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Wing shape is an important factor affecting the aerodynamic performance of wings
of monocopters and flapping-wing micro air vehicles. Here, an evolutionary structural
optimisation method is adapted to optimise wing shape to enhance the lift force due
to aerodynamic pressure on the wing surfaces. The pressure distribution is observed
to vary with the span-based Reynolds number over a range covering most insects
and samaras. Accordingly, the optimised wing shapes derived using this evolutionary
approach are shown to adjust with Reynolds number. Moreover, these optimised
shapes exhibit significantly higher lift coefficients (∼50 %) than the initial rectangular
wing forebear. Interestingly, the optimised shapes are found to have a large area
outboard, broadly in line with the features of high-lift forewings of multi-winged
insects. According to specific aerodynamic performance requirements, this novel
method could be employed in the optimisation of improved wing shapes for micro
air vehicles.

Key words: swimming/flying

1. Introduction
A steadily rotating wing at a constant angle of attack has been considered to be a

simplified model of the propulsion system of an insect-inspired flapping-wing micro
air vehicle (FWMAV). For insect wings, the flapping motion can be considered to be
a combination of the rotational translation and flip motions. The instantaneous force
on a wing during rotational translation is observed to be similar to that experienced by
the same wing in pure rotation (Dickinson, Lehmann & Sane 1999). The studies on
rotating wings have also been motivated by the developments in single-winged aerial
vehicles (monocopters), inspired by samaras (Low, Pheh & Foong 2016), which use
auto-rotation to assist seeds to travel as far as possible from their release point.

It has been established that the stable attachment of a leading-edge vortex (LEV)
throughout a wing’s rotation is responsible for generating the high and stable lift on
the wing (Maxworthy 1979; Ellington et al. 1996; Lentink et al. 2009). The LEV is
formed as the flow separates at the leading edge of a wing (α ∼ 45◦). Jardin (2017)
has shown that the Coriolis acceleration enhances the outboard transport of vorticity
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through the LEV core, causing the LEV to remain stably attached to the wing surface.
The LEV is spiral in structure, growing in size from the wing root to the wing tip.
The LEV growth is constrained as it approaches the trailing edge, which, in turn,
limits the aerodynamic forces generated by the LEV (Garmann & Visbal 2014). The
chord length, c, at a spanwise location determines the distance between the leading
and the trailing edges at that location. Although the wing geometry can broadly be
characterised by its aspect ratio (A), which is the ratio of the wingspan (b) to the
mean wing chord (c), its shape can differ markedly based on the spanwise variation
of its chord. Hence, it is interesting to investigate the optimisation of wing shape to
maximise aerodynamic performance.

Many FWMAVs and monocopters involve wing shapes inspired by insects and
samaras, for example, those reported by Yasuda & Azuma (1997), Ulrich & Pines
(2012) and Hassanalian, Throneberry & Abdelkefi (2017). Some researchers (e.g.
Keennon et al. 2012; Low et al. 2016) have used rectangular and the modified
hummingbird-wing planforms for their FWMAVs and monocopters, which may not
be the best for achieving high aerodynamic performance. On the other hand, wing
optimisation studies (e.g. Hassanalian et al. 2017) have used quasi-steady models to
predict the aerodynamic forces and, hence, lacked an understanding of the impact of
the unsteady forces. Moreover, these studies have not explored the influence of wing
shapes on flow structures to a sufficient extent.

Ansari, Knowles & Zbikowski (2008) have investigated various generic wing
shapes and found reverse triangles and reverse semi-ellipses to have maximum lift
among symmetric and asymmetric wings, respectively. Ellington (1984) has used the
Beta function to simplify the shapes observed in nature. He has characterised wing
shapes by their non-dimensional radius of the kth moment of inertia, defined by
r̂k

k =
∫ 1

0 ĉr̂kdr̂, where ĉ is the local wing chord normalised by the mean chord and
r̂ is the spanwise distance normalised by the wingspan. Ellington found that most
insect wings obeyed the laws of wing shape, r̂2= 0.929(r̂1)

0.732 and r̂3= 0.900(r̂1)
0.581.

However, the reasons for this conformity are unknown. Shahzad et al. (2016) used
these relations to generate various wing shapes. They showed an improvement in the
mean lift coefficient (CL) with an increase in r̂1. They designed wings of a constant
A to be of constant area and wingspan, thus having a constant disc loading. With
an increase in r̂1, the area moved more outboard. The pressure distribution on their
high-r̂1 wing conformed more to the wing profile, suggesting that the wing loading is
also important, in addition to the disc loading. However, the simplified shapes used
in those studies may not be optimal.

