
Progress in defining the biological

causes of schizophrenia
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Schizophrenia is a common mental illness resulting from a complex interplay of
genetic and environmental risk factors. Establishing its primary molecular and
cellular aetiopathologies has proved difficult. However, this is a vital step
towards the rational development of useful disease biomarkers and new
therapeutic strategies. The advent and large-scale application of genomic,
transcriptomic, proteomic and metabolomic technologies are generating data
sets required to achieve this goal. This discovery phase, typified by its objective
and hypothesis-free approach, is described in the first part of the review. The
accumulating biological information, when viewed as a whole, reveals a number
of biological process and subcellular locations that contribute to schizophrenia
causation. The data also show that each technique targets different aspects of
central nervous system function in the disease state. In the second part of the
review, key schizophrenia candidate genes are discussed more fully. Two higher-
order processes – adult neurogenesis and inflammation – that appear to have
pathological relevance are also described in detail. Finally, three areas where
progress would have a large impact on schizophrenia biology are discussed:
deducing the causes of schizophrenia in the individual, explaining the
phenomenon of cross-disorder risk factors, and distinguishing causative
disease factors from those that are reactive or compensatory.

One may speculate about some far future in
which individuals will routinely undergo
‘genic analysis’, as nowadays they are
routinely vaccinated…Perhaps massive
genic analysis of the population will
eventually give us the information that will
lead to working out the physical basis for
mental disease.
Isaac Asimov (1962). The Genetic Code. The

New American Library, Inc.

Schizophrenia is a chronic and severemental illness
defined by the presence of delusions and
hallucinations (positive symptoms), apathy
and social withdrawal (negative symptoms), and
specific cognitive failures (Ref. 1). It is diagnosed
through qualitative assessment of patient
interview and case notes with reference to an
agreed set of classification criteria. The absence of
objective biological tests for schizophrenia (e.g.
through blood sample analysis or physiological
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readout) is a hindrance to disease prediction,
diagnosis, therapeutic assessment and scientific
research. The intangibility of the diagnosis results
from the difficulties in assessing the living brain
in conjunction with the substantial heterogeneities
in biological origin and clinical presentation of
the disorder.
In this regard, a detailed description of the

biology of schizophrenia would be invaluable.
Traditionally, such a description has been based
on three principal observations. First, there is
the pharmacologically defined involvement of
specific neurotransmitter receptor systems and
their particular anatomical pathways in the
brain. The action of amphetamine in inducing
or worsening psychotic symptoms suggested
that dopaminergic hyperactivity is an
important component of illness. Further
elucidation of the key dopaminergic tracts in
the brain affected by receptor-blocking
antipsychotic medication explained both the
alleviation of positive symptoms and motor-
control side effects. Hypofunction of the
glutamatergic neurotransmitter system is
also implicated through the action of
neurotransmitter receptor antagonists, such as
phencyclidine (PCP) and ketamine, together
with expression studies that show reduced
subunit expression in post-mortem brain
samples from individuals diagnosed with
schizophrenia (Ref. 2). Second, evidence from
brain-imaging approaches has provided
evidence for regional brain abnormalities in
structure – implicating neurodevelopment –
and function associated with illness. Some of
these features correlate with genetic risk
status, as recently reviewed (Ref. 3). Third,
particular cellular pathologies have been
described in brains from patients diagnosed
with schizophrenia: for example, reduced
oligodendrocyte number (Ref. 4) or altered
neuronal cytoarchitecture (Ref. 5). Until
recently, these ‘high-level’ observations,
although highly informative, have not been
matched by an understanding of the
underlying genetic and molecular mechanisms.
Schizophrenia is partly genetic (Refs 6, 7, 8, 9)

although its ‘genetic architecture’ (how many
and what type of mutations contribute to illness
in the individual and population) is still a
subject of much debate (Ref. 10). The existence
of families with a high density of affected
individuals suggests that segregating unitary

gene effects can strongly predispose to illness.
However, not all diagnosed individuals show
such inheritance patterns, indicating that
common, small-effect variants in multiple genes
that co-occur through random and transitory
co-segregation are able to produce a form of the
disorder phenotypically indistinguishable from
the familial form. Evidence from epidemiology
(Ref. 11) and the genomic studies described
below suggests that certain genes are risk factors
not only for schizophrenia, but also for bipolar
disorder (Refs 12, 13) and major depression
(Ref. 14), hinting at a degree of biological overlap.

