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We study the dispersal of a plume of incompressible buoyant fluid injected into a
confined inclined aquifer in which there is a background flow. We assume that, to
prevent pressure buildup in the system, there is an outflow from the aquifer, with
flux equal to the injection flux, through a producing well. Using the method of
characteristics, we identify that the trajectory of the plume of injected fluid depends
on the magnitudes of both the injection flux QI and the background aquifer flux QA

relative to the buoyancy-driven exchange flow of injected and original fluid within
the aquifer QE, on the direction of the background aquifer flow, and on whether the
producing well lies upslope or downslope from the injecting well. We find the values
of the controlling parameters QI/QE and QA/QE for which all injected fluid flows
up-dip, for which the injected fluid partitions into a component moving up-dip and
a component moving down-dip, and for which all injected fluid flows down-dip. A
key learning from the analysis is that there may be very different plume trajectories
when a buoyant fluid is injected into a confined, inclined aquifer, and prediction of the
trajectory depends on knowledge of the background flow as well as the injection rate
and location of the producing wells. In the process of CO2 sequestration, this range
of initial plume geometries can inform analysis of longer-term geological storage and
assessment of the risk of activating different possible leakage pathways to the surface.

Key words: porous media, gravity currents, convection in porous media

1. Introduction
There is growing interest in the process of carbon capture and storage (CCS) for

its potential role in reducing carbon dioxide (CO2) emissions into the atmosphere.
Numerous studies have been carried out to explore the physical processes that control
the migration of CO2 following injection into deep subsurface aquifers (e.g. Pruess
et al. 2003; Juanes et al. 2006; Bickle et al. 2007; Hesse, Orr & Tchelepi 2008). One
of the key objectives of such modelling is to quantify the mechanisms and time scales
associated with the possible migration of CO2 back to our environment (Nordbotten
et al. 2009).

It has been shown that, if the aquifer is of large vertical extent compared with
the depth of the CO2 current, the motion of the original fluid in the aquifer is of
secondary importance to the flow (Barenblatt 1996; Hesse et al. 2008). Many studies
have focused on the long-time dispersal of the CO2 when this limit of a gravity-driven
thin flow is appropriate (e.g. Nordbotten & Celia 2006; Vella & Huppert 2006; Hesse
et al. 2008; Farcas & Woods 2009; Neufeld, Vella & Huppert 2009). Such models
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have explored the role of capillary trapping (Hesse et al. 2008), leakage through
the cap rock (Farcas & Woods 2009) and dissolution (Neufeld et al. 2010) on the
long-time evolution of the CO2 plume.

In contrast to the dynamics of the dispersal of CO2 at long times, during the initial
injection phase the dynamics of the displaced ambient water can also be significant,
particularly if the height of the aquifer is sufficiently small that it is effectively
‘confined’. A two-layer flow results, with a dynamic pressure gradient in both the CO2

and water (Mitchell & Woods 2006; Nordbotten & Celia 2006; Hesse et al. 2008;
Gunn & Woods 2011).

A governing equation for such displacement of one fluid by a second in a confined,
inclined aquifer in a two-dimensional geometry was originally developed by Bear
(1988, § 9.5.5), assuming that the interface remains sharp. Hesse et al. (2008) found
solutions for this system for the case in which a finite volume of CO2 spreads
through the aquifer following injection, drawing from the work of Yortsos (1995) to
motivate the use of the sharp-interface simplification based on the vertical-equilibrium
approximation for a flow with a narrow capillary transition zone. Woods & Norris
(2010) also discuss the value of sharp-interface models, in the context of gas plumes.
Mitchell & Woods (2006) and Nordbotten & Celia (2006) explored the dynamics of
the two-layer flows that develop when one fluid is injected into a horizontal, laterally
extensive confined aquifer from a vertical well, showing that the model solutions
compare well with some small-scale laboratory experiments.

During the injection phase of the sequestration process, as the system is pressurized,
faults may develop or be reactivated within the seal rock above the permeable aquifer.
These may then provide a possible pathway for CO2 to leak from the reservoir. In
a recent study Gunn & Woods (2011) explored how such leakage can impact the
dynamics of a confined flow of buoyant fluid in an inclined aquifer. Their modelling
showed the flow patterns that can develop in an aquifer of finite lateral extent,
bounded both up-dip (upslope) and down-dip (downslope) by faults. They explored
the cases in which either the fault up-dip or the fault down-dip of the injection well
is permeable, thereby providing an outflow pathway for the water displaced by the
injection of CO2. They demonstrated that there are a range of different patterns of
flooding and associated storage efficiencies depending on whether the injection well is
located up-dip or down-dip from the fault.

However, in many aquifer systems there is also a natural groundwater flow, which
we call a ‘background’ flow, which imposes a large-scale pressure gradient on the
system. Juanes, MacMinn & Szulczewski (2010) have recently explored the role of
such a background flow on the migration of a finite plume of CO2 moving through a
confined aquifer, following injection. However, the sensitivity of the system to the far-
field flux conditions demonstrated by Gunn & Woods (2011) motivates us to explore
the role of such a background flow during the injection of a plume of CO2, and this
is the main topic of the present paper. We generalize the approach of Bear (1988)
to account for the presence of a background flow and examine the motion of the
injected plume; in our analysis, we include a production well (or leaking fault) either
up-dip or down-dip from the point of injection, as may be included in the design of
a CO2 injection system to prevent reservoir pressure from becoming too large during
injection.

We initially consider the case in which the producing well lies up-dip from the
injecting well (see figure 1): in § 2 we develop the model, in § 3 we present analytical
solutions describing the long-time asymptotic behaviour of the system, and in § 4 we
compare these results with numerical solutions of the full governing equations. In
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FIGURE 1. Diagram of the modelled layer.

§ 5 we then consider the case in which the producing well lies down-dip from the
injecting well, illustrating the different dependence of the flow morphology on the
controlling parameters in this case. In § 6 we consider implications of the work for
practical CO2 injection scenarios.

