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We consider the Null Mass nonlinear field equation⎧⎪⎪⎨⎪⎪⎩
−Δu = f(u) in Ω

u > 0

u|∂Ω = 0

(P)

where RN \ Ω is a bounded regular domain. The existence of a bound state solution
is established in situations where this problem does not have a ground state.
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1. Introduction

In this work, we look for a positive bound state solution for problem (P) where a
ground state cannot be obtained. Here we study a general nonhomogeneous non-
linearity with double-power growth condition on f, which behaves as a subcritical
power up at infinity and a supercritical power uq near the origin, where p < 2∗ < q,
in any exterior domain. Using the ideas introduced in [14,15,20], we extend the
results of V. Benci and A. Micheletti [7] by removing any assumption on the size
of hole RN \ Ω.

The method used in this note, of finding a solution of (P) as a critical point
of the functional associated with the equation, constrained to the Nehari manifold
of the functional, is rather natural because of the geometry of this functional due
to the super-quadratic growth of the nonlinear terms. However, the novelty in our
approach is found mostly in some clever technical results such as the sharp estimates
on the decay of the positive ground state solution of the problem in RN and its
implications in the interaction of two distinct and distant copies of these solitons,
and on the other hand, a new compactness result which allows us to circumvent
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the difficulties created by an unbounded nonsymmetric domain and embrace a very
general problem.

Problems like (P) with f ′(0) = 0, the so-called zero mass case, appear in the
study of Yang-Mills equations and have attracted the interest of researchers mostly
in the case Ω = RN (see [8,18,22]). Also, the electrostatic problem of capacitors
that is modelled by exterior boundary-value problems (see [16],Volume 1, Chapter
II, for instance).

When Ω = RN , we distinguish three different cases f ′(0) < 0, f ′(0) > 0 and
f ′(0) = 0. In the first case, there is quite a large literature, where the first results
on this subject can be seen in [17] and [21]. Also, H. Berestycki and P. L. Lions
analysed this problem in [8,9]. In the second case, there are no finite energy solu-
tions in general. Finally, when f ′(0) = 0, the so-called zero mass case has seen a
growing interest in recent mathematical literature as the zero mass limit case of
noncritical elliptic problems of the form

−Δu+ V (x)u = g(u),

for g′(0) = 0, and potentials satisfying lim inf
x→∞ V (x) = 0. The existence of solutions

for a null potential V = 0 was obtained by H. Berestycki and P. L. Lions in [8], where
they used double-power growth condition on g and showed there is solution u in
D1,2(RN ). Further, many authors resumed the study of this kind of equation under
the double power growth condition, after it was successfully exploited in [5,6].

The main purpose of the present note is to solve problem (P), in the null mass
case, where Ω is an exterior regular domain with no restriction on its size. In order
to do so, we make use of the ground state soluton in the whole RN , namely w,
and show there exists u ∈ D1,2(Ω) which is solution of (P), but not a ground state
solution. In fact, there is no solution of (P) which minimizes the energy function on
the Nehari manifold. We extend the results in V. Benci and A. Micheletti [7], that
worked with Ω such that RN \ Ω ⊂ Bε when ε is sufficiently small. This assumption
on the size of Ω is removed in our work.

An important feature when Ω is an unbounded exterior domain is that D1,2(Ω)
is not necessarily contained in any Lebesgue space Lq(Ω) with q �= 2∗ and thus,
there are no standard Sobolev embeddings like those of H1

0 (Ω). For this reason,
we study the Orlicz spaces related to the right-hand side term f and require that
it satisfies a double power growth condition and obtain the regularity required in
the energy functional. These Lebesgue spaces have several important and essential
properties that play the same role for the Hilbert space D1,2(RN ) that the usual
Lebesgue spaces play for H1

0 (Ω). In an exterior domain, the main difficulty is the
lack of compactness. Here we use a splitting lemma that is an important key to
overcome the lack of compactness. This lemma is a variant of a well-known result of
M. Struwe (see [23]) related to the space D1,2(Ω) and also V. Benci and G. Cerami
[4] with a clever description of what happens when a Palais-Smale sequence does
not converge in norm to its weak limit. Note that since the space D1,2(Ω) is not
necessarily contained in H1

0 (Ω), we cannot use Lions lemma as in [19], so we need
another version of that and a splitting lemma in Orlicz spaces which we show in
lemmas 3.4 and 3.5.
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Finally, according to the method that we apply in this paper, we need to compare
energy functionals associated with the equation in (P) and that associated with the
equation in RN . Suitable decay estimates for w, the positive radial solution of limit
problem and ∇w will be crucial in order to compare all the terms in the energy
functional and the ground state level. Thanks to J. Vétois [24], we find very fine
and exact decay estimates for w and ∇w, that play essential roles in this work.

We consider the problem ⎧⎪⎪⎨⎪⎪⎩
−Δu = f(u) in Ω,

u > 0,

u|∂Ω = 0,

(P)

where N � 3, RN \ Ω ⊆ BK(0) is a regular domain and the nonlinearity f : R → R
is odd and of class C1(R,R), satisfying the conditions:

(f1) Let F (s) :=
∫ s

0

f(t)dt, then 0 < μF (s) � f(s)s < f ′(s)s2 for any s �= 0 and

for some μ > 2;

(f2) F (0) = f(0) = f ′(0) = 0. There exist C1 > 0 and 2 < p < 2∗ < q such that{
|f (k)(s)| � C|s|p−(k+1) for |s| � 1

|f (k)(s)| � C|s|q−(k+1) for |s| � 1

for k ∈ {0, 1}, s ∈ R.

Remark 1.1. It is straightforward from (f1) that

F (s) � C|s|μ, for all |s| � 1, (1.1)

and by (f2) we can write

|f (k)(s)| � C|s|2∗−(k+1), for all s ∈ R. (1.2)

Moreover, since μF (s) � f(s)s, then C1|s|μ � C2|s|p and so μ � p.

A model nonlinear term which satisfies all assumptions is

f(u) =

{
uq if u � 1

a+ bu+ cup if u � 1

with an appropriate choice of constants a, b and c for which f belongs to C1.
The energy functional associated with problem (P) is

IΩ(u) =
1
2
‖u‖2

Ω −
∫

Ω

F (u)dx, with u ∈ D1,2(Ω).

The main result of this paper is the following theorem.
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Theorem 1.2. Assume that the positive solution in the whole RN is unique, up
to translations. Then, under assumptions (f1) − (f2), problem (P) has a positive
classical solution u ∈ D1,2(Ω).

Remark 1.3. Note that the assumption of uniqueness of a positive solution in the
whole RN : {

−Δu = f(u)
u ∈ D1,2(RN)

(PRN )

is a natural one. For instance, L. A. Caffarelli, B. Gidas and J. Spruck [12] proved
that the functions

uγ,x0(x) = (N(N − 2)γ)(N−2)/4(γ + |x+ x0|)(2−N)/2

are the only positive solutions of (PRN ) with f(u) = u2∗−1 for some real number
γ > 0 and point x0 ∈ RN .
For other nonlinearities f(u) for which the uniqueness of positive solution holds see
[15].

Remark 1.4. We may assume in theorem 1.2 that the critical ground level c of the
functional IRN is isolated with radius r � c, rather than assuming the uniqueness
of positive solution of (PRN ).

2. Preliminary results

We will use the following notation,

〈u, v〉Ω =
∫

Ω

∇u · ∇v dx, ‖u‖2
Ω =

∫
Ω

|∇u|2 dx,

and we denote by D1,2(Ω) the completion of C∞
0 (Ω) with respect to the norm ‖ · ‖Ω

or ‖ · ‖D1,2(Ω).
Likewise, we write

〈u, v〉RN =
∫

RN

∇u · ∇v dx, ‖u‖2
RN =

∫
RN

|∇u|2 dx

and also denote by D1,2(RN) the completion of C∞
0 (RN) with respect to the norm

‖ · ‖RN or ‖ · ‖D1,2(RN ).
Set

JΩ(u) = I ′Ω(u)u = ‖u‖2
Ω −

∫
Ω

f(u)u dx,

NΩ := {u ∈ D1,2(Ω)\{0} : JΩ(u) = 0},

and

cΩ := inf
u∈NΩ

I(u).
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The variational approach to solve this problem requires the study of the problem
(PRN ) in the whole RN associated with the functional

IRN (u) =
1
2
‖u‖2

RN −
∫

RN

F (u) dx, with u ∈ D1,2(RN),

and in the same way

JRN (u) = I ′RN (u)u = ‖u‖2
RN −

∫
RN

f(u)u dx,

NRN := {u ∈ D1,2(RN)\{0} : JRN (u) = 0},
and

c := inf
u∈N

RN

IRN (u).

