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An approximation procedure is described, which greatly simplifies dead reckoning on a
tortuous path. The journey is divided into N segments of equal length, L. The overall
direction is approximately the average direction of the segments. The net distance is

approximately NL[1-var(a)/2], where var(a) is the variance (in radians squared) of bearings,
ai, corresponding to the segments, and must be less than 0.7. Propagation of random errors
is discussed. In a case study in sub-tropical rainforest the technique gives an estimated

position whose associated circle of 68% confidence has a radius of about 10% of the net
distance.
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1. INTRODUCTION. In rainforest, navigation is an art combining several
techniques, all of which have limitations. GPS signals can be blocked by a damp
forest canopy or steep canyon walls, or be unavailable for technical reasons.
Compass resection is limited by the difficulty of seeing and identifying suitable ref-
erence points. Dead reckoning becomes unwieldy when the path involves many
changes in direction. In practice one may obtain a working average bearing by fre-
quent reference to a magnetic compass, count paces to estimate the distance trav-
elled and then guess how much shorter the direct line may be than the path which
was followed. The more accurately this can be done the more quickly and reliably
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the estimated position can be updated by map reading. The present work applies
some concepts adapted from Fisher (1953) to provide a practical, statistically-based
procedure for estimating the net bearing and distance. Propagation of experimental
uncertainty is discussed in order to establish regions of validity for the method and
the magnitude of the uncertainties incurred.

2. THEOREM. With reference to Figure 1, AB is the overall displacement
which is required to be estimated, li is the ith segment of the path travelled and the
residual wi is the angle by which the ith segment departs from the overall direction
of the line AB. If R is the length AB then:
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Referring to Figure 1, wi=aix�aa+c where ai is the bearing of the ith leg, �aa is the
average value of ai, and c is the small angular difference between �aa and the overall
direction AB. If there are N segments, all of length L, equation 3 becomes:
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P
(aix�aa) is zero by definition of �aa. Therefore:

R=NL 1x
P

aix�aað Þ2

2N
+

c2

2
+

P
w4
i

24N

� �
x :: (6)

Figure 1. Tortuous path and corresponding vector displacement: (a) showing wi, (b) showing hi
and ai.
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Irrespective of the underlying probability distribution, the variance of a set of sam-
ples xi is given by:

var xð Þ=
P

xixxð Þ2

N
(8)

Therefore if the terms in c2 and w4 are negligible, equation 6 can be written:

R ffi Rk=NL 1x
var(a)

2

� �
(9)

3. PRACTICAL APPLICATION. The var(a)/2 term in equation 9 re-
presents a quantifiable correction to the path length. It is relatively straightforward
to apply this correction because var(a), the variance in the bearings, can be calcu-
lated very readily using the statistical facilities on a modern pocket calculator. The
terms in c2 and w4 in the brackets in equation 6 are fractional perturbations which
decrease with the dispersion in path segment directions. They converge rapidly
to zero if h is constrained to be less than 1 rad (i.e. 57.3x). At the same time, the
average bearing, �aa=

P
(ai)=N, which is a by-product of the same pocket-calculator

computation, is expected to be a good approximation to the bearing of the line AB,
thus providing a position estimate for the point B.

4. DRAWING-BOARD EXPERIMENT. Figure 2 is a scaled drawing-
board experiment to test the principle. It shows an arbitrarily drawn pathway,
divided into eleven segments, each 1 cm long. The bearings ai of the segments are
listed in Table 1, together with the residuals hi (relative to the mean bearing) and

Figure 2. Drawing board experiment.
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powers of hi. From this table :

Average bearing; �aa=313 �4� (10)

Std Dev(a)=41 �93�=0 �7318 rad (11)

var(h)=var(a)=0 �5355 rad2 (12)

X
h3
i

� �
=3 �0872 rad

3
(13)

X
h4
i

� �
=5 �9236 rad

4
(14)

The difference in bearing (c) between the bearing of the line AB and the average of the
bearings of each of the eleven segments is 3.3x. From equations 6 and 7 the estimate,
Rk, of distance R between the start and end points A and B is therefore:

Rk=NL 1x
var(h)
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=11 cm (1x0 �2677+0 �0016+0 �0224+0 �0027+0 �0004+0 �0000 ::) (16)

Note that the second (i.e. var(h)/2) term in equation 15 represents a correction of
27%, which is significant, and the term in hi

4 represents a correction of 2%, which in
many applications would be negligible. The other terms (arising from c) are parts per
thousand and smaller, and are therefore neglected entirely in the error analysis in the
following paragraphs. The position estimate obtained by using only the average
bearing for direction and only the var(a) term to adjust the distance measurement is
shown in Figure 2 as the point B’. The misclose, (BB’), 0.65 cm, is 7.5% of the actual
distance AB.

