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SUMMARY
Manipulability ellipsoids are effective tools to perform task
space analysis of robotic manipulators in terms of veloci-
ties, accelerations and forces at the end effector. In this
paper a new definition of a dynamic manipulability ellipsoid
for redundant manipulators is proposed which leads to more
correct results in evaluating manipulator capabilities in
terms of task-space accelerations. The case of manipulators
in singular configurations is also analyzed. Two case studies
are presented to illustrate the correctness of the proposed
approach.
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1. INTRODUCTION
Manipulability ellipsoids are effective tools for performing
task space analyses of robotic manipulators, in terms of
their ability to influence velocities and accelerations at the
end effector or to exert forces on the environment. Briefly,
they provide an approximate description of the maximum
available performance of a manipulator in a given posture.
This may be advantageous both in the design phase to
determine the best manipulator’s structure and size, and in
the operational phase to find the best configuration to
execute a given task.

The first definition of manipulability ellipsoids was given
in reference 1 where the velocity manipulability ellipsoid
was defined as the set of end-effector velocities which can
be performed by joint velocities belonging to a unit sphere.
By resorting to the duality principle, the force manipul-
ability ellipsoid was also defined by giving an index of the
ability of exerting end-effector forces along each task-space
direction for a given set of joint torques. It can be shown
that the principle axes of the two ellipsoids coincide,
whereas the lengths of the axes are in inverse proportion;
this property has been investigated in reference 2 to define
suitable task compatibility indices.

In all those cases where the manipulator dynamics cannot
be neglected, it is useful to consider the dynamic manipul-
ability ellipsoid3 which gives a measure of the ability to
perform end-effector accelerations in a given posture with
the joint torques constrained to belong to a unit sphere. A
more correct formulation of the dynamic manipulability
ellipsoid was given in reference 4 where the effects of the
gravity are correctly taken into account.

Despite their popularity, ellipsoids suffer from possible
inconsistency deriving from the improper use of the
Euclidean metric and from the dependency on the change of
scale and coordinate frame.5 To overcome these problems, it
is supposed here that all the joints are of the same kind
(rotational) and that the relevant task space is composed of
either linear or angular accelerations.

Alternative means to evaluate manipulator performance
are task-space polytopes which accurately represent the
maximum achievable task space capabilities with given
limits in the joint space. In reference 6 a formal definition of
force and velocity polytopes was given and the extension to
two cooperating manipulators was discussed. In reference 7
the acceleration radius was derived from the acceleration
polytope to characterize dynamic performances. In refer-
ence 8 the derivation of velocity polytope for redundant
parallel robot was investigated. The definitions of manipul-
ability ellipsoids given in references 1–4 are also extended
to the case of redundant manipulators by using the
unweighted pseudoinverse of the Jacobian matrix, but this is
not always correct. It9 has been demonstrated that a new
definition of the force manipulability ellipsoid is necessary
for redundant manipulators in order to satisfy the static
assumption.

In our paper a new definition of dynamic manipulability
ellipsoid for redundant manipulators is proposed which
leads to more correct results in evaluating manipulator
capabilities in terms of task-space accelerations. The case of
manipulators in singular configuration is also analyzed. The
paper is organized as follows: In Section 2 the basic
relations are presented and the concepts of dynamic
manipulability polytope and ellipsoid are introduced. Sec-
tion 3 deals with the definition of the dynamic
manipulability ellipsoid for nonredundant manipulator in
nonsingular configuration. The extension to the case of
redundant manipulators is questioned and a new definition
of the dynamic manipulability ellipsoid for redundant
manipulators is proposed in Section 4. The case of singular
configurations is analyzed in Section 5. Two case studies are
presented in Section 6 to illustrate the correctness of the
proposed approach.

2. BASIC RELATIONS
Consider a general manipulator with n degrees of freedom
whose end effector acts in an m-dimensional task space,
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m�n. The first and second-order differential kinematics of
the manipulator can be written as

ẋ=J(q)q̇ (1)

and

ẍ=J(q)q̈+ J̇(q)q̇, (2)

where q�Rn and x�Rm denote the joint and task variables,
respectively, and J�Rm� n is the Jacobian matrix. The
manipulator’s dynamics can be written as

��J(q)Th=B(q)q̈ + c(q, q̇)+g(q), (3)

where ��Rn is the vector of joint torques, h�R m is the
vector of end-effector forces, B�Rn� n is the symmetric,
positive-definite inertia matrix, c�Rn is the vector of
Coriolis and centrifugal torques, and g�Rn is the vector of
gravitational torques. Hereafter, the dependence on q will be
omitted for notational compactness.

