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Abstract

This paper investigates the generation of plasma wave and third harmonic generation in hot collision less plasma by a
Gaussian ultra intense laser beam, when relativistic and ponderomotive nonlinearities are operative. First, we derive the
dynamical equation for the pump laser beam when these two nonlinearities are operative. The solution of pump laser
beam has been obtained within the paraxial ray approximation. Filamentary structures of the laser beam are observed. On
account of ~V �~B force, the generation of plasma wave at second harmonic frequency has been studied in these filamentary
structures. Interaction of the plasma wave with the incident laser beam generates the third harmonic. For the typical
laser plasma parameters: Nd: YAG laser beam (l ¼ 1064 nm), ro ¼ 15 mm, laser power flux equals 6 � 1017 W/cm2,
electron density equals no ¼ 1.9 � 1019 per cm3, the third harmonic yield comes out to be equals to 2 � 1026.
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1. INTRODUCTION

Recent advances in ultra intense short laser pulse technology,
such as chirped pulse amplification used to generate femtose-
cond duration pulse, have led to rapid developments in the
field of laser induced fusion and particle acceleration
research (Jonathan, 1994; Modena et al., 1995; Kuroda
et al., 2006; Ozaki et al., 2006). The nonlinear interaction
of intense laser short pulse lasers with plasmas has been a
subject of experimental and theoretical study due to its rel-
evance to laser driven fusion. These ultra intense short
laser pulses interact with plasmas leading to various non-
linear phenomena (Kruer, 1988; Umstadter, 2003), such as
self focusing, filamentation, stimulated Raman scattering,
stimulated Brillouin scattering, and harmonics generation
(Esarey et al., 1993; Foldes et al., 2003; Chirila et al., 2004).

Harmonic generations in ultra intense laser plasma inter-
action has been studied extensively both experimentally
and theoretically in the past. Esarey et al. (1993) among
others proposed a nonlinear cold fluid model, valid for
ultra high intensities and used to analyze relativistic harmo-
nic generation. A linearly polarized ultra intense laser field
induces transverse plasma currents, which are highly

relativistic and nonlinear, resulting in the generation of
coherent harmonic radiation in the forward direction.
Recently, Banerjee et al. (2002) studied experimentally the
harmonic generation in relativistic laser plasma interaction.
They showed that relativistic Thomson scattering produced a
significant amount of harmonic generation. Wilks et al.
(1993) presented a method for generating odd harmonics
from an intense laser, incident upon a sharp vacuum-overdense
plasma interface. With the intensity greater than 1018 W/cm2,
these pulses have a pressure greater than 103 Mbars, creating
large density oscillations and relativistic electron velocities at
the surface. This results in efficient odd harmonic generation.
Liu et al. (1993) reported the result of a harmonic generation
experiment in hydrogen using 1 ps, 1 ms laser pulses with a
range of intensities extending from below to far above the
laser ionization saturation threshold, and determine an
upper limit on the conversion efficiency of third harmonic
generation in a preformed plasma.

Most of the above mentioned work on harmonic gener-
ation at ultra relativistic powers of the laser beam has not
included the relativistic and ponderomotive effects simul-
taneously. By including both the effects, specifically, the
ponderomotive effect, the plasma density in the channel is
expected to change and should affect the harmonic gener-
ation. Moreover, these nonlinear effects will break the laser
pulse into small filamentary structures where the laser field
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is very intense. Therefore, both the ponderomotive and fila-
mentation effects should affect the harmonic generation.

In this paper, we have studied the propagation of an ultra
intense Gaussian laser beam through plasma. The ultra
high intensity of laser beams by relativistic and ponderomo-
tive nonlinearities create plasma channel, where the laser
beam creates very intense hot filaments. These intense fila-
ments trap plasma wave at second harmonic frequency
because at very high ~V �~B force in the channel (Sodha
et al., 1976). The amplitude of these plasma waves
depends upon the laser beam intensity and background
density. These waves have the same phase velocity as the
laser beam, and hence their Landau damping is negligible.
Therefore, these plasma waves interacting with the incident
laser beam generate a third harmonic. In Section 2, we
derived the expression for the effective dielectric constant
of the plasma in the presence of an ultra intense laser
beam, where relativistic and ponderomotive nonlinearities
are operative. In Section 3, we studied the solution for laser
beam propagation and obtain the numerical results showing
the laser intensity evolution in axial and transverse direc-
tions, and the corresponding filamentation of the laser
beam. In Section 4, we derived the expression for coupling
between ultra intense laser beam and electron plasma wave.
We also derived the expression for the power of electron
plasma wave and studied the behavior with the laser beam
and plasma parameters where relativistic and ponderomotive
nonlinearities are operative. In section 5, we derived the
expression for the power of the third harmonic generation
where relativistic and ponderomotive nonlinearities are operat-
ive. For typical laser beam parameters; Nd: YAG laser beam
(l ¼ 1064 nm), ro ¼ 15 mm, vpo ¼ 0.03vo, Vth¼ 0.1c and
the third harmonic yield comes out to be equal to 2 � 1026.

