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Let F = {F1, F2, . . . , Fn} be a family of n sets on a ground set S , such as a family of balls

in Rd. For every finite measure μ on S , such that the sets of F are measurable, the classical

inclusion–exclusion formula asserts that

μ(F1 ∪ F2 ∪ · · · ∪ Fn) =
∑

I:∅�=I⊆[n]

(−1)|I |+1μ

(⋂
i∈I

Fi

)
,

that is, the measure of the union is expressed using measures of various intersections.

The number of terms in this formula is exponential in n, and a significant amount of

research, originating in applied areas, has been devoted to constructing simpler formulas

for particular families F . We provide an upper bound valid for an arbitrary F : we show

that every system F of n sets with m non-empty fields in the Venn diagram admits an

inclusion–exclusion formula with mO(log2 n) terms and with ±1 coefficients, and that such

a formula can be computed in mO(log2 n) expected time. For every ε > 0 we also construct

systems with Venn diagram of size m for which every valid inclusion–exclusion formula has

the sum of absolute values of the coefficients at least Ω(m2−ε).
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1. Introduction

One of the basic topics in introductory courses of discrete mathematics is the inclusion–

exclusion principle (also called the sieve formula), which allows one to compute the number

of elements of a union F1 ∪ F2 ∪ · · · ∪ Fn of n sets from the knowledge of the sizes of all

intersections of the Fi.

We will consider a slightly more general setting, where we have a ground set S and

a (finite) measure μ on S; then the inclusion–exclusion principle asserts that, for every

collection F1, F2, . . . , Fn of μ-measurable sets, we have

μ

( n⋃
i=1

Fi

)
=

∑
I:∅�=I⊆[n]

(−1)|I |+1μ

(⋂
i∈I

Fi

)
. (1.1)

(Here, as usual, [n] = {1, 2, . . . , n} and |I | denotes the cardinality of the set I .) This

principle not only plays a fundamental role in various areas of mathematics such as

probability theory and combinatorics, but it also has important algorithmic applications.

For instance, it provides simple methods for the computation of volume or surface area

of molecules in computational biology [21] and underlies, through efficient computation

of Möbius transforms [12, Section 4.3.4], the best known algorithms for several NP-hard

problems including graph k-colouring [3], the travelling salesman problem on bounded-

degree graphs [2], the dominating set problem [22], and partial dominating set and set

splitting problems [19].

The inclusion–exclusion principle involves a number of summands that is exponential

in n, the number of sets. In general this cannot be avoided if one wants an exact formula

valid for every family F = {F1, F2, . . . , Fn}; see Example 2.2 below for a family for which

equation (1.1) is the only solution. However, since this is a serious obstacle to efficient use

of inclusion–exclusion, much effort has been devoted to finding ‘smaller’ formulas. These

efforts are essentially organized along two lines of research.

The first approach gives up on exactness and tries to approximate efficiently the measure

of the union using the measure of only some of the intersections. The first results of this

flavour are the classical Bonferroni inequalities [4].1 It turns out that better approximations

can be obtained by replacing the coefficients (−1)|I |+1 by other suitable numbers, and such

Bonferroni-type inequalities have been studied extensively; see, e.g., [8]. Linial and Nisan

[14] and Kahn, Linial and Samorodnitsky [11] have investigated how well μ(F1 ∪ · · · ∪ Fn)

can be approximated if we know the measure of all intersections
⋂

i∈I Fi for all I ⊆ [n] of

size at most r. Their main finding is that having r at least of order
√
n is both necessary

and sufficient for a reasonable approximation in the worst case. This still leaves us with

about 2
√
n terms in approximate inclusion–exclusion formulas.

1 These assert that if we omit all terms with |I | > r on the right-hand side of (1.1), then we get an upper bound

for the left-hand side for r odd, and a lower bound for the left-hand side for r even. The case r = 1 is the

often-used union bound in probability theory.
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F1

F2

F3

Figure 1. Three subsets of R2 admitting a simpler inclusion–exclusion formula. The ground

set F1 ∪ F2 ∪ F3 splits into six non-empty regions recognizable by the filling pattern.

The second line of research looks for ‘small’ inclusion–exclusion formulas valid for spe-

cific families of sets. To illustrate the type of simplifications afforded by fixing the sets, con-

sider the family F = {F1, F2, F3} of Figure 1. Since F1 ∩ F3 = F1 ∩ F2 ∩ F3, formula (1.1)

can be simplified to

μ(F1 ∪ F2 ∪ F3) = μ(F1) + μ(F2) + μ(F3) − μ(F1 ∩ F2) − μ(F2 ∩ F3).

More generally, let us consider a family F = {F1, F2, . . . , Fn}, and let us say that a

coefficient vector

α = (αI )∅�=I⊆[n] ∈ R
2n−1

is an IE-vector for F if we have

μ

( n⋃
i=1

Fi

)
=

∑
I:∅�=I⊆[n]

αIμ

(⋂
i∈I

Fi

)
(1.2)

for every finite measure μ on the ground set of F (with all the Fi measurable). Given

F , we would like to find an IE-vector for F such that both the number of non-zero

coefficients is small and the coefficients themselves are not too large. This idea, which we

originally learned from [1], seems to originate in the work of Kratky [13] on families of

disks in the plane, and a systematic study of such simplifications was initiated by Naiman

and Wynn [17, 18]. A simplified inclusion–exclusion formula was also successfully used in

an algorithm of Björklund, Husfeldt, Kaski and Koivisto [2]. We refer to the monograph

of Dohmen [6] for an overview of this line of research.

Given a specific family F = {F1, F2, . . . , Fn} of sets, how small can we expect an

inclusion–exclusion formula to be? This is, roughly speaking, the question we tackle

in this paper. To formalize the problem, we should specify how F is given. Let us consider

the Venn diagram of F , which is the partition of the ground set S into equivalence classes

according to the membership in the sets of F . For each non-empty index set τ ⊆ [n], we

define the region of τ, denoted by reg(τ), as the set of all points that belong to the sets Fi

with i ∈ τ and no others (see Figure 1):

reg(τ) =

( ⋂
i∈τ

Fi

)
\

(⋃
i�∈τ

Fi

)
.

