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Spectral proper orthogonal decomposition (SPOD) is an increasingly popular modal
analysis method in the field of fluid dynamics due to its specific properties: a linear
system forced with white noise should have SPOD modes identical to response modes from
resolvent analysis. The SPOD, coupled with the Welch method for spectral estimation, may
require long time-resolved datasets. In this work, a linearised Ginzburg–Landau model
is considered in order to study the method’s convergence. Spectral proper orthogonal
decomposition modes of the white-noise forced equation are computed and compared with
corresponding response resolvent modes. The quantified error is shown to be related to
the time length of Welch blocks (spectral window size) normalised by a convective time.
Subsequently, an algorithm based on a temporal data shift is devised to further improve
SPOD convergence and is applied to the Ginzburg–Landau system. Next, its efficacy is
demonstrated in a numerical database of a boundary layer subject to bypass transition. The
proposed approach achieves substantial improvement in mode convergence with smaller
spectral window sizes with respect to the standard method. Furthermore, SPOD modes
display growing wall-normal and spanwise velocity components along the streamwise
direction, a feature which had not yet been observed and is also predicted by a global
resolvent calculation. The shifting algorithm for the SPOD opens the possibility for using
the method on datasets with time series of moderate duration, often produced by large
simulations.
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1. Introduction

Modal analysis is a well-known method to study systems of partial differential equations
(PDEs). By studying characteristics of a dynamic system, one can compute a basis in the
PDE solution space and, thus, identify the underlying coherent structures governing the
system’s evolution in time and space. For instance, it is a established technique to develop
reduced-order models (ROMs) of complex flows (Rowley & Dawnson 2017; Taira et al.
2020).

In the context of dynamical systems, a popular method is proper orthogonal
decomposition (POD), also called principal component analysis or Karhunen–Loève
decomposition in other disciplines. Introduced to the fluid dynamics community by
Lumley (1967, 1970), the statistical method decomposes an ensemble of bounded signals
into orthogonal deterministic modes (often called empirical eigenfunctions) which, within
all possible linear decompositions, are optimal in containing the most energy in an average
sense (Berkooz, Holmes & Lumley 1993).

The POD method enables the decomposition of velocity correlations from statistically
stationary flows into modes, in order to identify and analyse the most energetic structures
evolving in space and time. Due to its generality and solid foundation in the statistics
theory, POD has been applied to numerous fluid dynamics fields, with studies involving
coherent structures in turbulence (Sirovich 1987), derivations of ROMs (Ravindran 2000;
Noack et al. 2003), among many other applications. The method gained special traction
in the 1990s with the rapid development of numerical analysis and computational tools
(Aubry 1991).

For statistically stationary flows, the application of POD over the Fourier transform in
time of measured correlations generates modes that develop in a single frequency and
display coherence in both space and time. This approach has been applied throughout
the years to study jets (Glauser & George 1987; Delville et al. 1999; Picard & Delville
2000; Jung, Gamard & George 2004; Iqbal & Thomas 2007; Tinney & Jordan 2008;
Gudmundsson & Colonius 2011; Schmidt et al. 2017), mixing layers (Arndt, Long &
Glauser 1997; Bonnet et al. 1998; Citriniti & George 2000), turbulent pipes (Hellström
& Smits 2014), boundary layers (Tutkun & George 2017) and wakes (Araya, Colonius &
Dabiri 2017).

This form of POD in the frequency domain has been labelled spectral POD, or SPOD
(Towne, Schmidt & Colonius 2018; Schmidt & Colonius 2020). It should be noted that we
do not refer here to the homonym work of Sieber, Paschereit & Oberleithner (2016), which
deals with a different algorithm. Towne et al. (2018) established an important link between
statistics and dynamical systems in the frequency space, as a linear set of equations, forced
with an uncorrelated (spatially white) noise in a given frequency must have SPOD modes
identical to the modes obtained via resolvent analysis. This property is not always present
in the form of POD, which yields purely spatial modes modulated by time-dependent
coefficients, hereby called spatial POD.

Later works employing SPOD include: the development of data-driven ROMs for
boundary layer transition control (Sasaki et al. 2020), characterisation of noise generated
over airfoils (Sano et al. 2019; Abreu et al. 2021) and the identification of coherent
structures in channels (Abreu et al. 2020a), wakes (Nidhan et al. 2020; Li et al. 2021),
separated high-speed flows (Lugrin et al. 2021) and complex geometries (Zhang, Ooka &
Kikumoto 2021; He et al. 2021).

Despite its versatility, the proposed SPOD algorithm (Towne et al. 2018) leads to
some inherent complexity related to spectral estimation. It relies on the Welch method
(Welch 1967) for the estimation of the cross-spectral density (CSD) tensor, and hence,
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Improved convergence of SPOD through time shifting

computed gains and modes are sensitive to sampling parameters (number of field
snapshots/realisations Nt, time step δt) and estimation parameters (number of blocks, Nb,
number of snapshots per block, NFFT , windowing function, w(t), and overlap between
successive blocks, OFFT ). For a given dataset with Nt snapshots separated by a constant
time step δt, increasing Nb implies decreasing NFFT and vice versa. A larger Nb penalises
frequency resolution, increases spectral leakage and may lead to results contaminated
with statistical bias, whereas a larger NFFT penalises convergence by decreasing the
number of averaging blocks. The appropriate compromise between these cases is problem
dependent and literature concerning which choice yields the best convergence for a given
dataset is lacking, even though statistical confidence bounds can be derived for computed
SPOD gains (Schmidt & Colonius 2020). In general, estimation parameters are chosen
subjectively based on the researcher’s experience and convergence is checked a posteriori.

Moreover, mode convergence can be slow and difficult to verify as the method
requires long time-resolved datasets. For Navier–Stokes simulations, this translates to
high computational and storage costs that are often impracticable. A proposed alternative
to reduce overall requirements of memory is the streaming SPOD algorithm proposed
by Schmidt & Towne (2019). By accessing only one temporal snapshot at a time and
incrementing the SPOD at each step, the algorithm allows for the use of arbitrarily
long time series and real-time processing, avoiding storage costs, but maintaining long
computations that may be expensive.

This work discusses the effects of estimation parameters on the convergence of the
SPOD method. We first examine a model Ginzburg–Landau system which mimics the
dynamics of turbulent jets. In sequence, the results from this convergence analysis are
used to propose a new method based on a temporal shift to further reduce SPOD errors and
enable a more accurate analysis of simulations with shorter integration times. In order to
demonstrate its applicability to fluid flows, the shifting algorithm is applied to a boundary
layer over a flat plate subject to bypass transition.