2. EFFECTIVE DIELECTRIC CONSTANT OF THE
PLASMA

We consider the propagation of an ultra intense laser beam
along the z direction. The initial intensity distribution of
the beam is given by

Eo � E�o
��
z¼o
¼ E2

oo exp � r2

r2
o

� �
� (1)

Where r is the radial coordinate of the cylindrical coordinate
system and ro is the initial beam width. The dielectric con-
stant of the plasma is given by

1o ¼ 1�
v2

po

v2
o

; (2)

where vpo is the plasma frequency given by vpo
2 ¼ 4p no e2/

mo (with e being the charge of an electron, mo is the rest mass,
and no is the density of plasma electrons in the absence of

laser beam) and relativistic factor is given by

g ¼ 1þ e2

v2
oc2m2

o

Eo � E�o
� �1=2

The above expression is valid when there is no change in the
plasma density. The relativistic ponderomotive force is given
by Esarey et al. (1988), Borisov et al. (1992), and Brandi
et al. (1993a, 1993b)

Fp ¼ �moc2r(g� 1):

Using the electron continuity equation and current density
equation for the second order correction in the electron
density equation (with the help of ponderomotive force)
and total density is given by Esarey et al. (1988), Borisov
et al. (1992), and Brandi et al. (1993a, 1993b)

n ¼ no þ n2 ¼ no þ
c2no

v2
po

r2g� (rg)2

g

� �
: (3)

Now the effective dielectric constant of the plasma at pump
frequency vo is given by

1 ¼ 1o þ f(EoE�o)

where

f(Eo � E�o) ¼
v2

po

v2
o

�
1� n

nog

�
:

Expending dielectric constant around r ¼ 0 by Taylor expan-
sion, one can write

1 ¼ 1f þ g1r2

where

1f ¼ 1o þ
v2

po

v2
o

1þ
�
� 1þ a

gr2
of 4

o k2
p

��
1þ a

f 2
o

��1=2
" #

g1 ¼ �
v2

po

v2
o

a

2g3r2
of 4

o

� 3a

g2k2
pr4

of 6
o

� 3a2

g4k2
pr4

of 8
o

" #
: (4)

Here, a ¼ aoA
2
oo is the square of the dimensionless vector poten-

tial (E¼2@A/@(ct)), ao ¼ e2/mo
2c4, fo is the beam width

parameter at z as given by Eq. (9) in Section 3 and kp
2¼ vpo

2 /c2.
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3. LASER BEAM PROPAGATION

The wave equation governing the vector potential of the laser
beam in the plasma can be written as

@2A

@z2
þ 1

r

@A

@r
þ @

2A

@r2
þ v2

o

c2
1A ¼ 0 (5)

Following Akhamanov et al. (1968), the solution to the
above equation is

A ¼ A0(r; z) exp½�iSo(r; z)�: (6)

Using Eq. (6) into Eq. (5) and separating the real and imagin-
ary parts we get:

21f
@So

@z
þ c

vo

@So

@r

� �2

¼ vo

c
g1r2 þ c

voA0
@2A0

@r2
þ 1

r

@A0

@r

� �
; (7a)

vo

c
1f
@A02

@z
þ @So

@r

@A02

@r
þ A02

@2So

@r2
þ 1

r

@So

@r

� �
¼ 0: (7b)

The solution to the above-coupled equations can be written as

So ¼
r2

2fo

dfo
dz
þ fo(z); ko ¼

vo

c
11=2

o ; 1o ¼ 1�
v2

po

v2
o

;

and the intensity of the laser beam

A02 ¼ A2
o

f 2
o

exp � r2

r2
of 2

o

� �
: (8)