The Venn diagram of F is then the collection of all subsets of [n] with non-empty

regions, that is,

V = V(F) := {τ ⊆ [n] : reg(τ) �= ∅}.
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We regard the Venn diagram as a set system on the ground set [n]; it is a ‘dual’ of the set

system F .

We say that F is standardized if the ground set equals the union of the Fi and each

non-empty region has exactly one point. It is easy to see that, as far as inclusion–exclusion

formulas are concerned, all points in a single region are equivalent; it only matters which

of the regions are non-empty. Therefore assuming that F is standardized does not mean a

loss of generality. We will use this assumption in the algorithmic part of our main result,

Theorem 1.1. For general F this requires a preprocessing step for F , in which the part of

the ground set S in each non-empty region is contracted to a single point.

Let F = {F1, F2, . . . , Fn} be a family of sets and let m denote the size of V (which equals

the size of the ground set for F standardized). A linear-algebraic argument shows that

every (finite) family F has an inclusion–exclusion formula with at most m terms (see

Corollary 2.3) and m terms are sometimes necessary (see the beginning of Section 4). The

question of how small a formula F admits may thus seem settled. There is, however,

a caveat: this linear-algebraic argument may yield exponentially large coefficients (see

Example 2.4). If we wanted to use such a formula, we would need to compute with very

high precision, and perhaps more seriously, we would have to know the measures of the

various intersections with enormous precision, in order to obtain a meaningful result.

This may be totally impractical, for example in geometric settings where some physical

measurements are involved, or where the measures of the intersections are computed

with limited precision. Thus, we prefer inclusion–exclusion formulas where not only is the

number of terms small but the coefficients are also small.

Our main result is the following general upper bound. To our knowledge, it is the first

upper bound applicable to an arbitrary family.

Theorem 1.1. Let n and m be integers and let

D = �2e lnm�
⌈
2 + ln

n

lnm

⌉
.

Then, for every family F of n sets with Venn diagram of size m, there is an IE-vector α for

F that has at most

D∑
i=1

(
n

i

)
� mO(ln2 n)

non-zero coefficients, and in which all non-zero coefficients are ±1. Such an α can be

computed in mO(ln2 n) expected time if F is standardized.

The bound in this theorem is quasi-polynomial, but not polynomial, in m and n. We

do not know if a polynomial bound can be achieved with ±1 coefficients. We have at

least the following lower bound, proved in Section 4, showing that inclusion–exclusion

formulas of linear size are impossible in general.

Theorem 1.2. For any ε > 0, for arbitrarily large values of m, there exists a family of sets

with Venn diagram of size m for which any IE-vector has �1-norm at least Ω(m2−ε).
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We recall that the �1-norm of a real vector x ∈ R
d is

‖x‖1 =

d∑
i=1

|xi|.

The �1-norm gives a lower bound on the tradeoff between the number of non-zero

coefficients and their orders of magnitude (we recall that a formula with O(m) non-

zero coefficients is always attainable, the problem being that the coefficients may be too

large).

Remark on �1-norm minimization. A useful heuristic for finding ‘small’ IE-vectors might

be to look for an IE-vector of minimum �1-norm. In the linear-algebraic formulation, this

means finding a solution of Ax = 1 of minimum �1-norm.

It is well known that finding a solution of minimum �1-norm of a linear system can be

done in polynomial time, via linear programming. Several specialized algorithms for this

problem have also been developed, with better performance than direct application of

general-purpose linear programming solvers (see, e.g., [24] for a recent overview). However,

in our setting the number of columns of the matrix A may be exponential in m and n,

and so even the input for an �1-norm minimizing algorithm would be too large.

There are linear programs with exponentially many variables (and polynomially many

constraints) that can still be solved in polynomial time. For example, one may attempt, at

least for theoretical purposes, to solve the dual linear program by the ellipsoid method,

provided that a separation oracle is available.

In our setting, the task of the separation oracle can be formulated as follows in

the setting of the original (standardized) set system F = {F1, . . . , Fn}: given weights

w1, . . . , wm ∈ Z of the points and threshold c, find a subset I ⊆ [n], if one exists, such that

the sum of weights of the points in
⋂

i∈I Fi is at least c. Unfortunately, as was shown

by Hoffmann, Okamoto, Ruiz-Vargas, Scheder and Solymosi [10], this problem is NP-

complete not only for arbitrary set systems, but also, for example, for the case where each

Fi is the complement of a hexagon in the plane. Thus, this approach does not seem to

lead to a polynomial-time algorithm for finding an IE-vector of minimum �1-norm, even

for rather simple geometric settings.

Topological background. In order to prove Theorem 1.1 we need several basic notions

from topological combinatorics. We aim at a self-contained exposition that should make

the proof accessible even to a reader who is not familiar with topological methods (we

use the topological background mostly indirectly). For further reading we refer the reader

to sources such as [9, 15, 16].

2. Preliminaries

We consider a family F = {F1, F2, . . . , Fn} of sets on a ground set S , and assume that the

Fi are all distinct. Besides the Venn diagram V , we associate yet another set system with
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F , namely, the nerve2 N of F:

N = N (F) :=

{
σ ⊆ [n] : σ �= ∅,

⋂
i∈σ

Fi �= ∅
}
.

So both of N and V have ground set [n], and we have V ⊆ N .

Let us enumerate the elements of V as V = {τ1, τ2, . . . , τm} in such a way that |τi| � |τj |
for i < j, and let us enumerate N = {σ1, σ2, . . . , σ|N |} so that the sets of V come first, i.e.,

σi = τi for i = 1, 2, . . . , m.

In the Introduction, we were indexing IE-vectors for F by all possible subsets I ⊆ [n].

But if I is not in the nerve, the corresponding intersection is empty, and thus without loss

of generality we may assume that its coefficient is zero. Thus, from now on, we will index

IE-vectors x as (x1, . . . , x|N |), where xj is the coefficient of μ
(⋂

i∈σj Fi

)
.

IE-vectors from linear algebra. Let A = (ajk) denote the 0–1 matrix with m rows and |N |
columns such that ajk = 1 if τj ⊇ σk and ajk = 0 otherwise. Let 1 denote the m-dimensional

vector with all entries equal to 1.