For flat-plate boundary layers, modal transition by Tollmien–Schlichting waves is
bypassed for free-stream turbulence levels greater than around 1 % (Matsubara &
Alfredsson 2001) as the transition occurs from the linear growth of streamwise elongated,
low-frequency structures, with alternating high and low velocity, called streaks. The work
of Ellingsen & Palm (1975) shows that perturbations in flows with low variation along the
streamwise direction can be algebraically amplified through the transient growth caused
by the interaction of non-normal Orr–Sommerfeld modes, even in cases where modal
stability predicts an exponential decay. This phenomenon is known in the literature as the
lift-up effect (Brandt 2014). In bypass conditions, the streaks caused by the lift-up effect
might be amplified enough to trigger nonlinear interactions and degenerate to turbulence
in Reynolds numbers below the critical levels provided by the linear theory of exponential
growth (Brandt, Schlatter & Henningson 2004).

Streaks appear as SPOD modes with vanishing frequency (Sasaki et al. 2020), and
numerical convergence in such cases is challenging (Pickering et al. 2020). Hence,
detection of coherent structures in a database of bypass transition of a boundary layer
is a relevant test of convergence of SPOD modes and of the potential improvements that
may be obtained with the proposed temporal shift of the database.

The remainder of the manuscript is organised as follows. Sections 2 and 3 review
methods used in SPOD and resolvent analysis. In § 4 the temporal shift is introduced and
its effects are discussed, with guidance on how to choose shifting parameters. Finally, in
§ 5 the results of the application of these concepts in the Ginzburg–Landau system and the
flat-plate case are evaluated.
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2. Spectral POD

Spectral POD is a modal analysis method aimed at extracting the most energetic turbulent
coherent structures which evolve in a single frequency from statistically stationary data. A
brief explanation of the algorithm is developed in this section. The computation involves
the snapshot method, and further information can be found in Towne et al. (2018) and
Schmidt & Colonius (2020).

Considering a turbulent flow dataset with M degrees of freedom (number of variables
times number of spatial points Nx) and Nt snapshots taken at a fixed interval δt (each one
treated as an independent realisation based on the ergodicity argument), we define the state
vector q ∈ CM with a chosen inner product as〈

q1, q2
〉
W = qH

1 W q2, (2.1)

where W M×M is a square positive definite diagonal matrix, and { · }H is the conjugate
transpose. The ensemble of realisation vectors are then used to construct the data matrix

Q =
⎡
⎣ | | |

q1 q2 · · · qNt| | |

⎤
⎦ , Q ∈ C

M×Nt . (2.2)

For the case of an incompressible flow, each component of the velocity field u(x, t) =
(u(x, t), v(x, t), w(x, t)) is a variable. In that case, we can construct the vector q ∈ C3Nx

by computing the zero-mean velocity fluctuations for each snapshot, i.e.

ũ(x, t) = u(x, t) − U(x) = (ũ(x, t), ṽ(x, t), w̃(x, t)), (2.3)

with U(x) being the mean field, and subsequently mapping all fluctuation components to
a column vector in a convenient order, for example,

qi =
[

ũ(x1, i) · · · ũ(xNx, i) ṽ(x1, i) · · · ṽ(xNx, i) w̃(x1, i) · · · w̃(xNx, i)
]T

.

(2.4)

2.1. Spectral estimation
For the estimation of the CSD matrix C, the Welch method is employed. The data matrix
Q is decomposed into Nb successive blocks containing NFFT realisations, with OFFT
overlapped realisations between consecutive blocks. Then, the discrete Fourier transform
(DFT) in time, weighted by a windowing function w(t), is computed for each block.

Given q̂k(ω), the vector resulting from the DFT at a frequency ω for the kth block, we
can assemble the vectors from all blocks corresponding to this frequency in a spectral data
matrix

Q̂ω =
⎡
⎣ | | |

q̂1 q̂2 · · · q̂Nb| | |

⎤
⎦ , Q̂ω ∈ C

M×Nb, (2.5)

allowing the CSD matrix for each frequency to be computed as

Cω = 1
Nb

Q̂ωQ̂H
ω W , Cω ∈ C

M×M (2.6)

and finally SPOD gains Λ̂ and modes Ψ̂ are calculated by solving the following
eigenproblem of size M × M:

CωΨ̂ = Ψ̂ Λ̂. (2.7)
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2.2. Snapshot SPOD
In fluid dynamics applications datasets often have M � Nb, as the problems are typically
high dimensional and the cost of their simulation typically limits the amount of snapshots
that can be obtained and handled. Therefore, it is computationally cheaper to obtain the
same modes and gains by solving the much smaller eigenproblem of size Nb × Nb in the
row space of the matrix Q̂ω, as presented by Sirovich (1987) and revisited in Towne et al.
(2018),

Mω = 1
Nb

Q̂H
ω W Q̂ω, Mω ∈ C

Nb×Nb, (2.8)

MωΘ̂ = Θ̂Λ̂, (2.9)

Ψ̂ = 1√
Nb

Q̂ωΘ̂Λ̂
−1/2. (2.10)

3. Resolvent analysis

When applying the Reynolds decomposition to the Navier–Stokes equation, linear and
nonlinear terms can be isolated. Then, nonlinear terms may be treated as an input forcing
signal to a linear system. In other words, we construct a state-space formulation with
input/forcing terms f related to response/fluctuations terms q by a linear operator L
that is only a function of time invariant parameters, considering a linearisation of the
Navier–Stokes system around a laminar solution (Jovanović & Bamieh 2005) or a mean
flow (McKeon & Sharma 2010). Operators H and B are used to restrict spatially the forcing
and response, respectively, when necessary. We thus have

∂q
∂t

= Lq + Bf ,

y = Hq,

⎫⎬
⎭ (3.1)

and by taking the Fourier transform in time we obtain

(iωI − L) q̂ = Bf̂ ,

ŷ = H q̂,

}
(3.2)

ŷ = R f̂ =⇒ R = H (iωI − L)−1 B, (3.3)

where R is called the resolvent operator. Now, resolvent response modes U , forcing modes
V and gains Σ (ratio between the norms of y and f ) can be computed via the singular
value decomposition (SVD)

R̃Ṽ = ŨΣ . (3.4)

From the resolvent framework (3.3), the response CSD matrix Cω can be computed
directly as a function of the forcing CSD matrix Fω. Assuming that

Cω = E
(

ŷŷH
)

, Fω = E
(

f̂ f̂
H)

, (3.5a,b)
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where E( · ) stands for the average over all realisations, we have

Cω = RFωRH. (3.6)

If forcing terms are perfectly uncorrelated, Fω = I , the expression can be reduced to

Cω = RRH (3.7)

and, from (3.4), we have

Cω = UΣ2U−1 =⇒ CωU = UΣ2 (3.8)

leading to

Ψ̂ = U, Λ̂ = Σ2 (3.9a,b)

from (2.7).
This shows that resolvent response modes are equal to those obtained via the SPOD

method for a system forced with spatially white forcing (Towne et al. 2018), a property
also true for an arbitrary inner-product norm (see Appendix A).