In the eight years since the genetics of
schizophrenia was last reviewed in this journal
(Ref. 15), research in the field has been
transformed in direction and ambition by the
advent of ‘whole-genome’ technologies,
revealing the common genetic variation and rare
DNA copy number variants (CNVs) that
contribute to risk of illness. In parallel, the use of
structural and functional brain-imaging,
biomarker discovery through transcriptomics and
proteomics, and the generation of several mouse
disease models are increasing our understanding
of how primary biological deficits are translated
into clinical outcome (Refs 16, 17, 18, 19, 20, 21).
This review sets out the major discoveries from
such studies: primarily those at the molecular
and cellular end of brain functional hierarchy.
Although a broad but shallow approach is
inevitable, there is a clear intention to highlight
findings spanning research strategies and to
discuss those techniques that perhaps do not
presently receive the attention that they merit. With
this in mind, the review covers paths to discovery,
notable gene candidates and emerging processes,
and ends with a discussion of three issues facing
the field of schizophrenia research. Key reviews
have been signposted throughout to allow the
reader to explore specific aspects in more detail.

The discovery process
Genome-wide association studies
The genetic information responsible for the
development and regulation of the brain is
the foundation of its functional operation. This
position suggests that genetic studies are the
most likely to reveal primary and causative
factors predisposing to illness. Case–control
association studies reveal the contribution of
common genetic variation to risk of disease. The
past five years have seen impressive progress
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following themove away from small, gene-specific
studies towards the large genome-wide association
studies (GWAS). These have beenmade possible by
the sharing of DNA samples within consortia and
the technological advances in the massively
parallel detection of single-nucleotide
polymorphisms (SNPs) that make up the greater
part of common variation. The GWAS
experimental design makes no subjective
assumptions concerning gene candidacy or even
genic contribution (the studies include SNPs in
gene-poor regions of the genome). This feature –
along with the cytogenetic approaches detailed
below – will probably do most to benefit the
biological understanding of schizophrenia
because it has bypassed the subjective and
cyclical knowledge that drove many earlier
individual genetic and biological studies. Several
individual studies and some combined meta-
analyses (Refs 22, 23, 24, 25, 26, 27, 28, 29, 30)
have been carried out for schizophrenia: the latter
intended to boost signal-to-noise ratio resulting
from locus and allelic heterogeneity. A current
estimate places the genetic contribution of
common polymorphic variation to risk of
schizophrenia at ∼34% (Ref. 25).
Identified genes have been subjected to specific

replication studies as well as examination in
related conditions such as bipolar disorder and
major depression. The major confirmed finding is
the association of schizophrenia with a broad
swathe of markers on chromosome 6p22.1
(Refs 25, 26, 27). This locus houses the major
histocompatibility complex (MHC) consisting, in
part, of the human leukocyte antigen genes that
mediate the body’s monitoring of self and non-self
in the context of infection. The potential role of
the immune system in the aetiology of psychiatric
disorders makes this an important finding and is
discussed in more detail later. However, a note of
caution must be attached to the finding. The
MHC region is highly mutable, subject to strong
natural selection and known to influence
mammalian mate choice. These are all features
known to perturb the Hardy–Weinberg
equilibrium of allele frequencies in populations.
Careful analysis will be required to ensure that
the GWAS signals detected here are specifically
attributable to influence on schizophrenia risk.
Apart from the MHC genes, the associated region
also contains a number of other genes, including
NOTCH4, a previously identified candidate gene
with a neurodevelopmental role (Ref. 31), and a

histone gene cluster. We have recently shown that
the histone cluster is coordinately regulated by the
transcription factor SOX11, which is responsible
for neuronal differentiation (Ref. 32), suggesting
that chromatin modification might be an
alternativebiological explanation for theassociation.