The goal is to study the dynamic manipulability of the
manipulator in terms of the mapping between joint torques
and end-effector accelerations. It is considered that the
manipulator is stationary in a given configuration q̄ and the
end effector is not constrained (i.e., q= q̄, q̇=0, h=0).

Under the above assumption, the second-order differ-
ential kinematic equation (2) simplifies to

ẍ=Jq̈ (4)

and the dynamics (3) becomes

� = Bq̈ + g. (5)

Solving (5) for q̈ gives

q̈ = B�1(��g) (6)

which plugged into (4) results into

ẍ = JB�1� + ẍg, (7)

where

ẍg = �JB�1 g. (8)

It can be seen from (7) that the end-effector acceleration
vector ẍ for a given configuration is obtained by the
superposition of the contributions of the joint torque vector
� and the gravitational torque vector g. The set of achievable
end-effector accelerations can be obtained by translating by
the quantity ẍg the set of accelerations described by the
mapping JB�1�, when � spans the set of all allowed joint
torques.

Bounds for joint torques are usually velocity dependent.
Since the manipulator is supposed still, constant bounds are
considered here. The bounds are also assumed to be
symmetric. If they were not, a suitable transformation can
be performed.

Therefore, the 2n bounding inequalities for the joint
torques.

��i �≤� max
i , i=1, . . . , n (9)

are defined.
In the general case where the bounds of each joint torque

are not equal, it is useful to scale them and thus consider
normalized joint torques, i.e.

�̃ = L�1� (10)

where L = diag(� max
1 , . . . , � max

n ) is the scaling matrix. At this
point, the inequalities (9) can be written in a compact form
as

� �̃ �∞ ≤ 1 (11)

where ��̃ �∞ = max{��̃1�, . . . , ��̃n�}. Equation (11) defines a
hypercube in the space of normalized joint torques.

Rewriting (6) and (7) in terms of the normalized joint
torques results into

q̈ = B�1L�̃�B�1g (12)

and

ẍ = M�̃ + ẍg , (13)

where

M = JB �1L. (14)

It is worth noticing that M�Rm� n has the same rank as J,
since B and L are positive-definite matrices.

To find all the possible end-effector accelerations, the
linear relation (13) must be considered with the set of joint
torques defined by (11). This defines a convex polytope P
as

P�{ẍ = M�̃ + x̃g with ��̃ �∞ ≤ 1}. (15)

The polytope P in (15) exactly describes manipulator’s
performances in terms of achievable end-effector accelera-
tions.

The dynamic manipulability ellipsoid, as introduced by
Yoshikawa,3 gives instead an approximation of the manip-
ulator’s capabilities; this is interesting since it can be
computed more simply and it makes it possible to define
manipulability measures (e.g. the ellipsoid’s volume) which
might be derived analytically. The dynamic manipulability
ellipsoid � is defined as

��{ẍ=M�̃ + ẍg with � �̃ � ≤ 1}. (16)

The only difference with the polytope’s definition (15) is the
use of the Euclidean norm instead of the infinity norm, i.e.
it is supposed that the joint torques belong to the unit sphere
in the normalized joint torque space.

It is clear by the definitions that the ellipsoid � is
contained into the polytope P. The vector ẍg denotes the
position of the center of both the polytope and the ellipsoid.
This center coincides with the origin of the task-space
acceleration space only if there are no gravitational torques
or these torques do not cause, in the given configuration, a
motion of the end-effector (that is the vector B�1g belongs
to the null space of the Jacobian matrix J )4.