In this study the mode equivalence property is exploited to study numerically the
convergence of SPOD modes by employing a simple linear system analogous to the
Navier–Stokes system, forced with spatially uncorrelated signals, and comparing resolvent
and SPOD results.

4. Temporal shift

The idea of introducing a temporal shift to compensate for transport in signal processing
and modal decomposition is not new. The work of Reiss et al. (2018), for instance,
discusses its application on the construction of ROMs and proposes a shifted method
based on spatial POD to address the slow decay of energy observed from the modal
decomposition of transport dominated phenomena. However, to the best of our knowledge,
the application of a time delay in SPOD has not been attempted.

The Welch method employed in the SPOD method separates the dataset in blocks of a
chosen time length. For transport dominated phenomena with elongated domains, one can
usually choose signals corresponding to coordinates x1 and x2 where the time lag for peak
cross-correlation is greater than the block time length. The effect is shown in figure 1 with
the blue rectangle, which illustrates the standard situation where the same initial and final
times of Welch blocks are taken for all positions in the flow. This causes an apparent loss
of coherence and encumbers the statistical convergence of the decomposition. This feature
was observed, for instance, by Jaunet, Jordan & Cavalieri (2017).

4.1. Proposed algorithm
In order to address the limitations imposed by the Welch method, we propose an extension
to the SPOD algorithm in two steps, exploiting the assumed stationarity: we first apply
a shift in time and then correct the phase in Fourier space, in a procedure that preserves
asymptotic convergence to the true CSD (see Appendix B). The temporal shift aims at
improving convergence for a window of finite size by maximising cross-correlations within
each Welch block, via the insertion of an expected time delay to each spatial location.

Concerning the SPOD implementation, first we treat the data matrix Q by means of
a data shift and then correct the effects of this treatment after the application of the
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Figure 1. Diagram illustrating the effect of the temporal shift on the model system presented in § 5.1. In
standard conditions, the cross-correlation peak lies outside the chosen time window. The application of the
expected time lag between signals in positions x1 and x2 maintains the peak inside the same time window. The
operator 〈 · 〉 denotes the expected value.

Welch method. Given a point of interest with streamwise coordinate xp and a matrix Q
with Nx rows and Nt columns, for each row k, the columns are shifted by

sk = �x
Ukδt

, �x = xp − xk (4.1)

positions. In this expression xk is the point’s streamwise coordinate, δt is the time step
between realisations and Uk is a chosen velocity so that �x/Uk approximates the time lag
for peak cross-correlation with respect to the point of interest. For instance, the dominant
convection velocity could be used, if this information is readily available. Moreover, there
is no requirement for Uk to be constant throughout the domain.

Columns at the beginning or the end of the time series, for which the time shift sk is
not possible, are removed from the computation. This can be more easily implemented as
a circular shift of the data removing the columns for which there is an artificial overlap
between the end of the time series at one point and the beginning of the series at another
point.

It is important to note that, if sk is not an integer, the shift must be interpolated, as
discussed in Reiss et al. (2018). Given Zs

k , the operator that circularly shifts a line k by s
positions, and Q̃ the resulting shifted matrix, the linearly interpolated shifting operation
takes the form

Q̃ =
{Zsk

k Q if sk ∈ Z,

(�sk	 − sk) · Z
sk�
k Q + (sk − 
sk�) · Z�sk	

k Q otherwise.
(4.2)

After application of the Welch method the kth row of each resulting Q̂ω matrix, with Nx
rows and Nb columns, is multiplied by exp(−iωskδt) to correct the phase created by the
previous temporal shift operation, according to the properties of the Fourier transform.

This procedure will be referred to in this work as a shifted SPOD, for the sake of
concision, and should not be considered a new variety of POD, but instead a new algorithm
for the method we call SPOD.
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Computationally, the shifting algorithm deals with row-wise rearrangements of matrix
elements and also row-wise array multiplications, which are low complexity operations
when compared with Fourier transforms and eigenproblems. Once the data matrices are
loaded in memory, both these steps should be rapidly performed on a modern desktop
computer without the addition of expressive cost to the SPOD method.

4.2. On the choice of point of interest, shifting velocity and window size
The choice of window size NFFT and, consequently, the number of blocks Nb is the most
subjective step of the SPOD method. For a given database, it is not obvious how one should
choose the most appropriate number of realisations per block that simultaneously ensures
blocks are long enough in time to properly capture the evolution of the most energetic
structures and numerous enough to reduce the decomposition’s variance.

Here, we discuss this choice and propose a pre-processing analysis to objectively set a
suitable NFFT for a given dataset, considering a shifting velocity and point of interest. This
procedure is also applicable to the standard SPOD, as it can be treated as a special case of
the shifted SPOD with shifting velocity Uk → ∞. The procedure follows four steps.

(i) Given a preferential flow direction X, we choose a point of interest p of coordinate xp
contained in the region from which we want to extract the most energetic structures.
For simulations, it is important to avoid points under the influence of numerical
boundaries, such as inlets, outlets and sponge/fringe zones, in order to guarantee
that computed two-point correlations are physical.

(ii) Once p is chosen, we compute the space–time correlations at positions along the X
direction with respect to the signal at xp, as later illustrated in figure 4(a). In the case
of multi-dimensional data, cross-correlations can be computed at multiple slices, as
will be later shown in figure 14(a,c,e), or for multiple vector components.

(iii) The inclination of the peak correlations quantifies the dominant convection velocity,
which might vary as a function of position and not necessarily match the local mean
velocity (He, Jin & Yang 2017). By applying a shifting velocity that approximates
said dominant velocity, it is possible to align correlation peaks, as later discussed in
figures 4(b) and 14(b,d, f ), in order to generate a vertical band of high correlation in
time. This narrower correlation allows a given window to capture more kinematic
information about the system. However, if a dominant velocity cannot be identified,
the shifting operation should yield no special benefit.

(iv) From the space–time plot we are finally able to determine the smallest window
size capable of capturing the bulk of correlation, which simultaneously resolves
the frequencies of interest in the study. By narrowing the correlation band in time,
the shifting algorithm admits even smaller window sizes for the same amount of
correlation captured and, thus, reduces overall variance by increasing the number
of blocks Nb. In this way, it becomes feasible to objectively set the NFFT parameter
based on the individual characteristics of each database and frequency resolution
requirements.