In addition to the MHC region, GWAS studies
have highlighted variants strongly linked with a
risk of schizophrenia within the following
individual genes: ZNF804A, MYO18B/ADRBK2,
AGAP1 (CENTG2), NTRK3, EML5, ERBB4, NRGN,
TCF4, CCDC60, RBP1, PTPN21, CMYA5, PLAA,
ACSM1, ANK3, SULT6B1, ASTN1, CNTNAP1 and
GABRR1. Using an additional criterion of
independent identification in at least two studies
[including those also targeting bipolar disorder
(Ref. 12)], the following genes might also be
associated: ASTN2, OPCML, PSD3, RYR3, TMCC2,
GRID1, A2BP1, CACNA1C, CNTN5, CRYBB1,
EML5, CSMD1, FAM69A, LRP8, PTPRG1, SLIT3,
TMEM17 and VGCNL1/NALCN. As further GWAS
studies and meta-analyses amass (including those
from non-Northern European populations) and
cross-diagnostic comparisons are made, this list
will slowly evolve into a robust set of candidates.
A range of statistical methodologies and gene
categorisation resources are now being leveraged
to translate GWAS data into associated gene
functions in order to define key biological
processes perturbed in schizophrenia (Ref. 33).
One study of gene functions enriched in single
schizophrenia GWAS identified glutamate
metabolism, apoptosis and inflammation or
immunity as major processes (Ref. 34). Another
report found significant over-representation of cell
adhesion molecules in two schizophrenia GWAS
studies and moderate evidence in support of tight
junction, cell cycle, glycan synthesis and vesicle
transport pathways (Ref. 35).

The extraction of biological pathway
information from GWAS data will always be
tempered by the fact that common variant
frequencies have been modulated by ancient
founder effects, selection pressures and the
migratory history of human populations. These
geographical and pathological filters might limit
the ability of GWAS to signpost the full range of
genes and processes that underlie schizophrenia.

Copy number variation and other
cytogenetic failings
Deviations from diploid copy number in the
genome have long been recognised, particularly
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in the context of the duplications and deletions
observed in cancer, but the full extent of CNVs in
humans has only been appreciated relatively
recently (Refs 36, 37, 38). In contrast to common
SNPs, common CNVs do not seem to predispose
to disease risk (Ref. 39). Therefore, the focus has
been to identify rare CNVs enriched in, or specific
to, schizophrenia (Refs 40, 41, 42). As a
consequence, the chief issue has therefore been
how to statistically prove a causative role to a
given rare CNV in a numerically limited sample set.
Five properties of the CNVs discovered in

schizophrenia are important: (1) CNVs appear
mainly randomly throughout the genome. They
can be sporadic (clearly observed in autism) or
(perhaps subsequently) present as familial
forms. Hence, compared with common SNPs,
CNVs may define a broader gene contribution
to illness given sufficient sample size. (2) Both
deletions and duplications have been observed
at specific loci in schizophrenia. This implies
that copy number deviation, rather than
direction of change, is the chief mediator of
disease – a finding that holds for other disorders
and testifies to the subtleties of evolved gene
expression regulation (Ref. 43). (3) Several very
large CNVs that simultaneously alter the dosage
of multiple genes, including those found at
1q21.1, 2q12, 3q29, 7q36.3, 15q13.3, 16p11.2,
16p13.1, 17q12 and 22q11.2, are repeatedly and
consistently over-represented in schizophrenia
(Refs 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54).
Among these, the 22q11.2 CNV represents a
submicroscopic version of the previously
described chromosome 22 deletion that
underlies velo-cardio-facial syndrome (VCFS)/
DiGeorge syndrome, which is the most common
genetically defined risk factor for schizophrenia.
It will be a considerable challenge to dissect
these ‘syndromic’ CNVs and expose the relative
contribution of each constituent gene to the final
clinical diagnosis. (4) Certain CNVs (particularly
larger ones) initially linked to schizophrenia also
contribute to the risk of other diagnoses such as
autism spectrum disorder, developmental delay,
mental retardation and epilepsy. The most
convincing explanation for this observation is
that these CNVs perturb brain development: an
effect that is compounded by other gene
variants [as a ‘second hit’ (Ref. 55)] or by the
environment to define the precise clinical
endpoint. The earlier observation of increased
frequency and heritability of schizophrenia in

individuals diagnosed with mental retardation
can also be explained by the same
neurodevelopmental model (Ref. 56). (5) The
degree to which CNVs contribute to the general
risk of bipolar disorder is still uncertain (Refs 39,
57, 58), but appears less than for schizophrenia.
However, CNVs are associated with early-onset
bipolar disorder, supporting the notion that
CNVs are strongly linked to the kind of
neurodevelopmental dysfunction that might be
a distinguishing feature of schizophrenia.