Let w be a positive radial solution of (PRN ) which is well known to exist by [8]
and c = IRN (w). Moreover, by [24] that there are positive constants C1, C2 and C3

such that

C1(1 + |x|)−(N−2) � w(x) � C2(1 + |x|)−(N−2), ∀x ∈ RN, (2.1)

and

|∇w(x)| � C3(1 + |x|)−(N−1), ∀x ∈ RN. (2.2)

Given 1 � p < q, now we consider the space Lp + Lq of functions v : Ω → R such
that

v = v1 + v2 with v1 ∈ Lp(Ω), v2 ∈ Lq(Ω).

Lp + Lq is a Banach space with the norm (see [2,6,10])

‖v‖Lp+Lq = inf{‖v1‖Lp + ‖v2‖Lq : v = v1 + v2}.
Remark 2.1. V. Benci and D. Fortunato in [6] showed that L2∗ ⊂ Lp + Lq when
2 < p < 2∗ < q. Then, by the Sobolev inequality, we get the continuous embedding
D1,2(Ω) ⊂ Lp + Lq.

Now we present a fundamental lemma which may be found in [7] (lemma 2.6) and
which will be systematically used in the forthcoming arguments.

Lemma 2.2. The functional F : Lp + Lq → R defined by

F(u) :=
∫

Ω

F (u)dx,

is of class C2 and we have

F ′(u)v =
∫

Ω

f(u)vdx,

F ′′(u)vw :=
∫

Ω

f ′(u)vwdx.
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Remark 2.3. Lemma 2.2 ensures that the functional

IΩ(u) =
1
2
‖u‖2

Ω −
∫

Ω

F (u)dx, with u ∈ D1,2(Ω)

is well defined, of class C2 and any critical point of IΩ is a weak solution of (P) .

Lemma 2.4.

(a) NRN is a closed C1 manifold;

(b) given u �= 0; there exists a unique number t = t(u) > 0 such that ut(u) ∈ NRN

and IRN (t(u)u) is the maximum for IRN (tu) when t � 0;

(c) the dependence of t(u) on u is of class C1;

(d) infu∈N
RN

‖u‖RN = ρ > 0.

Proof. Item (a) follows from (f1) and lemma 2.2. For u ∈ NRN

I ′RN (u)u =
∫

RN

2|∇u|2 − f(u)u− f ′(u)u2dx =
∫

RN

f(u)u− f ′(u)u2dx < 0

and NRN = J−1
RN ({0}) is a closed subset of D1,2(RN ) \ {0}.

(b) Given u �= 0, if we set

Gu(t) :=
∫

RN

1
2
t2|∇u|2 − F (tu)dx for t � 0,

then

G′
u(t) =

∫
RN

t|∇u|2 − f(tu)udx, G′′
u(t) =

∫
RN

|∇u|2 − f ′(tu)u2dx.

By (f1), if t > 0 is a critical point of Gu, then G′′
u(t) < 0 so t is a point of maximum

for G. Furthermore, 0 = Gu(0) = G′
u(0) and G′′

u(0) > 0, and hence 0 is a point of
minimum for Gu. By (1.1) and F (u) > 0 in (f1), we obtain

Gu(t) � t2

2

∫
RN

|∇u|2dx− C

∫
t|u|<1

F (tu)dx− Ctμ
∫

t|u|>1

|u|μdx

� t2

2

∫
RN

|∇u|2dx− Ctμ
∫

t|u|>1

|u|μdx.

Since u �= 0, then there exists Λ ⊂ RN with Lebesgue positive measure such that
|u |Λ | > 0. By the monotone convergence theorem, Gu(t) → −∞ as t→ ∞ and this
proves b)
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(c) We define the operator g : R+ ×D1,2(Ω) → R by

g(t, u) = t

∫
RN

|∇u|2dx−
∫

RN

f(tu)u dx.

By lemma 2.2, g is of class C1 and if (t0, u0) is such that g(t0, u0) = 0 and t0 �= 0,
then by (f1)

g′t(t0, u0) =
∫

RN

|∇u0|2 − f ′(t0u0)u2
0dx =

∫
RN

f(t0u0)u0

t0
− f ′(t0u0)u2

0dx < 0.

By the Implicit Function theorem, we get that u→ t(u) is of class C1 and

t′(u0)[ϕ] =
t20

∫
RN

2t0∇u0∇ϕ− f(t0u0)ϕ− f ′(t0u0)t0u0ϕdx∫
RN

f ′(t0u0)(t0u0)2 − f(t0u0)t0u0dx

where t0 = t(u0).
(d) By contradiction, suppose that the minimizing sequence (un) converges to 0.
We set un = tnvn with ‖vn‖RN = 1. Since un ∈ NRN and (tn) converges to 0, we
have

tn =
∫

RN

f(tnvn)vn � Ct2
∗−1

n

∫
RN

|vn|2∗
.

Hence, it holds that

1 � Ct2
∗−2

n

∫
RN

|vn|2∗
,

which yields a contradiction if tn → 0. �

Remark 2.5. Similarly, by substituting RN with Ω, lemma 2.4 holds also for NΩ.

Remark 2.6. If u �= 0 is a critical point of the functional IΩ on NΩ, then u is a
critical point of IΩ. Indeed, consider u ∈ NΩ and use (f1) to obtain

〈J ′
Ωu, u〉 = 2‖u‖2

Ω −
∫

Ω

f ′(u)u2 + f(u)u �
∫

Ω

(
f(u)
u

− f ′(u)
)
u2 < 0.

Now, suppose that u ∈ NΩ is a constrained critical point of IΩ, then there exists
a real number ϑ such that I ′Ω(u) − ϑJ ′

Ω(u) = 0; taking u as test function one gets
ϑ〈J ′

Ωu, u〉 = 0, which yields ϑ = 0, that is, u is a free critical point.

Lemma 2.7. cΩ = c > 0.

Proof. We have c � cΩ, because we can consider NΩ ⊂ NRN by extending u in
D1,2(Ω) as zero outside Ω. On the other hand, by lemma 4.5 in § 4, we have cΩ � c
and so cΩ = c.
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Now we show that c > 0. Let (un) ⊂ NRN be a minimizing sequence of c, then(
1
2
− 1
μ

)∫
RN

|∇un|2dx =
1
2

∫
RN

|∇un|2 − 1
μ

∫
RN

f(un)un

� 1
2

∫
RN

|∇un|2 −
∫

RN

F (un)

= IRN (un). (2.3)

Now suppose by contradiction that c = 0. Then the minimizing sequence (un) is
such that (IRN (un)) goes to zero, hence by (2.3) (un) converges to zero in D1,2(Ω)
which is a contradiction with d) in lemma 2.4. �

Lemma 2.8. Problem (P) has no ground state, in other words, cΩ is not attained.

Proof. We proved in the previous lemma that cΩ = c > 0. At this point, we suppose
by contradiction, that there exists u ∈ NΩ such that IΩ(u) = cΩ. Setting u = 0 in
RN \ Ω, u can be regarded as an element of NRN . We can assume u � 0 since
if u ∈ NRN then |u| ∈ NRN and IRN (|u|) = IRN (u+ + u−) = IRN (u+) + IRN (u−) =
IRN (u) = c . Hence, u is a minimizer of IRN on NRN and a solution of (PRN ) in
RN. Now by Brezis-Kato theorem we see that u ∈ C2(RN ) (details are in the end
of this paper, by bootstrap procedure). Then, by the strong maximum principle, u
is strictly positive in RN and so we have a contradiction. �

Lemma 2.9. For every 0 < ν < q − 2 and ρ > 0 there exists Cρ > 0 such that for
all 0 � u, v � σ it holds

F (u+ v) − F (u) − F (v) − f(u)v − f(v)u � −Cσ(uv)1+ν/2 (2.4)

Proof. The inequality (2.4) is obviously satisfied if u = 0 or v = 0. By (f1) the
function f(s) is increasing in s > 0, which yields for u, v > 0

F (u+ v) − F (u) =
∫ u+v

u

f(w)dw � f(u)v.

Moreover, by (f2) for every 0 < ν < q − 2 it follows

f(u) = o(|u|1+ν) as |u| → 0,

and so C̃σ := sup0<u�σ f(u)/(u1+ν) <∞. Now if 0 < v � u, we deduce

F (u+ v) − F (u) − F (v) − f(u)v − f(v)u � −F (v) − f(v)u

=
∫ v

0

− f(w)
w1+ν

w1+νdw − f(v)
v1+ν

uv1+ν � −C̃σ
v2+ν

2 + ν
− C̃σuv

1+ν

�
[
−(

v

u
)ν/2

(( v
u

)ν/2

+
1
2

( v
u

)1+ν/2
)]

C̃σ(uv)1+ν/2 � −3
2
C̃σ(uv)1+ν/2.

Using the symmetry of the expressions with respect to u and v, the same estimate
holds for 0 < u � v, and the proof is complete. �
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Now let us fix y0 ∈ RN with |y0| = 1 and consider B2(y0) := {x ∈ RN :
|x− y0| � 2}. We write for each y ∈ ∂B2(y0)

wR
0 := w(· −Ry0), wR

y := w(· −Ry).