Using Eq. (8) into Eq. (7a) and normalization distance j ¼ zc/
voro

2, then we get an expression for fo

d2fo
dj2 ¼

1
1f f 3

o

� fo
1f

�
v2

por2
o

c2

�
a

2g3f 4
o

þ 3a

g2f 6
o

� 3a2

g4f 8
o

" #
: (9)

The intensity of the laser beams with relativistic and pondero-
motive nonlinearities are expressed by Eqs. (8) and (9). We
studied the variation of laser beam intensity with distance
along the laser beam propagation direction and radial direc-
tion. Figure 1a demonstrates the generated filaments of laser
beam when an ultra intense laser beam propagates through
the plasmas in the presence of relativistic and ponderomotive
nonlinearities. Figure 1b demonstrates the generated filaments
of laser beam when an ultra intense laser beam propagates
through the plasmas in the presence of relativistic nonlinearity.
The following set of parameters has been used in the numeri-
cal calculations; laser beam Nd: YAG (l ¼ 1064 nm), ro ¼

15 mm, vpo ¼ 0.03vo, Vth¼ 0.1c (speed of light).

4. GENERATION OF PLASMA WAVE

To analyze the generation and growth of electron plasma
waves, we start with the following set of equations. (1) The
continuity equation

@N

@t
þr � (NV ) ¼ 0: (10)

(2) The momentum equation

m
@V

@t
þ (V � r)V

� �
¼ �eE � e

c
V � B� 2GemV

� 3KOTe

N
rN: (11)

(3) The Poisson’s equation

r:E ¼ �4peN� (12)

Where N is the total electron density, E is the sum of electric
vectors of the laser beam and the self-consistent field, V is the

Fig. 1. (a) Variation in laser beam intensity with normalized distance (j)
and radial distance (r) for a ¼ 0.8, when relativistic and ponderomotive non-
linearities are operative. (b) Variation in laser beam intensity with normal-
ized distance (j) and radial distance (r) for a ¼ 0.8, when only relativistic
nonlinearity is operative.
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sum of drift velocities of the electron in the laser field and
self-consistent field. Using Eqs. (10), (11), and (12), we get
the following equations for N:

@2N

@t2
� v2

thr2N þ 2Ge
@N

@t
þ
v2

po

g

n

no

� �
N

� e

m
(E � rN) ¼ r � N

2
r(V � V�)� V

@N

@t

� �
(13)

where vth
2 ¼ 3koTe/m is the electron thermal velocity. Eq.

(13) is the general equation governing the time independent
and time dependent component of the election density
inside the plasma. Time dependent component of electron
density contains harmonics of the pump frequency, harmo-
nics of the frequency of the plasma wave and their combi-
nations. Here we are interested in the component of the
electron density (N2), which is at second harmonic fre-
quency, and it is given by

� (2vo)2N2 � v2
thr2N2 þ 4iGevoN2 þ

v2
po

g

n

no

� �

� N2 �
e

m
(E2 � rno)

¼ r � No

4
rv2

o þ
N2

4
fr(vo � v�o þ v2 � v�2)g þ N2

8
rv2

2

� �
(14)

Here vo and v2 are drift velocities of electron in the pump field
and self consistent field (at frequency 2vo), respectively, vo

is the pump wave frequency. The wave equation governing
the total electric field inside the plasma is given by

r2E ¼ 1
c2

@2E

@t2
þ 4p

c2

@J

@t
; (15)

where J is the total current density. In writing Eq. (15), we
neglected the term r (A.r log 1) which is justified as long
as (vpo

2 /vo
2 1)log 1�1, where e is the effective dielectric

constant of the plasma. Equations for the coherent vector
potential inside the plasma and vector potential of the third
harmonic generation is given by using the vector potential

r2Ao þ
v2

o

c2
1� n

no

� �
v2

po

v2
o

 !
Ao ¼ 0 (16a)

and

r2A3 þ
v2

s

c2
1� n

no

� �
v2

po

v2
s

 !
A3 ¼

v2
po

2c2

N2

no
A0o; (16b)

where N2 is governed by Eq. (14) and vs ¼ vo þ 2vo is the
frequency of third harmonic generation. Using the zero order

solution of Eq. (14), N2 is given by Soda et al. (1978)

� 4v2
oN2 � v2

thr2N2 þ 4iGevoN2 þ
v2

po

g

n

no

� �

� N2 þ
e2n

4m2
og

2c2

c2

v2
th

� �
r2A02o ¼ 0: (17)

The last term in Eq. (17) suggest that one component of N2

must propagate as exp (22ikoz) and the second component
as exp (2ikz), where k ¼ (4vo

