
Radiation reduction of optical solitons resulting
from higher order dispersion terms in the
nonlinear Schrödinger equation

ROBERT BEECH and FREDERICK OSMAN
School of Quantitative Methods & Mathematical Sciences, University of Western Sydney, Penrith South DC, Australia

~Received 2 February 2005; Accepted 30 March 2005!

Abstract

This paper will present the nonlinearity and dispersion effects involved in propagation of optical solitons, which can be
understood by using a numerical routine to solve the nonlinear Schrödinger equation ~NLSE!. Here, Mathematica v5�
~Wolfram, 2003! is used to explore in depth several features of optical solitons formation and propagation. These
numerical routines were implemented through the use of Mathematica v5� and the results give a very clear idea of this
interesting and important practical phenomenon. It is hoped that this work will open up an important new approach to
the cause, effect, and correction of interference from secondary radiation found in the uses of soliton waves in lasers and
in optical fiber telecommunication. It is believed that these results will be of considerable use in any work or research in
this field and in self-focusing properties of the soliton ~Osman et al., 2004a, 2004b; Hora, 1991!. In a previous paper on
this topic ~Beech & Osman, 2004!, it was shown that solitons of NLSE radiate. This paper goes on from there to show
that these radiations only occur in solitons derived from cubic, or odd-numbered higher orders of NLSE, and that there
are no such radiations from solitons of quadratic, or even-numbered higher order of NLSE. It is anticipated that this will
stimulate research into practical means to control or eliminate such radiations.
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1. INTRODUCTION

The field of nonlinear optics has developed in recent years
as nonlinear materials have become available, and wide-
spread applications have become apparent. This is particu-
larly true for optical solitons and other types of nonlinear
pulse transmission in optical fibers and laser plasma inter-
action ~Osman et al., 2000, 2004a, 2004b; Hora, 2004!.
This form of light propagation can be utilized in the future
for very high capacity dispersion-free communications. The
purpose of this paper is to describe the use of a very
powerful tool to solve the generalized nonlinear Schrödinger
equation ~NLSE! that has stable solutions called optical
solitons ~Drazin & Johnson, 1990!. The solitary wave ~or
soliton! is a wave that consists of a single symmetrical hump
that propagates at uniform velocity without changing its

form. The physical origin of solitons is the Kerr effect,
which relies on a nonlinear dielectric constant that can
balance the group dispersion in the optical propagation
medium. The resulting effect of this balance is the propaga-
tion of solitons, which has the form of a hyperbolic secant
~Zakharov & Shabat, 1972!.

2. NONLINEAR SCHRÖDINGER EQUATION

The nonlinear Schrödinger equation ~NLSE! used in this
paper is generalized as:
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where n is the order of dissipation of the Schrödinger
equation being used, and dn is an arbitrary constant.

Akhmediev and Ankiewicz ~1997! covered the third and
fourth orders adequately and Karpman ~1998! and Karpman
and Shagalow ~1999! dealt with the solution of the fifth
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order. The purpose of this paper is to build upon these
excellent results, explaining the three-dimensional ~3D! form
of these solitons and extending this to cover orders six and
seven and beyond. We will be using a simplified version of
the Zakharov and Shabat ~1972! solution to this equation as
our basis for solving it numerically using Mathematica�.

The above research has indicated the presence of radia-
tions emanating from soliton waves. This phenomenon is
the subject of this research, particularly into determining
which solitons, or solitons from which parenting NLSE, are
emanating radiations, and ultimately how this radiation may
be controlled or eliminated completely.

Practical research into soliton emissions has indicated
that these emissions are largely restricted to solitons derived
from the cubic NLSE, namely a higher order equation with
an odd numbered power.

3. INITIAL CONDITIONS AND
PROGRAMMING FOR HIGHER ORDERS

In this problem, an analogous role is played by the particular
solutions of the nonlinear Schrödinger equation @8#:

u~z, t ! � 2h Sech@2h~z � z0 !� 8hjt #

{exp@i ~�2jx � 4~j 2 � h2 !!t � f# . ~2!

Where h,j,f, t, z0 are scaling parameters traditionally used
in nonlinear Schrödinger equation @8# . This form of the
solution can also be known as a soliton that has a stable
formation. For the purpose of this paper, we will use the
simplified solution:

u~t, x! � 2Sech@x# 2. ~3!

z is used here as the soliton solution in a complex variable.
In the Mathematica representation, the soliton is represented
as a complex function in j,t space. Customary care should
be taken to view these symbols within their relative context.