Lemma 2.1. x ∈ R
|N | is an IE-vector for F if and only if Ax = 1.

Proof. A vector x ∈ R
|N | is an IE-vector for F if and only if for every finite measure μ

on S we have

μ

( n⋃
i=1

Fi

)
=

|N |∑
k=1

xkμ

(⋂
i∈σk

Fi

)
. (2.1)

We first reformulate equation (2.1) using the regions of F . The regions decompose⋃n
i=1 Fi in a way that is compatible with the regions

⋂
i∈σ Fi:

n⋃
i=1

Fi =
⋃
τ∈V

reg(τ) and for all σ ∈ N ,
⋂
i∈σ

Fi =
⋃

τ∈V:τ⊇σ

reg(τ).

Moreover, the regions are pairwise disjoint. Thus, for every finite measure μ on S we have

μ

( n⋃
i=1

Fi

)
=

∑
τ∈V

μ
(
reg(τ)

)
and for all σ ∈ N , μ

(⋂
i∈σ

Fi

)
=

∑
τ∈V:τ⊇σ

μ
(
reg(τ)

)
,

and equation (2.1) is equivalent to

∑
τ∈V

μ
(
reg(τ)

)
=

|N |∑
k=1

xk

( ∑
τ∈V:τ⊇σk

μ
(
reg(τ)

))
.

2 This is the first notion from topological combinatorics that we need. Usually, a nerve also comes with an

associated topological space that captures some of the properties of the underlying family F . In our case, a

purely combinatorial description of the nerve is sufficient. We also emphasize that the condition σ �= ∅ in the

definition of N (F ) is not a standard one but it is convenient for our purposes.
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Using the orderings on V and N and the definition of A, we obtain that x ∈ R
|N | is an

IE-vector for F if and only if for every finite measure μ on S we have

m∑
j=1

μ
(
reg(τj)

)
=

|N |∑
k=1

xk

( m∑
j=1

aj,kμ
(
reg(τj)

))
=

m∑
j=1

( |N |∑
k=1

aj,kxk

)
μ
(
reg(τj)

)
. (2.2)

Now, if Ax = 1 then equation (2.2) trivially holds for all μ and x is an IE-vector for F .

Conversely, assume that x is an IE-vector for F and thus that equation (2.2) holds for all

μ. For 1 � j � m we pick pj ∈ reg(τj) and define the measure μj : 2S → R by μj(T ) = 1 if

pj ∈ T and 0 otherwise. Equation (2.2) then specializes to

1 = μj
(
reg(τj)

)
=

|N |∑
k=1

xkaj,kμj
(
reg(τj)

)
=

|N |∑
k=1

aj,kxk.

This implies that (Ax)j = 1. The statement follows.

Remark 1. In our definition a vector x is an IE-vector for F if and only if equation (1.2)

is valid for every finite measure. As it follows from the proof of Lemma 2.1 this definition

is equivalent to extending this requirement to every (finitely additive) signed measure. (A

signed measure satisfies the classical axioms of a measure with the exception that it may

take negative values.)

Example 2.2. Let S = 2[n] \ {[n]} and Fi = 2[n]\{i} for i ∈ [n]. It is easy to see that here

N = V and A is a lower-triangular square matrix with ones on the diagonal. Hence A

is invertible and, by Lemma 2.1, F has a unique IE-vector, namely, the one from the

standard inclusion–exclusion formula.

Corollary 2.3. For every finite family F , there is a unique IE-vector α supported on V (that

is, such that αI = 0 for I �∈ V), and this α has all entries integral.

Proof. Let B be the m × m submatrix of A consisting of the first m columns of A. The

IE-vectors for F supported on V are in one-to-one correspondence with the solutions of

By = 1. Since B is lower-triangular and has ones on the main diagonal, it is non-singular,

and hence By = 1 has exactly one solution. Moreover, since B is a lower-triangular 0–1

matrix, this solution is integral.

Remark 2. The matrix B from the proof above can be regarded as the zeta-matrix of V
ordered by inclusion. The vector α from Corollary 2.3 can therefore be obtained via the

Möbius inversion formula: see [23, Chapter 3].

This description also yields a recursive formula for α which we use in Section 4. The

condition (By)j = 1 becomes
∑

ατ = 1 where the sum is taken over all τ ∈ V with τ ⊆ τj .

That is, ατj = 1 −
∑

ατ where the sum is taken over all τ ∈ V properly contained in τj .

Unfortunately, the IE-vector with small support given by Corollary 2.3 might have

exponentially large coefficients, as the following example shows.
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Example 2.4. Let S = [5�] for some positive integer �, and for i � �, let g(i) stand for

the smallest integer j � i divisible by 5, that is, g(i) = 5�i/5�. We consider the set system

F = {F1, F2, . . . , F5�} on S given by Fi = {i} ∪ {g(i) + 1, . . . , 5�}. Now j ∈ Fi if and only

if i = j or j > g(i). In particular, no two elements of S belong to the same region and

the number of regions of F is m = |S | = 5�, which is also equal to the number n of

sets in F: n = m = 5�. The lower-triangular matrix B from the proof of Corollary 2.3

has a simple structure in terms of 5 × 5 blocks: the blocks on the diagonal are identity

blocks, and the blocks below the diagonal are filled with ones. Let x̂ denote the solution

of Bx = 1. The first five rows yield x̂1 = x̂2 = · · · = x̂5 = 1. The next five rows imply that

for j = 6, 7, . . . , 10 we have

x̂1 + x̂2 + · · · + x̂5 + x̂j = 1,

and so x̂6 = x̂7 = · · · = x̂10 = −4. A simple induction yields x̂i = (−4)(g(i)/5)−1. Altogether,

the largest coefficient is of order 4n/5. (Replacing the constant 5 by another constant y

yields a similar exponential growth with basis (y − 1)1/y; the choice y = 5 maximizes the

basis of the exponent.)

Abstract tubes. Naiman and Wynn [17, 18] started their study of simplified inclusion–

exclusion formulas with families F = {F1, F2, . . . , Fn} that were tube-like in the sense

that Fi ∩ Fj ⊆ Fk for all i � k � j (as in our Figure 1). They then realized that the

simplifications found for these ‘simple tubes’ hold in a broader setting, leading them to

introduce the more general notion of an abstract tube. This notion will also play an

important role in our considerations.