Lemma 2.10. Let R > 0 be large enough and r > 1, then

a)
∫

B2K(0)

|wR
0 |r � CR−r(N−2) and

∫
B2K(0)

|wR
y |r � CR−r(N−2); (2.5)

b)
∫

B2K(0)

|∇wR
0 |r � CR−r(N−2) and

∫
B2K(0)

|∇wR
y |r � CR−r(N−2). (2.6)

Proof. In order to prove the first estimate, note that for 2K < 1/2R and x ∈
B2K(0),

1
2
R = R− 1

2
R < |Ry0| − |x| < |x−Ry0| < 1 + |x−Ry0|. (2.7)

Now by (2.1) and r > 1, we have∫
B2K(0)

|w(x−Ry0)|rdx � C

∫
B2K(0)

(1 + |x−Ry0|)−r(N−2)dx � CR−r(N−2).

The proofs of the other estimates in (2.5) and (2.6) are similar. �

Now we are going to obtain some crucial estimates of the integrals in the whole
RN , inspired in the work of M. Clapp and L. Maia [15].

Lemma 2.11. Let r > 2∗/2 and s � 1 then∫
RN

(wR
0 )r(wR

y )s � CR−s(N−2), (2.8)

and ∫
RN

(wR
y )r(wR

0 )s � CR−s(N−2). (2.9)

Proof. In order to prove the first estimate∫
RN

(wR
0 )r(wR

y )s =
∫

RN

(w(x−Ry0))r(w(x−Ry))sdx,
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we consider a change of variables x = z + (Ry0 +Ry)/2, thus∫
RN

(w(x−Ry0))r(w(x−Ry))sdx

=
∫

RN

(
w

(
z − Ry0 −Ry

2

))r (
w

(
z +

Ry0 −Ry

2

))s

dz,

=
∫

RN

(w(z − PR))r(w(z + PR))sdz = 2
∫

Q+
(w(z − PR))r(w(z + PR))sdz

= 2
∫

B1(PR)

(w(z − PR))r(w(z + PR))sdz

+ 2
∫

Q+\B1(PR)

(w(z + PR))r(w(z − PR))sdz,

by denoting PR = (Ry0 −Ry)/2, using the symmetry of the integrals and denoting
Q+ = {z ∈ RN : 〈z − PR, PR〉 � 0}. Note that for ξ ∈ Q+ and R sufficiently large{

if |ξ| > 1 then R < 1 + |ξ + 2PR|,
if |ξ| < 1 then 2R < 1 + |ξ + 2PR|.

(2.10)

Now, by another change of variables ξ = z − PR, (2.10) and (2.1) in the previous
statement we obtain∫

RN

(wR
0 )r(wR

y )s = 2
∫

B1(0)

(w(ξ))r(w(ξ + 2PR))sdξ

+ 2
∫
{Q+−PR}\B1(0)

(w(ξ))r(w(ξ + 2PR))sdξ

� C

∫
B1(0)

(1 + |ξ + 2PR|)−s(N−2)dξ

+ C

∫
{Q+−PR}\B1(0)

(1 + |ξ|)−r(N−2)(1 + |ξ + 2PR|)−s(N−2)dξ

� CR−s(N−2)

∫
B1(0)

dξ + CR−s(N−2)

∫
{Q+−PR}\B1(0)

|ξ|−r(N−2)dξ

� CR−s(N−2),

since ∫
{Q+−PR}\B1(0)

|ξ|−r(N−2)dξ <
∫ ∞

1

y−r(N−2)yN−1dy

and for r > 2∗/2 it holds −r(N − 2) +N − 1 < −1. The proof of estimative (2.9)
is similar and this completes the proof of this lemma. �
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Define for λ ∈ [0, 1]

ZR
λ,y := λwR

0 + (1 − λ)wR
y

and

UR
λ,y := ZR

λ,yψ (2.11)

where ψ ∈ C∞(RN ) is continuous radially symmetric and increasing cutoff function
given by

ψ(x) =

⎧⎪⎨⎪⎩
0 |x| � K,

0 < ψ < 1 K < |x| < 2K,

1 |x| � 2K ,

with K the radius of the smallest sphere BK(0) that contains RN \ Ω. We can
consider UR

λ,y ∈ D1,2(RN ) by extending UR
λ,y = 0 outside Ω.

Lemma 2.12. UR
λ,y − ZR

λ,y → 0 in D1,2(RN ), as R→ ∞.

Proof. First of all, if R > 0 is sufficiently large we claim that

‖∇wR
0 −∇(ψwR

0 )‖L2(B2K(0)) � CR−(N−2) (2.12)

and

‖∇wR
y −∇(ψwR

y )‖L2(B2K(0)) � CR−(N−2). (2.13)

By the claim we have

‖UR
λ,y − ZR

λ,y‖D1,2(RN ) � λ‖wR
0 − ψwR

0 ‖D1,2(RN ) + (1 − λ)‖wR
y − ψwR

y ‖D1,2(RN )

= λ‖∇wR
0 −∇(ψwR

0 )‖L2(B2K(0))

+ (1 − λ)‖wR
y − ψwR

y ‖L2(B2K(0)) � CR−(N−2)

and this shows that UR
λ,y − ZR

λ,y → 0 if R→ ∞.
Now, in order to complete the proof we have to show the claim. Since ψ ∈ C∞,

then there exist positive constants C1 and C2 such that

|∇(ψwR
0 )| = |(∇ψ)wR

0 + (∇wR
0 )ψ| � C1|wR

0 | + C2|∇wR
0 | in B2K(0) (2.14)

and so by lemma 2.10 with r = 2 and (2.14),

‖∇wR
0 −∇(ψwR

0 )‖2
L2(B2K(0)) �

∫
B2K(0)

(C1|wR
0 | + (C2 + 1)|∇wR

0 |)2dx

� CR−2(N−2)

as claimed. �

Lemma 2.13. If t > 0, then JRN (tUR
λ,y) − JRN (tZR

λ,y) → 0, as R→ ∞.
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Proof. By the definition of JRN , we have

|JRN (tUR
λ,y) − JRN (tZR

λ,y)|

=
∣∣∣∣‖tUR

λ,y‖2 −
∫

RN

f(tUR
λ,y)(tUR

λ,y) − ‖tZR
λ,y‖2 +

∫
RN

f(tZR
λ,y)(tZR

λ,y)
∣∣∣∣

� ‖tUR
λ,y − tZR

λ,y‖2 + |
∫

RN

f(tZR
λ,y)tZR

λ,y − f(tUR
λ,y)tUR

λ,y|. (2.15)

By lemma 2.12 the first parcel of (2.15) is equal to oR(1) where oR(1) → 0 as R→ 0.
So it’s enough to show that∣∣∣∣∫

RN

f(tZR
λ,y)(tZR

λ,y) − f(tUR
λ,y)(tUR

λ,y)

∣∣∣∣ =

∣∣∣∣∣
∫

B2K(0)
f(tZR

λ,y)(tZR
λ,y) − f(tUR

λ,y)(tUR
λ,y)

∣∣∣∣∣
= oR(1).

For this purpose, (1.2), lemma 2.10 and the inequality (a+ b)p � 2p(ap + bp), for
a, b � 0, yield∣∣∣∣∣
∫

B2K(0)

f(tZR
λ,y)(tZR

λ,y) − f(tUR
λ,y)(tUR

λ,y)

∣∣∣∣∣ �
∫

B2K(0)

|tZR
λ,y|2

∗
+ |tUR

λ,y|2
∗

�
∫

B2K(0)

|1 + ψ2∗ ||tZR
λ,y|2

∗ � C

∫
B2K(0)

|ZR
λ,y|2

∗ � C

∫
B2K(0)

|λwR
0 + (1 − λ)wR

y |2∗

� C

∫
B2K(0)

|wR
0 |2

∗
+ |wR

y |2∗ � CR−2∗(N−2) = oR(1). �

Lemma 2.14.

(a) There exist R0 > 0, T0 > 2 and for each R � R0, y ∈ ∂B2(y0) and λ ∈ [0, 1],
a unique TR

λ,y such that

TR
λ,yU

R
λ,y ∈ NΩ,

TR
λ,y ∈ [0, T0] and TR

λ,y is a continuous function of the variables λ, y and R.

(b) for λ = 1/2 it holds that TR
1/2,y → 2 as R→ ∞ uniformly in y ∈ ∂B2(y0).

Proof. By lemma 2.4 for each R > 0, y ∈ ∂B2(y0) and λ ∈ [0, 1] there exists
TR

λ,y = t(UR
λ,y). Now for such fixed R > 0, the function (λ, y) → UR

λ,y is contin-
uous and t(UR

λ,y) is in C1. Since [0, 1] × ∂B2(y0) is a compact set in R2, there
is T0(R) = max

(λ,y)∈[0,1]×∂B2(y0)
TR

λ,y such that TR
λ,yU

R
λ,y ∈ NΩ and TR

λ,y ∈ [0, T0(R)].

