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Fluctuation dynamos are generic to turbulent astrophysical systems. The only
analytical model of the fluctuation dynamo, due to Kazantsev, assumes the velocity to
be delta-correlated in time. This assumption breaks down for any realistic turbulent
flow. We generalize the analytic model of fluctuation dynamos to include the effects
of a finite correlation time, τ , using renewing flows. The generalized evolution
equation for the longitudinal correlation function ML leads to the standard Kazantsev
equation in the τ → 0 limit, and extends it to the next order in τ . We find that this
evolution equation also involves third and fourth spatial derivatives of ML, indicating
that the evolution for finite-τ will be non-local in general. In the perturbative case
of small-τ (or small Strouhal number), it can be recast using the Landau–Lifschitz
approach, to one with at most second derivatives of ML. Using both a scaling solution
and the WKBJ approximation, we show that the dynamo growth rate is reduced when
the correlation time is finite. Interestingly, to leading order in τ , we show that the
magnetic power spectrum preserves the Kazantsev form, M(k) ∝ k3/2, in the large-k
limit, independent of τ .

1. Introduction
The continued existence of magnetic fields in most astrophysical systems is thought

to be due to dynamo action which converts kinetic energy of the plasma into magnetic
energy. In particular, fluctuation dynamos are generic, and operate with minimal
requirements of the underlying fluid flow. A random flow with modest magnetic
Reynolds number RM ∼ 100 is sufficient to activate the fluctuation dynamo. Here
RM = u/(qη) with u and q respectively the characteristic velocity and wavenumber
of the flow and η the resistivity. Hence fluctuation dynamos are considered to be
ubiquitous in all astrophysical plasmas.

The analytical theory for the fluctuation dynamo was given by Kazantsev (1967).
A dynamical equation for the two-point magnetic correlator was derived by using a
simple model for the velocity field which is delta-correlated in time. This assumption
of delta-correlation allows one to convert the stochastic induction equation for the
magnetic field to a partial differential equation in real space for the longitudinal
magnetic correlation function ML(r, t). Its solution clearly showed for the first time
that a random flow with modest RM can lead to the growth of the field. Kazantsev
then also predicted that the magnetic power spectrum for a single scale or a large
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magnetic Prandtl number, PM, turbulent flow scales asymptotically as M(k)∝ k3/2, for
q� k� kη, with kη the wavenumber at which resistive dissipation becomes important.
This spectrum is known as the Kazantsev spectrum.

Following the seminal work of Kazantsev (1967), there has been considerable
interest in fluctuation dynamos, in terms of theoretical developments, in terms of
their direct simulation and in terms of various astrophysical applications (Molchanov,
Ruzmaı̆kin & Sokolov 1985; Zeldovich, Ruzmaikin & Sokoloff 1990; Kulsrud &
Anderson 1992; Rogachevskii & Kleeorin 1997; Subramanian 1997, 1999; Chertkov
et al. 1999; Haugen, Brandenburg & Dobler 2004; Schekochihin et al. 2004, 2005;
Brandenburg & Subramanian 2005; Enßlin & Vogt 2006; Subramanian, Shukurov
& Haugen 2006; Cho et al. 2009; Malyshkin & Boldyrev 2010; Federrath et al.
2011; Tobias, Cattaneo & Boldyrev 2011; Beresnyak 2012; Brandenburg, Sokoloff
& Subramanian 2012; Schober et al. 2012; Sur et al. 2012; Bhat & Subramanian
2013). These works have clearly demonstrated that random (or turbulent) flows in a
conducting plasma, with RM > Rcrit ∼ 30–500, lead to the amplification of magnetic
fields on the fast eddy turnover time scale, usually much smaller than the age of the
astrophysical system. The value of Rcrit depends on PM= ν/η, where ν is the viscosity,
and could even depend on the forcing wavenumber (Subramanian & Brandenburg
2014). This rapid growth implies that fluctuation dynamos are crucial for the early
generation of magnetic fields in primordial stars, galaxies and galaxy clusters. It is
therefore important to obtain a clear understanding of the fluctuation dynamo.

Note that the feature of delta-correlation in time, assumed by Kazantsev (1967),
is not realistic in turbulent astrophysical plasmas. There the correlation time, τ , is
expected to be at least of the order of the smallest eddy turnover time. Thus, its
important to understand the effects of finite time correlation on the fluctuation dynamo.
This is the main motivation of the present work.

The effect of having a finite-τ on the magnetic energy growth has been considered
by Chandran (1997), while Schekochihin & Kulsrud (2001) examined its consequences
for the single-point probability distribution function in the ideal limit. The correction
to the evolution of the two-point correlator due to having a finite-τ was considered
by Kleeorin, Rogachevskii & Sokoloff (2002); they, however, seem to have kept
only a subset of the terms we derive here. It was shown by Mason et al. (2011)
that the results from simulations involving finite-τ velocity flows can be matched
to the predictions using the Kazantsev equation provided the diffusivity spectrum is
appropriately filtered out at small scales. An analytic understanding of the magnetic
spectrum at finite-τ is, however, still lacking.

The present work uses random flows with finite time correlation, known as renewing
(or renovating) flows, to develop an analytic generalization of the results of Kazantsev
(1967) to include the effects of a finite correlation time. Zeldovich et al. (1988) had
used renewing flows for studying the diffusion of scalars and the generation of
vectors in random flows. Such flows have also been used to study the effect of finite
correlation time on mean field dynamos (Dittrich et al. 1984; Gilbert & Bayly 1992;
Kolekar, Subramanian & Sridhar 2012). In an earlier letter (Bhat & Subramanian
2014, hereafter BS14), we gave a brief account of our work on fluctuation dynamos
using renewing flows, emphasizing an intriguing result that the Kazantsev spectrum is
in fact preserved even for such finite-τ . In the present paper, we present our detailed
derivations of the generalized Kazantsev equation and the results in BS14, as well
as some new WKBJ analysis. In the next section, we formulate the basic problem
of fluctuation dynamos in renewing flows. The detailed derivation of the evolution
equation for ML(r, t) which incorporates finite-τ effects, to the leading order, is given
in § 3. Scaling and WKBJ analysis of this generalized evolution equation are taken
up in § 4, and we end with a discussion of our results.
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Fluctuation dynamos at finite correlation times 3

2. Fluctuation dynamos in renewing flows
The evolution of magnetic field, in a conducting fluid with velocity u, is given by

the induction equation,

∂B
∂t
=∇× (u× B− η∇× B). (2.1)

The velocity field here is a random flow which renews itself every time interval τ
(Dittrich et al. 1984; Gilbert & Bayly 1992) and was given by Gilbert & Bayly (1992)
(GB) as

u(x)= a sin(q · x+ψ), (2.2)

with a · q = 0 for an incompressible flow. In each time interval [(n− 1)τ , nτ ]:
(i) ψ is chosen uniformly random between 0 and 2π;

(ii) q is uniformly distributed on a sphere of radius q= |q|;
(iii) for every fixed q̂ = q/q, the direction of a is uniformly distributed in the plane

perpendicular to q.

Specifically, for computational ease, we modify the GB ensemble and use

ai = P̃ijAj, P̃ij(q̂)= δij − q̂iq̂j, (2.3a,b)

where A is uniformly distributed on a sphere of radius A, and P̃ij projects A to the
plane perpendicular to q. Then, on averaging over ai and using the fact that A is
independent of q, we have 〈u〉 = 0 and

〈aial〉 = 〈a2〉δil

3
= 〈AjAkP̃ijP̃lk

〉= A2 δjk

3

〈
P̃ijP̃lk

〉= A2

3

〈
P̃il
〉= 2A2

3
δil

3
⇒ 〈a2〉 = (2/3)(A2). (2.4)

This modification in ensemble does not affect any result obtained using the renewing
flows. Condition (i) on ψ ensures statistical homogeneity, while (ii) and (iii) ensure
statistical isotropy of the flow.