The purpose of the statistical ‘‘error analysis ’’ in sections 5 to 9 below is merely
to establish some rules of thumb regarding the accuracy of a routine procedure which

Table 1. Drawing board experiment.

i

Bearing Bearing (*) hi hi hi
2

ai (x) ai (x) (x) (rad) (rad2)

1 298 298 x15.4 x0.2681 0.0719

2 280 280 x33.4 x0.5823 0.3391

3 269 269 x44.4 x0.7743 0.5995

4 273 273 x40.4 x0.7045 0.4963

5 297 297 x16.4 x0.2856 0.0816

6 013 373 +59.6 1.0409 1.0834

7 028 388 +74.6 1.3027 1.6969

8 011 371 +57.6 1.0059 1.0119

9 283 283 x30.4 x0.5299 0.2808

10 289 289 x24.4 x0.4252 0.1808

11 326 326 +12.6 0.2205 0.0486

* In this column bearings in the NE quadrant have 360x added to circumvent the problem of

incorporating unwanted multiples of 360x in the variance computation.
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will be outlined in section 10. An equivalent approach, which some readers may
prefer, would be to go directly to sections 10, 11 and 12 and then establish the
strengths and limitations of the method directly, by repeated experiments.

5. CASE OF A PATH FORMING THE ARC OF CIRCLE. A con-
tinuous circular path (Figure 3) represents an interesting and mathematically trac-
table special case. Let r be the radius of the circular path and f the fraction of a
circle subtended between the ends of the arc traversed. By symmetry, the mean
bearing, �aa, is equal to the average of the start and finish bearings, i.e. �aa=(aBxaA)/2.
The angle h is given by h=(ax�aa) and the variance in h, which is the same as the
variance in a, is given by:

var(h)=
1

2pf

Z +2pf=2

x2pf=2
h2dh (17)

var(h)=
(pf )2

3
(18)

The arc length traversed is D=2prf and the chord length is given by:

R=2rrrsin
2pf

2

� �
(19)

=2rsin (pf ) (20)

The estimate, Rk, of the length of this cord which would be obtained by the method
being discussed is :

Rk=
Z B

A

dl

� �
1x

var(a)

2

� �
(21)

=(2prf )[1x(pf )2=6] (22)

Figure 3. Special case of a circular path.
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The fractional error incurred by substituting the expression in equation 22 for the
chord length is :

Dfr(R)=(RkxR)=R (23)

=
pf

sin (pf )
x

(pf )3

6 sin (pf )
x1 (24)

By evaluating this expression numerically, it is found that the magnitude of the
fractional error, Dfr(R), remains below 10% so long as f is less than a half, i.e. so long
as the path does not double back. For f larger than 0.5, Dfr(R) increases rapidly,
becoming 19% for f=0.6 and 47% for f=0.7. At the same time, var(h) increases
as f increases, reaching a critical value of 1.0 close to f=0.5. This means that the
procedure is likely to be useful in practice provided that the path does not double
back significantly, a condition that is associated with large values of var(h).

6. EFFECT OF TRUNCATING THE POWER SERIES. The frac-
tional error in Rk caused by truncation of equation 6, ignoring the very small terms
in c, is :

efrR=
L

P
h4
i =4!x

P
h6
i =6!+ ;::

� �
R

(25)

Strictly speaking this is a systematic error and is one sided. Evaluating it would be
equivalent to completing the full dead reckoning calculation, but rather than carry
out such complicated arithemetic under field conditions, we will simply treat it as an
error bound, and (conservatively) treat it as two sided.