Wing shapes may be optimised based on one or a combination of multiple
factors including the lift coefficient, power economy, manoeuvrability, gender-related
developmental constraints, dispersal or migration effects and requirement of the
ability to autorotate, as can be seen in studies by Norberg (1973) and Gilchrist et al.
(2000). In most cases, the lift coefficient is the dominant factor. Hence, a study of
flow structures and the corresponding lift coefficients can provide useful insights
into optimising wing planforms for MAVs. Interestingly, a recent study by Chen
et al. (2018) indicates that insect forewing shape matches closely to the pressure
contours on the wing surface under the LEVs. The wing-surface pressure can be
directly related to the lift coefficient of the wing. However, no study appears to have
employed the wing-surface pressure as a criterion for optimising wing shape.

In the present study, the use of an evolutionary approach has been proposed to
systematically derive an optimised wing shape, simultaneously relating it to the effects
on flow structures. This method has been inspired from the evolutionary structural
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optimisation typically used to optimise the designs of load-bearing structures. The
evolutionary structural optimisation-based designs of load-bearing structures make
an efficient use of building material to support the stresses in a structure. A similar
method can be implemented in the case of a rotating wing to support the aerodynamic
pressures on the wing surface. The problem considered corresponds to locally
optimising lift-based performance for a wing of maximum span and constant flapping
frequency, under the implied constraints that the chord cannot exceed the span and the
leading edge remains straight. The first two constraints seem relevant to insects of a
fixed size, thus restricting the span based on the folded wings, and under the constraint
of constant flapping frequency. The optimisation process considers the evolutionary
pressure to remove wing area that contributes little to the overall lift force. Our recent
study (Bhat et al. 2019) indicates that the pressure distribution on the wing surface
varies with the Reynolds number. Hence, in the present computational study, various
wing shapes are obtained from a generic rectangular wing at different Reynolds
numbers, such that their areas support the surface pressures efficiently. Overall, the
proposed method establishes a novel approach to optimise wing shapes at any given
Re to achieve a maximum lift coefficient.

2. Methodology
The numerical method used in this study involves a model of a rotating wing,

similar to that used in many studies of rotating and flapping wings (e.g. Garmann
& Visbal 2014; Kruyt et al. 2015; Limacher, Morton & Wood 2016). The flow
over the wing has been simulated by solving the Navier–Stokes equations cast
in a non-inertial reference frame along with the continuity constraint (see Harbig,
Sheridan & Thompson 2013; Bhat et al. 2018). The Navier–Stokes equations are
solved directly using the commercial code ANSYS CFX version 17.2. The spatial
and temporal discretisations were performed using second-order accurate schemes.

The model wing, having a span b, mean chord c and thickness 0.01b, was placed
at the centre of a cylindrical domain of diameter 18b and length 48c, as has been
validated by Harbig et al. (2013). The computational mesh for the domain was an
unstructured tetrahedral mesh with triangular prism elements near the wing surface.
The overall mesh consisted of approximately 10 million elements, with a grid spacing
of 0.0145c on the wing surface. A time step of 0.00185T was chosen, where T is the
total simulation time.

The wing was maintained at a constant angle of attack (α = 45◦) throughout its
rotation, which is typically used in most studies (e.g. Garmann & Visbal 2014;
Limacher et al. 2016). It was initially accelerated over t = 0.084T followed by a
constant angular velocity (similar to Birch, Dickson & Dickinson (2004) and Bhat
et al. (2018)), which corresponds to the span-based Reynolds number

Respan =Utb/ν, (2.1)

where Ut is the velocity of the wing tip and ν is the kinematic viscosity of the fluid.
The length scale was chosen to be the wingspan b, since Harbig et al. (2013) showed
that the flow structure over a rotating wing of any A is quasi-similar if the span-based
Reynolds number is maintained to be constant. Carr, DeVoria & Ringuette (2015)
have also confirmed this experimentally. It should be noted that the wing shape at a
certain Reynolds number was optimised subject to constraints of a fixed wingspan and
a fixed angular velocity, which are typically limited by the size and flapping-frequency
constraints, respectively, of MAV wings. This resulted in a fixed wing-tip velocity
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FIGURE 1. Schematic of the rotating wing model and the pressure-contour-based
wing cut.