2. The model
Our analysis assumes incompressible flow, building on the original approach of Bear

(1988) and Hesse et al. (2008). The analysis is framed in a two-dimensional geometry,
as is appropriate for the case of injection from a long horizontal well aligned in the
cross-slope direction, or for the large-scale flow associated with a series of vertical
wells arranged along a line in the cross-slope direction. We consider times after the
current has spread far from the injection well, when the assumption that the flow is
parallel to the base of the layer may be applied (Nordbotten & Celia 2006; Pritchard
2007; Hesse et al. 2008). We consider the evolution of the plume until such time as
the leading edge of the current of injectate reaches the producing well or fault through
which outflow takes place. We also assume that there is a sharp interface between the
fluids, and that the motion is governed by Darcy’s law.

The modelled geometry is illustrated in figure 1, where x is the spatial coordinate in
the up-dip direction, at small angle θ to the horizontal, and z is the position above the
base of the layer, measured perpendicular to the slope (i.e. at angle θ to the vertical).
We assume that the buoyant fluid is introduced at the top of the aquifer at the point
x = 0, at a rate QI m2 s−1 per unit distance cross-slope. The aquifer is assumed to
have depth H, lateral extent L� H between the wells, and inclination θ � 1 to the
horizontal. As a simplification to aid analysis of the far-field motion, the injecting well
is treated as a point source of fluid located at x= 0.

We assume also that the evolving buoyant current occupies the region h(x, t) < z <
H, and has viscosity µ1 and density ρ1. The ambient fluid, which occupies the region
0< z< h(x, t), has viscosity µ2 > µ1 and density ρ2 = ρ1 +1ρ.

We consider injection rates QI such that the dynamic pressure gradient satisfies

kQI

2πµH2
�1ρg cos θ, (2.1)

so that the cross-layer component of the buoyancy dominates the radial pressure
gradient associated with the injection, and so over a region of lateral extent H any
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variation in the depth of the fluid–fluid interface 1h is small,

1h

H
∼ kQI

2πµ1ρg cos θH
� 1. (2.2)

In the following analysis, we are therefore able to partition the flux into an up-dip
and a down-dip component while assuming that the depth of the flux at the source is
continuous. In the limit

µQA

kH
�1ρg, (2.3)

where QA is the flux of the background flow, the cross-slope component of gravity
dominates the along-slope pressure gradient associated with the background flow, and
so, given (2.1), any transitions in the depth of the flow occur over along-aquifer
length scales x� H, and so everywhere the flow remains approximately parallel to the
boundary. That is, the pressure in the z direction is approximately hydrostatic, being
given by

p(x, z, t)= p0(x, t)− ρ2gz cos θ (2.4)

for 0< z< h and by

p(x, z, t)= p0(x, t)−1ρgh cos θ − ρ1gz cos θ (2.5)

for z > h, where p0(x, t) is the pressure on the lower boundary of the permeable layer.
Darcy’s law then leads to the relations

u1 =− k1

µ1

(
∂p0

∂x
−1ρg cos θ

∂h

∂x
+ ρ1g sin θ

)
, (2.6)

u2 =− k2

µ2

(
∂p0

∂x
+ ρ2g sin θ

)
, (2.7)

where u1 and u2 are the transport velocities of the injectate and the ambient fluid,
respectively, in the up-dip sense (cf. Gunn & Woods 2011).

To complete the model for the flow, we specify conditions for mass conservation.
We assume that the producing well lies up-dip from the injecting well and produces a
flux equal to the injection flux QI , and that the aquifer has a background flux QA in
the up-dip sense. Then, sufficiently far up-dip of the source that the flow has become
parallel to the boundary, in the region between the injecting well and the producing
well, x> 0, mass conservation requires that

(H − h)u1 + hu2 = QI + QA, (2.8)

while in the region x< 0, mass conservation requires that

(H − h)u1 + hu2 = QA. (2.9)

Finally, conservation of mass for the ambient fluid gives

φ
∂h

∂t
=− ∂

∂x
(hu2) , (2.10)

where φ is the porosity of the layer, presumed constant in space and time. By
combining these equations and introducing the scalings

τ = t

ts
= 1ρgk1 sin θ

µ1φL
t, ξ = x

L
, ĥ= h

H
, (2.11)
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and the dimensionless parameters

M = k1µ2

k2µ1
, Λ= QIµ1

1ρgk1H sin θ
, Γ = QAµ1

1ρgk1H sin θ
, ε = H

L tan θ
, (2.12)

one finds that the current depth evolves according to the relation

∂ ĥ

∂τ
= ∂

∂ξ


ĥ(1− ĥ)

(
1+ ε ∂ ĥ

∂ξ

)
− (Λ+ Γ )ĥ

M(1− ĥ)+ ĥ

 (2.13)

for the ξ > 0 half-space, and the relation

∂ ĥ

∂τ
= ∂

∂ξ


ĥ(1− ĥ)

(
1+ ε ∂ ĥ

∂ξ

)
− Γ ĥ

M(1− ĥ)+ ĥ

 (2.14)

for the ξ < 0 half-space.
We note that, strictly speaking, the flow is two-dimensional in the near

neighbourhood of the wells, x ∼ H, i.e. ξ ∼ H/L� ε, as the flow adjusts to become
parallel to the boundary (cf. Pritchard 2007, § 2.1). However, in the limits (2.1) and
(2.3), which correspond to Λ tan θ, Γ tan θ � 1, the change in the depth of the current
across this region is negligible, and so we approximate the flow as being described by
(2.13) and (2.14) everywhere.