If var(h) is less than unity this will be dominated by the term in
P

h4
i , and under

this condition

efrR �
P

ih
4
i

24N
� 1x

var(h)

2

� �
(26)

Now if hi are Gaussian-distributed,
P

h4
i=3Nvar2(h), (see for example Martin, 1971,

p28) hence

efrR � var2(h)

8(1xvar(h)=2)
(27)

When this expression is evaluated numerically it is found to increase by about 0.03
(or 3%) for each increase of 0.1 in var(h), and to pass through the critical value of 0.1
(or 10%) when var(h) is slightly larger than 0.7. Thus the procedure can be expected
to give a 10% accuracy in R so long as var(h) is less than 0.7.

A more comprehensive picture is obtained from Figure 4, where the fractional
error in truncating the power series is plotted as a function of N and var(h). The
graph has been obtained by:

’ computing the approximation error
P

cos (hi) minus N(1x(varh)/2), where hi is
drawn randomly from a Gaussian-distributed population having the prescribed
variance and a mean of zero,

’ iterating this calculation 1000 times,
’ computing the mean of the 1000 results and plotting this as a single point on

Figure 4 and
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’ iterating the process to plot 21 data points on each of 11 curves shown in
Figure 4.

The figure is consistent with the abovementioned analytical result where N is large.
Specifically, 10% accuracy is likely to be achieved in R, provided that N is greater
than 20 and var(h) is less than 0.7.

7. UNCERTAINTY IN THE MEAN DIRECTION. In general the
mean bearing of the segments (i.e. AB’) does not coincide with the overall bearing
of the vector AB. There is a small discrepancy, c, (Figures 1, 2 and 5) which would
disappear only if the cumulative residual,

P
(sinhi), were equal to zero. Referring

to Figure 5, for the line AB: X
(L sin (hi+c))=0 (28)

If c is small, sin(hi+c)=sin(hi)+ccos(hi)

Hence: X
L( sin (hi)+c cos (hi))=0 (29)

and

c=x
P

sin (hi)P
cos (hi)

(30)

Of course c could be evaluated from equation 30, which would be equivalent to
completing the full dead reckoning calculation. For the present purpose we treat c as
a statistical fluctuation and determine error bounds for it using error propagation
theory.

Figure 4. Effect of truncating the Power Series on the fractional uncertainty in R. Var(h) is

marked against each of the contours. 10% error threshold is highlighted.
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P
cos hi � N, hence:

c � x
1

N

X
hixh3

i =3!+h5
i =5!x ::

� �
(31)

By definition
P

hi is zero. Neglecting the higher order terms, which will make a
fractional contribution less than hi

2/20:

c � (1=N)
X

(h3
i =3!) (32)

var(c) � var
1

3!N

X
h3
i

� �
(33)

var(c) � 1

(3!N)2
var

X
h3
i

� �
(34)

var(c) � 1

(3!N)2

X
(varh3) (35)

var(c) � N

(3!N)2
var(h3) (36)

Var (h3) is the sixth central moment, which for a normal distribution is also equal to
15 (var(h))3 (see for example Martin, 1971, p28). Hence, if we assume that the hi are
normally distributed:

var(c) � 15

36N
(varh)3 (37)

The uncertainty in c can be taken as its standard deviation, which is the square root
of the variance, hence:

ep(c) �
5var3(h)

12N

� �1=2

(38)

The subscript p, for procedure, is to distinguish this uncertainty from uncertainties
discussed in section 8, below. ep(c) is shown graphically in Figure 6 as a function of

Figure 5. Misclose in bearing.
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the number of segments,N. In particular it can be seen that ifN is greater than 20 and
var(h) is less than 0.7 then ep(c) is less than 0.1, i.e. e(f) is less than 10% of the
magnitude of R.

8. ERRORS INHERENT IN DEAD RECKONING. Quite apart from
the errors discussed in sections 6 and 7, which are specific to the approximation
procedure of this paper, uncertainties in bearing and distance will be accumulated
in the same way as with any application of the dead reckoning technique.