Suppose by contradiction that T0(Rj) −→ ∞ as Rj −→ ∞. Since T0(Rj) =
max

(λ,y)∈[0,1]×∂B2(y0)
T

Rj

λ,y, then T0(Rj) = T
Rj

λ,y for some (λ, y). Let u, v > 0, and r ∈
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(0,∞), then using that f(s)
s is increasing by assumption (f1), it holds

JRN (ru+ rv) = r2(‖u‖2 + ‖v‖2 + 2〈u, v〉) −
∫

RN

f(ru+ rv)
ru+ rv

(ru+ rv)2

� r2
(
‖u‖2 −

∫
RN

f(ru)
ru

u2 + ‖v‖2 −
∫

RN

f(rv)
rv

v2 + 2〈u, v〉
)
.

(2.16)

Now for λ ∈ [0, 1] and y ∈ ∂B2(y0), setting u := λw
Rj

0 , v := (1 − λ)wRj
y , r = T

Rj

λ,y

and (2.16), we have

0 = JRN (TRj

λ,yU
Rj

λ,y)

� (TRj

λ,y)2(‖λwRj

0 ‖2
RN −

∫
RN

f(TRj

λ,yλw
Rj

0 )

T
Rj

λ,yλw
Rj

0

(λwRj

0 )
2

+ ‖(1 − λ)wRj
y ‖2

RN −
∫

RN

f(TRj

λ,y(1 − λ)wRj
y )

T
Rj

λ,y(1 − λ)wRj
y

((1 − λ)wRj
y )

2

+ 2〈λwRj

0 , (1 − λ)wRj
y 〉RN )

� (TRj

λ,y)2
{∫

RN

(
f(wRj

0 )

w
Rj

0

− f(TRj

λ,yλw
Rj

0 )

T
Rj

λ,yλw
Rj

0

)
(λwRj

0 )
2

+
∫

RN

(
f(wRj

y )

w
Rj
y

− f(TRj

λ,y(1 − λ)wRj
y )

T
Rj

λ,y(1 − λ)wRj
y

)
((1 − λ)wRj

y )
2

+ oR(1)

}
.

As we are assuming that TRj

λ,y → ∞ as Rj → ∞, then we get a contradiction since
by (f1) and the Monotone Convergence theorem

∫
RN

(
f(wR

0 )
wR

0

− f(TR
λ,yλw

R
0 )

TR
λ,yλw

R
0

)
(λwR

0 )2 < S0 < 0

and ∫
RN

(
f(wR

y )
wR

y

− f(TR
λ,y(1 − λ)wR

y )
TR

λ,y(1 − λ)wR
y

)
((1 − λ)wR

y )
2
< S0 < 0,

for Rj sufficiently large, λ ∈ [0, 1] and y ∈ ∂B2(y0), where S0 may be taken, for
instance, as S0 := (f(wR

0 ))/(wR
0 ) − (f(2wR

0 ))/(2wR
0 ).

In order to prove part (b) let ϕ(u, v) = f(u+ v) − f(u) − f(v), then from lemma
2.11 we have∫

RN

|ϕ(wR
0 , w

R
y )(wR

0 + wR
y )| �

∫
RN

(wR
0 w

R
y )q(wR

0 + wR
y ) = oR(1).
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Thus

JRN (wR
0 + wR

y ) = ‖wR
0 + wR

y ‖2 −
∫

RN

f(wR
0 + wR

y )(wR
0 + wR

y )

= ‖wR
0 ‖2 + ‖wR

y ‖2 + 2〈wR
0 , w

R
y 〉 −

∫
RN

f(wR
0 )(wR

0 ) −
∫

RN

f(wR
y )(wR

y )

−
∫

RN

f(wR
0 )(wR

y ) −
∫

RN

f(wR
y )(wR

0 ) +
∫

RN

ϕ(wR
0 , w

R
y )(wR

0 + wR
y )

= JRN (wR
0 ) + JRN (wR

y ) + oR(1) = oR(1),

recalling that w is a solution of (PRN ). Together with lemma 2.13, this gives

JRN ((wR
0 + wR

y )ψ) = JRN (wR
0 + wR

y ) + oR(1) = oR(1) as R→ ∞. (2.17)

Therefore, (2.17) and D1,2(Ω) ⊂ D1,2(RN ) yield

JΩ(2UR
1/2,y) = JΩ((wR

0 + wR
y )ψ))

= JRN ((wR
0 + wR

y )ψ) = oR(1)

and so TR
1/2,y → 2. Indeed, without loss of generality, suppose by contradiction that

TR
1/2,y → T > 2. Given δ > 1 such that 2 < 2δ < T , there exists R0 > 0 such that
TR

1/2,y > 2δ for all R > R0, y ∈ ∂B2(y0). Then applying the previous argument,
f(s)/s increasing and the translation invariance of integrals,

0 = JRN

(
TR

1/2,y

2
wR

0 +
TR

1/2,y

2
wR

y

)
�
∥∥∥∥∥T

R
1/2,y

2
wR

0

∥∥∥∥∥
2

RN

−
∫

RN

(
f((TR

1/2,y)/2wR
0 )

(TR
1/2,y)/2wR

0

)(
TR

1/2,y

2
wR

0

)2

+

∥∥∥∥∥T
R
1/2,y

2
wR

y

∥∥∥∥∥
2

RN

−
∫

RN

(
f((TR

1/2,y)/2wR
y )

(TR
1/2,y)/2wR

y

)(
TR

1/2,y

2
wR

y

)2

+ oR(1)

� 2
∫

RN

(
f(w)
w

− f(δw)
δw

)
(δw)2 + oR(1) < 0

which yields a contradiction. Likewise, if TR
1/2,y → T < 2 then JRN ((TR

1/2,y)/2wR
0 +

(TR
1/2,y)/2wR

y ) > 0, and this completes the proof of the lemma. �

3. Compactness condition

First, we present two crucial lemmas which will be used in the proof of the splitting
lemma.
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Lemma 3.1.

(a) If v and u are in a bounded subset of Lp + Lq, then f ′(v)u is in a bounded
subset of Lp′

+ Lq′
;

(b) f ′ is a bounded map from Lp + Lq into Lp/(p−2) + Lq/(q−2).

Proof. Lemma 2.3 in [7]. �

Lemma 3.2. Assume that the sequence (uk) converges to u0 weakly in D1,2(Ω). Set
u1

k = uk − u0 then it holds:

(a) ‖u1
k‖2

D1,2(Ω) = ‖uk‖2
D1,2(Ω) − ‖u0‖2

D1,2(Ω) + o(1);

(b)
∫

Ω

f(u1
k)u1

k =
∫

Ω

f(uk)uk −
∫

Ω

f(u0)u0 + o(1);

(c)
∫

Ω

F (u1
k) =

∫
Ω

F (uk) −
∫

Ω

F (u0) + o(1).

Proof. Lemma 2.8 in [7] and lemma 3.6 in [15]. �

Note that I ′NV
I(u) is orthogonal projection of I ′Ω(u) onto the tangent space of

NΩ at u, that is defined by Tu(NΩ) := {v ∈ D1,2(Ω); J ′
Ω(u)v = 0}. Recall that

a sequence (uk) in D1,2(Ω) is said to be a (PS)d-sequence for IΩ restricted to
NΩ if IΩ(uk) → d and ‖I ′NΩ

(uk)‖ → 0. The functional IΩ satisfies the Palais-Smale
condition on NΩ at the level d if every (PS)d-sequence for IΩ restricted to NΩ

contains a convergent subsequence.
Now we proceed with the study of Palais Smale sequences of IΩ. Usually, the

compactness results depend on P-L. Lion’s lemma [19]. However that lemma does
not apply directly if (uk) is bounded in D1,2(Ω). We present the following result in
the lines of [1], lemma 2, (see also [15]).

Lemma 3.3. Suppose (uk) is bounded in D1,2(RN ) and there exists R > 0 such that

lim
k→∞

(
sup

y∈RN

∫
B(y,R)

|uk|2
)

= 0,

then
∫

RN

f(uk)uk → 0.

Proof. Fix ε ∈ (0, 1) and for every k consider the new sequence of functions

wk :=

{
|uk| |uk| � ε,

|uk|2∗/2ε−(2∗/2−1) |uk| � ε.

It is easy to verify that

|wk|2 � |uk|2, |wk|2 � |uk|2∗
ε−(2∗−2), |∇wk|2 �

(
2∗

2

)2

|∇uk|2,
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since

|wk|2 =

⎧⎨⎩
|uk|2 |uk| � ε,

|uk|2∗
ε−(2∗−2) � |uk|2 |uk|2∗−2

ε(2∗−2)
� |uk|2 |uk| � ε,

|wk|2 =

⎧⎪⎨⎪⎩|uk|2 =
|uk|2∗

|uk|2∗−2
� |uk|2∗

ε2∗−2
= |uk|2∗

ε−(2∗−2) |uk| � ε,

|uk|2∗
ε−(2∗−2) |uk| � ε,

∇wk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇|uk| |uk| � ε,

∇(|uk|2∗/2ε−(2∗/2−1))

=
2∗

2
ε−(2∗/2−1)|uk|2∗/2−1∇|uk| � 2∗

2
∇|uk|

|uk| � ε.