The choice of scalings (2.11) has the advantage that φΛ and φΓ are proxies for the
injection flux and the aquifer flux, both scaled relative to the buoyancy-driven flow of
the injected fluid along the aquifer:

φΛ= QI
ts

HL
, φΓ = QA

ts

HL
. (2.15)

This allows an intuitive physical interpretation of the parameters Λ and Γ . In the
above, M is the mobility ratio; and ε is the ratio of the depth of the layer to the
vertical offset between the wells (see figure 1). In this paper, we consider cases where
ε� 1.

Equations (2.13) and (2.14) can be rewritten as a pair of nonlinear
advection–diffusion equations:

∂ ĥ

∂τ
+ f±(ĥ)

∂ ĥ

∂ξ
− ε ∂

∂ξ

(
ĥ(1− ĥ)

M(1− ĥ)+ ĥ

∂ ĥ

∂ξ

)
= 0, (2.16)

where

f+(ĥ)=−
(
(M − 1)ĥ2 − 2Mĥ+M(1− (Λ+ Γ ))

(M(1− ĥ)+ ĥ)
2

)
(2.17)

describes the advective behaviour for ξ > 0, and

f−(ĥ)=−
(
(M − 1)ĥ2 − 2Mĥ+M(1− Γ )

(M(1− ĥ)+ ĥ)
2

)
(2.18)
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describes the advective behaviour for ξ < 0. The third term in (2.16) represents the
nonlinear diffusive-type spreading of the current, which originates from the component
of gravity normal to the direction of flow.

3. Analytical solutions
In the limit ε � 1, as considered in this paper, the diffusive term in (2.16) is small

and may be neglected except in the event that the nonlinear advective forcing leads to
a localized transition in the depth of the flow, in which case the diffusion term may act
to smooth this forcing over a length scale ξ ∼ O(ε). In dimensional terms, this implies
a transition zone that extends along-slope over a distance x that scales as

x∼ H

tan θ
� H, (3.1)

so the parallel-flow assumption still applies in these transition zones.
We can therefore gain some insight into the expected behaviour of the system at

long times by considering solutions of the advection equations

∂ ĥ

∂τ
+ f±(ĥ)

∂ ĥ

∂ξ
= 0, (3.2)

which have been formed by neglecting the diffusion term in (2.16). We will examine
the propagation of surfaces of constant depth as given by the characteristics of these
advection equations. Equations (3.2) have characteristic lines given by

ĥ= ĥ0, ξ = f±(ĥ0)τ. (3.3)

In regions in which the characteristics diverge, the current spreads and the gradient
∂ ĥ/∂ξ becomes smaller with time. However, in regions in which the characteristics
converge, the front of the current tends to steepen, leading to a balance between
this steepening and the diffusive spreading associated with the component of gravity
normal to the flow.

In order to proceed, we now explore how the speed of the characteristics varies
with their depth for different values of Λ and Γ . We identify conditions under
which characteristics up-dip of the source migrate up-dip, and similarly under which
characteristics down-dip of the source migrate down-dip, in order to identify the long-
time structure of the current far from the source. For both the up-dip and the down-dip
branches of the current, in the case that the speed of the characteristics decreases with
distance from the upper boundary, the depth of the leading edge of the flow decreases
smoothly to zero. In the case that the characteristics converge, i.e. the speed of the
characteristics increases with distance from the upper boundary, the leading edge of
the flow develops a steadily travelling shock-type solution, the structure of which can
be described by balancing the diffusive spreading associated with the component of
gravity normal to the slope with the along-slope steeping of characteristics. Typically
the maximum depth of the branch of the current that propagates up-dip differs from
that of the branch of the current that propagates down-dip. We illustrate how the
current adjusts from one branch to the other across a quasi-steady region near to
the source, which is controlled by a balance between the along-slope advection of
characteristics and the diffusive spreading associated with the component of gravity
normal to the slope.

It will be seen that the system exhibits seven different regimes of flow, depending
on the strength of the aquifer flow and the injection flux, numbered cases (i)–(vii). The
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regions of parameter space that give rise to each case, which we will determine in this
section, are illustrated in figure 4. Examples of the evolution of currents in each of the
cases are shown in § 4.

As we describe below, we find that in some of these cases all the injected fluid
flows up-dip, and in some cases all the injected fluid flows down-dip, but in other
cases the injected fluid divides, with a fraction moving up-dip and the remainder
flowing down-dip. In these cases where the current divides into branches, we assume
that the depth of the flow in the vicinity of the source is continuous.

3.1. Cases (i) and (ii) – strong down-dip aquifer flow
If the aquifer flux is sufficiently strong in a down-dip sense such that

Λ+ Γ <− 1
M
, (3.4)

then the characteristics in the ξ > 0 half-space are predicted to propagate down-dip,
f+(ĥ) < 0 for all ĥ (as in the example case Λ + Γ = −0.3 in figure 2). We therefore
expect that, at long times, all injected flux will be swept down-dip. Indeed, it can be
shown that (3.4) also implies that f−(ĥ) < 0 for all ĥ, meaning that all characteristics
in the down-dip half-space tend to propagate down-dip. However, we note that at early
time there is a transient up-dip flow associated with the formation of a stationary
volume of fluid across which the current depth decreases to zero. Except at the leading
edge, the down-dip current has a fixed depth 1 − ĥp−, which may be calculated by
considering the total flux of the current:

Λ=−
∫ 1

ĥp−
f−(ĥ) dĥ. (3.5)

In the case f ′−(ĥ) < 0, the characteristics are diverging: characteristics for higher values
of ĥ are swept downstream faster than characteristics for lower values of ĥ, so the
leading edge of the current adjusts smoothly to zero. This occurs if

Γ <
−1

M − 1
. (3.6)

The regime in which (3.4) and (3.6) are satisfied is denoted flow regime (i). In this
case the advection equation (3.2) admits a similarity solution as a function of the
similarity variable η = ξ/τ , given by

ĥ(η)= M

M − 1

1−

√√√√√√1−
η + 1

M
(1− Γ )

η + 1
M − 1

 , (3.7)

and this describes the structure of the leading edge of the flow in the region
η1 < η < η2 where ĥ(η2) = ĥp− and η1 = 1 + MΓ is the location of the leading
edge of the down-dip branch of the current, ĥ= 1.