The magnetic field evolution in any time interval [(n− 1)τ , nτ ] is

Bi(x, nτ)=
∫

Gij(x, x0, τ )Bj(x0, (n− 1)τ ) d3x0, (2.5)

where Gij(x, x0) is the Green’s function of (2.1). We define the magnetic two-point
spatial correlation function as

〈Bj(x, t)Bl(y, t)〉 =Mjl(r, t), where r= |r| = |(x− y)|, (2.6)

and 〈·〉 denotes an ensemble average. Here we have assumed the statistical homoge-
neity and isotropy of the magnetic field. Note that if the initial field is statistically
homogeneous and isotropic, then this is preserved by the renewing flow as we show
explicitly below. Then the evolution of the fluctuating field defined by the two-point
correlation is

Mih((x− y), nτ)=
∫

G̃ijhl(x, x0, y, y0, τ )Mjl((x0 − y0), (n− 1)τ ) d3x0 d3 y0, (2.7)

where G̃ijhl =
〈
Gij(x, x0, τ )Ghl(y, y0, τ )

〉
. Here we could split the averaging on the

right-hand side of equation between the Green’s function and the initial magnetic
correlator, because the renewing nature of the flow implies that the Green’s function
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in the current interval is uncorrelated to the magnetic correlator from the previous
interval. The renewing nature of the flow also implies that G̃ depends only on the
time difference τ and not separately on the initial and final times in the interval
[(n− 1)τ , nτ ].

To obtain G̃ij(x, x0, y, y0, τ ) in the renewing flow, we use the method of
operator splitting as introduced by GB. The renewal time, τ , is split into two equal
sub-intervals. In the first sub-interval τ/2, resistivity is neglected and the frozen field
is advected with twice the original velocity. In the second sub-interval, u is neglected
and the field is diffused with twice the resistivity. This method, plausible in the
small-τ limit, has been used to recover the standard mean field dynamo equations in
renewing flows (Gilbert & Bayly 1992; Kolekar et al. 2012). It is further discussed
in appendix A.

From the advective part of (2.1), we obtain the standard Cauchy solution, in the
first sub-interval τ/2= t1 − t0,

Bi(x, t1)= ∂xi

∂x0j
Bj(x0, t0)≡ Jij(x(x0))Bj(x0, t0). (2.8)

Here Bj(x0, t0) is the initial field, which propagates from x0 at time t0, to x at time
t1= t0+ τ/2. In (2.2), the phase Φ= q · x+ψ is constant in time as dΦ/dt= q ·u= 0,
from the condition of incompressibility. Then at time t1 = t0 + τ/2, we integrate
dx/dt= 2u to obtain

x= x0 + τu= x0 + τa sin(q · x0 +ψ). (2.9)

Thus the Jacobian is

Jij(x(x0))= δij + τaiqj cos(q · x0 +ψ). (2.10)

It will be more convenient to work with the resulting field in Fourier space,

B̂i(k, t1)=
∫

Jij(x(x0))Bj(x0, t0)e−ik·x d3x. (2.11)

Then in the second sub-interval (t1, t = t1 + τ/2), only diffusion operates with
resistivity 2η, to give

B̂i(k, t)=Gη(k, τ )B̂i(k, t1)= e−(ητk2)B̂i(k, t1), (2.12)

where Gη is the resistive Green’s function. We combine (2.11) and (2.12) to derive
the evolution equation for the magnetic two-point correlation function,

〈B̂i(k, t)B̂∗h(p, t)〉 = e−ητ(k
2+p2)

∫ 〈
Jij(x0)Jhl(y0)e

−i(k·x−p·y)〉Mjl(r0, t0) d3x d3 y. (2.13)

The statistical homogeneity of the field also implies that the two-point magnetic
correlator in Fourier space will be given by

〈B̂i(k, t)B̂∗h(p, t)〉 = (2π)3δ3(k− p)M̂ih(p, t). (2.14)

Then we use (2.9) to transform from (x, y) in (2.13) to (x0, y0). Due to the
incompressibility of the flow, the Jacobian of this transformation is unity. We also
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write k · x0 − p · y0 = k · r0 + y0 · (k− p) in (2.13), transform from (x0, y0) to a new
set of variables (r0, y0

′ = y0), and integrate over y0
′. This leads to a delta function

in (k− p) and (2.13) becomes

M̂ih(p, t)= e−2ητ p2
∫
〈Rijhl〉Mjl(r0, t0)e−i p·r0 d3r0, (2.15)

〈Rijhl〉 =
〈
Jij(x0)Jhl(y0)e−iτ(a·p)(sin A−sin B)

〉
, (2.16)

where A = (x0 · q + ψ) and B = (y0 · q + ψ). Due to the statistical homogeneity of
the renewing flow, we expect 〈Rijhl〉 to be only a function of r0, which we will see
explicitly later. We now take the inverse Fourier transform of M̂ih(p, t),

Mih(r, t) =
∫
(1− 2ητ p2)〈Rijhl〉Mjl(r0, t0)ei p·(r−r0) d3r0

d3 p
(2π)3

=
∫ 〈

Rijhl
〉

Mjl(r0, t0)ei p·(r−r0) d3r0
d3 p
(2π)3

+ 2ητ∇2Mih(r, t). (2.17)

Here we have also expanded the exponential in the resistive Green’s function and
considered only the leading-order term in η, relevant in the independent small-η
(or RM� 1) limit. In the resistive term of (2.17), we consider only the τ -independent
term in

〈
Rijhl
〉
, δijδhl, to multiply with 2ητ p2 since all the other terms will be of

the order ητ 2 or higher. (Specifically we neglect terms like ητ 2 compared to τ 3

and τ 4.) Then we write (−p2)(ei p·r) as ∇2ei p·r and can take ∇2 out of the integral.
We have also considered in appendix A the effect of reversing the operator ordering
of advection and diffusion and have shown that (2.17) is still obtained. We now turn
to the evaluation of 〈Rijhl〉.

3. The generalized Kazantsev equation
Exact evaluation of 〈Rijhl〉 is difficult. However, we can motivate a Taylor series

expansion of the exponential in 〈Rijhl〉 for small Strouhal number St = q|a|τ = qaτ ,
as follows. Firstly, in the argument of the exponential we have (sin A − sin B) =
sin(q · r0/2) cos(ψ + q · R0), where R0 = (x0 + y0)/2. Also, for the kinematic
fluctuation dynamo, the magnetic correlation function peaks around the resistive scale
r0 = |r0| ∼ 1/(qR1/2

M ), or the spectrum peaks around p ∼ (qR1/2
M ) (here p = |p|). Also

RM ∼ a/(qη)� 1. Thus, qr0� 1 and sin(q · r0) ∼ q · r0. Consequently the phase of
the exponential in (2.16) is of order (paτqr0) ∼ qaτ = St. Thus for St� 1, one can
expand the exponential in (2.16) in τ . We do this retaining terms up to τ 4 order; on
keeping terms up to τ 2 in (2.16), we recover the Kazantsev equation, while the τ 4

terms give finite-τ corrections. On expansion we have

〈Rijhl〉 =
〈

Hijhl

[
1− iτσ − τ

2σ 2

2! +
iτ 3σ 3

3! +
τ 4σ 4

4!
]〉

, (3.1)

where σ = (a · p)(sin A− sin B) and Hijhl= Jij(x0)Jhl(y0) contains terms up to order τ 2.
We note that Kleeorin et al. (2002) seem to have kept only terms up to p2 in (3.1).
(Each factor of pi in σ becomes a derivative ∂/∂ri, when transiting from Fourier to
real space. As Kleeorin et al. (2002) have kept terms containing up to the second
derivative in ri (see their (B1)), it would seem that they have kept only up to p2-type
terms in (3.1). However, if one wants the evolution equation to be correct to order
τ 4, as is required to get the finite-τ correction to the Kazantsev equation, neglecting
terms proportional to p3 and p4 as done by Kleeorin et al. (2002) will not give correct
results.)
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3.1. Kazantsev equation from terms up to order τ 2