3. NONREDUNDANT MANIPULATORS IN
NONSINGULAR CONFIGURATIONS
If the manipulator is nonredundant and in a nonsingular
configuration, the matrix M in (14) is square and full rank,
and thus equation (13) can be solved to give

�̃ = M�1(ẍ� ẍg) (17)

which allows an explicit expression for the dynamic
manipulability ellipsoid to be derived. The unit sphere in the
space of normalized joint torques
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�̃T�̃ ≤ 1 (18)

maps onto the ellipsoid in the task space of end-effector
accelerations

(ẍ� ẍg)T M�T M�1(ẍ� ẍg) ≤ 1 (19)

which, by using the definition (14) of M and introducing the
new matrix

Q = (L�1B)TL�1B = BL�2B, (20)

can be written as

(ẍ + JB �1g)TJ�T QJ�1(ẍ + JB�1g) ≤ 1 (21)

Ellipsoid (21) has all its principal axes of non null length,
since its core

N = J�TQJ�1 (22)

is positive definite. Given a direction in the task space
characterized by the unit vector t, the end effector of the
manipulator can be accelerated in that direction with the
acceleration a satisfying the inequality

�a2 + 2�a + 	 ≤ 0 (23)

which has been derived by substituting ẍ = at in (21). The
coefficients in (23) are � = tTNt > 0, � = � tT Nẍg, and
	 = ẍT

g Nẍg �1.
If �2 ��	 in (23) is not negative, all the accelerations a

belonging to the interval

� �����2 ��	

�
,

�� + ��2 ��	

�
� (24)

can be realized, otherwise there are no achievable accelera-
tions in that direction. This could happen4 if the
gravitational torques move the ellipsoid far from the line
intersecting the origin of the axes whose direction is given
by t.

It is worth noticing that, in the nonredundant case, the
ellipsoid (21) can be derived by solving the second order
differential kinematics (4) as

q̈ = J �1ẍ (25)

substituting (25) in (5), computing �̃ as in (10) and putting
it in (18). This is the definition as given in reference 3.

4. REDUNDANT MANIPULATORS IN
NONSINGULAR CONFIGURATIONS
In references 3 and 4 the extension of the dynamic
manipulability ellipsoid (21) to redundant arms is proposed
by resorting to the unweighted pseudoinverse of the
Jacobian matrix J † = JT(JJT )�1. This leads to the solution
for the second-order differential kinematics

q̈ = J†ẍ (26)

and in turns to the definition of the dynamic manipulability
ellipsoid as

(ẍ + JB�1g)TJ †T
QJ†(ẍ + JB �1 g) ≤ 1 (27)

What is questioned here is that whether using the solution
(26) for the second-order differential kinematics leads to a

correct definition of the dynamic manipulability ellipsoid.
Equation (26) gives only one possible solution to the inverse
differential kinematics, the one that minimizes the Euclid-
ean norm of q̈. This does not guarantee that the
corresponding dynamic manipulability ellipsoid is that
which better characterizes the manipulator’s performance in
terms of end-effector accelerations.

Therefore, a different derivation of the dynamic manipul-
ability ellipsoid is proposed here. If the manipulator is
redundant and is in a nonsingular configuration, the matrix
M in (14) has more columns than rows and it is full rank.
This implies that a nonempty null space of M, denoted by
Ker(M ), exists. In order to compute the ellipsoid, it is then
possible to consider only the projection of the unit sphere in
the normalized joint torque space onto the orthogonal space
of the null space Ker�(M ) = Im(MT ). This ensures that the
bound on the normalized torques (18) is fully exploited,
since torques which do not correspond to end-effector
accelerations are not considered.

Inverting equation (13) using the unweighted pseu-
doinverse of M leads to

�̃ = M†(ẍ� ẍg) (28)

which only gives �̃�Im(MT ).
The unit sphere in the space of normalized joint torques

(18) now maps onto the ellipsoid in the task space of end-
effector accelerations.

(ẍ� ẍg)
TM†T

M†(ẍ� ẍg) ≤ 1 (29)

By recalling definitions (14) of M and (20) of Q, an
alternative expression is

(ẍ + JB�1g)T(JQ�1JT ) �1(ẍ + JB�1g) ≤ 1 (30)

Now, by introducing the weighted pseudoinverse of the
Jacobian

J†
Q = Q �1JT(JQ �1 J T ) �1 (31)

equation (30) can be rewritten as

(ẍ + JB �1 g)T J †T

Q QJ †
Q(ẍ + JB�1g) ≤ 1 (32)

which can be directly compared with (27). To find
achievable accelerations in the task space, equation (23) can
still be used with N = J †T

Q QJ†
Q.