If Γ >−1/(M − 1), the characteristics converge and the leading edge of the current
develops a travelling shock solution: we refer to this as flow regime (ii). The structure
of the down-dip leading edge is now described by a steady travelling wave solution of
the form ĥ ≡ ĥ(ζ = ξ − Cτ) where mass conservation requires that Λ = C(1 − ĥp−),
and ĥp− is calculated using (3.5).
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FIGURE 2. Speed of characteristics f+(ĥ) (horizontal axis) as a function of ĥ (vertical axis)
for three values of Λ + Γ , for M = 5. In the case Λ + Γ = −0.3, the condition (3.4) is
satisfied, so all characteristics tend to propagate down-dip, and so no injectate can propagate
up-dip in this case. In the case Λ + Γ = −0.1, some characteristics tend to propagate up-
dip and some down-dip. The up-dip propagating characteristics for this case are illustrated
by arrows: these are the heights at which injectate can propagate up-dip for this case. (In
general, though, injectate will not propagate up-dip at all heights for which the characteristics
propagate up-dip, as the injected flux may be insufficient to realize the characteristic curves at
all heights.) In the case Λ + Γ = 1.1, the condition (3.18) is satisfied, and the characteristics
tend to propagate up-dip for all heights 0 6 ĥ 6 1.

For both of these regimes there is a stationary volume of fluid up-dip from the
source across which the depth of the current adjusts to zero (cf. § 4). Here the
gravitational force associated with the diffusive spreading of this volume is matched
by the down-dip pressure gradient associated with the background flow, as given by
the steady-state balance of (2.16) with zero flux. This transition zone extends over
a distance ξ ∼ O(ε), that is, in dimensional terms, x ∼ H/ tan θ � H. Therefore the
shape of the current may be found by solving the ordinary differential equation

dξ

dĥ
=−ε ĥ

M(Λ+ Γ )+ ĥ
. (3.8)

For the boundary condition for this equation, we apply the continuity condition

ĥ(0)= ĥp−. (3.9)

See the start of this section for a discussion of the applicability of the governing
equations in the near vicinity of the origin.

3.2. Cases (iii) and (iv) – stronger influx with down-dip aquifer flow
We now consider the case where Λ + Γ > −1/M, for which the injected flux is

sufficiently large that it can overcome the down-dip aquifer flow, so that there is
now a component of injected fluid migrating up-dip of the source, in addition to the
down-dip component (figure 3). Analysis of the characteristics for the up-dip current
identifies that if Γ + Λ < 1 there is a region 0 < ĥ < ĥ∗ for which f+(ĥ) < 0, and so
the up-dip branch of the current is unable to flood the whole depth of the aquifer (as
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Similarity flow

FIGURE 3. Schematic of current in regime (iii) or (iv). These are currents for which
−1/M < Λ + Γ < 1 and Λ > ΛC. Injectate flows into both the up-dip and down-dip half-
spaces, but the layer is not flooded with injectate. Note that, as Γ is negative, the down-dip
flux in the down-dip sense is positive, with value −Γ . The down-dip current flows as a
current of constant depth, its base parallel to the base of the layer, behind a front (which is
a sharp front for currents in regime (iv) and a similarity front (3.7) for currents in regime
(iii)). The up-dip current is described by the similarity solution (3.10), and there is a steady
boundary layer (3.16) of fixed width immediately up-dip from the injecting well which allows
the current to adjust from the depth ĥp− to the depth of the similarity current. Currents in
regimes (i) and (ii) are identical to currents in regimes (iii) and (iv) except that they do not
have the up-dip similarity current: they have no net up-dip flux after transient behaviour. They
still have the steady boundary layer, however, giving a smooth transition from ĥ = ĥp− to
ĥ= 1.

in the example case Λ + Γ = −0.1 in figure 2). In the next section we consider the
case of even stronger injection Λ + Γ > 1, which leads to full flooding of the aquifer,
cases (v) and (vi) of figure 4.

The down-dip branch of the current in regimes (iii) and (iv) is directly analogous to
that associated with regimes (i) and (ii), except that the down-dip flux is now only a
fraction of the total injected flux. The remainder of the flux now advances up-dip, and
in this region the advection equation (2.16) admits a similarity solution for the flow as
a function of η = ξ/τ > 0 of the form

ĥ= M

M − 1

1−

√√√√√√1−
η − 1

M
(Λ+ Γ − 1)

η + 1
M − 1

 (3.10)

(cf. the self-similar solutions of Verdon & Woods (2007)). We can understand the
origin of this solution by considering the gradient of the speed of the up-dip
propagating characteristics:

f ′+(ĥ)= 2M

(
(Λ+ Γ )(M − 1)+ 1

(M − ĥ(M − 1))
3

)
. (3.11)

For M > 1, this is always positive if

Λ+ Γ > −1
M − 1

, (3.12)
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(v)

(v)

(iii)

(iii)

(i)

(i)

(ii)

(ii)

(iv)

(iv)

(vi)

(vi)

(vii)