We now consider all terms in (3.1) one by one up to the order τ 2 and average over
ψ , â and q̂. First consider 〈Hijhl〉 from (3.1),

〈Hijhl〉 =
〈
δijδhl + δijahql cos A+ δhlaiqj cos B

+ aiahqjql
τ 2

2
(cos(q · r0)+ cos(2q · R0 + 2ψ))

〉
. (3.2)

In (3.2), the second, third and last term on the right are proportional to cos(. . . +
nψ) and hence go to zero on averaging over ψ . The survival of such terms, which
depend explicitly on x0, y0 or R0, would break statistical homogeneity. The resulting
expression after averaging over ψ is

〈Hijhl〉 =
〈
δijδhl + aiahqjql

τ 2

2
cos(q · r0)

〉
= δijδhl − τ

2

2
∂j∂l 〈aiah cos(q · r0)〉 , (3.3)

where we have expressed qj cos(q · r0) as ∂j sin(q · r0). We find that the expression in
(3.3) contains the two-point velocity correlator or the turbulent diffusion tensor, given
by

Tih = τ2 〈ui(x0)uh(y0)〉 =
τ

2
〈aiah sin A sin B〉 = τ

4
〈aiah cos(q · r0)〉. (3.4)

Then we can express (3.3) as

〈Hijhl〉 = δijδhl − 2τ∂j∂lTih. (3.5)

Consider now the second term in (3.1), iτ
〈
Hijhl σ

〉
. We average over ψ and obtain

statistically homogeneous terms,

〈
iτHijhl σ

〉 = iτ 2

2

〈
a · p [δij ahql sin(q · r0)+ δhl aiqj sin(q · r0)]

〉
= −iτ 2

2
pm[δij∂l 〈aham cos(q · r0)〉 + δhl∂j 〈aiam cos(q · r0)〉]

= −2iτpm [δij ∂lThm + δhl ∂jTim], (3.6)

where again in the last equation we have identified and expressed in terms of the
turbulent diffusion tensor. Similarly, for the third term in (3.1) of order τ 2, we have〈

Hijhl
τ 2σ 2

2

〉
= τ 2

2
δijδhlpmpn 〈aman[1− cos(q · r0)]〉

= 2τδijδhlpmpn[Tmn(0)− Tmn]. (3.7)

Now collecting all the simplified expressions of terms in (3.1) up to the order τ 2, as
given in (3.5)–(3.7), we obtain〈

Rijhl
〉 = δijδhl − 2τ∂j∂lTih − i2τpm[δij∂lThm + δhl∂jTim]
+ 2τδijδhlpmpn[Tmn(0)− Tmn]. (3.8)

We then substitute (3.8) into (2.17). In the case of the first two terms in
〈
Rijhl
〉

multiplying with unity, the integral in (2.17) is trivial with integration over p first
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giving a delta function δ3(r − r0) which then leads to all functions of r0 simply
turning into functions of r, on integrating over r0. The other terms containing pi can
be first written as derivatives with respect to ri. For example, consider the integral in
(2.17) containing the fourth term in 〈Rijhl〉 from (3.8),∫

2τ δijδhl pmpn [Tmn(0)− Tmn]Mjl(r0, t0) ei p·(r−r0) d3r0
d3 p
(2π)3

=
∫

2τ
(
∂m

i

)(
∂n

i

)
[Tmn(0)− Tmn]Mih(r0, t0) ei p·(r−r0) d3r0

d3 p
(2π)3

=−2τ ∂m∂n[(TL(0)− Tmn)Mih(r0, t0)], (3.9)

where we have used the fact that for a statistically homogeneous, isotropic and non-
helical velocity field, the correlation function is

Tih = (δih − r̂ir̂h)TN(r, t)+ r̂ir̂hTL(r, t), (3.10)

where r̂i = ri/r and hence Tmn(0) = δmnTL(0). Here TL(r, t) = r̂ir̂hTih and TN(r, t) =
(1/2r)[∂(r2TL)/∂r] are, respectively, the longitudinal and transversal correlation
functions of the velocity field.

Carrying out all the steps, and noting that (Mih(r, t)−Mih(r, t0))/τ = ∂Mih/∂t in the
limit τ→ 0, the resulting equation for Mih is given by

∂Mih(r, t)
∂t

= 2(−[TihMjl],jl + [TmhMil],ml + [TimMjh],jm − [TmnMih],mn)

+ (2TL(0)+ 2η) ∇2Mih. (3.11)

Note that we have a statistically homogeneous, isotropic and non-helical magnetic
field, and hence, similar to the velocity correlation function, we have Mih =
(δih − r̂ir̂h)MN(r, t) + r̂ir̂hML(r, t). Here ML(r, t) and MN(r, t) are the longitudinal
and transversal correlation functions of the magnetic field. Then on contracting
equation (3.11) with r̂ir̂h we would obtain the dynamical equation for ML(r, t), the
Kazantsev equation. Note that we have not yet performed averages over a and q
because we have simply identified the two-point velocity correlator from (3.4) in
expressions evaluated after averaging over ψ (as in (3.5)–(3.7)). We will perform the
averages over a and q later when we explicitly evaluate velocity correlators.

3.2. Extending the Kazantsev equation to higher order in τ

Next, we will consider the terms of higher order in τ , starting with τ 3 and
then τ 4. Interestingly, it turns out that all the terms of order τ 3 go to 0 on
averaging. For example, from the second term in equation (3.1), we obtain
τ 3
〈
i(p · a)aiahqjql cos A cos B(sin A− sin B)

〉
. Here, terms in cos A cos B sin A =

(1/2) sin (2A) cos B= (1/4)[sin (2A+ B)− sin (2A− B)] contain ψ in their argument
and hence go to 0 on averaging.

Now we consider the terms of order τ 4. The first contribution is from the third term
in (3.1), τ 4

〈−[(p · a)2/2] aiahqjql cos A cos B[sin A− sin B]2〉. On averaging over ψ ,
we obtain

−τ
4

8

〈
aiah (anpnampm) qjql[cos (q · r0)− cos (2q · r0)]

〉
= τ

4

8

〈
aiah (anpnampm) ∂j∂l

[
cos (q · r0)− cos (2q · r0)

4

]〉
. (3.12)
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We identify the terms in (3.12) with two-point fourth-order velocity correlators. Three
such velocity correlators can be defined:

Tx2y2

mnih = τ 2〈um(x)un(y)ui(x)uh(y)〉, (3.13a)

Tx3y
mnih = τ 2〈um(x)un(x)ui(x)uh(y)〉, (3.13b)

Tx4

mnih = τ 2〈um(x)un(x)ui(x)uh(x)〉. (3.13c)

Again we multiply the fourth-order velocity correlators by τ 2, as we envisage that
Tijkl will be finite even in the τ → 0 limit, behaving like products of turbulent
diffusion. Note that the renewing flow is not Gaussian random, and hence higher-order
correlators of u are not the product of two-point correlators. We consider the ψ
averaging of the velocity correlators in (3.13), to obtain

Tx2y2

mnih = τ 2
〈
amanaiah sin2 A sin2 B

〉= τ 2

4

〈
amanaiah

(
1+ cos(2q · r0)

2

)〉
, (3.14)

Tx3y
mnih = τ 2

〈
amanaiah sin3 A sin B

〉= 3τ 2

8
〈amanaiah cos(q · r0)〉 , (3.15)

Tx4

mnih = τ 2
〈
amanaiah sin4 A

〉= 3τ 2

8
〈amanaiah〉. (3.16)

Now we can rewrite (3.12), by expressing it in terms of the velocity correlators we
have obtained in (3.14) and (3.15), to get

−τ 2pnpm∂j∂l

[
Tx2y2

mnih

4
− Tx3y

mnih

3

]
. (3.17)