The Law of Propagation of Errors (eg. Martin 1971 p54), holds that if
F=F(x1, x2,..), then

e2(F )=
@F

@x2

� �2

e2x1+
@F

@x2

� �2

e2x2+ :: (39)

Since R �
X

licos(hi), (40)

using subscript d to denote uncertainies inherent to the dead reckoning process, as
distinct from the errors incurred by making approximations, it follows that :

e2dR=
X @(li cos hi)

@li

� �2

e2li+
X @(li cos hi)

@hi

� �2

e2hi (41)

e2dR=
X

(cos2hie
2li)+L2

X
( sin2 hie

2hi) (42)

Note that e(hi) is the uncertainty in each of the angular measurements, eg. the com-
pass reading error, which is much smaller than the standard deviation of the set of

Figure 6. Uncertainty in c. The contours are labelled with the var(h) in rad2. 10%

threshold is highlighted.
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directions, s(h).

Now
X

cos2hijN (43)

and
X

sin2hij
X

h2
i (44)

X
sin2hijNvar(h) (45)

Therefore e2dRjNe2li+L2N var(h)e2hi (46)

Likewise, if f is the accumulated error in the direction perpendicular to R:

f=
X

(li sin hi) (47)

e2df=
X @l sin hi

@hi

� �2

e2hi+
X @li sin hi

@li

� �2

e2li (48)

e2dfjNL2e2hi+Nvarhe2li (49)

9. CURVED PATH INCREMENTS. Up to this point the theory has been
developed for the case of a journey comprising straight segments of equal length,
because this is mathematically tractible. However, in many situations, particularly
in the jungle environment, subdivision of the journey into strictly straight line
segments of equal length may be impractical. One way of accommodating this
would be to use lines of unequal length and use a weighted variance in equation 9,
essentially treating the unit of measure (eg. the pace) as the segment length L.
Alternatively, and much more conveniently, the bearing of the tangent to the path
can simply be measured at regular intervals, L, and these bearings then treated as
if they were the bearings of straight line segments. The tangent bearings aki can be
regarded as consisting of the bearing of an ideal straight line segment, (ai), plus a
residual, dai. The Law of Large Numbers (Martin, 1971, p 46) implies that if N is
large then the mean of (dai) is zero. Moreover according to the Central Limit
Theorem (Martin, 1971, p48) var(ak)=var(a)+var(da). This means that the stan-
dard deviation in da, which is the square root of its variance, can be as large as one
third of the standard deviation in a before it has a 10% influence on the value of
var(a) and, propagated through equation 15 under the assumption that var(a) is
less than 0.7, it will have less than 2% influence on the estimate of R.

This does not seem to be a difficult condition to meet in practice and indeed
the overall accuracy which is achieved by the systematic use of bearings which may
appear to be somewhat vaguely correlated with segment directions is quite remark-
able.
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10. PROCEDURE. On the basis of the foregoing, the following procedure is
suggested for estimating overall bearing and overall distance from measurements
made along a tortuous path:

’ Divide the journey into segments which are of equal length (L). In practice the
segments will follow the curvature of the path, but L should be chosen so that
the chord lengths of the segments are in general not significantly different from
the arc lengths.

’ Measure the bearing (ai) tangential to the path at the end of each segment. These
tangent bearings should be more closely correlated with the average bearings of
the respective segments than the segment bearings are to the overall direction of
the line, by a factor of three or more in standard deviation.

’ Determine the variance in a, taking care to avoid introducing unwanted mul-
tiples of 360x into the calculation where the data span the 0x/360x direction.

’ The overall direction of travel is now taken to be �aa, the mean value of ai.
’ If a is expressed in radians, the variance is in radians2 (which is dimensionless)

the overall (straight line) distance (AB) is now taken to be:

Rk=NL 1x
var(a)

2

� �
(50)

If a is kept in degrees, equation 50 becomes :

R0=NL 1x
var(a)

6566 deg2

� �
(51)

and if a is kept in mils it will be:

R0=NL 1x
var(a)

2:075r106mil2

� �
: (52)

’ (As a rule of thumb, if N is in the order of 20 and var(a) is less than 0.7 rad2,
(standard deviation in a less than 48x or 853 mils), then the resulting position
position estimate has an uncertainty which can be described by an error circle
with a radius about 10% of the total length of the path.