2 2 vp
2)/3vth

2 is the propagation
vector of the plasma wave supported by the hot plasma.
Hence N2 may be written as

N2 ¼ N20(r; z) exp (�ikz)þ N12(r; z) exp (�2ikoz): (18)

Using N2 in Eq. (17), and equating the coefficient of
exp(2ikz) and exp(22ikoz), we get,

� 4v2
oN20 � v2

th

@2N20

@r2
þ 1

r

@N20

@r
� 2ik

@N20

@z
� k2N20

� �

þ 4iGevoN20 þ
v2

po

g

n

no

� �
N20 ¼ 0 ð19Þ

and

� 4v2
oN12 � v2

th

@2N12

@r2
þ 1

r

@N12

@r
� 4iko

@N12

@z
� 4k2

oN12

� �

þ 4iGevoN12 þ
v2

po

g

ne

no

� �
N12 þ

e2n

4m2
og

2c2

�
c2

v2
th

�
r2A02o ¼ 0 (20)

To solve these equations, we used the Eikonal approxi-
mation. Hence,

N20 ¼ N 020e�iks

and

N12 ¼ N 012e�2ikoso :

Using these expressions of N20 and N12 in Eqs. (19) and (20),
respectively, we obtain the following equations.

�
@s

@r

�2

þ 2
@s

@z
¼ 1

k2N 020

@2N 020

@r2
þ 1

r

@N 020

@r

� �

þ 4v2
o

k2v2
th

1�
v2

po

4v2
o

�
n

gno

�" #
(21a)

@N 0220

@z
þ @s

@r

@N 0220

@r
þ N 0220

@2s

@r2
þ 1

r

@s

@r

� �
þ 4GevoN 0220

kv2
th

¼ 0 (21b)
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and

� 4v2
oN 012 þ 4k2

ov2
th þ (v2

pon=gno)N 012 �
e2k2

oA2
oon

g2m2
oc2f 2

o

�
c2

v2
th

�

� exp � r2

r2
of 2

o

� �
ffi v2

th

@2N 012

@r2
� 4k2

oN 012

�
@so

@r

�2
"

þ 1
r

@N 012

@r
� 8k2

oN 012
@so

@r

�
: (22)

To obtain a solution for N 12
0

, it can be shown that the right-
hand side of Eq. (22) can be put equal to zero in the zero
order approximation, and N 12

0
is given by

N 012 	 �
n

no

� �
c2

v2
th

� �

� e2k2
onoA2

oo exp(� r2=r2
of 2

o )

g2m2
oc2f 2

o 4v2
o � 4k2

ov2
th � v2

pon=gno

h i : (23)

Following Akhmanov et al. (1968), the solution for Eqs. (21a)
and (22b) in the paraxial ray approximations are given by

s ¼ r2

2f

df

dz
þ f(z)

N 0220 ¼
B2

f 2
exp (� r2=a2

of 2) exp (� 4Gevoz=kv2
th); (24)

where f is the dimensionless beam width parameter of the
beam of the electron plasma wave at second harmonic fre-
quency governed by

d2f

dj2 ¼
r4

o

a4
of 3
� f

4
c2

v2
th

� �
v2

por2
o

c2

 !
a

2g3f 4
o

þ 3a

g2f 6
o

� 3a2

g4f 8
o

" #
(25)

B and ao are constants which will be determined by using
boundary conditions, we assume that the amplitude of the
plasma wave is zero at z ¼ 0, so

B ¼ � n

no

� �
c2

v2
th

� �
k2

oe2A2
oono

g2m2
oc2½4v2

o � 4k2
ov2

th � v2
pon=gno�

and

ro ¼
ffiffiffi
2
p

ao:

Therefore, N2 is given by

N2 ¼ N20e�ikz þ N12e�2ikoz: (26)

Before proceeding further, we analyze the dispersion relation
of the plasma wave arising on account of thermal effects in

the plasma, it is given by

4v2
o ffi v2

po þ k2v2
th:

The phase velocity is ffi vth/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

po=4v2
o

q
;

� 	
and for a

propagating laser beam (vpo, vo) it varies from one to two
times the thermal velocity of particles. For a propagating
mode of the pump wave, k ld
1, where ld is the Debye
length. This shows that it is a very short wavelength wave
and it will be heavily Landau damped. Therefore, in the
expression of N2 using Eq. (18), only the last term contributes,
and we get