So

‖wk‖2
H1(RN ) =

∫
RN

|wk|2 + |∇wk|2

�
∫

RN

|uk|2∗
ε−(2∗−2) +

∫
RN

(
2∗

2

)2

|∇uk|2 � Cε−(2∗−2),

in particular, wk ∈ H1(RN ). We claim that wk → 0 in Ls(RN ) for each 2 < s < 2∗.
Indeed, for any y ∈ RN and s ∈ (2, 2∗), using the Sobolev continuous embedding
H1(B(y,R)) ↪→ L2∗

(B(y,R)) we have

∫
B(y,R)

|wk|s �
(∫

B(y,R)

|wk|2
)(1−θ)s/2(∫

B(y,R)

|wk|2∗
)θs/2∗

� C

(∫
B(y,R)

|wk|2
)(1−θ)s/2(∫

B(y,R)

|wk|2 + |∇wk|2
)θs/2

,

where θ = (s− 2)/2sN . Now suppose θs � 2 that is, s � 4/N + 2 = s, then

∫
B(y,R)

|wk|s � C

(∫
B(y,R)

|wk|2
)(1−θ)s/2(∫

B(y,R)

|wk|2 + |∇wk|2
)
‖wk‖θs−2

H1(RN )
.

Now, covering RN by balls of radius R, in such a way that each point of RN is
contained in at most N + 1 balls, we find∫

RN

|wk|s � (N + 1) sup
y∈RN

(∫
B(y,R)

|wk|2
)(1−θ)s/2

‖wk‖θs
H1(RN ).

But wk ∈ H1(RN ) and so by the assumption of lemma, wk → 0 in Ls(RN ) for s � s.
If 2 < s < s, s = 2θ + s(1 − θ) for some θ ∈ (0, 1), hence by the Holder’s inequality,

‖wk‖s
Ls(RN ) � ‖wk‖θ

L2(RN )‖wk‖1−θ
Ls(RN )
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and the claim then follows from the case already established. Now using (f2), we
conclude∫

RN

f(uk)uk � C

∫
{|uk|�1}

|uk|p + C

∫
{|uk|�1}

|uk|q

� C

∫
{|uk|�ε}

|uk|p − C

∫
{ε�|uk|�1}

|uk|p + C

∫
{ε�|uk|�1}

|uk|q + C

∫
{|uk|�ε}

|uk|q

� C

∫
{|uk|�ε}

|uk|p − C

∫
{ε�|uk|�1}

|uk|p + C

∫
{ε�|uk|�1}

|uk|p + C

∫
{|uk|�ε}

|uk|q

= C

∫
{|uk|�ε}

|uk|p + C

∫
{|uk|�ε}

|uk|q

� C

∫
{|uk|�ε}

|wk|p + C

∫
{|uk|�ε}

|uk|q−2∗ |uk|2∗

� C‖wk‖p
Lp(RN )

+ Cεq−2∗‖uk‖2∗
L2∗ (RN )

by which, since wk → 0 and q > 2∗∫
RN

f(uk)uk � Cεq−2∗
.

Because ε ∈ (0, 1) is arbitrary we get the conclusion. �

Lemma 3.4. Every (PS)d-sequence (uk) for IΩ restricted the NΩ contains a bounded
subsequence which is a (PS)d-sequence for IΩ in D1,2(Ω).

Proof. Let (uk) be a (PS)d-sequence for IΩ on NΩ, by (2.3) with replaced RN by
Ω and IΩ(uk) → d we have that (uk) is bounded. To complete the proof we show
that I ′NΩ

(uk) → 0 imply

I ′Ω(uk) → 0 in (D1,2(Ω))′. (3.1)

Write

I ′Ω(uk) = I ′NΩ
(uk) + tkJ

′
Ω(uk). (3.2)

By property (f2) and remark 1.1, Holder’s inequality, Sobolev inequality and the
boundednes of (uk), for any v ∈ D1,2(Ω),

|
∫

Ω

[f ′(uk)uk − f(uk)]v| � C

∫
Ω

(|uk|2∗−1)|v| � C‖uk‖2∗−1
L2∗ ‖v‖L2∗ � C‖v‖Ω.

Therefore

|〈J ′
Ω(uk), v〉Ω| = |2〈uk, v〉Ω −

∫
Ω

[f ′(uk)uk + f(uk)]v| � C‖v‖ , ∀v ∈ D1,2(Ω).

This proves that(J ′
Ω(uk)) is bounded in (D1,2(Ω))′.
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As |J ′
Ω(uk)uk| � ‖J ′

Ω(uk)‖‖uk‖Ω < C, after passing to a subsequence, we have
that |J ′

Ω(uk)uk| → � � 0. We will show that � > 0. From lemma 2.4 (d) and uk ∈
NV , we have

0 < ρ2 � ‖uk‖2
D1,2(RN ) =

∫
RN

f(uk)uk, (3.3)

then by lemma 3.3 there is δ > 0 such that

sup
y∈RN

∫
B(y,R)

|uk|2 > δ,

and so there exists a sequence (yk) such that∫
B(yk,R)

|uk|2 � δ. (3.4)

Now consider ũk = uk(· − yk), which is bounded and passing to a subsequence,
ũk ⇀ u in D1,2(RN ) and ũk → u in L2

loc(R
N ). We claim that u �≡ 0. Indeed if

‖ũk‖L2(B(0,R)) → 0 as k → ∞ we have a contradiction with (3.4). Hence, u �≡ 0
and there exists a subset Λ of positive measure such that u(x) �≡ 0 for every x ∈ Λ.
Property (f1) implies that f ′(s)s2 − f(s)s > 0 if s �= 0. So, from Fatou’s lemma, it
follows that

� = lim inf
k→∞

|J ′(uk)uk| = lim inf
k→∞

{
2‖uk‖2 −

∫
Ω

[f ′(uk)u2
k + f(uk)uk]

}
= lim inf

k→∞

∫
Ω

[f ′(uk)u2
k − f(uk)uk]

= lim inf
k→∞

∫
RN

[f ′(uk)u2
k − f(uk)uk] = lim inf

k→∞

∫
RN

[f ′(ũk)ũ2
k − f(ũk)ũk]

� lim inf
k→∞

∫
Λ

[f ′(ũk)ũ2
k − f(ũk)ũk] �

∫
Λ

lim inf
k→∞

[f ′(ũk)ũ2
k − f(ũk)ũk]

=
∫

Λ

[f ′(u)u2 − f(u)u] > 0,

hence the claim that � > 0 is proved. Taking the inner product of (3.2) with uk it
holds that

0 = I ′Ω(uk)uk = 〈I ′NΩ
(uk), uk〉Ω + tkJ

′
NΩ

(uk)uk = ok(1) + tkJ
′
NΩ

(uk)uk,

so tk → 0 and from (3.2) we deduce I ′Ω(uk) → 0 as I ′NΩ
(uk) → 0. This completes

the proof of the lemma. �

Lemma 3.5 (Splitting). Let (uk) be a sequence in NΩ such that

IΩ(uk) → d and I ′NΩ
(uk) → 0 in (D1,2(Ω))′.

https://doi.org/10.1017/prm.2018.125 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.125


Null mass equation in exterior domain 859

Replacing uk by a subsequence if necessary, there exist a solution u0 of (P), a
number m ∈ N, m function w1, . . . , wm in D1,2(RN ) and m sequences of points
(yj

k) ∈ RN , 1 � j � m, satisfying:

(a) uk → u0 in D1,2(Ω) or

(b) wj are nontrivial solutions of (PRN );

(c) |yj
k| → +∞ e |yj

k − yi
k| → +∞ i �= j;

(d) uk −
m∑

i=1

wj(· − yj
k) → u0 in D1,2(RN ).

(e) d = IΩ(u0) +
m∑

i=1

IRN (wj).