5. Convergence analysis of SPOD

5.1. A model problem: Ginzburg–Landau equation
The complex-valued Ginzburg–Landau equation (CGLE) has been one of the most studied
equations in a wide variety of physics fields to provide insight over the dynamics of
non-equilibrium phenomena in spatially extended systems (Aranson & Kramer 2002).
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Particularly in the field of fluid dynamics and turbulence, the one-dimensional linearised
complex Ginzburg–Landau equation is often employed to model instabilities in spatially
evolving flows for its properties of advection and diffusion (Huerre & Monkewitz 1990;
Bagheri et al. 2009; Cavalieri, Jordan & Lesshafft 2019). The equation is written in the
input–output framework as

∂q
∂t

+ U
∂q
∂x

− μ(x)q − γ
∂2q
∂x2 = f , (5.1)

with q and f being output response and input forcing, respectively, and rewritten in Fourier
space as (

iωI + U
∂

∂x
− μ(x) − γ

∂2

∂x2

)
q̂ = f̂ (5.2)

from which the resolvent operator can be computed as

R =
(

iωI + U
∂

∂x
− μ(x) − γ

∂2

∂x2

)−1

(5.3)

with an inverse obtained after a discretisation of the derivatives to form the operators in
matrix form.

When the system is forced with spatially white statistics on a given frequency ω,
the SPOD modes ψ̂(ω) are identical to the resolvent response modes, u(ω). Thus,
such response modes, which are deterministic in nature, are used to quantify the SPOD
convergence defined in terms of the error

ε(ω) = 1 − |〈ψ̂(ω), u(ω)〉|
‖ψ̂(ω)‖ · ‖u(ω)‖

, (5.4)

where the operators 〈 ·, · 〉 and ‖ · ‖ are respectively the Euclidean inner product and norm.
The model problem was devised according to Cavalieri et al. (2019) and parameters

μ(x) = A
(

1 − x
10

)
, (5.5)

γ = 1 − i
10

, (5.6)

were set to mimic the dynamics of turbulent jets. Three distinct cases were investigated:
case 1 with U = 10 and A = 0.6; case 2 with U = 12 and A = 1; case 3 with U = 14
and A = 1.25. These choices lead to a varying convection velocity between the three
cases, which modifies the correlation peaks discussed in § 4. Numerical solutions were
obtained using a Crank–Nicolson scheme for time marching. Spatial discretisation was
set using a fixed grid spacing of �x = 0.1, with a total of Nx = 300 points, x ∈ [0, 30]
and q(0) = q(30) = 0. A second-order upwind scheme was applied for the first spatial
derivative and a second-order centred scheme for the second. Because of the uniform grid,
the inner-product matrix W is set as I�x to account for the spatial quadrature.

The forcing is applied by adding a random complex number with a uniformly distributed
phase and amplitude to the value at each grid point for every time step. To ensure that
fluctuations are adequately resolved in frequency, we apply to the forcing signal a finite
impulse response low-pass filter of 30th order in time, with cutoff at 60 % of the Nyquist
frequency. Numerical integration is done for a range of 500 time units using a time step of
δt = 0.01, generating a total of Nt = 5 × 104 snapshots per case.
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Figure 2. Spectral POD estimation error ε at frequency ω = 2π, plotted against the normalised window length
Nnorm. Legend: (◦, blue) case 1; (×, red) case 2; (∗, orange) case 3. (a) Mode 1; (b) mode 2; (c) mode 3;
(d) mode 4.

5.1.1. Computation of SPOD modes
In order to understand how SPOD errors scale as a function of sampling and estimation
parameters for each model case, the number of snapshots NFFT within each block is varied
from 100 to 5000 in steps of 100 and the number of blocks Nb set accordingly to comprise
all Nt snapshots (fixed-data analysis). This configuration ensures that all computations
reach exactly the frequency ω = 2π, which has the same order of magnitude of the most
energetic frequency in all three cases, in order to compare SPOD and resolvent modes.

To reduce spectral leakage effects and allow for the use of a relatively large consecutive
block overlapping of OFFT = 
0.75 NFFT�, we apply to each block an infinitely smooth
windowing function of the form

wC∞
2

(t) =
{

e8/e2T2/(t(T−t)), 0 < t < T,

0 otherwise,
(5.7)

with all derivatives equal to zero at 0 and T (Martini et al. 2020).
The error between SPOD and resolvent modes, defined in (5.4), is shown in figure 2

for the leading four SPOD modes at frequency ω = 2π. The results obtained indicate that
better absolute convergence is related to window length, normalised by domain size, and
convection velocity. Thus, we define a normalised window size

Nnorm = NFFTδt
Tc

, Tc = L
U

, (5.8)

where Tc is the time taken to cross the entire domain based on the parameter U of the
CGLE system and L is the total length of the domain.

The graphs in figure 2 show that SPOD modes computed with very low values of Nnorm
yield the worst convergence. In that scenario, the Welch blocks are too short to correctly
capture the evolution of coherent structures in time, which leads to statistically biased
results. On the other side, for larger Nnorm values, errors tend to stabilise or even increase
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Figure 3. Mode 1 at frequency ω = 2π for case 3. Other cases display similar features. (a) Resolvent
operator response mode; (b) SPOD mode with NFFT = 100, Nb = 1997 and Nnorm ≈ 0.5: higher precision,
lower accuracy (bias); (b) SPOD mode with NFFT = 600, Nb = 330 and Nnorm ≈ 3; (c) SPOD mode with
NFFT = 5000, Nb = 37 and Nnorm ≈ 23: lower precision, higher accuracy (noise). Legend: (orange) absolute
value; (blue) real part; (red) imaginary part; (dotted lines) resolvent mode for comparison.
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Figure 4. Space–time cross-correlation with respect to the point xp = 15 for case 2 (U = 12, A = 1). Other
cases display similar features. (a) No shift; (b) optimal shift.

for higher modes (modes 3 and 4) due to the reduced number of averaging blocks and
consequent increase in noise.

A trade-off between estimation bias, which is reduced with increasing window sizes,
and estimation variance, i.e. statistical noise, which increases with window size (lower
number of samples), is thus required. Effects of bias and noise are illustrated in figure 3.

Overall, a normalised window size between 2 and 4 is a good compromise to achieve
the best convergence across the first four SPOD modes in these cases. This implies that a
time series should be sufficiently long to comprise a large number of blocks of normalised
window size between 2 and 4. This would translate to a database with several flow-through
times, which may be quite expensive to compute and store if one deals with complex
flows. In what follows we will explore how the temporal shift of § 4 may alleviate such
requirements.