(Ut), considered as the reference velocity throughout this study, as has also been done
by Aono, Shyy & Liu (2008), Carr et al. (2015) and Han, Chang & Cho (2015).
Given the above constraints, the evolutionary method was employed to derive the
wing shapes by maximising the lift per unit area (L/S). Here, maximising L can be a
primary requirement for flying and minimising S can result in the reduction in material
required to manufacture a wing. The quantity L/S can be non-dimensionalised as the
lift coefficient, as explained later.

The shape optimisation was initiated with a rectangular wing of unity aspect ratio. It
has been observed that, as the wing rotates, the flow initially evolves until the rotation
angle of φ ∼ 90◦, past which it remains relatively stable (Bhat et al. 2018). In the
present study, the wing was rotated through 270◦ at Respan values of 520, 1732, 3465
and 6930, to determine the change in the optimised shapes with Respan. This range of
Respan covers various insects, such as fruit flies and crane flies (Weis-Fogh 1973), and
samaras such as those of the silver maple (Green 1980). The pressure contours on
both sides of the wing were extracted at the end of the simulation. The difference in
pressure between the sides contributes to the overall lift and drag acting on the wing.
In the subsequent design step, the wing was cropped along a chosen pressure contour
and the simulation was repeated with a new wing shape to observe the impact on the
pressure distribution and overall aerodynamic force. A schematic of the wing and its
coordinate system can be seen in figure 1. The evolutionary approach is elaborated in
detail in § 3.2.

3. Results
3.1. Leading-edge vortex and suction pressure

The LEV structure over a rotating wing is known to depend on the Reynolds
number (Lentink & Dickinson 2009). At a higher Respan, the LEV is more compact
with a higher spanwise vorticity flux. Since the LEV is responsible for the suction
contributing to the overall lift, a change to the LEV structure with Respan can also
affect the pressure distribution over the wing surface.

In the present study, the initially square wing was rotated at Respan= 520 and 6930.
The resulting pressure distributions together with the LEV structures are shown in
figure 2. High magnitude of suction pressure is present beneath the LEV structures,
shown by transparent surfaces of constant Q-criterion (Hunt, Wray & Moin 1988).
Suction is increased at Respan = 6930 due to the increased surface proximity and
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FIGURE 2. (Colour online) Wing suction pressure contours are shown for a wing of A=1
rotating at (a) Respan = 520 and (b) Respan = 6930. At a high Respan, the magnitude of
suction changes abruptly at location (1). The semi-transparent surface shows the LEV
structure identified using the constant Q-criterion. The small black dot represents the
location of the wing root.

spanwise transport of vorticity. At this Respan, the suction increase seems to be very
sharp near the LEV boundary, highlighted as location (1) in the figure. However, at
Respan = 520, the increase in the magnitude of suction is more gradual. From this
comparison, it may be inferred that, at a high Respan, the suction is concentrated
over a smaller area. At Respan = 6930, a small region of vorticity at the wing root is
transported diagonally towards the wing tip by the action of the increased Coriolis
acceleration.

The net lift on a wing results from the difference between the pressures on the
suction (ps) and pressure (pp) sides. The pressures can be normalised as

p∗s = ps/(0.5ρU2
t ) and p∗p = pp/(0.5ρU2

t ). (3.1a,b)

The lift coefficient can be improved by maximising the pressure difference averaged
over the wing area. This can be achieved by removing wing area where this difference
is small. This method of material removal is similar to an evolutionary structural
optimisation, such as that described by Xie & Steven (1997). However, here material
was removed based on surface pressure, rather than von Mises stress relevant to
structural optimisation. The approach is elaborated in the following section.

3.2. Evolution of wing shapes from pressure contours
Initially, the rectangular wing of A= 1 was rotated at Respan = 520, 1732, 3465 and
6930. The normalised pressures on the wing suction side (p∗s ) and the pressure side
(p∗p) were extracted. The criterion for material removal was chosen to be the difference
1p∗= p∗p − p∗s , since it contributes to the lift coefficient. The comparison of p∗s of the
four different Respan can be seen in figure 3(a–d), together with the comparison of p∗p
in figure 3(e, f ). It is observed that the distribution of p∗s changes with Respan. However,
there is an insignificant change in p∗p. Note that the pressure acting on the wing edges
is neglected as the wing thickness is very small (1 % of b). The contours of 1p∗ are
shown in figure 3(i–l).