Small CNVs present an opportunity to identify
individual candidate genes. The following is a
nonexhaustive list of genes occurring in at least
two schizophrenia CNV studies: A2BP1, ACP6,
BCL9, CHD1L, CHRNA7, CLDN5, CNTNAP2,
DLG2, FHIT, FLJ39739, FMO5, GJA5, GJA8,
GNB1L, KLF13, NRXN1, PARK2, PRKAB2,
TRPM1 and VIPR2. Additionally, the following
genes show overlap between schizophrenia and
bipolar disorder CNV studies: GRM7, LARGE,
PTPRD, RTN4R, SNAP29, SOX5, TXNIP, UFD1L
and ZNF74. Generally, genes within CNVs
associated with schizophrenia are statistically
over-represented with functions relating to
neurodevelopment, synaptic transmission and
signal transduction.

An older form of cytogenetic investigation based
on microscopic study of patient chromosome
rearrangements has been productive in the search
for schizophrenia risk genes in individuals and
families (Ref. 59). Chromosomal disruption can
sometimes be localised within specific genes that
immediately become strong candidates for
disease causation. A notable example is the study
of a t(1;11) translocation disrupting the DISC1
(disrupted in schizophrenia) gene in a Scottish
family (Refs 60, 61, 62, 63). The large family size
not only allowed the translocation to be
statistically linked with illness but also allowed
the detailed phenotypic assessment of family
members, including the observation that
diagnosis-free obligate carriers of the
translocation nevertheless possessed measurable
deficits in cognitive endophenotypes (Refs 64, 65).
It can be speculated that in these individuals the
primary neurodevelopmental deficit is
quantifiable but has not been matched by
additional genetic or environmental factors
required to cross a threshold into illness. Another
gene, PDE4B, which is disrupted in an
independent translocation event associated with
schizophrenia, encodes a phosphodiesterase
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enzyme subsequently shown tobind toDISC1, thus
providing a good example of functional
convergence (Ref. 66).
Othercandidateschizophreniagenes identifiedby

the cytogenetic route include a glutamate
metabolism pathway enzyme, PSAT1 (Ref. 67), a
kainate-type ionotropic glutamate receptor, GRIK4/
KA1 (Refs 68, 69, 70), a member of the ATP-
binding cassette membrane transporter family,
ABCA13 (see the section of rare variants below and
Ref. 71), and a brain transcription factor, NPAS3
(Refs 72, 73, 74). The last of these has also been
identified as a moderately significant risk factor for
schizophrenia, bipolar disorder and major
depression through GWAS analysis (Refs 14, 75).

Rare gene sequence variants
in schizophrenia
The field awaits data from the final stage in genome-
wide data gathering, the high-throughput
sequencing methodologies targeting rare variants
in individual patients. A recent study has
suggested that rare sequence variants are likely to
contain a disproportionate number of
nonsynonymous pathological changes, which is a
consequence of continuing negative selection
pressure in the population (Ref. 76). However, the
observation that the sequenced exomes of
nominally healthy individuals reported so far all
show several rare and apparently disruptive
coding variants strongly predicted to cause illness
is an indication that caution is warranted (Ref. 77).
This reduced penetrance or compensation is likely
to make confirmation of rare variants statistically
challenging. Until now, the analysis of rare
variants associated with schizophrenia has largely
been carried out on a gene-by-gene basis with
conventional sequencing methodology. DISC1
(Ref. 78), ABCA13 (Ref. 71), KIF17 (Ref. 79) and
PCM1 (Ref. 80) are examples of candidate genes
that have been sequenced in case and control
populations, leading to the discovery of rare
variants. Some of the variants, even those with a
clear impact on protein structure and function,
have failed replication (Ref. 81). The whole-
genome and exome projects for schizophrenia will
provide a clearer picture of the overall disease risk
from rare variants and reveal the extent of
incomplete penetrance.