5.1.2. Application of the temporal shift
The analysis of § 5.1.1 was also performed using the shifted SPOD algorithm. Parameters
NFFT , Nb and OFFT were set in the same exact manner, as well as the windowing function.
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Figure 5. Shifted SPOD estimation error ε at frequency ω = 2π, plotted as a function as Nnorm. Legend: (◦,
blue) case 1; (×, red) case 2; (∗, orange) case 3. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

Each case was shifted with respect to the point of interest xp = 15, in the middle
of the numerical domain, according to the algorithm of § 4. The parameter U of the
corresponding CGLE was applied as the optimal shifting velocity for all points, in a
operation that approximates almost exactly the peak cross-correlation, as it is shown in
figure 4. In this graph a Welch block window can be represented as a vertical band,
consisting of all �x and a limited �t. From this observation it is possible to conclude
that a narrow window can contain more correlation in the shifted case.

The results obtained are shown in figure 5. Compared with figure 2, estimation errors ε

are greatly reduced for the lowest values of Nnorm, which means that the shifting operation
is successful in reducing the bias observed with shorter Welch blocks, an effect illustrated
in figure 6. Thus, the approach considerably alleviates the trade-off between bias and
variance discussed in the previous section.

One should note that, in these cases, where the correlation between signals falls sharply
for time lags which do not match the convection velocity (figure 4), the minimal time
window able to resolve the studied frequency is successful in reducing the bias. However,
it is expected that, in more general cases, containing a wide range of coherent structures
and nonlinear dynamics, the narrowest time windows able to resolve a given frequency
should still lead to errors, as they might not contain a relevant part of the correlation
function.

5.1.3. Comparison with fixed variance
We compare standard and shifted SPOD algorithms when a fixed number of blocks Nb is
considered and only the window size NFFT is changed. Contrary to the previous analysis,
this set-up does not consider all of the snapshots available in the dataset, as the SPOD
algorithm will require fewer snapshots for smaller window sizes and the same quantity
of blocks. The variance of the estimates is kept approximately constant, allowing for a
study of the effect of estimation bias. We choose Nb = 100 and sweep NFFT values from
100 to 1900 in steps of 100. The overlap value OFFT and windowing function w(t) remain
unchanged.
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Figure 6. Comparison between resolvent, SPOD and shifted SPOD modes, at frequency ω = 2π, for case
3. All SPOD modes were computed with NFFT = 100 and Nnorm ≈ 0.5. Other cases display similar features.
Legend: (orange) absolute value; (blue) real part; (red) imaginary part.

Figure 7 shows the results of this fixed-block analysis. Estimation errors for the shifted
SPOD are always smaller than those of the standard SPOD, with effects more pronounced
in the region of smaller window size NFFT , where a reduction of at least one order of
magnitude is observed in some cases.

An expressive reduction in estimation error for smaller NFFT values induced by the
shifted SPOD algorithm is relevant because, for a given number of Welch blocks, it allows
for a more precise and accurate computation of the most energetic modes on datasets with
short time lengths, as is typical for large simulations, and reduces the sensitivity of the
method to the window size parameter.

5.1.4. Comparison with fixed window size
We also compare standard and shifted SPOD algorithms considering a fixed window size
NFFT , where only the number of blocks Nb is changed. As in the previous analysis, this
set-up does not consider all of the snapshots available in the dataset. We choose NFFT =
100, which corresponds to Nnorm < 1 for all three cases, and sweep Nb values from 20 to
800 in steps of 20. Again, the overlap value OFFT and windowing function w(t) remain
unchanged.
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Figure 7. Estimation error ε of mode 1, at frequency ω = 2π and number of blocks Nb = 100, as a function
of the window size NFFT . Legend: (◦, blue) standard SPOD; (�, red) shifted SPOD. (a) Case 1; (b) case 2;
(c) case 3.
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Figure 8. Estimation error ε of mode 1, at frequency ω = 2π and number of snapshots NFFT = 100, as a
function of the number of blocks Nb. Legend: (◦, blue) standard SPOD; (�, red) shifted SPOD. (a) Case 1;
(b) case 2; (c) case 3.

Figure 8 shows the results of the fixed window analysis. For the case of a small window
size, not long enough in time to properly capture the system dynamics, the standard SPOD
algorithm is not capable of reducing estimation errors with the increase of the time series
length (and, consequently, the number of blocks) to the level of the shifted algorithm,
which shows significantly lower errors.

5.1.5. Effect of non-optimal shifting velocities
All previous analysis focused on the optimal shift, equal to the known single convection
velocity in each case. However, in most fluid dynamics applications different scales
propagate at different velocities. Moreover, as stated in § 4.2, the convection of coherent
structures might vary as a function of position and not necessarily match the local mean
velocity, making the exact correspondence between shifting and convection velocities
impractical.

To study the effects of a non-optimal shift, we compare the errors ε of shifted SPOD
modes computed with different shifting velocities Ushift. Figure 9 shows the results of this
analysis, where it is clear that the lowest error is achieved when shifting and convection
velocities are equal.

According to (4.1), the shift is inversely proportional to shifting velocity. For smaller
than optimal Ushift, the algorithm overestimates the necessary shift and errors rise sharply,
as Ushift → 0 and sk → ∞, reaching levels higher than the standard SPOD. Due to this
behaviour, very low shifting velocities should be applied with special care, even though
the use of very low convection velocities is rare, as quantities are often normalised.

Inversely, Ushift → ∞ leads to sk → 0, implying shifted and standard SPODs are
asymptotically identical, with errors following this same trend. In other words, assuming
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Figure 9. Estimation error ε of mode 1, at frequency ω = 2π, number of snapshots NFFT = 100 and entire
time series, as a function of the shifting velocity Ushift. Legend: (−) standard SPOD; (−−, red) random
Ushift(x) ∈ [0.8 U, 1.2 U] shifted SPOD; (◦, blue) constant Ushift shifted SPOD. (a) Case 1; (b) case 2;
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Figure 10. Space–time cross-correlation with respect to the point xp = 15 for case 2 (U = 12, A = 1). Vertical
lines represent the bounds of a window of size NFFT = 100. Other cases display similar features. (a) No shift;
(b) random Ushift(x) ∈ [0.8 U, 1.2 U].

errors grow monotonically with the increase of Ushift − U, the shifted SPOD will always
return better converged results than the standard algorithm for larger than optimal Ushift.
This property can be exploited in the case of a flow with multiple known convection scales
propagating to the same direction: by setting the shifting velocity to the largest convection
velocity, error reduction should be obtained for all scales, albeit at different levels.

Finally, we consider a random shift where Ushift(x) ∈ [0.8 U, 1.2 U], whose space–time
correlation map is displayed in figure 10. Even though the shift is not constant nor optimal,
it still efficiently reduces errors by maintaining the bulk of correlation within the window
size bounds. With this set-up we stress that the shifting velocity is not physical and not
limited by conditions of continuity and smoothness, as phases in the Fourier space are
corrected point by point, individually. Furthermore, we show that the exact match between
shifting and local convection velocities is not a requirement, but rather a condition for
optimal error reduction.