Note that the first term in (3.14) does not survive due to the derivatives in (3.17).
Similarly, from the fourth term in (3.1), the contribution of order τ 4 is given by

iτ 4 (p · a)3

6
[δijahql cos B+ δhlaiqj cos A](sin A− sin B)3

= i
τ 4

8
pnpmpr

(〈
δijakanamar∂l

[
2 sin(q · r0)− sin(2q · r0)

2

]〉)
=−τ 22pnpmpr

(
δij∂l

[
Tx2y2

mnih

4
− Tx3y

mnih

3

])
, (3.18)

where we have again expressed in terms of velocity correlators from (3.14) and (3.15).
Lastly, from the fifth term in (3.1), we have (τ 4/24)δijδhl

〈
(p · a)4(sin A− sin B)4

〉
,

which is given by,

τ 4

16
δijδhlpmpnprps

〈
amanaras

(
3
2
− 2 cos(q · r0)+ cos(2q · r0)

2

)〉
= τ 2δijδhlpmpnprps

[
Tx2y2

mnih

4
− Tx3y

mnih

3
+ Tx4

mnih

12

]
. (3.19)

We substitute the above equations (3.17)–(3.19), which form the τ 2 contributions from
〈Rijhl〉, into (2.17). We again find that the integrand determining the magnetic spectral

https://doi.org/10.1017/S0022377815000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000616


Fluctuation dynamos at finite correlation times 9

tensor M̂ih(p, t) is of the form G(p)Fih(r0, t0), where G(p) is a polynomial up to
fourth order in pi. The inverse Fourier transform of M̂ih(p, t), as in (2.17), now gives

Mih(r, t)=
∫

G(p)Fih(r0, t0)ei p·(r−r0) d3r0
d3 p
(2π)3

. (3.20)

The pi in G(p) above can be written as derivatives with respect to ri. Then the integral
over p simply gives a delta function δ3(r − r0) and this makes the integral over r0
trivial. This was explicitly demonstrated earlier in (3.9).

We then divide all the three contributions of order τ 4 in (3.17)–(3.19) by τ . From
the remaining factor of τ 3, the τ 2 part is absorbed into Tijkl, leaving one τ which is
treated as a small effective finite time parameter. The resulting extended equation for
Mih is given by
∂Mih

∂t
= 2(−[TihMjl],jl + [TjhMil],jl + [TilMjh],jl − [TjlMih],jl)+ (2TL(0)+ 2η) ∇2Mih

+ τ
(
[T̃mnihMjl],mnjl − 2[T̃mnrhMil],mnrl +

[(
T̃mnrs + Tx4

mnrs

12

)
Mih

]
,mnrs

)
, (3.21)

where T̃mnih = Tx2y2

mnih/4 − Tx3y
mnih/3. The first two lines in (3.21) contains the terms

which give the Kazantsev equation as in (3.11), while the third line contains the
finite-τ corrections. We write these latter terms as fourth derivatives of the combined
velocity and magnetic correlators; however as both the velocity and magnetic fields
are divergence free, each spatial derivative only acts on one or the other.

We then contract (3.21) with r̂ir̂h to obtain the dynamical equation for ML(r, t).
On such a contraction, the terms in the first two lines lead to the original Kazantsev
equation for ML. In order to perform such a contraction, we need to know the explicit
form of the fourth-order velocity correlator, T̃mnih. A fourth-order two-point correlator
for a homogeneous and isotropic velocity field can be expressed as

Tmnih = r̂mnihTL + P̂(mnP̂ih)TN + r̂(mnP̂ih)TLN, (3.22)

where r̂mn = r̂mr̂n and similarly r̂mnih = r̂mr̂nr̂ir̂h. P̂mn = δmn − r̂mn is the configuration
space projection operator. The correlation functions are defined as

TL = r̂mnihT̃mnih, TLN = r̂mnP̂ih T̃mnih, TN = P̂mnP̂ih T̃mnih/16. (3.23a−c)

Lastly, the brackets ( ) in the subscripts of the two second-rank tensors denote the
addition of all terms from different permutations of the four indices considered in
pairs. We will henceforth refer to all ten terms in (3.22), namely r̂mnih, P̂mnP̂ih (and
two other terms with permutations of the indices), r̂mnP̂ih (and five other terms with
permutations of the indices), as the basis tensors (although not all of them are
orthogonal to each other). For a divergence-free (or incompressible) velocity field, the
different correlation functions, TL, TN and TLN , are related as

TLN = 1
6r

d(r2TL)

dr
, TLN = TN + r

4
d(TN)

dr
. (3.24a,b)

Consider the contraction of r̂ih with the first term in the third line in equation (3.21),
r̂ih[T̃mnihMjl],mnjl = r̂ihT̃mnih,jlMjl,mn. Then we have

r̂ihT̃mnih,jlMjl,mn = 1
r2
([rihT̃mnih],jl − [δijrhT̃mnih],j − [δilrhT̃mnih],l
− [δjhriT̃mnih],j − [δhlriT̃mnih],j + (δijδhl + δilδjh)T̃mnih)Mjl,mn. (3.25)

https://doi.org/10.1017/S0022377815000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000616


10 P. Bhat and K. Subramanian

We obtain a fourth-order tensor from r̂ihT̃mnih,jl which multiplies another fourth-order
tensor Mjl,mn. To make this computation tractable, we construct a table where we
list the coefficients of all the basis tensors. We provide such a table in appendix B,
(table 1). Similarly, for the second term in the third line in (3.21),

r̂ih[T̃mnrhMil],lmnr = (r̂hT̃mnrh,l)(r̂iMil,mnr)= 1
r2
([rhT̃mnrh],l − δlhT̃mnrh)

× ([riMil],mnr − δirMil,mn − δinMil,mr − δimMil,nr). (3.26)

Again we give the expansion of the fourth-order objects (r̂hT̃mnrh,l) and (r̂iMil,mnr) (in
terms of basis tensors) in table 2 in appendix B. Then lastly we have the third term
from the third line in (3.21),

rih[T̃mnrsMih],mnrs = T̃mnrs([rihMih],mnrs − (rih),mMih,nrs − (rih),nMih,mrs

− (rih),rMih,nms − (rih),sMih,nrm − (rih),mnMih,rs − (rih),mrMih,ns

− (rih),msMih,rn − (rih),nsMih,mr − (rih),rsMih,mn − (rih),rnMih,ms). (3.27)

Here the two fourth-order tensor objects multiplying each other are T̃mnrs and rilMjl,mnrs
and the expansion of these fourth-order objects in terms of basis tensors can again be
found in table 3, in appendix B.

Tables 1–3 in appendix B are useful in making the algebra of all the the fourth-
order terms in (3.25)–(3.27) tractable. In each of the tables, we list the expansion of
all the individual fourth-order objects in terms of the basis tensors. The basis tensors
form the rows, while the expansion coefficients in (3.25)–(3.27) are listed as columns.
Note that the first column is the list of the basis tensors. Then the subsequent columns
list the expansion coefficients (of the respective basis tensor) for each fourth-order
term in (3.25)–(3.27). Then we sum the contributions from each row, separately for the
magnetic and velocity parts. The last but one column in table 1 and the last columns
in tables 2 and 3 give the resulting sum divided by r2. We then finally multiply the
sum obtained for the magnetic part with the sum from the velocity part.

Here, we note that typically when we multiply one group of the basis tensors with
another, all of them go to zero, but yield a constant when multiplied within the same
group. For example, the product of r̂mnih and r̂mnP̂ih goes to zero, but the product of
r̂mnih with itself naturally produces unity. Then the product of r̂mnP̂ih with r̂ihP̂mn (or
the other four similar kind of terms) goes to zero, but with itself gives a value of 2.
Lastly, the product of P̂mnP̂ih with P̂miP̂nh (or P̂niP̂mh) gives a value of 2, but with itself
gives a value of 4.