Transcriptomic studies
In contrast to primary genetic defects, the
following three sections concentrate on the

assessment of cellular activity and reactivity.
Post-mortem gene expression studies have
compared gene transcription between brain
tissue samples taken from healthy control
individuals and those from individuals
diagnosed with schizophrenia. Originally, this
was undertaken on a hypothesis-driven, gene-
by-gene basis: for example, studying glutamate
receptor expression changes in the schizophrenic
brain (Refs 82, 83, 84). The availability of full-
gene-set microarray chips has widened the
search to reveal novel diagnostic biomarkers
(Refs 85, 86) and the significant contribution
of gene ontologies (descriptors of biological
function or location) to the pathology and
aetiology of disease (Ref. 87).

However, many extraneous factors modify
expression profiles, including response to drug
treatment, age, gender and physiological state of
the individual at death, cell-type complexity of the
tissue excised for analysis and preservation of the
tissue post mortem. Additionally, there is
uncertainty about whether transcriptional changes
reflect cause (which itself will be of heterogeneous
nature between individuals) or a secondary
response to the disease state. With the adoption of
large sample sets and best technical or analytical
practice, the results from microarray studies have
shown some convergence on particular biological
processes. These include metabolic regulation,
mitochondrial activity, synaptic function,
inhibitory neurotransmission, oligodendrocyte
and myelination processes, ubiquitin–proteasome
function, chaperone function and immune
response. These are reviewed in detail elsewhere
(Refs 88, 89, 90, 91, 92, 93, 94). Reduced brain
expression of RGS4 (regulator of G-protein
signalling 4) is perhaps the most replicated
specific transcriptional change in schizophrenia.

The use of tissue samples, such as blood, from
living patients is a route to practical biomarker
identification. However, this demands that
peripheral gene expression profiles reflect those
in the brain, and so far there are conflicting
reports on this matter (Refs 95, 96, 97, 98).
Similarly, many studies have examined gene
expression changes in genetic or therapeutic
models of schizophrenia in cell lines or
transgenic mouse models (Refs 99, 100, 101).
These studies tend to yield relatively robust
findings and might prove to be a starting point
for biological hypotheses that may be confirmed
in post-mortem tissue.
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A new addition to microarray studies is the
search for changes in the endogenous
microRNA species that bind gene regulatory
sequences and are thought to coordinate global
transcriptional responses. Human post-mortem
studies have been recently summarised
(Refs 102, 103), and the findings indicate a
number of specific miRNAs associated with
schizophrenia that implicate, through shared
ontology of their targets, neurodevelopmental
and neurotransmitter pathways in disease
pathology. A role for perturbed miRNA
signalling in schizophrenia is further suggested
by the presence of the DGCR8 gene in the
22q11.2 VCFS deletion region: this gene encodes
a component of the miRNA processing complex.

Proteomic studies
The schizophrenic proteome has also been
explored for its biomarker potential, again
focusing on clinically accessible tissue samples
such as blood serum and cerebrospinal fluid
(CSF) (Refs 104, 105). The studies show good
consistency and often overlap with existing
genetic findings, as recently reviewed in detail
(Ref. 105). Alterations in the abundance of
proteins with roles in metabolic function,
particularly glycolysis (ENO1, ENO2, ALDOC,
PGAM1, TPI1 and LDHB), and the cytoskeleton
(INA, NEFL and SEPT3) are particularly
frequently associated with schizophrenia
(Refs 106, 107, 108, 109, 110). A recent study
found that stimulation of peripheral blood
mononuclear cells from schizophrenia patients
resulted in significant increases in glycolytic
enzyme expression in comparison to the same
procedure in healthy controls (Ref. 111).
One specific finding merits further discussion:

CSF upregulation of the secreted factor VGF has
been shown in cases of schizophrenia and
depression, even before therapeutic drug use
(Refs 112, 113). Independently, VGF has been
implicated in metabolic control and appears to
mediate the antidepressant actions of exercise by
increased hippocampal neurogenesis (Refs 114,
115, 116, 117). We have recently demonstrated
that the VGF gene is a target of the NPAS3
transcription factor (Ref. 118).