Proof. By lemma 3.4 (uk) is bounded and we can extract a subsequence, which
converges to u0 weakly in D1,2(Ω). We verify that u0 solves (P). Indeed, by lemma
3.4 for ϕ ∈ C∞

0 (Ω), it follows

I ′Ω(uk)ϕ =
∫

Ω

∇uk∇ϕdx−
∫

Ω

f(uk)ϕdx→ 0 as k → ∞. (3.5)

By (b) of lemma 3.1 and the fact that for p < 2∗, uk → u0 strongly in Lp
loc(Ω) and

using the mean value theorem

f(uk(x)) − f(u0(x)) = f ′(uk(x) + θ(x)u0(x))(uk(x) − u0(x)) with 0 < θ(x) < 1 ,

from (f2) and (1.2) we get∫
Ω

|f(uk) − f(u0)|ϕdx �
∫

suppϕ

(|uk| + |u0|)2∗−2(uk − u0)ϕdx→ 0 as k → ∞,

and so∫
Ω

∇uk∇ϕdx−
∫

Ω

f(uk)ϕdx→
∫

Ω

∇u0∇ϕdx−
∫

Ω

f(u0)ϕdx as k → ∞. (3.6)

By (3.5) and (3.6), u0 solves (P) and immediately u0 ∈ NΩ. Now set u1
k = uk − u0

and define u1
k = 0 in RN \ Ω, so u1

k converges to zero weakly in D1,2(RN ) and as
we will see in remark 3.6, I ′Ω(u1

k)u1
k → 0 and so

I ′Ω(u1
k)u1

k =
∫

Ω

|∇u1
k|2 −

∫
Ω

f(u1
k)u1

k → 0 as k → ∞. (3.7)

Lemma 3.2, (a) and (b), imply that

‖u1
k‖2

D1,2(RN ) = ‖uk‖2
D1,2(RN ) − ‖u0‖2

D1,2(RN ) + o(1) (3.8)

IRN (u1
k) = IΩ(uk) − IΩ(u0) + o(1). (3.9)
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Assume u1
k �→ 0 strongly in D1,2(RN ), otherwise we have the claim, then from (3.7)

0 < η � ‖u1
k‖2

D1,2(RN ) =
∫

RN

f(u1
k)u1

k + o(1). (3.10)

Arguing as in lemma 3.4, there is (yk) and δ > 0 such that∫
B(yk,R)

|u1
k|2 > δ. (3.11)

Now consider ũk = u1
k(· − y1

k), which is bounded, so passing to a subsequence there
is ũk ⇀ u in D1,2(RN ) and ũk → u in L2

loc(R
N ). We claim that u �≡ 0. Indeed if

‖ũk‖Lp(B(0,R)) → 0 as k → ∞ this contradicts (3.11) and the claim is proved. Hence
by the boundedness of u1

k, there exists w1 ∈ D1,2(RN ) such that u1
k(x− y1

k) →
w1 �= 0 weakly in D1,2(RN ) and the sequence (y1

k) ∈ RN with y1
k → ∞ as k → ∞,

since if (y1
k) were bounded, by passing to subsequence, we should find y1 that

y1
k → y1 and ∫

B(y1,R)

|u1
k|2 > δ . (3.12)

As above u1
k is bounded, so passing to a subsequence there is u1 such that u1

k ⇀ u1

in D1,2(B(y1, R)) and u1 �≡ 0, which is contradictory with u1
k converging weakly to

0 in D1,2(RN ). Moreover, w1 is a weak solution of (PRN ) and the proof of this is
remark 3.6, which is stated in what follows. Define u2

k := u1
k − w1(· − y1

k) then, by
arguing as before, u2

k satisfies

IRN (u2
k) → d− IΩ(u0) − IRN (w1)

and if u2
k �→ 0 strongly in D1,2(RN ) (otherwise we have the claim) then there exists

a sequence {y2
k} ∈ RN with {y2

k} → ∞ as k → ∞ and u2
k(x− y1

k) → w2 �= 0 weakly
in D1,2(RN ), such that w2 is a weak solution of (PRN ). Moreover, any nontrivial
critical point u of IRN satisfies IRN (u) � c > 0, so iterating the above procedure we
construct sequences wi and (yj

k). Since for every i, IRN (wi) � c, the iteration must
terminate at some finite index m. �

Remark 3.6. It holds that w1 ∈ D1,2(RN ) is a weak solution of (PRN ).

Let ϕ ∈ C∞
0 (RN ), using the mean value theorem and (f2), by (b) of lemma 3.1, we

have ∫
RN

∇u1
k(x− y1

k)∇ϕ− f(u1
k(x− y1

k))ϕ dx

=
∫

RN

∇u1
k(z)∇ϕ(z + y1

k) − f(u1
k(z))ϕ(z + y1

k) dz

=
∫

RN

[f(uk) − f(u0) − f(u1
k)]ϕ(z + y1

k) dz + o(1)

�
∫

BR

[f(u0 + u1
k) − f(u0)]ϕ(z + y1

k) dz
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+
∫

RN\BR

[f(u0 + u1
k) − f(u1

k)]ϕ(z + y1
k) dz

−
∫

BR

f(u1
k)ϕ(z + y1

k) dz −
∫

RN\BR

f(u0)ϕ(z + y1
k) dz + o(1)

� C‖(|u0|2∗−2 + |u1
k|2

∗−2)ϕ(· + y1
k)‖Lp′ (RN )ak,R

+ C‖(|u0|2∗−2 + |u1
k|2

∗−2)ϕ(· + y1
k)‖Lp′∩Lq′ (RN )bR + o(1)

where ak,R = ‖u1
k‖Lp(BR), bR = ‖u0‖Lp′∩Lq′ (RN\BR). Since bR → 0 as R→ ∞, and

given R, ak,R → 0 as k → ∞, by the above estimate we get∫
RN

∇u1
k(x− y1

k)∇ϕ− f(u1
k(x− y1

k))ϕ dx→ 0

as k → ∞. On the other hand, by (a) of lemma 3.1, it is easy to see that∫
RN

∇u1
k(x− y1

k)∇ϕ− f(u1
k(x− y1

k))ϕ dx→
∫

RN

∇w1∇ϕ− f(w1))ϕ dx.

So we get the claim and the proof of the lemma is complete. �

Corollary 3.7 (Compactness). IΩ satisfies the Palais-Smale condition on NΩ at
every level d ∈ (c, 2c).

Proof. Let (uk) be a (PS)d-sequence for IΩ on NΩ. If d ∈ (c, c) and (uk) does not
have a convergent subsequence then, by the splitting lemma,

c > d = I(u0) +
m∑

i=1

IRN (wj) �
{

mc if u0 = 0,

cΩ +mc � (m+ 1)c if u0 �= 0.
(3.13)

Then in both cases, m < 2 and so m = 1. The hypothesis 2c > d � (m+ 1)c implies
that it is not possible to have m = 1 and u0 �= 0, therefore u0 = 0, which yields
I(un) → IRN (w1) = d giving a contradiction with the uniqueness of solution of
(PRN ). Hence, IΩ satisfies the Palais-Smale condition on NΩ at every d ∈ (c, 2c). �

Remark 3.8. If u is a solution of (P) with IΩ(u) ∈ [c, 2c), then u does not change
sign. In fact, if u is a solution of (P) then

0 = I ′Ω(u)u± = JΩ(u±),

where u+ := max{u, 0} and u− := min{u, 0}, so u± ∈ NΩ. Now if u+ �= 0 and
u− �= 0, then

IΩ(u) = IΩ(u+) + IΩ(u−) � 2c.

4. Existence of a positive solution

Now, for any R > 0, y ∈ ∂B2(y0), let us define

εR :=
∫

RN

f(wR
0 )wR

y .
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Lemma 4.1. There exists C > 0 such that

εR =
∫

RN

f(wR
0 )wR

y � CR−(N−2) (4.1)

for all y ∈ ∂B2(y0) and R � 1.

Proof. It is sufficient to take r = 2∗ and s = 1 in lemma 2.11. �

Note that the previous lemma implies εR → 0 as R→ ∞, uniformly for y in
∂B2(y0).

Lemma 4.2. There exists C > 0 such that for all s, t � 1/2, y ∈ ∂B2(y0) and
R � 1, ∫

RN

f(swR
0 )twR

y � CR−(N−2). (4.2)

Proof. For |x| < 1 and R � 1, we have

1 + |x−R(y − y0)| < 1 + |x| +R|(y − y0)| < 4R. (4.3)

Now by (f1), (4.3) and the decay estimates (2.1) there exists C > 0 such that∫
RN

f(swR
0 )twR

y = st

∫
RN

[
f(swR

0 )
swR

0

]
wR

0 w
R
y

� 1
4

∫
RN

[
f(1/2wR

0 )
1/2wR

0

]
wR

0 w
R
y

� 1
4

∫
B1(Ry0)

[
f(1/2wR

0 )
1/2wR

0

]
wR

0 w
R
y

� 1
4

[
min

x∈B1(0)

f(1/2w(x)
1/2w(x)

] ∫
x∈B1(0)

w(x)w(x−R(y − y0))

� C

∫
B1(0)

(1 + |x|)−(N−2)w(x−R(y − y0))

� CR−(N−2).

�

If we set s, t = 1 in the previous lemma we have

εR � CR−(N−2). (4.4)

Lemma 4.3. For every b > 1 there is a constant C > 0 such that

|
∫

Ω

[sf(wR
0 ψ) − f(swR

0 ψ)]wR
y ψ| � C|s− 1| εR,

for all s ∈ [0, b], y ∈ ∂B2(y0) and R � 1.
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Proof. Fix u ∈ R and consider the function g(s) := sf(u) − f(su). By (1.2),

g′(s) := f(u) − f ′(su)u � |f(u)| + C(s2
∗−1|u|2∗

)

� C|u|2∗ ∀s ∈ [0, 1].