5.1.6. Effect on different frequencies
In a last analysis, we divert the focus from the frequency ω = 2π used in previous results
to discuss the effect of the shifted SPOD on the ensemble of frequencies.

Figure 11 illustrates SPOD power spectra computed from the sum of eigenvalues at each
frequency for case 3. As we consider the CGLE, the full spectrum of positive and negative
frequencies is considered. At Nnorm = 1, the errors of modes at frequency ω = 2π for
shifted and non-shifted methods are at least an order of magnitude apart. However, for both
Nnorm = 1 and Nnorm = 15, the methods yield almost identical spectra, with discrepancies
arising only for higher, less energetic frequencies.
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Figure 11. Spectral POD power spectra for case 3. Other cases display similar features. Legend: (blue)
standard SPOD, (red) shifted SPOD, (−−) ω = 2π.
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Figure 12. Estimation errors ε as a function of frequency for case 3. Other cases display similar features.
Legend: (blue) standard SPOD, (red) shifted SPOD, (−−) ω = 2π.

The behaviour of mode convergence can be further analysed in figure 12, where
estimation errors ε are plotted with respect to the frequency. For a larger window size
(Nnorm = 15), both shifted and standard algorithms converge to the same behaviour in
frequency, corroborating the properties deduced in Appendix B. On the other hand, at
Nnorm = 1, the most significant impact of the shifted SPOD is perceived close to the
lowest frequencies, a region where the energy separation is the greatest and where the
standard SPOD achieves better convergence at Nnorm = 15. In a typical Navier–Stokes
solution these low frequencies correspond to the largest and most energetic scales.

5.2. Transitional boundary layer over a flat plate
In this section the SPOD and resolvent methods are applied to study the most
energetic/amplified structures present in a stable boundary layer subject to transient growth
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Figure 13. Snapshot of the LES, where elongated structures can be observed inside the boundary layer.
Colours represent the streamwise velocity component. (a) Slice at z = 0. (b) Slice at y = 0.8. The fringe zone
is visible after x = 900.

prior to bypass transition. The case will serve as a numerical application of the concepts
discussed in previous sections.

The database used for this analysis was generated using the SIMSON solver (Chevalier,
Lundbladh & Henningson 2007). A large-eddy simulation (LES) of the transitional region
of a Blasius-type boundary layer is carried out for the flow over a flat plate without leading
edge and subject to no pressure gradient. This same database has already been validated
and produced results in previous works (Sasaki et al. 2020).

The computational domain (figure 13) consists of a 231 × 121 × 108 (X × Y × Z)

grid, composed by Chebyshev nodes in the direction perpendicular to the wall and
homogeneously spaced points in the other two directions, which are discretised with
Fourier modes. The X axis points in the streamwise direction and x ∈ [0, 1000], while
the Y axis is perpendicular to the wall and y ∈ [0, 60]. The Z axis follows the right-hand
rule and z ∈ [−25, 25].

The simulation is periodic in the spanwise direction, and periodicity along the
streamwise direction is assured by the introduction of a fringe region comprising positions
xfringe ∈ [900, 1000]. All variables are non-dimensionalised by the free-stream velocity
U∞ and displacement thickness δ∗

0 at the intake position where Re∗ = U∞δ∗
0/ν = 300,

with ν being the kinematic viscosity of the fluid.
In order to produce isotropic turbulence at the free stream, a number of modes from the

continuous branch of the Orr–Sommerfeld and Squire operators are forced in the fringe
region, with a turbulence intensity of 3.0 % measured at root mean square level, in the
same way of Sasaki et al. (2020), following Brandt et al. (2004). The resulting database is
composed of 2000 snapshots of fully developed, statistically stationary velocity fluctuation
fields around the Blasius base flow, computed with a constant time step of δt = 10. The
domain is long enough to display the growth of streaks in the laminar upstream region, but
ends before the development of turbulent spots, as seen in figure 13.

5.2.1. Spectral POD and shifted SPOD
Since the domain is periodic in Z, a Fourier decomposition can be performed in this
direction and each wavenumber β can be analysed separately, making the velocity field
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Figure 14. Space–time cross-correlation for β = 0.377 of the u velocity component at different distances from
the wall. Results are shown for (a,b) y = 0.01; (c,d) y = 1; (e, f ) y = 6. (a,c,d) Non-shifted field. (b,d, f ) Shifted
field. Dashed line: NFFT = 192; dotted line: NFFT = 48.

effectively two dimensional for each β. Following the definitions of § 2, the state vector q
is defined according to (2.4) and the inner-product weight matrix W is designed to account
for the grid quadrature. Spectral POD modes are computed for x ∈ [0, 900], excluding the
fringe zone. We employ the same windowing function from (5.7) which allows an overlap
of 75 % between blocks.

In order to better study the effects of window sizing, we consider two cases with a
time series division in NFFT1 = 48 and NFFT2 = 192 snapshots per block, leading to,
respectively, Nb1 = 330 and Nb2 = 38 blocks with the standard method and Nb1 = 310 and
Nb2 = 36 with the shifted one. As the streaky structures involved in the bypass transition
have very low characteristic frequency and slow dynamics (Nogueira et al. 2019; Pickering
et al. 2020; Nidhan et al. 2020), we focus the analysis on SPOD modes at the lowest
non-zero frequency in case 1, ω = 0.0131.

Following the steps described in § 4.2, for the shifted SPOD algorithm, (i) we choose to
compute time lags with respect to the streamwise position xp = 450, the farthest possible
from the influence of the fringe region. (ii) In figure 14(a,c,e) we plot the space–time
correlations for the streamwise component u at different distances from the wall. (iii)
A constant shifting velocity Uk = 0.75 (4.1) was fixed for all points. In this case, the
shifting velocity does not match the free-stream velocity U∞ = 1. This was carefully set
to align approximately the cross-correlations of points inside the boundary layer, as shown
in figure 14(b,d, f ). (iv) The alignment of peaks generated by the shift allows the bulk of
correlation, that required a window of size NFFT = 192, to be captured in a much smaller
window of NFFT = 48.
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Results for the most energetic spanwise wavenumber β = 0.377 at frequency ω =
0.0131 are displayed in figure 15. Figure 15(a,d) displays eigenvalues as a fraction of total
energy. With both methods, the first mode dominates the flow dynamics. At NFFT = 48,
the first standard SPOD mode accounts for 47.3 % of the energy, while the corresponding
shifted SPOD mode captures 77.4 %. At NFFT = 192, these values correspond to 64.6 %
and 82.9 %, respectively. In both cases, the shifted SPOD is able to capture more energy
in the first mode.