Metabolomic studies
Perhaps themost recently developed tool applied to
schizophreniaisbasedonthelarge-scalebiochemical
analysis of tissue from patients or transgenic mouse

models, which is usually achieved through a
combination of chromatography and high-
resolution mass spectrometry (Ref. 119).
Improvements in resolution mean that several
hundred molecular species can be identified,
depending on the precise extraction conditions
and separation parameters. Biosynthetic pathway
flux, redox balance, cellular energy state,
neurotransmitter abundance and membrane
composition can all be assessed. Hence, the
resulting data are of a different flavour to those
described above, providing a snapshot of the
homeostatic interactions between genome-directed
enzyme expression, disease pathology and
environmental factors. The results of metabolomic
studies of schizophrenia have been reviewed
previously (Refs 120, 121) and frequently include
disruptions to three biological processes. First,
schizophrenia alters the composition of brain
lipids, such as phosphatidylethanolamine and
phosphatidylcholine (omega-6 forms, in
particular), a state that is reversible with
antipsychotic use (Refs 122, 123, 124, 125). This
interaction with medication is further indicated by
the general and specific changes in lipid pathway
transcriptomics induced by a wide spectrum of
neuroleptics (Ref. 101). Second, schizophrenia,
similarly to other CNS disorders such as Parkinson
disease, Alzheimer disease and multiple sclerosis
(MS), is associated with metabolic changes
consistent with an imbalance in redox state or
oxidative stress (Refs 126, 127, 128). Notably, the
free-radical scavenger glutathione appears to be
reproducibly decreased (Refs 129, 130) and
mirrored in the observed genomic deletions of
glutathione S-transferase genes in schizophrenia
(Ref. 131). Third, and perhaps closely related to
these defective oxidative processes, are the
reported deficiencies in glucose utilisation
(Ref. 132) and energy production that point to
perturbed anaerobic glycolysis and mitochondrial
oxidative respiration (Refs 133, 134). The role of
glucose metabolism is especially relevant in the
context of the increased risk of metabolic
syndrome or type II diabetes in schizophrenia.
Although this can often be linked with
antipsychotic side effects, there is good evidence
for inherent deficits of glucose metabolism in
drug-naive patients (Refs 135, 136). Oxidative
damage to the mitochondrial genome has been
frequently reported in schizophrenia, highlighting
this organelle as a focus of pathology (Ref. 137).
Additionally, mitochondrial morphology and
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subcellulardistributionareknowntoberegulatedby
DISC1 and its interactors, such as IMMT/mitofilin
(Refs 138, 139, 140). The metabolomic approach
might help to expand phenotyping of transgenic
animal models. We recently demonstrated that
Npas3-knockout brain tissue has specific
disturbances of the NAD+ redox intermediate, as
well as components of the glucose and pentose
phosphate metabolic pathways: a finding that was
supported by in vitro analysis of the gene targets
of this transcription factor (Ref. 118).

Established candidate genes
Specific gene-hunting methods have led to
the discovery of several strong candidate
schizophrenia genes. Three of these are briefly
summarised here: DTNBP1 (dystrobrevin-

binding protein 1/dysbindin) (Ref. 141), NRG1
(neuregulin) (Ref. 142) and DISC1 (Ref. 61). Each
has spawned a dedicated research field using
cell biology and transgenic mouse modelling to
link gene function to disease.

Dysbindin is known to interact with component
proteins of the biogenesis of lysosome-related
organelles complex 1 and dystrophin-associated
protein complex (DPC) (Ref. 143). A number of
directly interacting proteins in these complexes
(e.g. CMYA5) have also been independently
linked with risk of schizophrenia. Other
candidate disease proteins such as NRXN1 and
LARGE are indirectly associated with the DPC.

Neuregulin encodes several isoforms of a
growth factor with known roles in both
neuronal (inhibitory interneuron) and glial cell