It is interesting to evaluate the solution of the second-
order differential kinematics which leads to the new
definition (32) of the dynamic manipulability ellipsoid in
the case of redundantt manipulators. From (12) and (28) it
can be derived that

q̈ = J †
Q ẍ� (I�J †

Q J )B�1g (33)

The inverse differential kinematics (33) gives the relation
between all the end-effector accelerations belonging to the
ellipsoid � and the admissible joint accelerations (i.e. those
for which �̃ T�̃ ≤ 1) which could produce them. By construc-
tion, equation (33) is the solution to the problem

min q̈(�L�1(Bq̈ + g)� ) with Jq̈ = ẍ (34)

The first term on the right-hand side of (33) is the solution
of (4) which minimizes the norm q̈T Qq̈, while the second
term is the projection of the vector �B �1g in the null space
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of J. By analyzing the structure of matrix Q in (20) it can be
concluded that solution (33) penalizes the joints which have
a larger inertia-to-maximum-torque ratio. This is partic-
ularly evident when matrix B is diagonal, since matrix Q is
diagonal too with elements Qii = (Bii/�

max
i )2.

5. MANIPULATORS IN SINGULAR
CONFIGURATIONS
If the manipulator, whatever redundant or not, is in a
singular configuration, the matrix M is not full rank. A non
empty null space exists also for non redundant manipulator
and, as above, it is possible to consider only the projection
of the unit sphere in the normalized joint torque space onto
the orthogonal space of the null space. Also, not all the rows
of M are necessary to generate the accelerations ẍ� ẍg in
(13).

The singular value decomposition of M is

M = [U1 U2] � �

0
0
0�� V T

1

V T
2
� (35)

where U1�Rm� r, U2�Rm� (m�r), V1�Rn� r, V2�Rn� (n�r). It can
be shown that the following properties hold:10

(i) columns of U1 are an orthonormal base for Im(M);
(ii) columns of U2 are an orthonormal base for

(Im(M ))� = Ker(MT );
(iii) columns of V1 are an orthonormal base for (Ker-

(M ))� =Im(MT );
(iv) columns of V2 are an orthonormal base for Ker(M ).

Inverting equation (13) gives

�̃ = M�(ẍ� ẍg) (36)

where M# denotes the generalized inverse of M whose
expression is

M� = V1
�1UT
1. (37)

Equation (36) is the minimum (Euclidean) norm solution of
(13).

Substituting (36) into (18), the expression of the dynamic
manipulability ellipsoid in this case can be shown to be

(ẍ + JB �1g)T U1 
 �2UT
1 (ẍ + JB �1 g) ≤ 1. (38)

The ellipsoid in the m-dimensional space has m�r principal
axes of null length which denote directions where it is not
possible for the manipulator to accelerate. These directions
are those belonging to Im�(M ), the space generated by the
columns of U2. To find achievable accelerations in the other
directions, equation (23) may be used with N = U1
�2UT

1.
To evaluate the solution of the second-order differential

equation which leads to the definition (38), from (12), (20)
and (36) it can be derived that

q̈ = Q�
1
2(JQ �

1
2)#(ẍ� ẍg)�B �1g. (39)

Equation (39) can be written as

q̈ = J#
Q ẍ� (I�J#

Q J)B�1g. (40)

by defining the generalized weighted inverse of J

J #
Q = Q �

1
2 (JQ�

1
2)# (41)

The name given to (41) is justified by the fact that q̈ = J#
Q ẍ

is the solution of the problem

minq̈ (q̈ T Qq̈ ) with Jq̈ = ẍ. (42)

By using (41), the ellipsoid (38) can be written in the
alternative form

(ẍ + JB �1g)T J#T

Q QJ#
Q( ẍ + JB �1g) ≤ 1 (43)

which can be compared with (27) and (32).

6. CASE STUDIES
To show the correctness of the proposed definition, we
applied it to a three degree-of-freedom planar manipulator
moving in the vertical plane, so that gravity forces act
downward. The dynamic parameters of the manipulator’s
links in SI units are reported in the table below where li is
the length, lci is the distance of the center of mass from the
joint axes, and mi is the mass of the i-th link.

Link li lci mi

1 1.0 0.5 4.0
2 0.8 0.4 2.0
3 0.5 0.25 0.6

The link inertia has been set as Ii = mi l
2
i /3, i = 1, 2, 3. The

bounds on the joint torques are

�max = ��min =

100

30

4

.

