of WT .

Theorem 10.5 The tensor Wick map admits the explicit expansion

WT(a1⋯an) = ∑
S⊆[n]

aS ∑
π∈P([n]/S)

(−1)∣π∣∣π∣! ∏
B∈π

ϕ(aB).

Another point that is also addressed in [15] is the fact that Wick powers do not
satisfy the usual rules of calculus: for example, because ∶X∶ = X −EX and ∶X2∶ =
X2 − 2XEX + 2(EX)2 −EX2, we see that ∶X ∶ ⋅ ∶X ∶ ≠∶X2 ∶. Nonetheless, using Hopf-
algebraic techniques, the invertibility of the Wick map allowed us to define a modified
product ⋅φ on polynomials such that

∶Xn ∶ ⋅φ ∶Xm ∶ =∶Xn+m ∶,

and a similar formula holds in the multivariate case. Because WT is a linear auto-
morphism of T(A), these observations can be adapted to the tensor case as in
Section 9.
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