11. FIELD TEST. The procedure has been field-tested by following a path
through dense sub-tropical rainforest on the western edge of the Hunua Ranges in
northern New Zealand. The track, Figure 7, rises about 250m over a distance of
about 2km and is a formed path with a gravelled surface about 1 metre wide, with
steps in steep places to minimise damage by erosion and pedestrian traffic. The path
has a more consistent gradient than the ridgeline which it mainly follows, and
consequently it changes direction quasi-randomly and very frequently, so that it
is rare to be able to see more than about 20m in any direction. The vegetation
consists of dense indigenous forest, through which about 5% clear sky can
generally be seen. At the outset it was established with the use of a 20m tape that,
for the author, 100m was 130 paces on level ground and 160 paces on steeper
parts of the path. The bearing of the track was measured (over a representative dis-
tance of about 10m), using an oil-filled prismatic compass, at the start point and
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thereafter at the end of every 100m interval. The 100m interval was determined by
counting paces, stopping when a number between 130 and 160 was reached, accord-
ing to the steepness of the slope. A counting device was used to tally every 10 paces,
to minimise mistakes due to distractions. The first part of the journey trends
northeast and the second part of the journey trends southeast. In order to avoid
the variances in h exceeding 0.7 rad2, the procedure is applied to each of the legs
successively.

11.1. First leg. Magnetic bearings at 100 m intervals : 035x (395x), 062x (422x),
345x, 340x.

Average bearing 375.5xM+22xGMA=037.5xT
SD in bearing=34.4x=0.600rad.
Var(a)=0.360 rad2

Distance left over from complete 100m intervals=19m.
Corrected distance, Rk=319m (1x0.360/2)=262m

Figure 7. Hunua Falls area. Grid spacing is 1 km. Graticule is New Zealand Map Grid. Contour

interval is 20m. Sourced from Land Information New Zealand (2006). Crown copyright reserved.
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mE mN

A1 Falls Bridge 96200 57300

Increment +160 +208

B1k Waypoint 96360 57508

By our rule of thumb, the error circle about this position estimate is about 10% of the
linear distance, which is 26m.

We now look for a point on the map more or less within this error circle for which
the topographical detail is consistent with what we can observe around us. In this
case we are at the junction of three tracks, immediately to the NE there is a steep drop
of about 20m to a stream and the track going SE rises abruptly. This description
corresponds unequivocally to the point 96330mE, 57560mN (NZ Map Grid coordi-
nates), to which we accordingly revise our estimated position, marked A2 on Figure 7.
The closure errors were therefore D(R)=30m and D(f)=60m, which is somewhat
larger than predicted by our error circle but it should be remembered that there is
only approximately a 68% probability, not a 100% probability, of B falling within
the error circle and moreover the rule of thumb is based on N being 20 or more.

Alternatively, using the more complicated error formulae, equations 46 and 49 and
Figures 4 and 6, with N=3, e(li)=5m, e(hi)=5x=8.73r10x2 rad and var(h)=0.360
rad2 :

e2R=e2pR+e2dR (53)

=(26�1m)2+(12 �5m)2 (54)

e(R)=29m (55)

e2f=e2pf+e2df (56)

=(21�1m)2+(16 �0m)2 (57)

e(f)=26 �5m (58)

Of course this complicated form of error analysis would not be carried out in the field,
but is included here to show that it provides a similar result to the 10% rule of thumb.
Moreover it shows that the error due to ordinary dead reckoning (subscript d ) is a
significant part of the total uncertainty, so the approximation could be described as
‘‘efficient’’.

11.2. Second leg. Magnetic bearings at 100m intervals : 135x, 120x, 155x, 073x,
070x, 070x, 080x, 120x 205x, 190x 108x, 125x 97x 122x 068x, 086x, 135x, 093x, 070x, 088x,
093x, 018x, 358x (x002x), 070x.
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Average bearing (�aa)=099.5xM+22xGMA=121.5xT. SD in bearing=45.6x=
0.7959 rad. Var(a)=0.6344
Distance left over from complete 100m intervals=47m
Uncorrected distance=2447m
Corrected distance, Rk=(24r100m+47m)(1–0.6344/2)=1604m

mE mN

A2 Track junction 96330 57560

Increment +1368 x838

B2k Estimated final position 97698 56722

Implementing the 10% rule of thumb we would describe an error circle 160m in
diameter around this position estimate (Bk2).