It can be seen that a high 1p∗ is concentrated in the region underneath the LEV,
since it creates a large suction. A large area near the wing root and the trailing
edge exerts a very low magnitude of pressure. Such inefficiently used material may
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FIGURE 3. (Colour online) The contours of 1p∗ (bottom row) are obtained by subtracting
p∗s (top row) from p∗p (middle row) for Respan = 520, 1732, 3465 and 6930, in columns
one to four, respectively. The black dot represents the position of the wing root and
the black horizontal line (at the top of each panel) represents the leading edge. The
coloured contours in the last row are superimposed with the black contour lines of
constant rejection ratios.

be eliminated using a criterion for rejection, referred to as the rejection ratio, RR.
Sections of the wing surface satisfying the following condition are removed from the
model:

1p∗mn

1p∗max
< RRi, (3.2)

where the subscript i denotes the design step number, 1p∗mn is the value of 1p∗ at
a location of coordinates [m, n] on the wing surface and 1p∗max is the maximum
value of 1p∗ on the wing surface. The modified wing shapes are rotated at the same
Reynolds numbers to evaluate the impact on the lift coefficients. In the subsequent
design step (i + 1), the initial rectangular wing is again cropped using a modified
rejection ratio by introducing the evolutionary rate (ER), such that

RRi+1 = RRi + ER, i= 1, 2, 3, . . . (3.3)

In the present study, design steps are performed with the initial rejection ratio RR1=

0.1 and the evolutionary rate ER= 0.1. To provide an overview of the various wing
shapes that can be produced at different values of RR, the contours of constant-RR
criteria are superimposed onto the colour map of 1p∗ contours in figure 3(i–l). The
wing planform in design step i was obtained by cropping the rectangular wing along
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FIGURE 4. (Colour online) The time traces of L are shown for the wing planforms
obtained by rejection ratios RR2 = 0.2 (red), RR3 = 0.3 (green) and RR4 = 0.4 (blue),
rotating at Respan = 520. The ratio RR0 (black) corresponds to the original rectangular
planform.

the contour of 1p∗mn/1p∗max = RRi. In some cases, such as for RR4 = 0.4, where the
wing root was completely removed, the wingspan was reduced. To maintain a constant
wingspan, the wing was provided with an extension using a small strip at the wing
root, with a normalised chord cp/b= 0.1. In all shapes, the origin was maintained to
be at the centre of the chord at the wing root.

3.3. Optimisation of wing shapes using the evolutionary approach
The original rectangular wing shape was modified by creating new planforms using
the evolutionary method, as discussed in § 3.2. The modified planforms were also
simulated to rotate at the same Respan as that of the rectangular wing. First, for
Respan = 520, the time traces of the lift (L) were extracted and compared, as shown
in figure 4. Here, the rejection ratio RR0 = 0 corresponds to the original rectangular
planform. It can be seen that L reaches a peak during the initial acceleration and
then drops. Furthermore, after the rotation of approximately 100◦, L reaches a stable
value due to the stable LEV, as also shown by Birch et al. (2004) and Carr et al.
(2015). Hence, the mean lift (L) can be obtained by averaging over the final 30◦ of
rotation. It can be seen that L reduces with RR due to a reduction in wing area. This
reduction can be represented by the relative lift, L/L0, where L0 is the mean lift over
the rectangular wing at the same Respan. Similarly, the wing area (S) relative to that
of the rectangular wing (S0) can be represented by S/S0.

It can be seen in figure 5(a) that, even though L/L0 on the wing is reduced with
RR, the relative area, S/S0, is reduced significantly more. This results in an improved
mean lift coefficient, calculated as

CL =
L

0.5ρU2
t S
. (3.4)

Here, the quantities ρ and Ut are maintained to be constant. Hence, CL can be
considered as a non-dimensional representation of L/S. As shown in figure 5(b), the
value of CL increases with RR, with the peak reached at RR= 0.3. Beyond RR= 0.3,
CL starts decreasing, indicating that RR = 0.3 gives the maximum lift coefficient at
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FIGURE 5. (Colour online) (a) At Respan = 520, the stepwise design variations of the
mean lift relative to that of the rectangular wing (L/L0), the wing areas relative to that of
the rectangular wing (S/S0) and the normalised radii of the second moment of area (r̂2).
(b) The variation of the mean lift coefficient (CL). The variations in CL using the iterative
cropping method at RR = 0.1 and 0.2 have also been compared. (c) The spanwise
variations in the sectional lift coefficient (dCL/dr∗) for various RR.