Hence, by the mean value theorem,

|sf(u) − f(su)| = |g(s) − g(1)| = |g′(t)||s− 1|
� C|u|2∗ |s− 1|.

This inequality yields ∫
Ω

|sf(wR
0 ψ) − f(swR

0 ψ)|wR
y ψ

� |s− 1|[C
∫

Ω

(|wR
0 ψ|2

∗
)wR

y ψ],

= |s− 1|C
∫

RN

(|wR
0 |2

∗
wR

y (ψ)2
∗+1).

Now applying lemma 2.11 and using that |ψ| � 1, we obtain∫
RN

|sf(wR
0 ψ) − f(swR

0 ψ)|wR
y ψ � |s− 1|O(εR) � C|s− 1| εR

for all s ∈ [0, b], y ∈ ∂B2(y0) and R � 1, as claimed. �

Proposition 4.4. There exists R1 > 0 and, for each R > R1, a number
η = ηR > 0, ηR = oR(1) such that

IΩ(TR
λ,yU

R
λ,y) � 2c− η,

for all λ ∈ [0, 1], y ∈ ∂B2(y0).

Proof. Let us denote for simplicity s := TR
λ,yλ and t := TR

λ,y(1 − λ), then we have

IΩ(swR
0 ψ + twR

y ψ)

=
1
2

∫
Ω

|∇(swR
0 ψ + twR

y ψ)|2 −
∫

Ω

F (swR
0 ψ + twR

y ψ)

=
s2

2

∫
Ω

|∇(wR
0 ψ)|2 +

t2

2

∫
Ω

|∇(wR
y ψ)|2 + st

∫
Ω

∇(wR
0 ψ)∇(wR

y ψ)

−
∫

Ω

F (swR
0 ψ) −

∫
Ω

F (twR
y ψ) −

∫
Ω

F (swR
0 ψ + twR

y ψ)

− F (swR
0 ψ) − F (twR

y ψ)

https://doi.org/10.1017/prm.2018.125 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.125


864 A. Khatib and L. A. Maia

=
s2

2

∫
Ω
|∇(wR

0 ψ)|2 −
∫
Ω
F (swR

0 ψ) (4.5)

+
t2

2

∫
Ω
|∇(wR

y ψ)|2 −
∫
Ω
F (twR

y ψ) (4.6)

+ st

∫
Ω
∇(wR

0 ψ)∇(wR
y ψ) (4.7)

−
∫
Ω
F (swR

0 ψ + twR
y ψ) − F (swR

0 ψ) − F (twR
y ψ) − f(swR

0 ψ)twR
y ψ − f(twR

y ψ)swR
0 ψ

(4.8)

−
∫
Ω
f(swR

0 ψ)twR
y ψ −

∫
Ω
f(twR

y ψ)swR
0 ψ . (4.9)

The sum in (4.5) is equal to IRN (swR
0 ) + o(εR) since

(4.5) = IRN (swR
0 ) − IRN (swR

0 ) +
s2

2

∫
Ω

|∇(wR
0 ψ)|2 −

∫
Ω

F (swR
0 ψ)

= IRN (swR
0 ) +

s2

2

∫
B2K(0)

|∇(wR
0 ψ)|2 − |∇wR

0 |2 −
∫

B2K(0)

F (swR
0 ) − F (swR

0 ψ)

and by (2.6) lemma 2.10, (4.1), (4.4) and s bounded by T0 we have

s2

2

∫
B2K(0)

|∇wR
0 ψ|2 − |∇wR

0 |2 = o(εR).

On the other hand, by the mean value theorem, (f2) and lemma 2.10 we have∫
B2K(0)

F (swR
0 ) − F (swR

0 ψ) =
∫

B2K(0)

f(swR
0 + θ(x)swR

0 ψ)(swR
0 − swR

0 ψ)

� C

∫
B2K(0)

(|wR
0 |2

∗−1)wR
0 = C

∫
B2K(0)

|wR
0 |2

∗
= o(εR).

The sum gives that (4.5) = IRN (swR
0 ) + o(εR) and since wR

0 is a least energy solu-
tion of the limit problem (PRN ), by lemma 2.4 (b), we have that IRN (swR

0 ) � c.
Similarly, we have the same for the sum in (4.6) and so

(4.5) + (4.6) � 2c+ o(εR).

As to (4.8), in lemma 2.9 let 2∗ − 2 < ν < q − 2 and so 1 + ν/2 > 2∗/2. Now by
lemma 2.11 it holds that

−
∫

RN

F (swR
0 ψ + twR

y ψ) − F (swR
0 ψ) − F (twR

y ψ) − f(swR
0 ψ)twR

y ψ − f(twR
y ψ)swR

0 ψ

� C(st)1+ ν/2
∫

RN

(wR
y ψw

R
0 ψ)1+ν/2

� C(st)1+ν/2
∫

RN

(wR
y w

R
0 )1+

ν
2 � CR−(N−2)(1+ν/2) = o(εR)

so we have shown that

(4.8) � o(εR).
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Now using analogous arguments to (4.9) we have∫
Ω
f(swR

0 ψ)twR
y ψ +

∫
Ω
f(twR

y ψ)swR
0 ψ =

∫
RN

f(swR
0 )twR

y +

∫
RN

f(twR
y )swR

0 + o(εR)

and so we can write the sum of the remaining terms as

(4.7) + (4.9) � st

∫
Ω

∇wR
0 ψ∇wR

y ψ −
∫

RN

f(swR
0 )twR

y −
∫

RN

f(twR
y )swR

0 + o(εR)

=
st

2

∫
RN

f(wR
y )wR

0 +
st

2

∫
RN

f(wR
0 )wR

y −
∫

RN

f(swR
0 )twR

y

−
∫

RN

f(twR
y )swR

0 + o(εR)

=
t

2

∫
RN

[sf(wR
0 ) − f(swR

0 )]wR
y +

s

2

∫
RN

[tf(wR
y ) − f(twR

y )]wR
0

− 1
2

∫
RN

f(swR
0 )twR

y − 1
2

∫
RN

f(twR
y )swR

0 + o(εR) .

By lemma 4.3 there is a constant C > 0 such that
t

2

∫
RN

[sf(wR
0 ) − f(swR

0 )]wR
y +

s

2

∫
RN

[tf(wR
y ) − f(twR

y )]wR
0 � C(|s− 1| + |t− 1|) εR

for all s, t ∈ [0, T0], y ∈ ∂B2(y0) and R large enough. Moreover, from lemma 4.2,
there is a constant C0 > 0 such that

1
2

∫
RN

f(swR
0 )twR

y +
1
2

∫
RN

f(twR
y )swR

0 � C0 εR

for all s, t � 1/2, y ∈ ∂B2(y0) and R large enough. By lemma 2.14, if λ = 1/2, then
s, t→ 1 as R→ ∞. So taking R0 > 0 sufficiently large and δ ∈ (0, 1/2) sufficiently
small such that for all λ ∈ [1/2 − δ, 1/2 + δ], C(|s− 1| + |t− 1|) � C0/2, we have

(4.7) + (4.9) � −C0/2 εR + o(εR)

for all y ∈ ∂B2(y0) and R > R0. Summing up, so far we have proved that

IΩ(swR
0 + twR

y ) � 2c− C0/2 εR + o(εR), (4.10)

for all y ∈ ∂B2(y0) and R > R0.
On the other hand, for all λ ∈ [0, 1/2 − δ] ∪ [1/2 + δ, 1], y ∈ ∂B2(y0) and R suf-

ficiently large, since if TR
λ,y � 2 then s = TR

λ,yλ ∈ [0, 1 − 2δ] or t = TR
λ,y(1 − λ) ∈

[1, 1 − 2δ] and if TR
λ,y � 2 then s = TR

λ,yλ ∈ [1 + 2δ,∞] or t = TR
λ,y(1 − λ) ∈ [1 +

2δ,∞], in fact, one of s or t is in [0, 1 − 2δ] ∪ [1 + 2δ,∞] and so (4.5)+(4.6)
� 2c− γ +O(εR). By lemma 2.4(b), there exists γ ∈ (0, c) such that

IRN (rwR
0 ) � c− γ ∀r ∈ [0, 1 − 2δ] ∪ [1 + 2δ,∞]

also with our previous estimates we have (4.7) + · · ·+ (4.9)= O(εR), and so

IΩ(swR
0 + twR

y ) � 2c− γ +O(εR). (4.11)

Inequalities (4.10) and (4.11), together, yield the statement of the proposition. �
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Lemma 4.5. For any δ > 0, there exists R2 > 0 such that

IΩ(TR
λ,yU

R
λ,y) < c+ δ,

for λ = 0 and every y ∈ ∂B2(y0) and R � R2.