The next step is to find on the map a point more-or-less within this error circle for
which the topographic detail on the map corresponds to our actual location. This step
is greatly simplified because the circle is fairly small and the range of alternative
possibilities is severely restricted. An extensive flat area was seen to the SE of the
track about 300m back, since when the track has (from the bearings listed above)
been trending in a NE direction. We are now situated on a distinct knoll on the ridge.
This means that we are at the 308m spot height marked on the map (Figure 7), which
therefore becomes our revised position estimate, B2. The coordinates of point 308 are
scaled from the map as 97547mE, 56698mN. The closure errors are therefore
D(R)=126m (DfrR=8.5% ) and D(f)=x88m. In this case the position is clinched by
the discovery of the 2-inch pipe once used as a trigonometrical station mark but now
overgrown by trees. This mark is recorded as AJ45 and 638 with coordinates
97487.4mE, 56658.2mN (Source : LINZ database of geodetic marks. Crown copyright
reserved). Note that the database coordinates for this (overgrown) triangulated point
differ by some 70m from the coordinates scaled from the map, which serves as a
reminder that plotting errors of this order are difficult to eliminate from a 50 000 scale
map derived from aerial photography of heavily wooded terrain with sparse ground
control.

If the more elaborate form of the error theory is applied using equations 46 and 49
and Figures 4 and 6, with N=24, e(li)=5m, e(hi)=5x=8.73r10x2rad and
var(h)=0.6344 rad2, the error bounds calculated for the position Bk2, are :

e2R=e2pR+e2dR (59)

=(144m)2+(42m)2 (60)

e(R)=150m (61)

e2f=e2pf+e2df (62)

=(107m)2+(24�7m)2 (63)
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e(f)=110m (64)

We note that these uncertainties are similar to those estimated by the 10% rule, and
that moreover the error contribution arising from the approximation procedure
(subscript p) is about four times larger than the uncertainty inherent to the dead
reckoning method (subscript d ) itself, so the approximation technique is ‘‘efficient’’.

12. CONCLUSION. If the bearing a of a path is measured at N equal inter-
vals of distance, L, then a good estimate of the overall bearing and distance is ob-
tained from the mean of a and the distance NL[1-var(a)/2], where a is expressed in
radians. The approximation is accurate within about 10% provided that N is great-
er than 20 and var(a)<0.7, which also means that the path does not double back
significantly. This is a very useful level of confidence where the technique is used as
an adjunct to map reading in the jungle, and is efficient because the errors incurred
are only slightly greater than those inherent to the underlying pace-and-compass
navigation technique in this environment. Moreover, at the same level of precision,
it is a satisfactory expedient to use bearings tangential to the track at the ends of
the segments to supply the parameter a, provided that the bearings so determined
are reasonably well correlated with the average bearings of the segments. Care must
be taken to avoid unwanted multiples of t360x infiltrating the standard deviation
calculation. It has been found in practice, in a rainforest environment, that the
procedure is a useful adaptation of the technique of dead reckoning. It may have
other applications, particularly to extrapolation routines in GPS systems under
loss-of-lock conditions.
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APPENDIX A : SYMBOLS. For consistency the following symbols are used through-

out the paper:

A and B are the start and end points of the journey respectively. B’ is the estimated
position of B. R is equal to AB and R’ is equal to AB’. ai are the bearings of the line
segments and �aa is the average

P
(ai)=N. wi and hi denote residuals from the overall

line AB and from the line of the average bearing AB’ respectively. c is the angular
misclose between AB’ and AB, i.e. the bearing AB’ minus the bearing AB. f is the
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misclose in the direction perpendicular to R, i.e. f=Rc. The symbol s denotes stan-
dard deviation of a probability distribution. The symbol e is adopted for an error
bound. (i.e. for a determined parameter x, there should be a probability of 68% or
greater that the actual value of x lies within the region xte(x)). The symbol D is
used to denote a measured misclose between estimated and actual (i.e. map) pos-
itions. DR is the misclose in distance, and f is the misclose measured perpendicular
to the bearing. Angles are measured clockwise. Distances are measured away from
the start point of the journey.

Subscript fr means fractional, subscript p refers to the procedure discussed in this
paper and subscript d refers to errors inherent in the dead reckoning procedure in the
absence of any approximation procedure being superimposed. The error estimates
are considered as perturbations. That is to say, the uncertainty in R is estimated
under the assumption that c is zero, and the uncertainty in f is estimated under the
assumption that Rk=R.
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