By multiplying the velocity part with the magnetic part in this manner, we finally
obtain the additional terms from the contractions, due to finite-τ , and extend the
Kazantsev equation to the form

∂ML(r, t)
∂t

= 2
r4

∂

∂r

(
r4ηtot

∂ML

∂r

)
+GML

+ τM′′′′L

(
TL + TL(0)

12

)
+ τM′′′L

(
2T ′L +

8TL

r
+ 2TL(0)

3r

)
+ τM′′L

(
5T ′′L

3
+ 11T ′L

r
+ 8TL

r2
+ 2TL(0)

3r2

)

+ τM′L

(
2T ′′′L

3
+ 17T ′′L

3r
+ 5T ′L

r2
− 8TL

r3
− 2TL(0)

3r3

)
. (3.28)
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Here, ηtot = η+ TL(0)− TL(r) and G=−2(T ′′L + 4T ′L/r). Again the first line gives us
the original Kazantsev equation and the rest of the terms form the extended part and
have the parameter τ multiplying them. We will refer to (3.28) as the generalized
Kazantsev equation incorporating finite-τ effects. To proceed further, and solve the
generalized Kazantsev equation (3.28), we need to first evaluate the second- and
fourth-order velocity correlators explicitly for the renewing flow from (3.4) and
(3.14), (3.15) and (3.16) respectively.

Consider first the two-point velocity correlator,

Tij= τ4 〈AlAmPilPjm cos(q · r)〉 = A2τ

12
〈Pij cos(q · r)〉 = a2τ

8

[
δij + 1

q2

∂2

∂rirj

]
j0(qr). (3.29)

Here, we have made use of the results in (2.3) and (2.4), i.e. we have substituted for
a in terms of A, and first averaged over A. Similarly, in the expression for Tx2y2

mnih in
(3.14), we substitute am=AsP̃ms, an=AtP̃nt, ai=AuP̃iu and ah=AvP̃hv. Then we have

Tx2y2

mnih =
τ 2A4

60

〈
P̃(mnP̃ih)(1+ cos(2q · r))

〉
. (3.30)

The first part of (3.30) is evaluated to be 〈P̃(mnP̃ih)〉 = 8/15(δ(mnδih)). And the second
part of (3.30) is given as〈

P̃(mnP̃ih) cos(2q · r)
〉 = [(δmn + ∂m∂n)(δih + ∂i∂h)+ (δmi + ∂m∂i)(δnh + ∂n∂h)

+ (δmh + ∂m∂h)(δin + ∂i∂n)] j0(2qr)

= −24
(

j0(2z)
(2z)2

+ 3∂2zj0(2z)
(2z)3

)
r̂mnih

+
(

j0 + 2∂2zj0(2z)
2z

− 3∂2zj0(2z)
(2z)2

− 9∂2zj0(2z)
(2z)3

)
[P̂(mnP̂ih)]

+
(
−4∂2zj0(2z)

z
+ 12∂2zj0(2z)

(2z)2
+ 36∂2zj0(2z)

(2z)3

)
[r̂(mnP̂ih)], (3.31)

where z= qr and ∂2z is the derivative with respect to 2z. We get a similar expression
to (3.31) for Tx3y

mnih = (A4/40)
〈
P̃(mnP̃ih) cos(q · r)

〉
, with all the (2z) replaced by z and

∂2z by ∂z. Finally, for Tx2y2

L and Tx3y
L we get

Tx2y2

L =
−9a4τ 2

10

(
3∂2zj0(2z)
(2z)3

+ j0(2z)
(2z)2

)
, Tx3y

L =
−27a4τ 2

20

(
3∂zj0(z)

z3
+ j0(z)

z2

)
.

(3.32a,b)

(The above expressions correct the missing ∼a4τ 2 factors in (18) of BS14.) These
latter equalities give the explicit expressions of these fourth-order correlators for the
renewing flow. The generalized Kazantsev equation (3.28) allows eigen-solutions of
the form ML(z, t)= M̃L(z)eγ t̃, where t̃= tηtq2, with ηt = TL(0)= a2τ/12=A2τ/18, and
γ is the growth rate. Boundary conditions are given as M′L(0, t)= 0 and ML→ 0 as
r→∞. Implications of the higher spatial derivative terms are discussed below.

4. Growth rate and magnetic spectrum at finite correlation time
We now discuss the solution of (3.28) to examine the finite correlation time

modification to the growth rate and magnetic correlation function or its energy
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12 P. Bhat and K. Subramanian

spectrum. For the latter, we focus particularly on the large-k (or small-r) behaviour.
Recall that in the τ → 0 limit the magnetic spectrum is of the Kazantsev form,
M(k) ∝ k3/2 for q� k� kη. Our aim is to determine how this gets modified in the
presence of finite correlation time effects. For this purpose, we employ two different
approaches. First, we recall in more detail the scaling solution discussed in BS14.
We also then present a WKBJ analysis to derive ML(r, t) in the small-r limit, and
hence the magnetic spectrum.

In both approaches, to derive the standard Kazantsev spectrum in the large-k limit,
and its finite-τ modifications, it suffices to go to the limit of small z = qr � 1.
Expanding the Bessel functions in (3.29) and (3.32) in this limit, and substituting
ML(z, t)= M̃L(z)eγ t̃, (3.28) becomes

γ M̃L(z) =
(

2η
ηt
+ z2

5

)
M̃′′L +

(
8η
ηt
+ 6z2

5

)
M̃′L
z
+ 2M̃L

+ 9τ̄
175

(
z4

2
M̃′′′′L + 8z3M̃′′′L + 36z2M̃′′L + 48zM̃′L

)
, (4.1)

where τ̄ = τηtq2 = (St)2/12 and the prime now denotes a z-derivative.
For the solution near the origin, where z�√η/ηt, it suffices to approximate M̃L as

a parabola and write M̃L(z)=M0(1− z2/z2
η). From (4.1), we find zη = qrη = [240/(2−

γ )]1/2[RM(St)]−1/2. The τ̄ -dependent terms, which are small because both z and τ̄ are
small, do not affect this result. Thus for RM � 1, the resistive scale rη � 1/q (or
kη = 1/rη� q), although one has to go to sufficiently large RM� 240/((2− γ )St) for
this conclusion to obtain.

In order to determine the magnetic correlation function for spatial scales larger than
zη, and also obtain the growth rate, we have to more fully analyse (4.1). We see
that this evolution equation (or (3.28)), also has higher-order (third and fourth) spatial
derivatives when going to the finite-τ case. This indicates that for finite-τ , the ML
evolution is actually non-local, determined by an integral type equation; but whose
leading approximation for small τ̄ is the local equation (4.1). However, these higher-
derivative terms only appear as perturbative terms multiplied by the small parameter
τ̄ . Then it is possible to use the Landau–Lifshitz type approximation, earlier used
in treating the effect of radiation reaction force in electrodynamics (see Landau &
Lifshitz 1975, Section 75). In this treatment, one first ignores the perturbative terms
proportional to τ̄ , which gives basically the Kazantsev equation for M̃L, and uses this
to express M̃′′′L and M̃′′′′L in terms of the lower-order derivatives M̃′′L and M̃′L.

We will find that both for the scaling solution and for determining the asymptotic
WKBJ solution, these higher-order derivatives are only required in the limit z� zη. In
this limit we have from (4.1), at the zeroth order in τ̄ ,

z2

5
M̃′′L =−

6z
5

M̃′L + (γ − 2)M̃L. (4.2)

Differentiating this expression first once and then twice gives

z3M̃′′′L =−8z2M̃′′L − z(16− 5γ0)M̃′L, (4.3a)

z4M̃′′′′L = (56+ 5γ0)z2M̃′′L + 10(16− 5γ0)zM̃′L. (4.3b)

Here γ0 is the growth rate which obtains for the Kazantsev equation in the τ → 0
limit. We now turn to the scaling solution approach.
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4.1. Growth rate and magnetic correlations from a scaling solution
Consider the solution for zη� z� 1. In this limit, ignoring terms depending on η/ηt,
(4.1) itself is scale free, as the scaling z→ cz leaves it invariant. Thus the resulting
equation has power law solutions of the form M̃(z)= M̄0z−λ. To find the form of this
solution, we first substitute the expressions in (4.3) back into the full equation (4.1).
We get, after neglecting the η/ηt terms,

M̃′′Lz2
(
τ̄ γ0

9
70 + 1

5

)+ M̃′Lz
(
τ̄ γ0

27
35 + 6

5

)+ (2− γ )M̃L = 0. (4.4)

We find the interesting result that the coefficients of the perturbative terms in (4.1) are
such that all perturbative terms which do not depend on γ0 cancel out in (4.4)!