Respan = 520. Note that, in the evolutionary structural optimisation, the material is
removed iteratively at any given RRi, until the steady state is reached. On the contrary,
in this evolutionary approach, only one cropping iteration is performed at a given
RRi, since the pressures on the wings will get readjusted after rotating the cropped
wing. After any iteration, there will always be some part of the wing area satisfying
the condition in (3.2), and hence no steady state can be reached. Moreover, the
incremental material removal at every iteration will require significantly more design
changes and simulations, resulting in considerably more expensive computations. An
example of such iterative process at Respan = 520 is shown in figure 5(b). Here, the
wing has been cropped iteratively at the steps RR= 0.1 and RR= 0.2. The reduction
in the wing area relative to the original rectangular wing area (S0) is shown by
the quantity 1S∗ = (S − S0)/S0. The improvement in CL for RR = 0.1 follows a
similar trend, initially, as in the non-iterative process, followed by a reduction in CL.
Furthermore, for RR= 0.2, the improvement in CL is less than 3 %. All the CL values
from these two RR criteria are lower than RR = 0.3. Hence, the maximum value of
CL is indeed at RR = 0.3, which can be obtained even with the faster non-iterative
process.

The improvement in CL with RR can be attributed to the change in the spanwise
distribution of pressure, which can be observed by evaluating the sectional lift
coefficient (dCL/dr∗) along the wingspan. Here, r∗ represents the radial location of
a wing section normalised by the wingspan. Coefficient dCL/dr∗ can be obtained at
a spanwise section by integrating 1p∗ along the chord at that section. The spanwise
variations in dCL/dr∗ for various values of RR are compared in figure 5(c). It can be
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FIGURE 6. (Colour online) (a) The contours of CL plotted on the plane of RR and Respan.
(b) The variation of CL plotted against Respan for the rectangular wing, optimised shapes
at RR= 0.3 and planforms of a fruit fly wing and a bumblebee wing. The optimised CL
values are highlighted with black dots in (a) and the corresponding shapes are shown in
grey colour in (b).

seen that, with an increase in RR, dCL/dr∗ reduces inboard and increases significantly
outboard. The peak value of dCL/dr∗, seen roughly near r∗ = 0.9, decreases beyond
RR = 0.4. Although the peak value for RR = 0.4 is slightly higher than that for
RR= 0.3, the overall variation in dCL/dr∗ at RR= 0.4 shows lower values throughout
the span, except in the range 0.8< r∗ < 0.95. Therefore, CL obtained for RR= 0.3 is
the highest.

In general, the modified planforms obtained from the design evolution were found
to have a significantly greater CL than the rectangular wing. This process was repeated
for different Respan and the values of CL were computed to determine the optimum
RR. The variation in CL with RR for various Respan is shown as a contour map
in figure 6(a). It can be seen that, for any Respan, CL reaches a maximum value
at RR = 0.3 and starts decreasing beyond this ratio. Hence, optimised wing shapes
can be obtained with RR = 0.3 across all Reynolds numbers. The values of CL for
these optimised wing shapes are plotted as a function of Respan in figure 6(b). The
comparison with the values for the original rectangular wing at the same Respan shows
a remarkable 40 % improvement in CL. Moreover, the rotations of a fruit fly wing
and of a bumblebee forewing were also simulated at various Respan to compare their
CL values. It should be noted that the geometrical parameters of the optimised wings
are different from those observed in nature, since there might be several other factors
affecting the wing morphology, as discussed later. In fact, although the A values of
the optimised wings do not match with those of the insect wings, they are within the
optimum range of A at the respective span-based Reynolds numbers shown in our
recent work (Bhat et al. 2019).

From figure 6(b), it is clear that the optimised wings have more area outboard.
Hence, their centroids are further away from the wing root compared to a rectangular
wing. The normalised radii of the first and second moment of inertia, i.e. r̂1 and r̂2,
respectively, for various wings are summarised in table 1. This shows that the wings
with a higher r̂1 have a higher CL. Interestingly, forewings of insects are found to
have a larger area outboard and a recent study by Chen et al. (2018) shows that these
wings provide most of the lift, whereas the hindwings mostly aid in manoeuvrability.
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Wing planform r̂1 r̂2 A

Rectangle (RR= 0.0) 0.50 0.58 1.00
Optimised shape (RR= 0.3) at Respan = 520 0.68 0.71 1.92
Optimised shape (RR= 0.3) at Respan = 1732 0.70 0.74 2.40
Optimised shape (RR= 0.3) at Respan = 3465 0.71 0.75 2.87
Optimised shape (RR= 0.3) at Respan = 6930 0.70 0.74 3.13
Fruit fly wing 0.52 0.57 2.91
Bumblebee forewing 0.57 0.62 5.13

TABLE 1. Characteristics of the wing shapes.