(vii)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

–2.5 –2.0 –1.5 –1.0 –0.5 0.50

Layer floods
Similarity front Layer floods

Sharp down-dip front
All
flow
up-dip

Flow up- and down-dip
Similarity front

No flooding

All flow down-dip
Similarity front

Flow up- and down-dip
     Sharp front
             No flooding

Sharp front
All flow down-dip

4.0

0
–3.0 1.0

FIGURE 4. Possible flow regimes as a function of Λ and Γ for the case M = 5/3. Note that
this value of M has been chosen for the purpose of making a clear diagram. For a CO2–water
or CO2–oil system, M would be much larger, and hence regimes (i), (iii) and (v) would occur
for much smaller magnitudes of Γ . The line Γ = 0 corresponds to the system considered in
Gunn & Woods (2011, §3). Regimes in which the layer floods are separated from regimes
in which there is flow up- and down-dip without flooding by the line Λ + Γ = 1 (3.18).
Regimes in which all flow is down-dip are separated from regimes in which there is flow up-
and down-dip by the line Λ + Γ = −1/M (3.4). Regimes in which there is a similarity front
in the down-dip direction are separated from regimes in which there is a sharp front in the
down-dip direction by the line Γ =−1/(M − 1) (3.6). The regime in which all flow is up-dip
is separated from the regimes in which there is down-dip flow by the line Γ = 0 in Λ> 1 and
by Λ<ΛC(Γ ) in Λ< 1 (3.15).

and (3.12) is always satisfied if Λ + Γ > −1/M (for M > 1; we do not consider
cases where M 6 1). Therefore, whenever there is a flow of injected fluid into the
up-dip half-space, Λ+ Γ >−1/M, (3.11) indicates that characteristics associated with
higher values of ĥ will tend to propagate up-dip faster than characteristics associated
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with lower values of ĥ. We therefore expect a smooth front stretching into ξ > 0 with
lateral extent in proportion to τ for all cases except (i) and (ii). Equation (3.10) is a
precise solution of the advection equation (3.2), and will be a good approximation to
the solution of the full advection–diffusion equation if ε is small.

The flux in the up-dip branch of the solution has value

Λup-dip =
∫ 1

ĥmin

f+(ĥ) dĥ. (3.13)

where ĥmin is the height of the characteristic that propagates with zero speed. This is
calculated from (3.10), as the value for ĥ at η = 0. (Note though that this solution does
not describe the flow in the near vicinity of the origin.)

If the injection flux Λ is so small that Λ < Λup-dip, then there is no down-dip flow
and the flow is in regime (vii) – see § 3.4. Otherwise, the flow is in regime (iii) or (iv)
and the remaining flux Λ − Λup-dip then determines the depth of the down-dip current
1− ĥp− according to

Λ−Λup-dip =−
∫ 1

ĥp−
f−(ĥ) dĥ, (3.14)

analogous to regimes (i) and (ii). The minimum value ΛC for which some flux
migrates down-dip evaluates to

ΛC =
(

1−√−MΓ
)2
. (3.15)

Case (iii), in which there is a smooth down-dip front, is separated from case (iv), in
which there is a sharp down-dip travelling front, by the condition (3.6), just as for
cases (i) and (ii).

In these solutions we find that the depth of the down-dip current 1 − ĥp− exceeds
the maximum depth of the up-dip current. Therefore, in the region just up-dip of the
source, the current depth decreases from 1− ĥp− to 1− ĥ(0), which is the depth above
which all characteristics in ξ > 0 propagate up-dip (see (3.10)). The adjustment is
governed by the steady balance between the down-dip advection of characteristics for
ĥ < ĥ(0) in ξ > 0, and the up-dip gravitational spreading of the flow associated with
the component of gravity normal to the slope, as given by (2.16). In the adjustment
region there is a net upward flux Λup-dip. Using this to give the constant of integration,
and integrating the governing equation, gives an equation for the variation of depth in
the transition region,

dξ

dĥ
= ε ĥ(1− ĥ)

Λup-dip(M − h(M − 1))+ (Λ+ Γ )ĥ− ĥ(1− ĥ)
, (3.16)

where the boundary condition for this equation is

ĥ(0)= ĥp−, (3.17)

as before (cf. figure 8a).

3.3. Cases (v) and (vi)
If the injection flux is sufficiently strong relative to the aquifer flux that

Λ+ Γ > 1, (3.18)
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then f+(ĥ) is always positive, meaning that characteristics for all values of ĥ tend to
propagate up-dip (as in the example case Λ+ Γ = 1.1 illustrated in figure 2). If Γ > 0
then ambient fluid also propagates up-dip, so the injectate does not fill the entire depth
of the aquifer. However, if Γ < 0 and (3.18) is satisfied, then the aquifer flux is of
smaller magnitude than the injection flux, but with a down-dip sense. As a result,
all the aquifer flow originating from up-dip is extracted by the producing well, while
near the injection well the injectate floods the whole depth of the aquifer and divides
into a component that flows up-dip towards the producing well and a component
that migrates down-dip with flux −φΓ in ξ < 0, corresponding to the background
aquifer flow that is extracted from the up-dip producing well, as required by mass
conservation. This corresponds to regimes (v) and (vi) of figure 4. The solution up-dip
is given by the similarity solution (3.10), which extends from ĥ = 0 to ĥ = 1, and the
solution down-dip is either the smooth front as given by (3.7) (regime (v)) or a shock
front (regime (vi)), depending on whether (3.6) is satisfied.

3.4. Case (vii)
In this regime all injected flux propagates up-dip. This occurs when there is a very
weak down-dip aquifer flow and a very weak injection flow, or when there is an up-dip
aquifer flow. The flow is in this regime if Γ > 0 or Λ < ΛC, where ΛC is given by
(3.15). Mass conservation determines the depth of the current according to the relation

Λ=
∫ 1

ĥp+
f+(ĥ) dĥ. (3.19)

which gives

Λ= (MΓ + ĥp+)(1− ĥp+)

ĥp+
. (3.20)

The flow thus has a region of constant depth 1 − ĥp+, with a smooth leading edge
described by the similarity solution (3.10), which applies in the region η1 < η < η2

where (3.10) gives ĥ(η1)= ĥp+ and ĥ(η2)= 1.
In case (vii) there is now a standing body of fluid down-dip from the source, as

given by the steady-state solution of (2.16) for the down-dip half-space, with no flux.