We can quantify the similarity between modes computed with different windows sizes
by calculating alignment coefficients

μi,j(ω) = |〈ψ̂ i(ω), ψ̂ j(ω)〉|
‖ψ̂ i(ω)‖ · ‖ψ̂ j(ω)‖

(5.9)

from which we get μ48,192 = 0.23 for standard SPOD and μ48,192 = 0.88 for shifted
SPOD. The higher alignment between modes computed with the shifted algorithm puts
in evidence its lower sensitivity with respect to the window size parameter.

5.2.2. Comparison with resolvent analysis
With the purpose of providing a deeper insight of the intrinsic dynamics of the boundary
layer system, global resolvent modes, computed according to the method presented in
Kaplan et al. (2021) and Abreu et al. (2021), are compared with the available SPOD modes.
The governing Navier–Stokes equations are linearised around a Blasius profile base flow
and cast in an input–output form, as described in § 3. Even though this is a nonlinear
system, it is presumed that, when the resolvent gains display an expressive separation in
magnitude, the first SPOD and resolvent response modes are similar regardless of the
nonlinear forcing statistics (Beneddine et al. 2016). This effect has already been observed
in turbulent flows (Schmidt et al. 2018; Cavalieri et al. 2019; Lesshaft et al. 2019; Abreu
et al. 2020b).

The global resolvent computational domain was defined similarly to the LES, with the
same domain size discretised with a 512 × 121 (X × Y) grid. We introduce a fringe zone
in xfringe ∈ [900, 1000] where fluctuations are damped and the base flow field is artificially
treated to enforce the periodicity in X (figure 16). Homogeneous boundary conditions for
fluctuations are set at the lower and upper domain limits. Derivatives are approximated by
a fourth-order finite differences scheme in X and Chebyshev polynomials in Y .

As in LES, all variables are non-dimensionalised by the displacement thickness δ∗ and
free-stream velocity U∞ = 1 at the intake, where Re∗ = 300. Periodicity in the spanwise
direction and stationarity imply the normal mode ansatz

q̃(x, y, z, t) = q̂(x, y) exp[i(βz − ωt)], (5.10)

where the state vector q = [u, v, w, p]T contains the velocity components and the pressure
stacked. The weight matrices W y and W f were set to account for the domain quadrature
and the operator B restricts the forcing application to the space outside the fringe zone.
The observation operator H removes the pressure component from the output, as the flow
is incompressible and only the velocity field is analysed. Even though the state q contains
points in the fringe, the resolvent operator gains only consider points outside of it, by a
proper definition of H .
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Figure 15. Results using a window of size NFFT = 48 and NFFT = 192 at β = 0.377, ω = 0.0131. (a,d)
Eigenvalues normalised by total energy. (a,d) Eigenvalues normalised by total energy. (b,c,e, f ) Real part of
the leading mode. (b,e) Standard SPOD. (c, f ) Shifted SPOD.
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Figure 16. (a) Blasius mean velocity field (U component). The dashed line indicates the beginning of the
fringe region. (b) Damping factor. The maximum of σ matches the value used in the LES.

Due to the significant size of matrices involved, the eigenproblem

RHRV = VΣ2,

U = RVΣ−1,

}
(5.11)

which calculates resolvent modes and gains is solved using sparse matrices via a
lower-and-upper decomposition and 50 iterations of the Arnoldi method (Martini et al.
2021), without explicitly inverting L. The details of this method are described in Kaplan
et al. (2021). Results of the global resolvent analysis for the same β = 0.377 and ω =
0.0131 as in the LES are displayed in figure 17. Figures 18 and 19 show the comparison
between the reconstructed three-dimensional resolvent mode and the previously studied
SPOD modes.

Figure 17(a) shows that the leading gain is sufficiently separated from the rest and,
thus, the corresponding mode can be used as a comparison with the SPOD. Besides
that, we observe in figure 17(b,c) that the leading response and forcing resolvent modes
demonstrate the mechanism described in the lift-up effect: a forcing perpendicular to the
streamwise direction, with a small fx forcing component and larger fy and fz, generating
a growing response primarily in the u velocity component. Such results are consistent
with the earlier calculations by Monokrousos et al. (2010). From figure 18 it is clear
that this dynamic generates intercalating regions of alternating streamwise velocity and
counter-rotating streamwise vortices. When the vorticity transports matter downwards to
the boundary layer, a positive streak is created, while the opposite occurs when matter is
forced upwards.

For case 2, cross-sections of shifted and non-shifted SPOD modes are almost identical
and match the dynamics of the most amplified linearised response. However, the same is
not true for case 1, suggesting that streak skewness is an attribute sensitive to window size.

Other discrepancies are clear in figure 19. While the resolvent response and shifted
modes feature aligned elongated structures, displaying the characteristic deviation caused
by the phase velocity ω/β, the non-shifted mode in case 1 has an opposite trend.
Since phase velocity is not affected by the windowing, we conclude that this is a
convergence issue of the standard SPOD, corrected by the proposed temporal shift
operation.

A growth of longitudinal vortices along the streamwise direction is perceived in the
SPOD modes (magnitudes of v and w components in figure 15). This feature is predicted
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Figure 17. (a) Resolvent gains. (b) Real part of the leading forcing mode. (c) Real part of the leading
response mode.

by the resolvent analysis, as seen in figure 17 and constitutes a different behaviour
from that caused by the transient growth, where vortices decay in x while streaks grow
(Andersson, Berggren & Henningson 1999; Luchini 2000). These results imply that the
free-stream turbulence provides a continuous forcing to the streamwise vortices, which
may be understood as projecting onto the forcing resolvent mode of figure 17(b) and
leading to streamwise vortices and streaks that grow in x.

In a further analysis, focusing on case 2 (NFFT = 192), the absolute value of each of
the mode components are plotted for the position x = 700. In figure 20(a) the free-stream
induced perturbations captured by SPOD modes are successful in matching the streamwise
component of the optimal linearised response predicted by the resolvent operator and the
overall form of the transverse components, of much smaller magnitude and, thus, more
difficult to converge, is consistent. This fact corroborates the assumption concerning the
similarity between SPOD and resolvent modes for large gain/energy separation, as is the
case. It is also noted that leading shifted and non-shifted SPOD modes are practically
identical at this streamwise position, a characteristic well depicted in figure 18. To evaluate
the differences between them, a look into the subsequent mode is necessary (figure 20b).
For the second mode, the agreement between SPOD and resolvent modes is not as close.
Nevertheless, the shifted mode better matches the two-peak form and the maximum
magnitude position of the linearised streamwise component.