The values of r̂1 and r̂2 for the bumblebee forewing are higher than those for the
rectangular wing and the fruit fly wing and lower than those for the optimised wings
and so is its CL, consistent with the findings of Shahzad et al. (2016). Therefore, in
this case, CL can be considered to be artificially increased, since a larger percentage
of the area of the cropped wings is subjected to higher velocities.

However, it must be noted that this relation between r̂1, r̂2 and CL is not always
the same. For example, as shown in figure 5, the value of r̂2, for the wing shapes
derived by increasing RR, increases. However, the value of CL is decreased beyond
RR = 0.3, even if its r̂2 is increased. This is because CL is affected not only by r̂2,
but also by the change to the mean wing-surface pressure caused by the proximity of
the trailing edge vortex after cropping. The increase in r̂2 contributes to an increase
in CL, whereas the proximity of the opposite sign vorticity from the trailing edge
contributes to a decrease in the magnitude of the mean surface pressure, and hence to
a decrease in CL. The distance dLT between the LEV and the trailing edge at a certain
spanwise location can be obtained, as shown in figure 7(a). Here, the LEV has been
identified using the constant Q-criterion and the spanwise location is chosen to be at
r̂2 to allow comparison across various wing shapes. It can be seen in figure 7(b) that
dLT/b reduces at the first design step and remains relatively stable until RR= 0.3. On
the other hand, there is an increase in r̂2 with RR, which would increase CL. Beyond
RR= 0.3, dLT/b is observed to drop while having no significant change to r̂2. Thus,
CL is expected to decrease beyond RR= 0.3, which is consistent with our observations.
Therefore, it is important to derive a wing profile such that the counteracting effects
of r̂2 and trailing edge proximity are optimised to achieve the maximum CL. The
proposed evolutionary approach demonstrates the derivation of such optimum wing
profile.

As can be seen in figure 8, the wing-surface pressures are distributed more
efficiently on the optimised wings than on a rectangular wing. At Respan = 1732,
3465 and 6930, it can be seen that the wing shapes are just sufficient to support the
LEV structures. Moreover, when compared to a rectangular wing, the magnitude of
the suction pressure for the optimised wings has been slightly reduced by the action
of the opposite sign vorticity from the trailing edge. This is because the trailing edge
has moved closer to the leading edge in the inboard area of the wing. However, this
reduced magnitude is insignificant compared to the increase in CL from eliminating
a large amount of low-performing area. Furthermore, unlike for rectangular wings,
a small amount of trailing-edge vorticity is also observed to tilt into the wake at a
location of approximately 30 % of the span of the optimised wings. This may be due
to the inability of the trailing-edge vortex to advect the vorticity along the trailing
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FIGURE 7. (Colour online) (a) The minimum distance (dLT) between the LEV, shown by
the blue contour, and the trailing edge (TE), is calculated at a spanwise section at r̂2. Here,
the black line represents the wing cross-section with the leading edge shown by a filled
circle and the trailing edge shown by a hollow circle. (b) The variation of the normalised
distance dLT/b with changing RR for wings rotating at Respan = 520.
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FIGURE 8. (Colour online) Normalised surface pressures on the optimised shapes (RR=
0.3) are distributed efficiently at (a) Respan= 520, (b) Respan= 1732, (c) Respan= 3465 and
(d) Respan = 6930. The LEV structures are represented by the semi-transparent isosurfaces
of constant Q-criterion.

edge beyond a certain point. The trailing edge becomes nearly parallel to the chord
at the midspan location, requiring the advection of the trailing-edge vorticity along
the chordwise direction. The separation of this vorticity from the trailing edge might
affect the suppression of the suction pressure, restoring a higher CL.

Some studies (Lee, Lua & Lim 2016; Jardin & Colonius 2018) indicate that CL is
dependent on both the wing aspect ratio and Rossby number. Our recent study (Bhat
et al. 2019) has shown that, at a constant span-based Reynolds number, CL decreases
with an increase in A. Also, CL has been shown to decrease with an increase in the
span-based Rossby number Rob= r2/b= r̂2. In the present case, as the wing is cropped,
reducing the mean chord, A and r̂2 are both simultaneously increased, which can
cause a decrease in CL. However, with a constant rotation rate, the velocity at the
radius of gyration is also increased, which can increase CL. Therefore, a combined
effect of these factors is observed, which might provide an additional explanation to
the observed variation in CL with RR.
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FIGURE 9. (Colour online) The variations of (a) power economy (PE), (b) CL/CD and
(c) normalised location of the point of application of drag (r̂D) with Respan are shown for
the rectangular wing, optimised wing shapes and the fruit fly wing.