N2 	 �
�

n

no

��
c2

v2
th

� k2
oe2noA2

oo exp

�
� r2=r2

of 2
o

�
g2m2

oc2½4v2
o � 4k2

ov2
th � v2

pon=gno�

2
664

3
775

� e�2iko(zþso)

f 2
o

(27)

By using the Poisson equation, we get the scalar potential f2

f2f
�
2 ¼

4pe

2ko

� �2

� n

no

� �
c2

v2
th

� �
koe2noA2

oo exp (�r2=r2
of 2

o ) sin 2ko(zþ so)

2g2m2
oc2½4v2

o � 4k2
ov2

th � v2
pon=gno�

" #2
1
f 4
o

The power of plasma wave at frequency 2vo, incident across
the transverse cross section at z can be obtained by integrating
f2f2* over r from 0 to 1, i.e.,

P2 ¼ 4k2
o

ð1

0
2pr f2f

�
2dr

P2 ¼
pPo

3
n

no

� �
c2

v2
th

� �
v2

poVoo sin 2ko(zþ so)

cg2fo½4v2
o � 4k2

ov2
th � v2

pon=gno�

" #2

: (28)

Here po ¼ (vo
2/8p c)p ro

2 Aoo
2 and Voo¼ (eAoo/cmo). Eq. (28)

represents the power of electron plasma wave at twice the
pump wave frequency. Figure 2a demonstrates the generated
electron plasma wave intensity where an ultra intense laser
beam propagates through the plasmas in the presence of rela-
tivistic and ponderomotive nonlinearities. Figure 2b demon-
strates the same where an ultra intense laser beam
propagates through the plasmas in the presence of only relati-
vistic nonlinearity. Figure 4 demonstrates the variation of the
power of electron plasma wave at twice pump wave frequency
where relativistic and ponderomotive nonlinearities are
operative.
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5. POWER OF THIRD HARMONIC GENERATION

The effective dielectric constant of the plasma at the third
harmonic, frequency is given by

13(vs) ¼ 13f (vs)þ g(vs)r
2: (29)

Here

13f (vs) ¼ 1�
v2

po

v2
s

 !

þ
v2

po

v2
s

1þ �1þ a

gf 4
o r2

ok2
p

 !
1þ a

f 2
o

� ��1=2
" #

and

g(vs) ¼ �
v2

po

v2
s

a

2g3r2
of 4

o

� 3a

g2k2
pr4

of 6
o

� 3a2

g4k2
pr4

of 8
o

" #
:

Fig. 4. Variation in normalized power of electron plasma wave at second
harmonic frequency with normalized distance (j) for a ¼ 0.8, when relati-
vistic and ponderomotive nonlinearities are operative.

Fig. 2. (a) Variation in electron plasma wave intensity at second harmonic
frequency with normalized distance (j) and radial distance (r) for a ¼ 0.8,
when relativistic and ponderomotive nonlinearities are operative. (b)
Variation in electron plasma wave intensity at second harmonic frequency
with normalized distance (j) and radial distance (r) for a ¼ 0.8, when
only relativistic nonlinearity is operative.

Fig. 3. (a) Variation in intensity of second harmonic with normalized dis-
tance (j) and radial distance (r) for a ¼ 0.8, when relativistic and pondero-
motive nonlinearities are operative. (b) Variation in intensity of second
harmonic with normalized distance (j) and radial distance (r) for a ¼ 0.8,
when only relativistic nonlinearity is operative.
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The solution for Eq. (16b) in terms of vector potential, can be
written as

A3 ¼ A30 exp

�
�i(k3zþ s3)

�
þ A31 exp

�
�3i(kozþ so)

�
(30)

Using this solution in Eq. (16b) and separate real and imagin-
ary parts, we get

2k3
@s3

@z
þ @s3

@x

� �2

þ @s3

@y

� �2

¼ 1
A30

@2A30

@x2
þ @

2A30

@y2

� �
þ g(vs)r

2 (31a)

k3
@E2

30

@z
þ A2

30
@2s3

@x2
þ @

2s3

@y2

� �
þ @s3

@x

@A2
30

@x
þ @s3

@y

@A2
30

@y
¼ 0 (31b)

and

A31 ffi
v2

po

2c2

vs

vo

N12

no

� �
Aoo

fo

exp(� r2=r2
of 2

o )

(k2
3 � 9 k2

o)
(32)

The solution for Eqs. (31a) and (31b) in the paraxial ray
approximation are given by

s3 ¼
r2

2
k3

f3

df3
dz
þ f3(z)

A2
30 ¼

(B0)2

f 2
3

exp � r2

a2
of 2

3

� �
(33)

and f3 is the dimensionless beam width parameter of the third
harmonic generation governed by

d2f3
dj2 ¼

1

f 3
3

� f3
9

r2
ov

2
po

c2

 !
a

2g3f 4
o

þ 3a

g2f 6
o

� 3a2

g4f 8
o

" #
: (34)

Moreover, the constant B 0 and ao are determined by the
boundary condition that the third harmonic is zero at z ¼ 0.