The manipulator has been set in the configuration

q =

�
2

�
�
2

�
�
2

.

The core of ellipsoid (27) is

N =� 1.8011

�0.9571

�0.9571

2.1908 � 10�3

which gives the two eigenvectors

� 0.7744

0.6326

0.6326

�0.7744 �
with the corresponding eigenvalues 18.341 and 31.323,
respectively.

The core of ellipsoid (32) is

N =� 0.5349

0.1752

0.1752

1.1784 �10�3
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which gives the two eigenvectors

� 0.9691

�0.2467 � � 0.2467

0.9691 �
with the corresponding eigenvalues 28.595 and 45.163,
respectively.

The vector ẍg in (8) is [0 �12.392]T.
In Figure 1 the two dynamic manipulability ellipsoids

(27) and (32) are plotted together with the polytope (15).
Notice the difference between the two ellipsoids both in size
and in orientation. Comparison with the polytope, which
represents the exact mapping, confirms that the new
definition of the dynamic manipulability ellipsoid presented
in this paper gives better information about manipulator
capabilities, as anticipated in the derivation of (32).

Consider now the horizontal direction in the task space
denoted by t=[1 0]T. By solving inequality (23) for the new
definition of the ellipsoid (that is with N=J †T

Q QJ †
Q ) the

achievable end-effector accelerations (24) are a
�[�43.401, 35.284].

With reference to acceleration ẍ = [35.284 0]T, by apply-
ing (33) the corresponding joint acceleration vector
q̈ = [6.8943 �6.8943 84.356]T is obtained which, sub-
stituting in �̃ = L�1(Bq̈ + g), gives the needed normalized

joint torque vector �̃ = [0.3020 0.5247 0.7959]T. This
torque is of unit norm and thus admissable.

If inversion (26) is applied instead, results are quite
different. In fact, the resulting joint acceleration vector is
now q̈ = [�23.522 23.522 23.522]T and the normalized
joint torque vector is �̃ = [�0.7879 0.5754 1.1761]T. This
torque is not admissable since ��̃ �=1.5281; moreover the
third component violates the real bounds on the normalized
torque since it is greater than one.

Consider now the singular configuration

q =

�
6

0

0

.

which corresponds to a fully extended arm.
In this configuration, vector xg in (8) is [4.5579

�7.8945]T. Matrix M in (14) is

M =��5.4745

9.4820

16.012

�27.735

�25.858

44.787 � .

which has rank equal 1. Its Singular Value Decomposition is

Fig. 1. The dynamic manipulator ellipsoids (27) –dotted– and (32) –solid-together with polytope (15) –dashed.
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M =��0.5

0.866

0.866

0.5 ��61.806

0

0

0

0

0�
0.1771

�0.9640

0.1982

�0.5182

0.0798

0.8515

0.8367

0.2535

0.4854

The core of ellipsoid (38) is computed as N = U1
 �2 UT
1 and

it is

N = 10�3[ 0.0654

�0.1134

�0.1134

0.1963 ].
Notice that the ellipsoid degenerates into a segment. The
end-effector’s motions are only possible along the direction
U1 = [�0.5 0.866]T, that is the direction orthogonal to the
arm. Figure 2 shows the sought degenerate ellipsoid
together with the polytope which also degerates into a
segment.

The achievable end-effector’s accelerations along that
direction are those belonging to the interval (24) that in this
case is [�70.922, 52.690]. With reference to the lower
bound, consider the task-space acceleration ẍ = [35.461
�61.420]T. By applying (40) the corresponding joint
acceleration vector q̈ = [�49.417 172.961 �364.223]T is
obtained which gives the normalized joint torque
�̃ = [�0.1771 0.5182 �0.8367]T.

This torque vector is of unit norm and thus admissible.

7. CONCLUSIONS
A new definition of the dynamic manipulability ellipsoid for
redundant manipulators has been given in this paper.
Differently from a previous definition, it more correctly
characterizes a manipulator’s performance in terms of
achievable end-effector accelerations for a given set of joint
torques. The case of manipulators in singular configurations
has been also analyzed and a definition of dynamic
manipulability ellipsoid given as well.

Two case studies for an “easy-to-understand” planar arm
have been presented to show the correctness of the proposed
definition.
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