3.4. Effects on power economy
Although the main optimised parameter was the lift coefficient, or specifically the lift
force per unit area, the impact of the derived optimal shapes on the power economy
(PE) was also investigated. The power economy is defined as the ratio of the mean
lift coefficient and the mean power coefficient (PE = CL/CP), where the mean
power coefficient is CP = (τ yΩ)/(0.5ρU3

t S). Here, τ y is the mean fluid mechanical
torque acting along the axis of rotation and Ω is the constant angular velocity.
The comparison of the values of PE for the optimised wing shapes at different
Reynolds numbers with those for the rectangular wing is shown in figure 9(a). This
demonstrates that the power economy of the optimised shapes is lower for any given
Reynolds number than that for the rectangular wing. It is important to note that the
improvement in CL of the optimised wing shapes is huge (∼50 %) compared to the
reduction in their PE (∼15 %). The reduction in PE with increasing r̂1 is also in
accordance with the results of Shahzad et al. (2016). Interestingly, the fruit fly wing
is observed to have PE higher than that of the rectangular wing, even while having
a similar r̂1. The reasons behind this difference were investigated further.

Wings with lower power economy require more power to overcome the mean
torque τ y. This torque is derived from the mean drag coefficient (CD) and the radial
location of the centre of pressure. Here, both CL and CD directly depend on the
wing-surface pressures. However, the ratio CL/CD increases with Reynolds number
(Harbig et al. 2013), which might be responsible for the increase in PE with Respan.
To observe the effect of wing shape, the variation of CL/CD with Respan was plotted
for different wings, as shown in figure 9(b). Although the optimised wings have
lower CL/CD than the rectangular wing, the difference is less than 5 %. This implies
that the increase in CL of the optimised wings is accompanied by an increase in
CD by nearly an equal amount. Therefore, the significant contribution to the change
in PE must be from the change in the moment arm. Hence, the variation of the
normalised location of the point of application of drag (r̂D = rD/b) was plotted for
different wings, as shown in figure 9(c). The optimised wings have higher r̂D, which
explains the increase in CP. The fruit fly wing has the lowest r̂D, and therefore
the highest PE. Decreasing r̂1 can further decrease r̂D to obtain even higher PE.
Insect wings could have evolved to their present shapes as a result of a compromise
between maximum lift coefficient and maximum power economy. There may be
several other factors, such as the resistance to bending and resistance to torsion,
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which require a broader chord inboard (Ennos 1989; Wootton 1992). The evolution
of insect wing morphology has also been affected by environmental factors and the
requirement for thermo-regulation, as has been discussed by Kingslover & Koehl
(1994) and Johansson, Söderquist & Bokma (2009). It may be interesting to note
that the forewings of insects like bumblebees have a larger area outboard, i.e. a high
value of r̂1, and their integral wings (forewing and hindwing together) have a lower
r̂1 (Chen et al. 2018).

Overall, it was observed that a higher CL would require a larger area outboard.
However, the value of CD would also increase simultaneously, as both the values
depend on pressure. Hence, the power requirement to overcome the drag would also
increase. One method of reducing the drag is to lower the angle of attack. However, it
has been shown by Kruyt et al. (2015) that lower angles are beneficial for the wings
of very large A (and at a high Respan). This is because, at a low Respan, lower angles
of attack may create a smaller LEV, which would create a lower suction. Hence, the
lift coefficient would also decrease, which is not desirable.

Another method of reducing the power requirement is to lower the inertial torque
that scales with r̂2. For a simple flat plate planform, the radius of the second moment
of area, r̂2(S), is the same as that of the radius of mass moment of inertia, r̂2(m).
However, r̂2(m) can be changed from r̂2(S) by using a non-uniform thickness of the
wing. Accordingly, the centre of mass can be shifted inward for the same planform
by adding more mass to its root. The centre of pressure, which affects CL and CD,
is dependent on the spanwise wing area distribution, as seen in this study. Therefore,
a larger CL can be obtained by more outwards wing area. Simultaneously, a lower
inertial torque will be required to rotate or flap the wing when the centre of mass is
moved inward using a thicker wing root. Interestingly, it can be seen that insect wings
have a thick axillary area at the wing root, where all the wing venation is connected.
The veins are thinner towards the tip, helping r̂2(m) to be located more inward. Such
design may help the wings to have a larger CL and a lower CP simultaneously.