Proof. TR
λ,y is bounded uniformly in λ, y and R. As wR

y is a ground state of problem
(PRN ), like in (4.5) we have

IΩ(TR
0,yU

R
0,y)

� IRN (TR
0,yw

R
y ) + o(εR)

� max
s>0

IRN (swR
y ) + o(εR) � c+ o(εR).

This proves the lemma. �

Let us consider β : D1,2(RN ) \ {0} → RN a barycenter map as defined in [13]
(see also [20]), that is, a map obtained as follows:

μ(u)(x) :=
1

|B1(x)|
∫

B1(x)

|u(y)|dy, μ(u) ∈ L∞ ∩ C(0,+∞),

û(x) :=
[
μ(u)(x) − ‖μ(u)‖∞

2

]+
, û ∈ C0(RN )

and hence, the barycenter of a function u ∈ D1,2(RN ) \ {0} is defined by

β(u) =
1

‖û‖1

∫
RN

xû(x)dx .

It is a continuous function with the properties

β(u(· − y)) = β(u) + y ∀ y ∈ RN , (4.12)

β(Tu) = β(u) ∀T > 0. (4.13)

Note that β(u) = 0 if u is radial.

Remark 4.6. For the sake of completeness, we recall some facts shown in [20]
concerning the barycenter of translated copies of w. Since w is radially symmetric,
positive and decreasing in (0,+∞), this implies that μ(w) is also decreasing with
respect to |x|. Moreover, as proved in theorem 2.1 in [3] μ(w) → 0 as |x| → +∞,
then, arguing as in [20], we obtain that there exists a unique r0 > 0 such that for
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every |x| = r0, μ(w)(x) = ‖μ(w)‖∞/2. We consider the set

E(w) :=
{
x ∈ RN , μ(w)(x) � ‖μ(w)‖∞

2

}
,

then by (4.12) it holds

E(w) = Br0(0) ⇒ E(w(· −Ry)) = Br0(Ry), (4.14)

for every R ∈ R+. If we fix R such that R > 2K + 1 + r0, then since y ∈ ∂B2(y0),
it results that |x| > 2K + r0 for every x ∈ B1(Ry). Hence,

μ(ψwR
y )(Ry) =

1

|B1(Ry)|
∫

B1(Ry)
ψ(x)w(x−Ry)dx =

1

|B1(Ry)|
∫

B1(Ry)
w(x−Ry)dx

=
1

|B1(0)|
∫

B1(0)
w(σ)dσ = μ(w)(0) = ‖μ(w)‖∞.

Since, ‖ψ‖∞ � 1, it results

|μ(ψwR
y )(x)| � |μ(w)(x−Ry)| � ‖μ(w)‖∞, (4.15)

giving that

‖μ(ψwR
y )‖∞ = |μ(ψwR

y )(Ry)| = ‖μ(w)‖∞. (4.16)

Furthermore, for every x ∈ Br0(Ry), any z ∈ B1(x) satisfies |z| > 2K, showing that
B1(x) ⊆ RN \B2K(0), and using again the definition of the cut-off function ψ, we
have

μ(ψwR
y )(x) =

1
|B1(x)|

∫
B1(x)

ψ(z)w(z −Ry)dz =
1

|B1(x)|
∫

B1(x)

w(z −Ry)dz

= μ(w)(x−Ry).

From (4.14) it follows that, for every x ∈ Br0(Ry), μ(w)(x−Ry) > ‖μ(w)‖∞/2,
thus by the previous equality

μ(ψwR
y )(x) >

1
2
‖μ(w)‖∞ for every x ∈ Br0(Ry),

so that ψ̂wR
y �= 0 if x ∈ Br0(Ry). If x �∈ Br0(Ry), then by (4.14), (4.15) and (4.16)

it results

μ(ψwR
y ) � μ(w(· −Ry)) <

1
2
‖μ(w(· −Ry))‖∞ =

1
2
‖μ(ψwR

y )‖∞.

Therefore, ψ̂wR
y �= 0 if and only if x ∈ Br0(Ry), but, in this set ψ ≡ 1, so that

ψ̂wR
y = ŵ(· −Ry) and hence

β(ψwR
y ) = β(w(· −Ry)) = Ry. (4.17)
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Lemma 4.7. There exists δ > 0 such that

β(u) �= 0, ∀u ∈ NΩ ∩ Ic+δ
Ω

where Ic
Ω = {u ∈ H1

0 (Ω), IΩ(u) � c}.

Proof. Arguing by contradiction, assume that for each k ∈ N there exists vk ∈ NΩ

such that IΩ(vk) < cΩ + 1/k and β(vk) = 0. By Ekeland’s variational principle,
there exists a (PS)d-sequence (uk) for IΩ on NΩ at the level d = cΩ such that
‖uk − vk‖ → 0 ([25], theorem 8.5). As cΩ is not attained, Lemma 3.5 (split-
ting) implies that there exists a sequence (yk) in RN such that |yk| → ∞ and
‖uk − w(· − yk)‖ → 0, where w is the (positive or negative) radial ground state of
(PRN ). Setting ṽk(x) := vk(x+ yk), and using property (4.12) and the continuity
of the barycenter, we conclude that

−yk = β(vk) − yk = β(ṽk) → β(w) = 0,

but this is a contradiction. �

Proof of theorem 1.2. We will show that IΩ has a critical value in (c, 2c). By lemma
4.7, we may fix δ ∈ (0, c/4) such that

β(u) �= 0, ∀ u ∈ NΩ ∩ Ic+δ
Ω .

Proposition 4.4 and lemma 4.5 allow us to choose R > 0 sufficiently large and its
corresponding ηR = η ∈ (0, c/4) such that

IΩ(TR
λ,yU

R
λ,y) �

{
2c− η for all λ ∈ [0, 1] and all y ∈ ∂B2(y0)

c+ δ for λ = 0 and all y ∈ ∂B2(y0).

For this fixed R > 0, define α : B2(y0) → NΩ ∩ I2c−η
Ω by

α(λy0 + (1 − λ)y) := TR
λ,yU

R
λ,y with λ ∈ [0, 1], y ∈ ∂B2(y0).

Arguing by contradiction, assume that IΩ does not have a critical value in (c, 2c).
As, by corollary 3.7, IΩ satisfies the Palais-Smale condition on NΩ at every level in
(c, 2c), there exists ε > 0 such that

‖∇NΩIΩ(u)‖ � ε, ∀ u ∈ NΩ ∩ I−1
Ω [c+ δ, 2c− η].

Then using a Deformation lemma for C1 manifolds (see [11]), it yields a continuous
function

ρ : NΩ ∩ I2c−η
Ω → NΩ ∩ Ic+δ

Ω

such that ρ(u) = u for all u ∈ NΩ ∩ Ic+δ
Ω . Now we define Γ(x) := (β ◦ ρ ◦ α)(x). By

lemma 4.7, Γ(x) �= 0 and so the function h : B2(y0) → ∂B2(0) given by

h(x) := 2
Γ(x)
|Γ(x)|
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is well defined and continuous. Moreover, if y ∈ ∂B2(y0), by lemma 4.5

α(y) = TR
0,yU

R
0,y = TR

0,yψw
R
y ∈ NΩ ∩ Ic+δ

Ω

and hence by (4.17) in remark 4.6,

(β ◦ ρ ◦ α)(y) = β(wR
y ) = Ry,

since β(TR
0,yψw

R
y ) = β(wR

y ) (see [20], estimate (5.15)). Note also that h(y) =
2Ry/|Ry| = 2y/|y|.

Therefore, if we consider the homeomorphism h̃ : ∂B2(y0) → ∂B2(0) defined by
h̃(y) := 2y/|y|, then (h̃−1 ◦ h)(y) = y for every y ∈ ∂B2(y0), however, by Brouwer
Fixed Point theorem such a map does not exist, so IΩ must have a critical point
u ∈ NΩ with IΩ(u) ∈ (c, 2c). By remark 3.8 u does not change sign, so if u � 0 with
the maximum principle, we get u > 0 is a solution of (P). On the other hand if
u � 0, then by the oddness of f , f(u) � 0 and so −u is a positive solution. This
proves that problem (P) has a positive solution.
Now we can write (P) as

−Δu = au

where a = f(u)/u and if we show a ∈ L
N/2
loc (RN ) then by Brezis-Kato theorem u is

in Lp
loc(R

N ) for all 1 � p <∞ and so u ∈W 2,p
loc (RN ) and by Sobolev embedding

u ∈ C
0,1−N/p
loc (RN ). Now let p > N we have u is locally Hölder continuous and

since f is of class C1, we have f(u) is locally Hölder continuous and so by elliptic
regularity theorems, u ∈ C2(RN ) and so u is classic solution. In order to complete
the proof we show that a ∈ L

N/2
loc (RN ). By (f2) we have

|a(x)| =
f(u)
u

� C|u|2∗−2

and so ∫
Γ

|a(x)|
N

2 � C

∫
Γ

|u|((2∗−2)N)/2 = C

∫
Γ

|u|2∗
<∞

for any open set Γ ⊂⊂ RN . Hence the theorem is proved. �
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