Definition 1. An (abstract) simplicial complex with vertex set [n] is a hereditary system

of non-empty subsets of [n].3 An abstract tube is a pair (F ,K), where F = {F1, F2, . . . , Fn}
is a family of sets and K is a simplicial complex with vertex set [n], such that for every

non-empty region τ of the Venn diagram of F , the subcomplex induced on K by τ,

K[τ] := {ϑ ∈ K : ϑ ⊆ τ}, is contractible.4

As first noted by Naiman and Wynn [17, 18], if (F ,K) is an abstract tube, then

μ

( n⋃
i=1

Fi

)
=

∑
I∈K

(−1)|I |+1μ

(⋂
i∈I

Fi

)
. (2.3)

Moreover, truncating the sum yields upper and lower bounds in the spirit of the Bonferroni

inequalities ([18]; also see [6, Theorem 3.1.9]).

3 As in the definition of the nerve, we exclude the empty set from the definition of a simplicial complex. This

is again non-standard but convenient.
4 By contractible we mean contractibility in the sense of topology; there is a topological space defined by K[τ]

and, roughly speaking, ‘contractible’ means that this space can be continuously shrunk to a point. Readers

not at ease with this notion may want to look at Remark 3.
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Remark 3. An earlier, more permissive definition of abstract tubes by [17] had the weaker

condition ‘χ(K[τ]) = 1’ instead of ‘K[τ] contractible’, where χ is the Euler characteristic.5

We recall that for a simplicial complex L in our sense, the Euler characteristic is defined

as χ(L) :=
∑

σ∈L(−1)|σ|+1. In this setting, if (F ,K) satisfies χ(K[τ]) = 1 for every τ, then

(2.3) can be proved in a few lines, using Lemma 2.1. Indeed, consider a simplicial complex

K with vertex set [n] and let x ∈ R
|N | stand for the vector with xk = (−1)|σk |+1 if σk ∈ K

and xk = 0 otherwise. Since

(Ax)j =
∑

k:σk⊆τj

xk =
∑

σk:σk∈K[τj ]

(−1)|σk |+1,

we have (Ax)j = χ(K[τj]). Thus, if all the K[τj] have Euler characteristic 1, then x is an

IE-vector, and (2.3) follows.

The stronger definition of abstract tubes involving contractibility, as opposed to the

Euler characteristic, was needed in order to guarantee that truncations of equation (2.3)

also yield Bonferroni-type inequalities [6, Theorem 3.1.9].

Small abstract tubes have been identified for families of balls [17, 18, 1] or half-spaces

[18] in R
d, and similar structures were found for families of pseudodisks [7]. We establish

Theorem 1.1 by proving that for every family of sets there exists an abstract tube with

‘small’ size that, in addition, can be computed efficiently. We will use the following

sufficient condition guaranteeing that (F ,K) is an abstract tube; it is a reformulation of

[6, Theorem 4.2.5] (for the reader’s convenience we include a simple proof). Let MNF(K)

denote the system of all inclusion-minimal non-faces of K, that is, of all non-empty sets

I ⊆ [n] with I �∈ K but with I ′ ∈ K for every proper subset I ′ ⊂ I .

Proposition 2.5. Let F = {F1, F2, . . . , Fn} be a family of sets with Venn diagram V and let

K be a non-empty simplicial complex with vertex set [n]. If no set of V can be expressed as

a union of sets in MNF(K), then (F ,K) is an abstract tube.

Proof. Let τ ∈ V and let a ∈ τ such that a belongs to no element of MNF(K) contained

in τ. Our task is to show that for every simplex ϑ ∈ K[τ] or ϑ = ∅, we have ϑ ∪ {a} ∈ K[τ].

A simplicial complex K[τ] satisfying the stated condition is known as a cone with apex a.

Since every cone is contractible, it remains to show the condition.

If ϑ ∪ {a} /∈ K[τ], then ϑ ∪ {a} contains some β ∈ MNF(K); since ϑ ∈ K[τ], the face β

contains a, a contradiction.

3. The upper bound: proof of Theorem 1.1

Abstract tubes from selectors. Let F = {F1, F2, . . . , Fn} be a family of sets, and let V be

the Venn diagram of F . A selector for V is a map w : V → [n] such that w(τ) ∈ τ for

5 The fact that all contractible complexes have the same Euler characteristic follows from [9, Theorem 2.44].

The fact that it equals 1 can be verified on a point.
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every τ ∈ V . For any selector w for V we define the simplicial complex

Kw = {σ ∈ N (F) : for all non-empty ϑ ⊆ σ there exists τ ∈ V such that w(τ) ∈ ϑ ⊆ τ}.

We observe that (F ,Kw) is an abstract tube since the complex Kw satisfies the sufficient

condition of Proposition 2.5.

Lemma 3.1. For any selector w for V , (F ,Kw) is an abstract tube.

Proof. This is simple once the idea behind the definition of Kw is explained. Namely, in

the condition of Proposition 2.5 we want to prevent each set τ ∈ V from being a union

of minimal non-faces of the simplicial complex K. Our way of achieving that is to insist

that every minimal non-face I contained in τ avoids the point w(τ); thus, we consider the

set system of ‘admissible minimal non-faces’

Bw := {I ⊆ [n], I �= ∅ : if I ⊆ τ ∈ V , then w(τ) /∈ I}.

Then the above definition of Kw can be interpreted as follows: a simplex σ ∈ N belongs

to Kw if it contains no I ∈ Bw .6 (Simplices outside N can be ignored, since their supersets

cannot be contained in a set τ ∈ V .) Therefore, all minimal non-faces of Kw belong to Bw

or lie outside N , and hence (F ,Kw) is an abstract tube by Proposition 2.5.

Let us remark that there is no loss of generality in passing from the abstract tubes

as in Proposition 2.5 to those of the form Kw . Indeed, if K satisfies the condition of

Proposition 2.5, then every τ ∈ V contains at least one point that is not contained in any

minimal non-face I of K with I ⊆ τ, and such a point can be chosen as w(τ); then we

can easily check that Kw ⊆ K. (It is sufficient to check that if I is a minimal non-face of

K, then it is also a non-face of Kw . For this we point out that such a minimal non-face I

of K belongs to the set Bw defined above. Therefore it is a non-face of Kw , possibly not a

minimal one.)