3.5. Special case
The possible behaviours of the system as a function of Λ and Γ for the example
case M = 5/3 are summarized in figure 4. The line Γ = 0 corresponds to the system
considered in Gunn & Woods (2011, § 3). When Γ = 0 and Λ < 1, all flow of
injectate is up-dip. The case Γ = 0 and Λ > 1 is special, corresponding to the
boundary between two regimes. Gunn & Woods (2011) found that in this case the
layer does flood to its base with injectate, but that no injectate propagates down-dip
after initial transient behaviour: asymptotically, all flow of injectate is up-dip. It is
informative to note that any background flow, though it may be arbitrarily small, will
move the system out of this special case and either into a regime in which injectate
propagates down-dip, or one in which ambient fluid propagates up-dip past ξ = 0.

4. Numerical illustration and discussion of physics
In this section we will illustrate the transient adjustment to the asymptotic solutions

of § 3. The numerical integration of the governing equations (2.13) and (2.14) also
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serves as a check of the analytical predictions for the long-time behaviour. We will
briefly discuss the numerical technique involved; then we will show some results from
the numerical integration, which will serve to illustrate both the agreement with the
analytical results, and the nature of the different regimes. We will discuss the physical
meaning of the values of Λ and Γ to give insight into the physical origins of the
different regimes.

4.1. Numerical method
The equations were integrated using a Crank–Nicolson scheme (Press et al. 1992),
with the boundary condition at the injection well ξ = 0 being that the depth of the
current is continuous, as was assumed for the analytical solutions.

In our numerical calculations, the inflow is initially partitioned equally between
the up-dip (ξ > 0) and down-dip (ξ < 0) half-spaces, as suggested by the limit of
(2.13) and (2.14) at τ = 0 and near the injection point ξ = 0. Subsequently, the
partitioning of the injected flux between the up-dip and down-dip domains evolves in
order to ensure that continuity of ĥ at the origin is satisfied. Note that in regimes (i)
and (ii), once the layer has flooded to its base, continuity is automatically satisfied, as
ĥ(0+) = ĥ(0−) = 0. In these cases, the partitioning chosen is Qdown-dip = −QA, in order
to satisfy the requirement of incompressibility. In all other cases, the partitioning is
calculated as follows. At each time step, a partitioning of QI into Qup-dip and Qdown-dip is
postulated. A value for ĥ(0) is then calculated from the partitioning as follows. For the
up-dip half-space, we combine

Qup-dip = (H − h(0))u1(0) (4.1)

and

QI + QA − Qup-dip = h(0)u2(0) (4.2)

with (2.6) and (2.7) to give a boundary value for ∂ ĥ/∂ξ(0) as a function of the
postulated values of ĥ(0) and Qup-dip. An equivalent condition is made for the down-dip
half-space. An iterative relaxation method is used in each half-space to find a pair of
values for ĥ(0) and ∂ ĥ/∂ξ(0) for the next time step that satisfy (2.6), (2.7), (4.1) and
(4.2), or the equivalent for the down-dip half-space. If the values of ĥ(0) obtained by
this process for each half-space agree within a small error, this solution is taken as the
solution for the next time step; if not, then a new partitioning is postulated by interval
bisection and the process is repeated.

In this calculation, it is possible that points near the nose or base of the front
overshoot ĥ = 1 or ĥ = 0, taking values ĥ > 1 or ĥ < 0. Therefore, after the solution
for each new time step is calculated, we set the value of ĥ to equal 1 or 0, respectively,
wherever it has taken a value greater than 1 or less than 0. This is the only special
treatment given to the points ĥ = 0 and ĥ = 1. We find in the numerics that the
gradient of ĥ does not tend to become infinite at these points, as is consistent with our
analytical solutions (§ 3). We have tested our numerical results for robustness, finding
that halving the space and time steps gives the same result, and in particular we have
sufficient resolution to fully resolve the adjustment of the flow to zero depth at the
nose.

Note that it is only through the boundary condition at the origin that the partitioning
of the injected flux has an effect on the solution, as the governing equations (2.13) and
(2.14) have no dependence on the partitioning of the flux.
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FIGURE 5. Evolution of the flow for the case Λ = 0.02, Γ = −0.225 and M = 5. Here ĥ is
plotted (a) as a function of ξ and (b) as a function of the similarity variable η, for the times
τ = 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5. Panel (a) illustrates that, up-dip from
the point of injection, the injected fluid rapidly forms a stationary interface with the original
fluid. Note the vertical axis has the range 0.75 6 ĥ 6 1, because the current is confined to the
top of the aquifer.

4.2. Illustrations and discussion

We now provide illustrative figures showing the numerical prediction of the evolution
of one example current for each of the seven regimes illustrated in figure 4.

4.2.1. All flow down-dip; regimes (i) and (ii)
In this case the aquifer flux is sufficiently strong (in the down-dip sense) that all

injected flux is swept down-dip. In regime (ii) the aquifer flux is still sufficiently weak
that the front of the current of injectate is buoyancy-stabilized, and in this regime
there is no over-riding finger of less viscous fluid running down-dip along the top of
the layer. An example of a current in regime (ii) is shown in figure 5. In regime (i)
the background flux is sufficiently strong that the front of the current of injectate is
no longer buoyancy-stabilized, and a thin finger of the less-viscous injectate develops
along the top of the layer in the down-dip direction. A current in regime (i) is shown
in figure 6.