As already mentioned (4.4) admits power law solutions of the form M̃L(z)= M̄0z−λ,
with λ determined by

λ2 − 5λ+ 5(2− γ )
1+ 9

14γ0τ̄
= 0; so λ= 5

2
± iλI, λI = 1

2

[
20(2− γ )

(1+ 9γ0τ̄ /14)
− 25

]1/2

. (4.5)

More important is the fact that the real part of λ is λR= 5/2, independent of the value
of τ̄ . We can also get the approximate growth rate assuming RM � 1, following an
argument from Gruzinov, Cowley & Sudan (1996). These authors looked at (4.5) as
an equation for γ (λ) and argued that the growth rate is determined by substituting
into (4.5) the value of λ= λm where dγ /dλ= 0. This gives

γ0 ≈ 3
4 , and γ ≈ ( 3

4

) (
1− ( 45

56

)
τ̄
)
. (4.6a,b)

Note that (4.6) also implies λI≈ 0. (Including the effects of resistivity gives λI a small
positive non-zero value ∝ 1/ ln(RM) as will be shown below.) The γ0 we get matches
with that of Kulsrud & Anderson (1992), obtained from the evolution equation of
M(k, t). It is also important to note that the growth rate is reduced for a finite-τ̄ . This
was found in simulations which directly compare with an equivalent Kazantsev model
(Mason et al. 2011).

The form of the magnetic correlation ML for zη � z� 1 can also be found from
(4.5). It is given by

ML(z, t)= eγ t̃M̃0z−5/2 sin(λI ln(z)+ φ), (4.7)

where M̃0 and φ are constants. Thus in this range, ML varies dominantly as z−5/2,
modulated by the weakly varying sine factor (as λI is small). We will use this below
to determine the asymptotic magnetic spectrum. Before that, we turn to the alternative
approach to determining γ and ML, using the WKBJ approximation, which also allows
one to incorporate the effects of the small resistive terms.

4.2. Growth rate and Magnetic correlation function using WKBJ analysis

First it is convenient to define a scaled coordinate z̄ = (√ηt/η) z. In terms of this
new coordinate the resistive scale will have z̄ ∼ 1, whereas the forcing scale, z = 1,
corresponds to z̄∼√RM� 1. Now substituting the expressions in (4.3) back into the
full equation (4.1) we get

d2M̃L

dz̄2

(
2+ τ̄ γ0

9z̄2

70
+ z̄2

5

)
+ dM̃L

dz̄

(
8
z̄
+ τ̄ γ0

27z̄
35
+ 6z̄

5

)
+ (2− γ )M̃L = 0. (4.8)
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As remarked earlier, the coefficients of the perturbative terms in (4.1) are such that
all perturbative terms which do not depend on γ0 cancel out in (4.8).

Further, in order to implement the boundary condition at z̄ = 0, under the
WKBJ approximation, it is better to transform to a new variable x, where z̄ = ex.
Also, to eliminate first-derivative terms in the resulting equation we substitute
M̃L(x)= g(x)W(x), and choose g(x) to satisfy the differential equation

1
g

dg
dx
=−5

2
(6+ z̄2F)
(10+ z̄2F)

, with F=
(

1+
(

9
14

)
τ̄ γ0

)
. (4.9)

Then W satisfies
d2W
dx2
+ p(x)W = 0, (4.10)

where

p(x)= A0z̄4 − B0z̄2 − 225
(10+ Fz̄2)2

, (4.11)

A0 = 5F
(

3
4 − 45

56 τ̄ γ0 − γ
)
, B0 = 5

(
10γ + 171

14 τ̄ γ0 − 1
)
. (4.12a,b)

The WKBJ solutions to this equation are linear combinations of

W = 1
p1/4

exp
(
±i
∫ x

p1/2 dx
)
. (4.13)

Note that as z̄→0, x→−∞ and p→−9/4; so the WKBJ solutions are in the form of
growing and decaying exponentials in this limit. And as z̄ increases to a large enough
value, p(x) goes through a zero at say z̄ = z̄0 (or x = x0) and becomes positive for
z̄ > z̄0. The solution then becomes oscillatory. Note that when z̄→+∞, one would
again want the solution to decay, and so p(x) should become negative. This cannot be
seen in (4.11), as it is valid only for z� 1 (or z̄�√RM), but would require one to
consider (3.28) in the opposite limit of z� 1 (or z̄�√RM). In such a limit one has
TL(r)→ 0, TL(r)→ 0, and again using the Landau–Lifshitz ansatz to eliminate M̃′′′′L ,
M̃L(z) now satisfies

γ M̃L(z)=
(

2η
ηt
+ 2+ τ̄ α

)
M̃′′L + 8

(
η

ηt
+ 1
)

M̃′L
z
, (4.14)

where α= (q2TL(0)γ0)/[12(η+ ηt)]. We can again transform to the x-coordinate, and
write M̃L = gW. Then in this limit of z� 1, W again satisfies (4.10) with now

1
g

dg
dx
=−ex (1+ ηt/η)

2(2+ 2ηt/η+ τ̄ α) , p(x)=−e2x (1+ ηt/η)+ γ
(2+ 2ηt/η+ τ̄ α)2 . (4.15a,b)

We see that p(x) is now negative definite and so again one has exponentially damped
solutions for W. Since p(x) > 0 for z̄> z̄0, and is negative at z̄�√RM, there would
again be a point, say z̄= z̄c (or x= xc), where it would go to zero. We approximate
our WKBJ treatment by assuming that (4.8) is valid for z< 1 and (4.14) is valid for
z > 1. The outer transition point z̄c then can be taken to be the boundary between
these two regions. We will see that the z̄c dependence, in the determination of the
growth rate and M̃L, only comes within a logarithm, and so our results are not very
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sensitive to its exact value. This feature has been remarked upon earlier by several
authors (Kulsrud & Anderson 1992; Gruzinov et al. 1996; Schekochihin, Boldyrev &
Kulsrud 2002; Brandenburg & Subramanian 2005).

The requirement that the oscillatory solution in the region z̄0 < z̄ < z̄c match onto
the growing exponential near z̄ � z̄0 and the decaying exponential when z̄ � z̄c,
gives the standard condition (Bender & Orszag 1978; Mestel & Subramanian 1991;
Subramanian 1997) on the eigenvalue γ :∫ xc

x0

p1/2(x) dx= (2n+ 1)π
2

, n= 0, 1. (4.16)

We will find that z̄0 is large enough that one can neglect the constant terms in (4.11).
Then the integral in (4.16) can be done exactly and leads to the condition

A1/2
0

[
ln

(
z̄c

z̄0
+
(

z̄2
c

z̄2
0
− 1
)1/2

)
−
(

1− z̄2
0

z̄2
c

)1/2
]
= πF

2
. (4.17)

Here we have taken n= 0 which corresponds to the fastest growing eigenfunction. We
will also find self-consistently that for large RM, z̄2

c/z̄
2
0� 1. In this case (4.17) gives

for the growth rate

γ = 3
4
− 45

56
τ̄ γ0 − π2

5

(
1+ ( 9

14

)
τ̄ γ0
)

(ln(2z̄c/z̄0))2
≈ 3

4

[
1− 45

56
τ̄

]
− π2

5

(
1+ ( 27

56

)
τ̄
)

(ln(RM))2
. (4.18)

In the latter part of (4.18), we have used self-consistent estimates of γ0 ∼ 3/4, z̄c ∼√
ηt/ηzc ∼√RM and z̄0 ∼√B0/A0 ∼ ln(RM), and so also neglected ln z̄0 compared to

ln z̄c. This result for the growth rate exactly matches with that obtained earlier by
BS14 in the limit of large RM using a scaling solution (see (4.6) above). It of course
corrects this estimate for finite RM. We also see from (4.18) that the growth rate is
not sensitive (more correctly only logarithmically sensitive) to the exact value of z̄c,
the upper zero of p(x).