No large simplices in random Kw . Let ρ be a permutation of [n]. We define a selector wρ

for V by taking w(τ) as the smallest element of τ in the linear ordering ≺ on [n] given by

ρ(1) ≺ ρ(2) ≺ · · · ≺ ρ(n).

For better readability we write Kρ instead of Kwρ
. We want to show that for random ρ,

Kρ is unlikely to contain too large simplices, and thus leads to a small inclusion–exclusion

formula.

Let Γ denote the incidence matrix of V , that is, the 0–1 matrix with m rows and n

columns where Γij = 1 if and only if j ∈ τi (if the original system F was standardized,

then Γ is the transposition of the usual incidence matrix of F). We also denote by Γρ the

matrix obtained by applying the permutation ρ to the columns of Γ: the ρ(i)th column of

6 Note that for the formal verification, the condition σ contains no I ∈ Bw can be written, in symbols, as

follows: ∀I ⊆ [n], I �= ∅ : ((∀τ ∈ V : I ⊆ τ ⇒ w(τ) /∈ I) ⇒ I �⊆ σ). This is equivalent to ∀I ⊆ [n], I �= ∅ : I ⊆
σ ⇒ (∃τ ∈ V : I ⊆ τ ∧ w(τ) ∈ I) which is just a transcription of σ ∈ Kw .
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i1 i2 i3 i4 i5

...

j3 0 · · · 0 0 0 1 ∗ · · · ∗ 1 ∗ · · · ∗ 1 ∗ · · · ∗
...
j1 0 · · · 0 1 1 1 ∗ · · · ∗ 1 ∗ · · · ∗ 1 ∗ · · · ∗
j2 0 · · · 0 0 1 1 ∗ · · · ∗ 1 ∗ · · · ∗ 1 ∗ · · · ∗
j4 0 · · · 0 0 0 0 0 · · · 0 1 ∗ · · · ∗ 1 ∗ · · · ∗
j5 0 · · · 0 0 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
...

Figure 2. Illustration of Lemma 3.2: If ρ(τ) = {i1, i2, . . . , i5} for a simplex τ of Kρ, then Γρ must contain a row

js compatible with {is, is+1, . . . , i5} for s = 1, 2, . . . , 5. The j3 row is emphasized, constrained values appearing in

grey; rows js for other values of s are represented consecutively for clarity, but they can appear in any order

and non-consecutively.

Γρ is the ith column of Γ and represents the incidences between permuted [n] and V . We

now argue that if Kρ contains a large simplex, then Γρ contains a particular substructure.

We say that a row R of Γρ is compatible with a subset I ⊆ [n] if R contains

ones in all columns with index in I and zeros in all columns with index smaller

than min(I).

Lemma 3.2. If ρ(τ) = {i1, i2, . . . , ik} for a simplex τ in Kρ, with i1 < i2 < · · · < ik , then for

every s ∈ {1, 2, . . . , k} the matrix Γρ contains a row compatible with {is, is+1, . . . , ik}.

Proof. Let s ∈ {1, 2, . . . , k}, let Is = {is, is+1, . . . , ik}, and let ϑs = ρ−1(Is). We refer to

Figure 2. Since ϑs is a simplex of Kρ, there exists τjs ∈ V such that wρ(τjs) ∈ ϑs ⊆ τjs
by definition of Kρ. Since ϑs ⊆ τjs , we have Is = ρ(ϑs) ⊆ ρ(τjs), and hence the jsth row

of Γρ has ones in all columns with index in Is. Since wρ(τjs ) ∈ ϑs, the set ρ(τjs) contains

no i with i < is and the jsth row of Γρ has zeros in all columns with index smaller than

is = min(Is). It follows that the jsth row of Γρ is compatible with Is.

We will need the following inequality.

Lemma 3.3. Let x1, . . . , xr be positive real numbers with x1 + · · · + xr � n. Then

x1

x1 + · · · + xr
· x2

x2 + · · · + xr
· · · xr−1

xr−1 + xr
�

(
1 − r−1

√
xr

n

)r−1

.
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Proof. Let us set y� := x� + x�+1 + · · · + xr . Then we have

x1

x1 + · · · + xr
· x2

x2 + · · · + xr
· · · xr−1

xr−1 + xr

=
y1 − y2

y1
· y2 − y3

y2
· · · yr−1 − yr

yr−1

=

(
1 − y2

y1

)
·
(

1 − y3

y2

)
· · ·

(
1 − yr

yr−1

)

�
(

1 − y2/y1 + 1 − y3/y2 + · · · + 1 − yr/yr−1

r − 1

)r−1

=

(
1 − y2/y1 + y3/y2 + · · · + yr/yr−1

r − 1

)r−1

�
(

1 − r−1

√
yr

y1

)r−1

�
(

1 − r−1

√
xr

n

)r−1

.

Now we aim at showing that for a random ρ, the condition in Lemma 3.2 is unlikely

to be satisfied for large k. That condition prescribes the existence of k rows in Γρ with

a certain pattern. In order to get a good bound for k, we will not actually look for all

of these k rows, but rather we will consider only each bth of them, for a suitable integer

parameter b, and ignore the rest.

Namely, we fix two parameters r and b with 1 < b < n and set k = rb (we think

of r ≈ ln n and b ≈ lnm). For an r-element index set J ⊆ [m], let Γρ[J] denote the

submatrix obtained from Γρ by considering only the rows with indices in J . We say

that a permutation ρ is bad for J if there exists a k-element set of column indices

I = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik such that for every s ∈ {1, b + 1, . . . , (r − 1)b + 1},
the matrix Γρ[J] contains a row compatible with {is, is+1, . . . , ik}. Finally, we define pJ as

the probability that a random permutation ρ is bad for J .

Lemma 3.4. We have pJ � (1 − (b/n)1/(r−1))b(r−1).

Proof. Let ρ be a bad permutation for J , and let I = {is, is+1, . . . , ik} be the corresponding

set of column indices.