4.2.2. Flow up-dip and down-dip without flooding; regimes (iii) and (iv)
In regime (iv), as in regime (ii), the background flux is sufficiently weak that

the front of the down-dip current of injectate is buoyancy-stabilized. Regime (iii)
corresponds to regime (i) in having a similarity front in the down-dip direction. In
regimes (iii) and (iv), however, the larger value of injected flux Λ means that there is
now also a flux of injectate up-dip, against the background flow. Figure 7 shows the
evolution of an example current with the same values of Γ and M as in figure 5 but
with a higher value of Λ. Figure 8 shows the evolution of a current with the same
values of Γ and M as in figure 6, but with a higher value of Λ. Figure 8(a) illustrates
the steady adjustment of the current from the down-dip region ξ < 0 to the shallower
up-dip self-similar flow, as determined by the advection–diffusion balance (3.16). Note
that the horizontal axis of figure 8(a) shows ξ , the scaled x coordinate, whereas the
horizontal axis of figure 8(b) shows the similarity coordinate η.
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FIGURE 6. Evolution of the flow for the case Λ = 0.1, Γ = −0.3 and M = 5. Plot of
ĥ as a function of the similarity variable η. The figure illustrates the convergence to the
similarity solution (3.7) in x < 0. The analytical similarity solution exists for all heights.
However, in regimes for which there is insufficient injected flux to flood the layer to its
base, the current of injectate forms a current along the top of the layer, and the front of the
current conforms to the similarity solution only within the depth of the current, ĥp− < ĥ < 1.
Characteristics associated with lower heights still tend to propagate down-dip, but there is
insufficient injectate for this to be physically realized.

Numerical
Analytical
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0
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FIGURE 7. Evolution of the flow for the case Λ= 0.5, Γ =−0.225 and M = 5. Plots of ĥ as
a function of (a) ξ and (b) η, for times τ = 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4 and 0.5.
Panel (b) illustrates the convergence to the similarity solution (3.10) in x> 0.

4.2.3. Layer floods; regimes (v) and (vi)
For yet higher values of injected flux Λ, the layer floods to its base, and injectate

flows into both the up-dip and the down-dip half-spaces at all heights. However, for
sufficiently weak background flux, the front of the down-dip current is still buoyancy-
stabilized: this is regime (vi), and an example of this regime is illustrated in figure 9.
Figure 9 uses again the same values of Γ and M used in figures 7 and 5, but with
a yet higher value of Λ. Regime (v) occurs when both injected flux and down-dip
aquifer flux are strong (large values of Λ, negative values of Γ of large magnitude).
Figure 10 shows the evolution of an example current in this regime, showing the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.253


Flow of buoyant fluid injected into aquifer with background flow 289

PDE
ODE

0.1

0.2

0.3

0.4

1 2 3 4
0

0.2

0.4

0.6

0.8

1.0

–1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5

Numerical
Analytical
Analytical

0.5

50

(a) (b)

FIGURE 8. Evolution of the flow for the case Λ = 0.5, Γ = −0.3 and M = 5. (a) Evolution
of the flow as a function of ξ for times τ = 0.1, 0.2, . . . , 5, with the inner solution (3.16)
shown for comparison. (b) Plot of ĥ as a function of the similarity variable η for times
τ = 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The figure illustrates the
convergence to the similarity solution (3.10) in x> 0, and to (3.7) in x< 0.
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FIGURE 9. Evolution of the flow for the case Λ = 1.5, Γ = −0.225 and M = 5. Here ĥ is
plotted as a function of (a) ξ and (b) η, for times τ = 0.0125, 0.025, 0.05 and 0.1. Panel (b)
illustrates the convergence to the similarity solution (3.10) in x> 0.

flooding of the layer close to the injection point ξ = 0 and the similarity fronts in both
the up-dip and down-dip directions.

4.2.4. All flow up-dip; regime (vii)
If Γ > 0, then all flow of injected flux is up-dip, as in this case both buoyancy and

pressure forces tend to act to cause the injectate to flow up-dip (an example is shown
in figure 11). It is also possible for all injectate to flow up-dip for small negative
values of Γ , provided the injected flux is sufficiently small, so that the buoyancy effect
dominates.

5. Down-dip producing well
We now examine the different situation in which the producing well is located

down-dip from the injecting well. This leads to a modified set of governing equations.
The mass-conservation equations (2.8) and (2.9) are now replaced by the relations

(H − h)u1 + hu2 = QA (5.1)
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FIGURE 10. Evolution of the flow for the case Λ= 1.75, Γ =−0.5 and M = 5. Plot of ĥ as a
function of the similarity variable η for times τ = 0.0625, 0.0125, 0.025 and 0.05. The figure
illustrates the convergence to the similarity solution (3.10) in x> 0 and to (3.7) in x< 0.
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FIGURE 11. Evolution of the flow for the case Λ = 1, Γ = 0.2 and M = 5. Plot of ĥ as a
function of the similarity variable η for times τ = 0.0125, 0.025, 0.0375, 0.05 and 0.1. The
figure illustrates the convergence to the similarity solution (3.10) in x> 0.

for the region x> 0 and

(H − h)u1 + hu2 = QA − QI (5.2)

for the region x< 0. This results in the governing equations

∂ ĥ

∂τ
= ∂

∂ξ


ĥ(1− ĥ)

(
1+ ε ∂ ĥ

∂ξ

)
− Γ ĥ

M − ĥ(M − 1)

 (5.3)
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for the region ξ > 0 and

∂ ĥ

∂τ
= ∂

∂ξ


ĥ(1− ĥ)

(
1+ ε ∂ ĥ

∂ξ

)
− (Γ −Λ)ĥ

M − ĥ(M − 1)

 (5.4)

for ξ < 0. These equations are identical to the earlier set of governing equations (2.13)
and (2.14) under the transformation

Γ → Γ −Λ. (5.5)

This may be understood as follows. When in § 2 the production well was up-dip from
the injection well, the flux immediately up-dip from the injection well was φΛ + φΓ ,
the sum of the flux due to injection and the aquifer background flux. But here the
production well is down-dip from the injection well, so the flux up-dip from the
injection well is φΓ , the aquifer flux. Similarly, when the production well was up-dip,
the down-dip flux was the aquifer flux φΓ . But with the production well down-dip, the
flux immediately down-dip from the injection well is φΓ − φΛ: the injection flux is
subtracted because it is has a down-dip sense. So, it can be seen that, when moving
from a scenario with the production well up-dip to one with the production well
down-dip, the correct change in the flux both up-dip and down-dip from the injection
well is produced by the transformation (5.5).