Autorotating samaras do not require an internal power. The force driving their
motion is provided by gravity. However, they require some additional features, such
as a spanwise twist in the wing, to be able to autorotate. The twist helps in initiating
the autorotation by providing an asymmetric resistance to the air flow when the seed
starts falling (Norberg 1973). It also creates a uniform induced flow along the span,
which is beneficial for the uniform distribution of the aerodynamic forces (Low et al.
2016). Moreover, the leading edge of a samara wing is tilted slightly down at its
root. The angle made by the leading edge with the horizontal plane is called the
coning angle, β. A low and critical value of β is maintained to be constant when the
low, radially inward aerodynamic force is balanced by the centrifugal force (Norberg
1973). At a constant rotational velocity, the low centrifugal force can be achieved
by adjusting the location of the centre of mass, r̂1(m), radially inward. Indeed, in
samaras, the heavy seed at the root of its lightweight wing helps in maintaining the
centre of mass close to the root (0.1< r̂1(m) < 0.2).

However, as mentioned earlier, the focus of the present study is the improvement in
CL, which is shown to be significantly higher for the optimised shapes. The relatively
small reduction in PE is noted as a secondary effect of this process.

4. Discussion

It should be noted that, in nature, several factors may contribute to evolved wing
shapes. For example, power economy is also important for flights involving flapping
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wings. In the present study, with wings held at α = 45◦, the pressure distribution
contributed to both lift and drag almost equally. Hence, even though the lift coefficient
improved with the optimisation, the drag coefficient would also be increased, requiring
a higher power coefficient to rotate the wing. The power input can be reduced by
reducing the angle of attack, which increases the mean lift-to-drag ratio, or by
reducing r̂1, which reduces the inertial torque. Insect wings employ different angles
of attack, depending on the wing aspect ratio and Reynolds number (Kruyt et al.
2015). Moreover, insect wings have a thick axillary area at the wing root, which
reduces the value of r̂1. Other considerations include environmental factors and a
requirement for thermo-regulation (Kingslover & Koehl 1994). Unlike flapping wings,
samaras undergo autorotation under the action of gravity. For autorotation, wing
shapes need a spanwise twist and a concentration of mass at their roots, discussed
by Norberg (1973) and Low et al. (2016).

In the present study, the wings were designed to have a straight leading edge,
whereas insect wings and samaras are found to have a slightly curved leading edge
with a smooth transition to the wing tip. This might allow a smoother merging
of the LEV and the tip vortex. Nevertheless, the evolutionary approach discussed
here provides a basis to optimise wing shapes as a preliminary step. It can be
further employed, in addition to considering other constraints, to optimise wing
shapes according to required operating conditions or constraints. The present work
demonstrates a capability of optimising wing shapes using this novel method, showing
a significant increase in the lift coefficient.

5. Conclusions

Wing shape is an important parameter affecting the flight performance of MAVs.
Many past studies of rotating wings, inspired from insects and samaras, have
employed generic wing planforms. However, wing shapes can be optimised to
improve their performance. Previous optimisation studies have used optimisation
methods together with quasi-steady force prediction models. However, they have not
fully explored the coupled influence of selected shapes on flow structures.

An evolutionary approach was implemented to optimise the shapes of rotating
wings as Reynolds number was varied, using three-dimensional direct numerical
simulations. The optimised shapes were efficient in their use of material to support the
aerodynamic pressures. Mean lift coefficient of the wing (CL) significantly improved
in successive evolution steps. The artificial increase in CL was partially due to the
increased r̂2. However, it was found to be limited by the increasing A, which limited
the growth of the LEV, such that the maximum CL was obtained for RR of 0.3. The
optimised shapes showed a reasonable variation with Reynolds number. In general,
optimised wings exhibited larger areas outboard. These shapes supported the LEV
structures more efficiently than rectangular wings, often used in typical experimental
and numerical models in studies of samara and insect-wing aerodynamics.

Wing shapes of samaras and insects are likely to have evolved subject to several
performance parameters, combined with biomechanical and environmental factors.
However, the necessity of generating near-maximum lift coefficient is likely to be
a common factor. The study demonstrates a new approach to optimise wing shape,
primarily directed at maximising lift coefficient. It also takes into account the effects
of the shape on flow structures. This approach could be extended to take account of
other constraints to optimise wing shapes for small monocopters and FWMAVs.
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