Using this programming method, with its wide range of
available iteration models available from Mathematica; we
get a 3D representation of the soliton. For each graphic
representation of a soliton, we plotted its contour graph.
This is most helpful because the direction of movement of
soliton is much clearer. It is common for the viewer to
assume that the wave moves in the direction normal to its
axis, in this case the j axis. This is not so for a soliton which
moves in the direction described by the wave ridge. The
contour graph also gives a clearer picture of the radiations,
which are crucial to this exercise. The third plot drawn here
shows the two-dimensional ~2D! cross-section of the wave
at the end of the time axis, in these cases mostly t� 2. In
these graphs, the wave at the end of it’s time axis is shown in
green. The red line represents the wave at t� 0. The fourth
plot given here represents the maximum possible error at
time t. The value of this information is realized when we
note that this gives an accurate indication of where the

radiations0wave breaking phenomenon begins. Figure 1a
shows the basic soliton wave where the coefficient of dis-
persion is zero; there being no dispersion term.

The excellent graphics obtained from the use of this
software can be used to further enhance the understanding
of the motion, as well as the physical form of the soliton
wave. The untrained eye does not immediately comprehend
the way in which the soliton is moving here. A lifetime of
watching the movement of water waves has trained the
senses to automatically assume that the wave is moving
along the spatial, or j axis.

It is also clear from this graph that there exists a small
amount of radiation being emitted from the front, or bow of
the basic soliton wave. This should be carefully noted here
as being distinct from other types of radiation which will
come into play later as we progress to higher order terms of
the NLSE. By way of an explanation of this phenomenon,
let us say that any object moving through its propagating
medium will, in respect of its motion, produce an effect on
the stability of the medium. This type of miniscule radiation
is separate and distinct from that which will appear later.

Let us now observe the contour plot as shown in Fig-
ure 1b. From the outward radiations and the pointed leading
edge of the wave, it is immediately clear that it is moving
along the temporal, or t axis. Please take care to note that in
Figure 1a the graph is plotted from left to right, as opposed
to right to left in the other graphs. Moving on to Figure 1c,
we show the 2D cross-section at the outward extremity of
the time axis. The green line is the value at t�2, the red line
is the basic wave form. Finally, we show in Figure 1d, the
maximum error plot for this ~zero! order.

A plotted range of 0 � t � 2 and �10 � j � 10 is
sufficient to give a clear picture of what is happening, while
showing the point where the soliton starts to break up into
increasingly evident radiations. Following on from the basic
wave graphs, and before we progress to the results obtained,
we thought it sufficiently important that we include here a
wave plot showing the effect of lengthening the axes. To this
end, we show Figure 2, where the time axis is extended to
t� 5 and the spatial axis to �20 � j� 20. This is deemed
sufficient to illustrate the expanding wave form. We there-
fore have limited all our other plots to the range shown for
Figure 1.

Figure 3 illustrate the effect on soliton of the zero-order
term, igu. Here we showed the effect on soliton in Figure 1
of making g� 1. The effect is one of damping. In this plot
we can clearly see that the soliton and its radiations were
very effectively damped by adding a unitary coefficient to
the zero order term �igu in Eq. ~1!.

4. RESULTS

We have found by the above method that for the dispersion
orders from 3 upward in odd numbers there is a point along
the evolution of the coefficient for each order of dispersion
where radiation becomes visibly evident.
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The first wave to be shown next, in Figure 4b, is the 3D
wave form for the third order soliton with dispersion coef-
ficient 0.5. To supplement this we follow up with the Con-
tour plot, Figure 4b, the cross-section plot, 4c and the
error plot 4d. We then finish off our representation of the
third order by showing the 3D soliton graph for coefficient
3.5 in Figure 5a, followed up by its contour plot in Figure
5b, its cross-section plot in Figure 5c and its error plot in
Figure 5d.

For the presentation of our results we found it unneces-
sary to use a large number of graphs for each of the higher
orders, it being sufficient to show the lowest coefficient
where radiation occurs, and the last coefficient before com-
putation overflows or the error goes beyond the point of
usefulness. Consequently we show here only two sets of
graphics for each of these orders.

Moving on to the fourth order, we now show the wave
resulting from the fourth order term at coefficient a� 0.5,

Fig. 1. ~A! The 3D plot of the basic soliton wave. ~B! The contour plot of the basic soliton wave.
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Fig. 1 (continued). ~C! The cross-section plot for Figure 1a. The red line is the starting point, time 0, the green line is the cut-off point
at time 2. ~D! The error graph for the basic soliton wave.
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in Figure 6a, followed by its contour plot in Figure 6b, its
cross-section plot in Figure 6c and its error plot in Figure 6d.
The last plot for the fourth order at coefficient 3.5 is the 3D
plot in Figure 7a, followed by its contour plot in Figure 7b,
its cross-section plot in Figure 7c and its error plot in
Figure 7d.