The WKBJ analysis also gives the form of the eigenfunction between the two zeros:

W(x)≈ 1
p1/4

sin
[∫ x

x1

(p)1/2 dx+ π

4

]
≈ (ln RM)

1/2

π1/2
sin
[

π

ln RM
ln
(

z̄
z̄0

)
+ π

4

]
, (4.19)

where for the latter expression we have taken the large z̄ > z̄0 � 1 limit which is
applicable here. Also, for z̄� 1, we can see from (4.9) that (1/g)(dg/dx)→−5/2
independent of the value of τ̄ . Thus in this limit g(x)∝ exp(−5x/2). Since ML(z)∝
eγ t̃gW, the WKBJ solution for the region zη� z� 1 is then given by

ML(z, t)= eγ t̃M̃0z−5/2 sin
[

π

ln RM
ln
(

z
z0

)
+ π

4

]
. (4.20)

This again matches with the result obtained from the scaling solution, improving it
by fixing the constants there, in particular λI . We see that the dominant variation
of ML(z, t) in this regime is the power law behaviour ML ∝ z−5/2, modulated by the
weakly varying sine factor, as before.

https://doi.org/10.1017/S0022377815000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000616


16 P. Bhat and K. Subramanian

4.3. Magnetic spectrum at finite-τ
The power law scaling of the magnetic correlation function can be translated to
the scaling of the magnetic power spectrum. It is straightforward to show that the
magnetic power spectrum is related to the longitudinal correlation function ML by (cf.
Brandenburg & Subramanian 2000)

M(k, t)=
∫

dr (kr)3ML(r, t)j1(kr). (4.21)

The spherical Bessel function j1(kr) is peaked around k ∼ 1/r, and every value of k
in M(k, t) gets a dominant contribution in the integral in (4.21) from values of r ∼
1/k. Therefore a power law behaviour of ML ∝ z−λR for a range of zη � z = qr �
1, translates into a power law for the spectrum M(k) ∝ kλR−1 in the corresponding
wavenumber range q� k� q/zη. Both the scaling solution in (4.7) and the WKBJ
solution given in (4.20), show that in the range zη � z� 1, ML dominantly varies
as a power law with λR = 5/2, independent of τ . This then leads to the remarkable
result emphasized by BS14 that the magnetic spectrum is of the Kazantsev form with
M(k)∝ k3/2 in k-space, independent of τ !

5. Discussion and conclusions
Fluctuation dynamos, generic to any turbulent plasma, are likely to be crucial for

rapid generation of magnetic fields in astrophysical systems. We have given here an
analytical treatment of fluctuation dynamos at finite correlation times, by modelling
the velocity as a flow which renews itself after every time step τ . In particular we
present a detailed derivation of the evolution equation for the two-point magnetic
correlation function in such a flow, earlier spelled out briefly in BS14. This generalizes
the Kazantsev equation, which was derived under the assumption that the velocity
is delta-correlated in time, to the situation where the correlation time is finite. The
correlation time will indeed be finite in any turbulent flow. Our generalized evolution
equation for ML(r, t), (3.28), reduces to the Kazantsev equation when τ → 0, and
extends it to the next order in τ .

The evolution equation for such a finite-τ involves both higher- (fourth-) order
velocity correlators and also higher-order (third and fourth) spatial derivatives of ML,
signalling that non-local effects are important in this case. However, these higher-order
derivatives appear only perturbatively, multiplied by the small parameter τ̄ = τηtq2.
This allows us to use the Landau–Lifshitz approach, earlier used to treat the effect of
the radiation reaction force in electrodynamics. In this approach, to the zeroth order
in τ̄ , one retains the standard Kazantsev equation. This is then used to express the
third and fourth derivatives of ML in terms of the lower-order derivatives, to finally
get an evolution equation which at most involves second derivatives of ML.

The resulting evolution equation is analysed both using a scaling solution and the
WKBJ approximation. The scaling solution is valid in the range of scales where
resistivity can be neglected, while the WKBJ treatment also takes into account the
effect of a finite resistivity. From both treatments we see that the effect of a finite-τ
is to cause a reduction in the dynamo growth rate. This result agrees with the result
of simulations which directly compare with an equivalent Kazantsev model (Mason
et al. 2011).

The asymptotic form of the correlation function on scales zη � z � 1/q is very
nearly a power law, ML ∝ z−5/2, independent of τ ! This leads to the important
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and intriguing result that the Kazantsev spectrum of M(k) ∝ k3/2 is preserved even
at finite-τ .

Although we have derived the effects of a finite-τ using a particular renewing
velocity field, the resulting evolution equation for Mih (3.21) or ML (3.28) can be
cast completely in terms of the general velocity correlators, Tij and Tijkl. It also
matches exactly with the Kazantsev equation for the τ → 0 case. Moreover, we
expect the forms of Tij and Tijkl for r� 1/q to be universal due to their symmetries
and divergence-free properties. We would therefore conjecture that our results on
the magnetic spectrum could have a more general validity than the context (of a
renewing velocity) in which they are derived. Future work would involve a numerical
study of (3.28) without making the small-z approximation. The general methodology
developed here also holds the promise of being systematically extendable to the
non-perturbative regime of St ∼ 1, at least by a series of numerical integrations to
implement the averaging. The inclusion of shear and helicity are also the next obvious
extensions that need to be studied, issues which we hope to address in the future.
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Appendix A. Operator splitting for the magnetic two-point correlator

In § 2, we obtained the expression for the two-point magnetic correlator, Mih(r, t), in
(2.17), by using the technique of operator splitting as introduced by GB. We give here
a brief exposition of the operator splitting technique (Holden et al. 2010). Suppose we
have a linear equation, given by the addition of two linear operators

∂f
∂t
= Af +Df (A 1)

whose true solution can be given by f (t)= et(A+D)f0, where f0 = f (0). On splitting we
have fL= ehAehDf0, also known as Lie splitting. Here h is a small time step. Then the
splitting error after a time step is given by

fL − f (h)= (ehAehD − et(A+D))f0 = h2

2
[A,D] f0 +O(h3) ∗ g([A,D]), (A 2)

where all the terms on the right-hand side are essentially functions of the commutator,
[A, D]. Hence if the two operators commute, i.e. [A, D] = 0, then the splitting error
goes to 0.