Let � ∈ {0, 1, . . . , r − 1}. By the compatibility conditions we have that for i < i�·b+1 the

ith column of Γρ[J] contains at most � entries 1: see Figure 3. Moreover, for

i ∈ {i�·b+1, i�·b+2, . . . , i(�+1)·b},

the ith column of Γρ[J] contains exactly � + 1 entries 1.

We now partition [n] into [n] = Q0 ∪ Q1 ∪ · · · ∪ Qr , where Q� consists of the indices of

those columns of Γρ[J] that contain exactly � entries 1 (and r − � entries 0). In particular,

from the discussion above, |Q�| � b for � ∈ [r]. For � ∈ [r] and p ∈ [b], let g(p)
� denote the
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i1 i2 · · · ib ib+1 · · · i2b i2b+1 · · · · · · i(r−1)b+1 · · · irb+1

0 · · · 0 1 ∗ 1 · · · 1 ∗ 1 · · · 1 ∗ 1 · · · · · · 1 · · · 1 ∗
0 · · · 0 1 · · · 1 ∗ 1 · · · · · · 1 · · · 1 ∗
0 · · · 0 1 · · · · · · 1 · · · 1 ∗

.

.

.

0 · · · 0 1 · · · 1 ∗

Figure 3. Compatibility conditions in Lemma 3.4. Only the rows of J

are shown and similarly as before, and their order can be arbitrary.

pth smallest element of ρ(Q�). A necessary condition on ρ is

g
(b)
1 < g

(1)
2 < g

(b)
2 < g

(1)
3 < · · · < g

(b)
r−1 < g(1)

r .

Now, let us assume that ρ is a random permutation (uniformly chosen). For � ∈ [r],

let E� denote the event E� := {g(b)
� < min(g(1)

�+1, g
(1)
�+2, . . . , g

(1)
r )}, and we bound pJ by the

conditional probability

pJ � P(E1) · P(E2|E1) · P(E3|E1 ∩ E2) · · · P(Er−1|E1 ∩ · · · ∩ Er−2). (3.1)

For � ∈ [r − 1], P(E�|E1 ∩ · · · ∩ E�−1) is the probability that the b smallest elements of

ρ(Q�) ∪ ρ(Q�+1) ∪ · · · ∪ ρ(Qr) belong to ρ(Q�). This probability is equal to(
|Q�|
b

)/(
|Q�| + |Q�+1| + · · · + |Qr|

b

)
�

(
|Q�|

|Q�| + |Q�+1| + · · · + |Qr|

)b

.

So, letting x� = |Q�|, inequality (3.1) implies

pJ �
(

x1

x1 + x2 + · · · + xr
· x2

x2 + x3 + · · · + xr
· . . . · xr−1

xr−1 + xr

)b

�
(

1 − r−1

√
|Qr|
n

)b(r−1)

,

the last inequality being Lemma 3.3. Then the lemma follows using |Qr| � b.

Proof of Theorem 1.1. Let n and m � 2 be integers.7 Let F = {F1, F2, . . . , Fn} be a

family of n sets whose Venn diagram V has size m. Let p(k) denote the probability that

Kρ contains at least one simplex of size k, where ρ is chosen uniformly at random among

all permutations of [n]. From Lemmas 3.2 and 3.4, for every r > 2 and b � 2 we have

p(rb) �
(
m

r

)(
1 − r−1

√
b/n

)b(r−1) � mreb(r−1) ln(1− r−1
√

b/n) � mre−b(r−1) r−1
√

b/n.

Assuming that b � 2e lnm, we get p(rb) � mr−2e(r−1) r−1
√

b/n, and choosing r � 1 + ln(n/b),

we obtain

r−1
√

b/n = exp

(
− 1

r − 1
ln

n

b

)
� e−1 and p(rb) � m2−r � 1

2
.

7 Note that the case m = 1 is somewhat trivial since every maximal face of N belongs to V , and thus there is

an IE-vector with a single non-zero coefficient, namely 1, in this case.
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Thus, with

D = �2e lnm�
⌈
2 + ln

n

lnm

⌉

as in the theorem, we have p(D) � 1/2 (note that setting r = �2 + ln(n/lnm)� implies r > 2

as required since m � 2n). So there exists a permutation ρ∗ of [n] such that Kρ∗ contains

no simplex of size D (or larger). By Lemma 3.1, (F ,Kρ∗ ) is an abstract tube and Kρ∗ has

at most
∑D

i=1

(
n
i

)
simplices. The IE-vector obtained from the abstract tube (F ,Kρ∗ ) as in

equation (2.3) is as claimed in the theorem.

In order to actually compute a suitable coefficient vector, we choose a random

permutation ρ and compute Kρ by the following incremental algorithm. We use two

auxiliary set systems A and B, initialized to A = B = {∅} (the idea is that B contains all

the simplices of Kρ found so far, and A ⊆ B contains those for which we still need to

test one-element extensions). In each step, we take some σ ∈ A, remove it from A, and

for each i �∈ σ, we test whether σ ∪ {i} belongs to Kρ (for this, we just check if there is

τ ∈ V such that wρ(τ) ∈ σ ∪ {i} ⊆ τ; note that we have a direct access to V in O(m) time

since F is standardized). Those σ ∪ {i} that pass this test are added to both A and B.

The algorithm finishes either when A = ∅ (in this case we set Kρ = B \ {∅} and return

the corresponding IE-vector), or when we first discover a simplex σ ∈ Kρ of size larger

than D. In the latter case, we discard the current permutation ρ, choose a new one, and

repeat the algorithm.

The choice of a random permutation ρ takes O(n ln n) time and n random bits. Accepting

or rejecting a new simplex by brute-force testing takes O(mn) time. The expected number

of times we have to start over with a new permutation ρ is O(1). Altogether, the expected

running time of this algorithm is

O

((
n

D

)
mn

)
= mO(ln2 n).

4. The lower bound: proof of Theorem 1.2

For every m between n and 2n there exists a system of n sets with Venn diagram of size m

whose only IE-vector has m non-zero entries. Indeed, let K = {ϑ1, ϑ2, . . . , ϑm} be a simplicial

complex over [n] such that [n] =
⋃
K and |K| = m. We define Fi = {t ∈ [m] : i ∈ ϑt} for

1 � i � n and put F = {F1, F2, . . . , Fn}. It can easily be checked that V(F) = N (F) = K

and so, as observed in Example 2.2, the matrix A is square, lower-triangular, and has ones

on the diagonal; thus, there is a unique IE-vector for F and it has m non-zero entries. In

this section we improve on this lower bound.