To determine the statistical convergence of analysed modes, we apply the test employed
in Abreu et al. (2020b) and compute SPOD modes considering two equal parts of the
original database, each comprising 50 % of the total number of snapshots. Modes from
part 1 are projected into modes from part 2 and alignment coefficients, defined in (5.9),
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Figure 18. Section x = 700 of the reconstructed modes. Legend: (colours) u velocity component; (→)
perpendicular velocity component. (a) Resolvent response. (b,d) Standard SPOD. (c,e) Shifted SPOD.

are calculated. For a given mode, a correlation close to 1 implies that the correspondent
mode computed from the complete database is statistically converged. Results of this
analysis (table 1) show that all modes achieve alignment coefficients higher than 90 %.
This, in turn, indicates that discrepancies observed between shifted and non-shifted SPOD
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Figure 19. Section y = 2 of the reconstructed modes, inside the boundary layer. Legend: (colours) u velocity
component. (a) Resolvent response. (b,d) Standard SPOD. (c,e) Shifted SPOD.

modes are not due to poor statistical significance, but rather to a reduction of bias caused
by the temporal shift operation.
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Figure 20. Normalised fluctuations at position x = 700 for case 2. (a) Mode 1. (b) Mode 2. Legend: (−)
optimal linearised response (resolvent); (◦, blue) standard SPOD; (×, red) shifted SPOD.

Mode 1 Mode 2

Standard SPOD 0.9637 0.9390
Shifted SPOD 0.9842 0.9039

Table 1. Alignment coefficients at NFFT = 192, ω = 0.0131 and β = 0.377.

6. Conclusions

In the present study we explore the effect of estimation parameters (number of blocks
and number of snapshots per block) on the convergence of SPOD, associated with the
Welch method for spectral estimation. A convergence analysis is performed for a model
linear complex Ginzburg–Landau system, forced with spatially uncorrelated signals, by
measuring the estimation errors between numerical SPOD modes and resolvent response
modes.

Estimation errors in SPOD are found to be related to the spectral window length,
normalised by the domain size and characteristic velocity. As seen in figures 2 and 3,
two main phenomena affect the convergence of the SPOD method. For shorter windows,
with a duration comparable or lower than the flow-through time in the domain of interest,
we average over a larger number of Welch blocks that are not sufficiently long to capture
the space–time correlation in the system, which follows an advection velocity. This yields
smooth albeit biased SPOD modes, meaning results are precise but not accurate. Inversely,
for larger windows, we have fewer averaging blocks. This penalises precision as SPOD
modes are contaminated with noise, due to residual variance.

An extension to the SPOD algorithm by means of a temporal data shift is proposed. By
aligning cross-correlations between points inside each block, the new approach in shown to
minimise the bias of SPOD modes computed with short window sizes, as seen in figure 5.
This allows for better overall convergence as the SPOD can be computed with more blocks
for a given time series. This is an important feature when dealing with large simulations
that often count with a limited number of snapshots. Furthermore, when comparing the
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standard and shifted SPODs in a fixed-block framework of constant variance (figure 7),
shifted modes always display smaller estimation errors, achieving an order of magnitude
difference for smaller windows.

In order to demonstrate the pertinence of the proposed method in fluid dynamics
problems, we apply the temporal shift to an LES of a boundary layer subject to bypass
transition, and SPOD modes are compared with global resolvent modes. Even though
equivalence is no longer guaranteed for nonlinear systems (coloured forcing), SPOD and
resolvent modes are still similar when gain separation is large, as in the boundary layer
case.

Results show that the shifted SPOD, for the same estimation parameters, captures
more energy in the leading mode when compared with the standard method. In SPOD
modes a spatial growth of streamwise vortices is observed, a feature also present in the
resolvent analysis but absent from spatial transient growth analysis (Andersson et al.
1999; Luchini 2000). This implies that the free-stream turbulence continuously ‘forces’
streamwise vortices, leading to additional spatial growth of disturbances. When a single
streamwise section is compared, shifted and non-shifted SPOD leading modes are very
close and match the u component of the optimal linear response (leading resolvent mode).
Discrepancies arise when the second mode is looked upon. The shifted mode is closer
to the u component in the linear response. A further statistical convergence test indicates
these changes are not due to lack of statistical significance, but rather to a reduction of bias
caused by the shifting operation.
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Appendix A. Relationship between SPOD and resolvent analysis for an arbitrary
inner-product norm

Considering the inner products

〈
ŷ1, ŷ2

〉
Wy

= ŷH
1 W y ŷ2, (A1)〈

f̂ 1, f̂ 2

〉
Wf

= f̂
H
1 W f f̂ 2, (A2)

and the resolvent operator R, we compute response modes U , forcing modes V and gains
Σ via the SVD,

ỹ = W 1/2
y ŷ, f̃ = W 1/2

f f̂ , (A3a,b)

ỹ = R̃ f̃ =⇒ R̃ = W 1/2
y RW−1/2

f , (A4)
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R̃Ṽ = ŨΣ =⇒ RW−1/2
f Ṽ = W−1/2

y ŨΣ, (A5)

U = W−1/2
y Ũ, V = W−1/2

f Ṽ . (A6a,b)

We assume that

Cω = E
(

ŷŷHW y

)
, (A7)

Fω = E
(

f̂ f̂
H

W f

)
, (A8)

which imply from the resolvent framework (3.3),

Cω = RFωW−1
f RHW y . (A9)

If forcing terms are perfectly uncorrelated, Fω = I and the expression can be reduced to

Cω = RW−1
f RHW y = W−1/2

y R̃R̃HW 1/2
y

= W−1/2
y ŨΣ2Ũ−1W 1/2

y (A10)

and, thus, substituting (A6a,b), we have

Cω = UΣ2U−1, (A11)
as in (3.8).

Appendix B. On the convergence of the shifted spectral estimation

Given two bounded, stationary signals a(t) and b(t), the Fourier transforms of the
windowed signals within each Welch block are given by

âh(ω) = F {h(t)a(t)} = 1
T

∫ t0+T

t0
h(t)a(t)eiωt dt, (B1)

b̂h(ω, τ ) = F {h(t)b(t + τ)} = 1
T

∫ t0+T

t0
h(t)b(t + τ)eiωt dt, (B2)

where t0 denotes the initial time for each block, T the block duration, h(t) the windowing
function and τ the time shift.

Following the properties of the Fourier transform, a time shift τ generates a phase lag
of exp(iωτ). Thus, we write the corrected cross-periodogram as

S(ω, τ ) = âh(ω)b̂h(ω, τ )e−iωτ . (B3)
In the limit where T → ∞, we have

lim
T→∞

h(t) = 1, (B4)

lim
T→∞

âh(ω) = F {a(t)} = â(ω), (B5)

lim
T→∞

b̂h(ω, τ ) = F {b(t + τ)} = b̂(ω)eiωτ , (B6)

which leads to the true cross-periodogram

lim
T→∞

S(ω, τ ) = â(ω)b̂(ω) (B7)

and demonstrates that the procedure converges asymptotically for an arbitrary time shift
and frequency. In that sense, shifted and non-shifted spectral estimations must return the
same results for a large enough window size.
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