Moving on to the fifth order we next show the result for
lowest practical coefficient of order 5, being a� 0.01.

Karpman ~1998! and Karpman and Shagalow ~1999! has
defined the third and fourth order dispersion equation and
this will be used throughout this work as the basis for
programming the Schrödinger equation. This level of dis-

Fig. 2. This shows the same soliton as Figure 1, with extended axes. Here the viewer can see that the wave break-up, and the radiations
resulting from it, increase as we progress along the time axis. It is deemed unnecessary, for further plotting, to venture beyond t� 2
in order that the perspective of this study may be maintained.

Fig. 3. The soliton in Figure 1, with the zero order term at coefficient 1. In this plot we can clearly see that the soliton and it’s radiations
have been very effectively damped by adding a unitary coefficient to the zero order term �igu in ~1!.
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Fig. 4. ~A! This is the wave form of the third order at dispersion coefficient 0.5. ~B! This shows the contour plot for the wave in
Figure 4a.
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Fig. 4 (continued). ~C! The cross-section plot for Figure 4A. ~D! This is the error plot for the soliton in Figure 4A.
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Fig. 5. ~A! This shows the soliton at third order coefficient 3.5. ~B! This is the contour plot for Figure 5A.
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Fig. 5 (continued). ~C! Here we show the cross-section plot for Figure 5A. ~D! Here we represent the error plot for Figure 5A.
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Fig. 6. ~A! The fourth order at coefficient 0.5. Here we note the characteristic absence of radiation for the square, or even-numbered
order, other than that mentioned above with respect to all waves. ~B! The contour plot for Figure 6A.
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Fig. 6 (continued). ~C! The cross-sectional plot for Figure 6A. ~D! The error plot for Figure 6A.
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Fig. 7. ~A! This shows the wave from coefficient of dispersion a� 35. Note here the sharp forward peak of the wave, characteristic of
self-focusing, but still the absence of radiations. ~B! Here we show the contour plot for Figure 7A.
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Fig. 7 (continued). ~C! This is the cross-section plot for Figure 7A. ~D! Here we show the error plot for Figure 7A.
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Fig. 8. ~A! Here we show the graph at the lower end of the fifth order scale. It is easily evident that radiations have begun to show.
~B! This is the contour plot for Figure 8A.
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Fig. 8 (continued). ~C! This is the cross-section plot for Figure 8A. ~D! The error plot for Figure 8A.
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Fig. 9. ~A! This shows the sixth order soliton at coefficient of dispersion a� 10�7. ~B! This is the contour plot for Figure 9A.
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persion is covered by the work of Karpman ~1998! and
Karpman and Shagalow ~1999!. Next we go to Figure 8a.
This represents the 3D soliton plot for the fifth order at
bottom coefficient 0.01. This is followed by its contour plot
in Figure 8b, its cross-section plot in Figure 8c, and its error
plot in Figure 8d. After this we go to Figure 9a, where we
show the 3D soliton for the sixth order at coefficient 10�7.
This is followed by its contour plot in Figure 9b, its cross-
section plot in Figure 9c, and its error plot in Figure 9d. Last
we show Figure 10a, which represents the highest practical
coefficient for the sixth order. We follow this with its con-

tour plot in Figure 10b, its cross-section plot in Figure 10c,
and lastly its error plot in Figure 10d.

5. OBSERVATIONS

From the graphic results presented above it has been noted
that radiations related to the higher order dispersion factor
are only found in cubic orders, that is, where the higher
order term in the NLSE is represented by an uneven number.
Where the order of magnitude of the dispersion term is
quadratic, i.e., it is expressed as an even number, there are

Fig. 9 (continued). ~C! This shows the cross section plot for Figure 9A. ~D! Here we show the error plot for Figure 9A.
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Fig. 10. ~A! Here we show the soliton produced from a dispersion coefficient of 0.00007. ~B! The contour plot for Figure 10A.
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Fig. 10 (continued). ~C! Shows the cross-section for Figure 10A. ~D!. The error plot for Figure 10A.
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no radiations other than the basic waves mentioned above.
This leads us to draw far-reaching conclusions.

6. CONCLUSION

The most important conclusion to be drawn in the face of
this evidence is that solitonic radiations only occur in the
presence of a cubic dispersion term of the NLSE. In the
cases where the order of dispersion is quadratic there are no
higher order radiations from the soliton. The conclusions to
be drawn from this evidence is that, if the solitons can be
produced in practice by an input that has no cubic term in its
spectrum, then the resulting solitons will be virtually free
from radiations. The consequences of this are that if such a
soliton were to be employed in the field of fibre optical
telecommunications, for instance, there would be virtually
none of the factors that cause interference, “crossed lines,”
etc.
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