We recall that by Corollary 2.3, every set system F has a unique IE-vector with support

in the Venn diagram V(F). We first argue that for some set systems constructed from

lattices, this IE-vector is the one with minimal �1-norm. We then provide an explicit

construction, based on projective spaces over finite fields, where the �1-norm is near-

quadratic in m.
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Set systems from lattices. We need to work with (finite) lattices as order-theoretic notions.

A finite partially ordered set L is a lattice if, for every subset S of L, there is the least

upper bound for S called the join of S and the greatest lower bound called the meet of

S . A finite lattice always contains the least element 0. An atom is an element a ∈ L such

that 0 is the only element less than a. A lattice is atomistic if each element is a join of

some subset of atoms.

Given a finite atomistic lattice L we construct the following set system F = F(L). Up to

a relabelling, we can assume that the set of atoms of L is At = {1, 2, . . . , n}. For every atom

a ∈ At we define Fa := {x ∈ L : x � a}, and for every x ∈ L we set Atx := {a ∈ At : a � x}.
For F = {Fa : a ∈ At} we have V(F) = {Atx : x ∈ L \ {0}}. In particular, V(F) equipped

with the inclusion relation is isomorphic to L \ {0}. Also note that x is the join of Atx
since L is atomistic.

Lemma 4.1. Let L be a finite atomistic lattice and let F = F(L) be the set system described

above. Then, among all IE-vectors for F , the one with support in V(F) has minimal �1-norm.

Proof. Let A be the matrix with rows indexed by V and columns indexed by N = N (F),

as defined before Lemma 2.1, and let B be the m × m submatrix consisting of the first m

columns of A.

We want to show that every column of A is equal to a column of B. By the definition

of A, this means that for every σ ∈ N we need to find some ν ∈ V such that

{τ ∈ V : σ ⊆ τ} = {τ ∈ V : ν ⊆ τ}.

We set s to be the join of σ. (Note that σ is a subset of [n] = At and, therefore, of L.)

We aim to show that Ats is the required ν. This way, we have obtained a ν ∈ V such that

the join of ν equals the join of σ since s is also the join of the atoms contained in Ats. A

set τ ∈ V can also be described as Atx for some x ∈ L \ {0} due to our description of V .

Then the condition σ ⊆ τ translates to x � a for every a ∈ σ. This is equivalent to x � s

since s is the join of σ. Similarly, ν ⊆ τ translates to x � a for every a ∈ ν, which is again

equivalent to x � s. Therefore, σ ⊆ τ if and only if ν ⊆ τ, as required.

Hence every column of A occurs in B as asserted. It follows that every solution of

Ax = 1 can be transformed to a solution of By = 1 with the same or smaller �1-norm (if

k is the index of a column outside B with xk �= 0, and that kth column equals the jth

column of B, then we can zero out xk while replacing xj with xj + xk). Since By = 1 has

a unique solution, it has to be a solution of minimum �1-norm as claimed.

Construction based on projective spaces. Let q be a power of a prime number. Let P be

a projective space of dimension d over the finite field Fq . That is, the points of P are all

one-dimensional subspaces of the vector space Fd+1
q , and k-dimensional subspaces of P

correspond to (k + 1)-dimensional linear subspaces of Fd+1
q . We let L be the lattice of all

subspaces of P (including the zero one, of projective dimension −1, as zero), where the

join of subspaces of P corresponds to the (projective) span and the meet corresponds to

the intersection. It is easy to check (and well known) that L is an atomistic lattice.
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We obtain our lower bound from the family F = F(L) and so, according to Lemma 4.1,

we need only compute the size of V(F) and the �1-norm for the IE-vector with support

in V to provide a lower bound. In order to do so, we need to work with q-binomial

coefficients.

Definition 2 (q-binomial coefficients).

(i) Given a positive integer k, we define [k]q := 1 + q + q2 + · · · + qk−1.

(ii) Given non-negative integers n and k with n � k, we define(
n

k

)
q

:=
[n]q[n − 1]q[n − 2]q · · · [n − k + 1]q

[1]q[2]q[3]q · · · [k]q
.

We remark that it is well known that
(
n
k

)
q

is actually a polynomial in q since the division

is exact. From the definition above we deduce that the leading term of
(
n
k

)
q

is qk(n−k). We

also need the following facts regarding q-binomial coefficients to finish the calculations.

See, for example, [5] and [20].

Lemma 4.2.

(i) The number of k-dimensional subspaces of a d-dimensional projective space over Fq

is
(
d+1
k+1

)
q
.

(ii) (The Cauchy binomial theorem)

k∑
i=0

q(i(i−1))/2

(
k

i

)
q

ti =

k−1∏
i=0

(1 + tqi).

Now we can finally estimate the size of |V(F)| and the �1-norm of the resulting

IE-formula.

Lemma 4.3.

(i) The number of non-empty subspaces of P , that is, the size of V(F) is Θ
(
q�(d+1)2/4�).

(ii) In the (unique) IE formula for F , the coefficients of the subspaces of dimension k are

all equal to (−1)kq(k(k+1))/2.

(iii) The �1-norm of the resulting IE-formula is Θ
(
q(d(d+1))/2

)
.

Proof. Concerning statement (i), Lemma 4.2(i) implies that

|V(F)| = |L \ {0}| =

d∑
k=0

(
d + 1

k + 1

)
q

,

which is a polynomial in q. Since we know that the leading term of
(
d+1
k+1

)
q

is

q(k+1)((d+1)−(k+1)),
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we deduce that the middle q-binomial coefficient(s) has/have the leading term of the

highest power. That is, the leading term of the polynomial above equals q�(d+1)2/4� or

2q�(d+1)2/4� (depending on the parity of d), as required.

We prove statement (ii) by induction. The statement clearly holds for k = 0. Suppose

that it is valid for all i < k. Using Lemma 4.2(i) again, we see that every subspace of

dimension k has
(
k+1
i+1

)
q

subspaces of dimension i. Therefore, using the recursive formula

from Remark 2, the coefficient of this subspace has to be

1 −
k−1∑
i=0

(−1)iq(i(i+1))/2

(
k + 1

i + 1

)
q

=

k∑
j=0

(−1)jq(j(j−1))/2

(
k + 1

j

)
q

.