In our case, A can be the advection operator and then D is the diffusion operator.
In § 2, we first advected the field in (2.8), ignoring the diffusion operator in the first
sub-interval, and then subsequently diffused it, ignoring the advection operator. In the
following we do the reverse and show that the resulting expression for the magnetic
correlator in configuration space, Mih(r, t), is identical to that obtained in (2.17), in the
limit of small η or large RM. This limit has been assumed to hold even in the earlier
case and thus we had considered only the leading-order terms in the expansion of the
Green’s function for diffusion, e−2ητ p2 .
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Now if we consider only diffusion first, in the first sub-interval, τ/2, we have in
Fourier space

B̂i(m, t1)= e−(ητm2)B̂i(m, t0), (A 3)

where m is the wavevector. Then, in the next sub-interval, we consider only advection,

Bi(x, t)= Jij(x(x1))Bj(x1, t1). (A 4)

We take the Fourier transform of both Bi(x, t) and Bj(x1, t1), and then substitute (A 3)
into the resulting equation,

B̂i(k, t)=
∫

Jij(x(x1))(e−(ητm2)B̂i(m, t0))ei(m·x1−k·x) d3x
d3m
(2π)3

. (A 5)

Using (A 5), we can obtain the two-point magnetic correlator,

〈B̂i(k, t)B̂∗h(p, t)〉 =
〈∫

e−ητ(m
2+n2)Jij(x1)Jhl(y1)B̂j(m)B̂l(n)

× ei(m·x1−k·x)ei(−n·y1+p·y) d3x d3 y
(d3m d3n)
(2π)6

〉
. (A 6)

We follow the same steps as used in § 2 and arrive at the following expression:

M̂ih(p, t)=
∫

e−2ητm2 〈
Rijhl
〉

eir1·(m−p)M̂jl(m) d3r1 d3m/(2π)3, (A 7)

where Rijhl is as defined in (2.16). The expression in (A 7) differs from the one in
(2.16) because the Gaussian, e−2ητm2 , is now within the integral. In the limit of η→ 0,
we recover the results as in (2.17). To see this, we Fourier transform M̂ih(p, t) back
to configuration space,

Mih(r) =
∫
(1− 2ητm2)

〈
Rijhl
〉

eir1·me−i p·(r1−r)M̂jl(m) d3r1 (d3m d3 p)/(2π)6

=
∫ 〈

Rijhl
〉

Mjl(r1)eim·(r−r1) d3r1
d3m
(2π)3

+ 2η∇2Mih(r, t), (A 8)

which now matches with the expression in (2.17). Actually, in the case of the
induction equation, A (advection) and D (diffusion) do not commute. But here we
have shown that these operations do commute, if one looks at the evolution of the
magnetic correlation function (which is a statistically averaged quantity), in the limit
of small enough η or high RM. While this is not a proof, it is an encouraging result
and suggests the validity of our approach.

We end with a comment on the corresponding evolution equation for Mij obtained
by Kleeorin et al. (2002) using the Weiner path integral approach to incorporate
microscopic diffusion (Dittrich et al. 1984; Zeldovich et al. 1988, 1990). Their
evolution equation for Mij is given in an integral form by equations (A20) and (A21)
of their paper. The corresponding evolution equation that we derive is given by (2.16)
in Fourier space and (2.17) in real space. First, for small τ , when one keeps terms to
the order τ 2, both approaches agree and the Kazantsev evolution equation is obtained.
Also, the only effect of resistivity, to the lowest order in τ , even in the path integral
approach, as shown by equations (B5) and (B6) of Kleeorin et al. (2002), is to
introduce an extra diffusion term of the form 2η∇2Mij into the evolution equation
for Mij. This is also exactly what happens in our case (see (3.11) or (3.21)), where
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we have used the operator splitting method. Thus it would seem that our approach
of using operator splitting to derive the effect of finite resistivity on Mij evolution,
matches with the more exact path integral methodology of Kleeorin et al. (2002)
in the limit of small τ and small η. Of course, as we pointed out above, Kleeorin
et al. (2002) seem to have kept only the terms up to p2 in (3.1). Thus they are
missing some of the terms in their evolution equation which correct the Kazantsev
equation to leading order in τ . Hence, a comparison of the η-independent terms to
the generalized Kazantsev equation that we derive here is beyond the scope of the
present paper, but would be of interest in the future.

Appendix B. Tables for tracking isotropic and homogeneous fourth-order tensors

Terms [rihT̃mnih],jl −[δijrhT̃mnih],l = −[δilrhT̃mnih],j = (δijδhl)T̃mnih Sum/r2 Mjl,mn
−[δhjriT̃mnih],l −[δhlriT̃mnih],j

rjlmn r2T ′′L+ −T ′Lr− TL −T ′Lr− TL 2TL T ′′L M′′L

4T ′Lr+ 2TL

P̂jlrmn T ′Lr+ 2TN −TL + 2TN −TL + 2TN 2TN
T ′L
r
− 2M′′L+

(4TL − 12TN)

r2

rM′′′L

2

P̂mlrjn, (T ′L − T ′N)r+ −TL + 2TN −T ′Nr− TN 2TN
(T ′L − 3T ′N)

r
−M′′L

2

P̂nlrmj (TL − TN) − (TL − 3TN)

r2

P̂njrml, (T ′L − T ′N)r+ −T ′Nr− TN −TL + 2TN 2TN
(T ′L − 3T ′N)

r
−M′′L

2

P̂mjrln (TL − TN) − (TL − 3TN)

r2

P̂mnrjl T ′′Nr2+ −T ′Nr− TN −T ′Nr− TN 2TN T ′′N
2M′L

r
4T ′Nr+ 2TN

P̂jlP̂mn T ′Nr+ 2TN −TN −TN 2TLN
T ′N
r
+ 3M′L

2r
2(TLN − TN)

r2
+M′′L

2

P̂mjP̂ln, (TL − TN) −TN −TN 2TLN
T ′L − 5TN

r2

−M′L
2r

P̂njP̂lm + (2TLN)

r2

TABLE 1. The basis tensor components for all fourth-order tensors involved in (3.25).

https://doi.org/10.1017/S0022377815000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377815000616


20 P. Bhat and K. Subramanian

Terms [rhThnmr],l −δlhThmnr Sum/r2

rlmnr T ′Lr+ TL −TL
T ′L
r

P̂lnrmr, P̂lrrnm, P̂lmrrn TL − 2TN −TN
(TL − 3TN)

r2

P̂mrrln, P̂mnrlr, P̂rnrlm T ′Nr+ TN −TN
T ′N
r2

P̂mrP̂ln, P̂mnP̂lr, P̂rnP̂lm TN −TLN
(−TLN + TN)

r2

Terms [rjMjl],rmn −(δjrMjl,mn) −(δjnMjl,mr) −(δjmMjl,rn) Sum/r2

rlmnr M′′′L r+ 3ML −M′′L −M′′L −M′′L rM′′′L

P̂lnrmr M′′L
M′′L
2

−2M′′L −
M′′′L r

2
M′′L
2

−M′′′L r
2

P̂mrrln M′′L
M′′L
2

−−2M′L
r

M′′L
2

2M′′L −
2M′L

r

P̂lmrnr M′′L
M′′L
2

M′′L
2

−2M′′L −
M′′′L r

2
−M′′′L r

2

P̂nrrlm M′′L
M′′L
2

M′′L
2

−−2M′L
r

2M′′L −
2M′L

r

P̂lrrmn M′′L −2M′′L −
M′′′L r

2
M′′L
2

M′′L
2

−M′′′L r
2

P̂mnrlr M′′L −−2M′L
r

M′′L
2

M′′L
2

2M′′L −
2M′L

r

P̂mrP̂ln
M′L
r

M′L
2r

−3M′L
2r
− M′′L

2
M′L
2r

M′L
2r
− M′′L

2

P̂lmP̂rn
M′L
r

M′L
2r

M′L
2r

−3M′L
2r
− M′′L

2
M′L
2r
− M′′L

2

P̂mnP̂lr
M′L
r

−3M′L
2r
− M′′L

2
M′L
2r

M′L
2r

M′L
2r
− M′′L

2

TABLE 2. The basis tensor components for all fourth-order tensors involved in (3.26).
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Terms [rjriMjl],mnrs −2[rlM(ml],nrs) 2Mmn,rs Sum/r2

rmnrs M′′′′L r2 + 8M′′′L r −8M′′′L r− 24M′′L 12M′′L M′′′′L+12M′′L

P̂lnrmr, P̂lrrnm, P̂lmrrn M′′′L r+ 4M′′L −8M′′L M′′′L r+ 4M′L
r

2M′′′L

r
− 4M′′L

r2

P̂mrrln, P̂mnrlr, P̂rnrlm +4M′L
r3

P̂mrP̂ln, P̂mnP̂lr, P̂rnP̂lm M′′L +
3M′L

r
−8M′L

r
2M′′L +

2M′L
r

3M′′L
r2
− 3M′L

r3

TABLE 3. The basis tensor components for all fourth-order tensors involved in (3.27).
Note that here T̃mnrs is as in (3.22).
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