B0 ¼ �
v2

po

c2

N20

no

� �
z¼0

Aoo

(k2
3 � 9 k2

o)
:

The vector potential (A3) produced due to third harmonic
generation; we get from Eq. (30).

A3 ¼ �Aoo

v2
po

c2

 !
H1

f3
exp � r2

r2
o

1þ 1

f 2
3

� �� �
exp

�
� i(s3 þ k3z)

��

þH2

f 3
o

� exp

�
� 2r2

r2
of 2

o

�
exp

�
� 3i(kozþ so)

��
(35)

Here

H1 ¼
�

n

no

�
z¼0

c2

v2
th

e2k2
oA2

oo

m2
og

2c2

�
4v2

o � 4 k2
ov2

th � (v2
po=g)�

n=no

�
z¼0

�
(k2

3 � 9 k2
o)

and

H2 ¼
�

n

no

�
3c2

2v2
th

e2k2
oA2

oo

m2
og

2c2

�
4v2

o � 4 k2
ov2

th � (v2
po=g)

(n=no)

�
(k2

3 � 9 k2
o)

Therefore the third harmonic power P3 incident across the
transverse cross section at z

P3 ¼
v2

o

8pc

ð1

�1

dx

ð1

�1

A3A�3dy

P3 ¼ Po

�
v2

po

c2

�2

� H2
1

2(1þ f 2
3 )
þ H2

2

4f 4
o

þ 2H1H2f3 cos (k3 � 3 ko)z½ �
f 2
o (1þ f 2

3 )þ 2f 2
3


 �
" #

: (36)

Here we developed the theory for the third harmonic gener-
ation and derive the expression for the third harmonic power
(Eq. 36) where relativistic and ponderomotive nonlinearities
are operative. Figure 5 demonstrates the variation of the
power of third harmonic generation where both relativistic
and ponderomotive nonlinearities are operative.

Fig. 5. Variation in normalized power of third harmonic generation with
normalized distance (j) for a ¼ 0.8, when relativistic and ponderomotive
nonlinearities are operative.

Generation of plasma wave and third harmonic generation 217

https://doi.org/10.1017/S0263034607000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034607000031


6. RESULTS AND DISCUSSION

In the present investigation, we studied the propagation of an
ultra intense laser beam through plasmas. This ultra intense
laser beam interacts with plasma electrons and these elec-
trons will gain momentum, but the mass of electron will be
increased due to relativistic effect, and their dynamics will
be influenced. Simultaneously, ponderomotive force push
electrons toward the direction perpendicular to the laser
beam propagation; this will change the electron density of
the plasma channel. The plasma channel alternatively
behaves as a converging and diverging lens, and then ultra
intense laser beam will be alternatively focused and defo-
cused. These focusing and defocusing effects make very
intense hot filaments of the laser beam in a plasma
channel. In this investigation, we studied the effect of pon-
deromotive force on the intensity of filaments. For Nd
glass laser, we got maximum normalized intensity of laser
beam A

02/Ao
2 ¼ 1.6 where only relativistic nonlinearity is

operative, but when relativistic and ponderomotive nonlinea-
rities are operative, we got maximum intensity of laser beam
A
02/Ao

2 ¼ 6.
Further we investigated these ultra intense hot filament

traps plasma waves at second harmonic frequency because
of very high ~V �~B force in the channel. The amplitude of
these waves is proportional to the square of the amplitude
of the electromagnetic wave, there phase velocity is the
same as that of the transverse wave and hence their Landau
damping is negligible. The maximum power of these electron
plasma waves comes out to be P2/Po ¼ 0.8 � 1024.
Therefore, these plasma waves lead to third harmonic gener-
ations, and the maximum power of third harmonic generation
comes out to be P3/Po ¼ 8 � 1026. In fast igniter fusion, the
interaction of main laser pulse with compressed core could
produce high level of third harmonic generation.
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