However, using the Cauchy binomial theorem for the second equality below, this sum

equals

k∑
j=0

(−1)jq(j(j−1))/2

(
k + 1

j

)
q

= (−1)kq(k(k+1))/2 +

k+1∑
j=0

(−1)jq(j(j−1))/2

(
k + 1

j

)
q

= (−1)kq(k(k+1))/2 +

k∏
j=0

(1 − qj)

= (−1)kq(k(k+1))/2 + 0,

which concludes the induction.

It remains to prove statement (iii). Using statement (ii), we deduce that the �1-norm of

the resulting formula equals

d∑
k=0

q(k(k+1))/2

(
d + 1

k + 1

)
q

.

The leading term of this polynomial (in q) is 2q(d(d+1))/2. Indeed, the leading term of

q(k(k+1))/2

(
d + 1

k + 1

)
q

equals

q(k(k+1))/2+(k+1)(d−k),

and is greatest for k = d and k = d − 1.

Proof of Theorem 1.2. Fix ε > 0 and let d > 2/ε be some integer, chosen to be odd

for simplicity. Recall that the above analysis holds for any q that is a prime power, so q

can be chosen arbitrarily large. The set system F(L) consists of n = [d + 1]q = Θ(qd) sets.

The Venn diagram V(F(L)) has size m = Θ
(
q((d+1)2)/4

)
and the �1-norm of the formula

supported by the Venn diagram is

Θ
(
q(d(d+1))/2

)
= Θ

(
m4/((d+1)2)·(d(d+1))/2

)
= Θ

(
m2−2/(d+1)

)
� Ω

(
m2−ε

)
.

Lemma 4.1 ensures that this formula minimizes the �1-norm.
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5. Open problems

For several NP-hard problems, the best exponential-time algorithms rely on the inclusion–

exclusion principle [3, 22, 19]. Whether these algorithms can be improved using The-

orem 1.1 is an open problem that is perhaps best illustrated on an example.

Consider for instance the question of counting the number of k-covers: given a family

X = {X1, X2, . . . , Xp} of subsets of [n], we want to determine how many k-element subsets

of X have their union equal to [n]. Björklund, Husfeldt and Koivisto [3, Section 3.1]

proposed the following approach. For i ∈ [n], let Fi denote the set of k-element subsets of

X whose union does not contain i:

Fi = {(Y1, Y2, . . . , Yk) ∈ X : i /∈ Y1 ∪ Y2 ∪ · · · ∪ Yk}.

For a subset σ ⊆ [n] let av(σ) = {X ∈ X : X ∩ σ = ∅}. The number ck of k-covers of X
can be written, using the inclusion–exclusion principle, as

ck = |X |k −
∣∣∣∣

n⋃
i=1

Fi

∣∣∣∣ = |X |k −
∑

∅�σ⊆[n]

(−1)|σ|+1

∣∣∣∣
⋂
i∈σ

Fi

∣∣∣∣ = |X |k −
∑

∅�σ⊆[n]

(−1)|σ|+1| av(σ)|k.

(5.1)

Let f denote the indicator function of X and let f̃ be its Möbius transform: for I ⊆ [n],

f̃(I) =
∑
S⊆I

f(S)

(f̃ is sometimes also called the Zeta transform). Since

| av(σ)| =
∑

S⊆[n]\σ

f(S) = f̃([n] \ σ),

ck can be deduced from the Möbius transform of f by summing its kth powers.

If K is a simplicial complex with n vertices and |K| simplices, then the values of f̃(σ)

for all σ ∈ K can be computed in O(n|K|) time by Yates’ algorithm [12, Section 4.3.4].

The above method for counting k-covers therefore runs in time O(n2n). Simplifying the

inclusion–exclusion formula (5.1) while keeping its support hereditary, as Theorem 1.1

does, improves the running time to O(ns), where s is the size of the formula (s = mO(log2 n)

in Theorem 1.1). When the Venn diagram of the Fi has size m = 2o(n), this complexity

becomes sub-exponential in n. However, the catch is that, in the above example and many

other problems [3, 22, 19], the family F = {F1, F2, . . . , Fn} is not standardized, which is a

crucial assumption for the computational statement in Theorem 1.1. Whether a simplified

formula can be computed efficiently in this context is an open problem.

References

[1] Attali, D. and Edelsbrunner, H. (2007) Inclusion–exclusion formulas from independent

complexes. Discrete Comput. Geom. 37 59–77.

[2] Björklund, A., Husfeldt, T., Kaski, P. and Koivisto, M. (2008) The travelling salesman problem

in bounded degree graphs. In Automata, Languages and Programming I, Vol. 5125 of Lecture

Notes in Computer Science, Springer, pp. 198–209.

https://doi.org/10.1017/S096354831400042X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831400042X


456 X. Goaoc, J. Matoušek, P. Paták, Z. Safernová and M. Tancer

[3] Björklund, A., Husfeldt, T. and Koivisto, M. (2009) Set partitioning via inclusion–exclusion.

SIAM J. Comput. 39 546–563.

[4] Bonferroni, C. E. (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubbl. d. R. Ist.
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[15] Matoušek, J. (2003) Using the Borsuk–Ulam Theorem, Universitext, Springer.

[16] Munkres, J. R. (1984) Elements of Algebraic Topology, Addison-Wesley.

[17] Naiman, D. Q. and Wynn, H. P. (1992) Inclusion–exclusion–Bonferroni identities and

inequalities for discrete tube-like problems via Euler characteristics. Ann. Statist. 20 43–76.

[18] Naiman, D. Q. and Wynn, H. P. (1997) Abstract tubes, improved inclusion–exclusion identities

and inequalities and importance sampling. Ann. Statist. 25 1954–1983.

[19] Nederlof, J. and van Rooij, J. M. M. (2010) Inclusion/exclusion branching for partial

dominating set and set splitting. In Parameterized and Exact Computation, Vol. 6478 of Lecture

Notes in Computer Science, Springer, pp. 204–215.
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