By analogy with § 3, in the small-ε limit in which the dynamics are controlled by
the along-slope advection, consideration of the propagation speed of the characteristics
identifies that there are seven possible flow regimes. Since the analysis is directly
equivalent to the approach presented in § 3, we do not repeat all the derivation.
However, in figure 12, we illustrate the regime diagram for this system, in the example
case M = 5/3 (cf. figure 4).

In the case of a down-dip producing well, an up-dip background flow (Γ > 0)
tends to oppose the flow driven by the pressure difference between the injecting and
producing wells (proportional to Λ). Thus, when Γ > Λ > 0, the background flux is
sufficient to overcome the pressure gradient associated with the wells, and all injected
flux flows up-dip. Owing to the buoyancy of the injected fluid, it is also possible for
all injected fluid to flow up-dip for some slightly less positive or weakly negative
background fluxes. Flooding of the layer to its base occurs where a strong up-dip
background flow Γ > 1 is opposed by a yet stronger injection flux Λ > Γ > 1. In
the case of a small down-dip background flow, even though the flow associated with
injection/production is aligned with the background flow, some injectate will still tend
to flow up-dip due to buoyancy; for all injectate to flow down-dip, a relatively strong
down-dip background flow Γ <−1/M is required.

6. Discussion and application
We have analysed the motion of a maintained release of buoyant fluid as it spreads

through a confined aquifer with a background flow. The modelling has identified some
of the key controls on the motion of the current, including the roles of the buoyancy,
of the mobility ratio and of the rate of injection. Depending on the dimensionless
controlling parameters Γ , Λ and M, the system will exhibit one of seven possible flow
regimes.
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FIGURE 12. Possible flow regimes as a function of Λ and Γ for the case M = 5/3. (Note
that, as with figure 4, this value of M is smaller than in physical systems.) The line Γ = 0
corresponds to the system considered in Gunn & Woods (2011, §4). The lines separating the
regimes are given by the equations describing the lines separating the equivalent regimes in
figure 4 under the transformation (5.5). For example, regimes in which the layer floods are
separated from regimes in which the layer does not flood by the line Γ = 1, cf. the line
Γ +Λ= 1 in § 3.

Let us now consider what values of these parameters might be found in a
practical CO2 injection scenario. If a typical aquifer background flow velocity is
10−8–10−7 m s−1 (Garven 1995), then for an aquifer 10–100 m thick this would
correspond to a flux QA = 10−7–10−5 m2 s−1. For the case of CO2 displacing
water, the relevant physical quantities are 1ρ = 250 kg m−3, µ1 = 2 × 10−5 Pa s and
µ2 = 9 × 10−4 Pa s. The value of k may be between 10−12 m2, as in the Sleipner field
(Bickle et al. 2007), and 10−14 m2, as in the case of the In Salah reservoir (Cavanagh
& Ringrose 2010). Then, taking sin θ ∼ 0.1, we find that the typical magnitudes of Γ
will be in the range Γ = 10−5–1. If a typical injection flux is QI = 10−5–10−4 m2 s−1

(IPCC 2005), then similarly we expect a range of values of Λ= 10−3–10.
Our model describes regimes for which Λ,Γ � 1/ tan θ . These values correspond

to systems with rock of high permeability, deeper aquifers or lower injection rates.
By considering the results illustrated in figure 4, we see that, for the case of a
producing well up-dip from the injecting well, any of the regimes we identified may
be encountered in physical situations. For small aquifer fluxes, all injected fluid may
flow up-dip; there may be flow both up- and down-dip from the point of injection,
with a sharp front to the down-dip current, while the layer does not flood to its base;
or the layer may flood to its base, with, again, flow both up- and down-dip, and a
sharp front to the down-dip current. For larger but still physically plausible values of
the aquifer flux, we expect to see regimes for which all flow of injectate is down-dip
or for which there is a similarity front to the down-dip flow.

Similarly, all regimes are within the range of physically reasonable systems for the
case where the producing well is down-dip from the injecting well (cf. figure 12).
We will now consider, in dimensional terms, for which systems we expect to
see a similarity front form in the down-dip direction, when the wells are in this
configuration. The similarity front forms if Λ> Γ + 1/(M − 1), which, in dimensional
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Similarity finger forms

No finger

(× 10–7)

(× 10–5)
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0

2.0

–6 6

FIGURE 13. Maximum values of QI for which no similarity front forms, as a function
of background flow velocity. Parameter values used are: 1ρ = 250 kg m−3, g = 9.81 m s−2,
H = 10 m, sin θ = 0.2, µ1 = 2× 10−5 Pa s and µ2 = 9× 10−4 Pa s.

terms, is

QI > QA + 1ρgkH sin θ
µ2 − µ1

= HuA + 1ρgkH sin θ
µ2 − µ1

. (6.1)

Figure 13 shows, for three illustrative values of permeability k, the maximum
injection rate at which CO2 can be injected into a layer without causing early
breakthrough of injectate to the down-dip producing well due to the formation of
a similarity finger, as a function of aquifer background flow velocity uA.

Our model is simplified in order to identify the key impacts of the background
flow. Several simplifications could be relaxed in subsequent studies. For example, the
model could be extended to account for compressibility of the fluids, as the effects
of compressibility may become progressively more important for systems in which the
distance between the injection well and the far-field fault are increasingly very large.
Other extensions could be to consider some of the three-dimensional dynamics and
also some of the two-phase flow effects associated with the immiscibility of water and
CO2 (Pruess et al. 2003; Hesse et al. 2008), heterogeneity of the rock and dissolution
of CO2 in the formation water and other possible reactive effects (cf. Bear 1988;
Pruess et al. 2003; Nordbotten & Celia 2006).
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