The function of DISC1 has been defined by its protein interactions and has generated deep insight
into the molecular basis of neurodevelopmental failures central to the aetiology of schizophrenia
Expert Reviews in Molecular Medicine © 2011 Cambridge University Press
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Figure 1. The function of DISC1 has been defined by its protein interactions and has generated deep
insights into the molecular basis of neurodevelopmental failures central to the aetiology of
schizophrenia. DISC1 (yellow) is shown at two locations in the centre of the diagram and its interactors
lead to various outputs located at the top and bottom. In the case of the centrosome, cytoskeleton and
axonal growth or migration, all three can be considered different aspects of the same neurodevelopmental
pathway. The data (only a subset of the total) have been assembled from general (Refs 147, 148, 149, 150,
151, 152, 153, 154) and specific protein-interaction papers. DISC1 interacts with KALRN/HAPIP (Ref. 155),
DBZ/ZNF365A (Ref. 148) (Ref. 147), the NDE1 complex (Refs 156, 157), BBS4 and PCM1 (Ref. 158), PDE4B
(Ref. 66), FEZ1 (Ref. 151), CAMD1 (Ref. 159), GIRDIN and AKT (Refs 160, 161), KIF5A and YHWAE/14-3-3-ε
(Refs 162, 163, 164), DIXDC1 (Ref. 165) and IMMT/mitofilin (Ref. 140).
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function. NRG1 isoform type IV has particular
relevance to schizophrenia because its promoter
lies close to the SNP with strongest genetic
association with illness. Neuregulin signals
through the ErbB4 receptor that has also been
associated with schizophrenia (Refs 144, 145).
In the ten years since the discovery of DISC1,

work on the gene has moved from confirmation
of genetic risk to extrapolation of function by
mapping protein interactors (Refs 60, 146) and,
finally, onto pathological and behavioural
studies in transgenic mouse models. Figure 1
summarises the predominant cellular roles of
DISC1 by presenting the several protein
interactions that have been described at the
nucleus, mitochondrion, centrosome, growth
cone and synapse. One particularly important
DISC1 function can be summarised as the
harnessing of the cytoskeleton for intracellular
trafficking, cellular movement and axonal
extension, which in turn contributes to
structural brain development and clinical
manifestations.

Functional paradigms in schizophrenia
Cellular trends
As the number of schizophrenia risk genes or
proteins accumulates and resolves, they are
assessed for statistically significant over-
representation of certain ontologies. This
convergence of processes and pathways thus
defines likely biological causes of schizophrenia.
The genomic dissection of autistic spectrum
disorders (ASDs), accelerated by its substantial
cytogenetic component, has led the way in this
regard, with at least three clear functional
asymptotes discovered: that of the structure and
function of the synapse, axonal insulation and
the mTOR pathway (Refs 166, 167). Figure 2
shows a model neuron together with a subset of
the genes or proteins detailed within this review
grouped according to their typical functions or
subcellular locations. Does it permit new
insights beyond the banal fact that synapses,
axons and dendrites are all important in
schizophrenia aetiology? The concentrated
cytoskeletal, mitochondrial and metabolic links
might be the most revealing aspects. The first is
in line with the action of the DISC1 complex
detailed above. Thus, we can place the
cytoskeletal processes of intracellular trafficking,
as well as the dynamic migration of neurons
and axonal extension during development, at

the forefront of aetiological processes linked
with schizophrenia. The density of proteins
involved in glycolysis and mitochondrial
function is an indication of the perturbed state
of brain energy regulation in schizophrenia. In
summary, a variety of techniques persuasively
suggest that deficiencies of the synapse,
cytoskeleton, cell adhesion, metabolism and
oligodendrocyte function are key factors
underlying schizophrenia.

The immune system
As studies of schizophrenia transition from the
cellular to organism level, several biological
processes become apparent, including
inflammation and adult neurogenesis.
Epidemiological data have long supported an
immune component to schizophrenia. The
increased risk of schizophrenia due to habitation
in an urban environment (Ref. 168) might be
explained by increased exposure to infectious
disease (Ref. 169). The proposed mechanism is
through effects of maternal infection during
pregnancy, which impinge on the formation
of the fetal brain during critical
neurodevelopmental stages. Specific infections,
such as the cat-borne Toxoplasma gondii parasite,
have been repeatedly associated with risk of
schizophrenia and linked to behavioural and
cognitive performance changes (Refs 170, 171).
At the molecular level, there is evidence for
increased levels of inflammatory markers (e.g.
interleukins) in the brains of those diagnosed
with schizophrenia. Interleukin administration
during rodent development can induce
schizophrenia-like phenotypes (Ref. 172).
Targeting these inflammatory processes in
schizophrenia [e.g. by reducing prostaglandin
E2 production with the nonsteroidal
anti-inflammatory drug aspirin (Ref. 173)]
appears to be a useful adjunct to conventional
antipsychotic treatment.

En masse analysis of GWAS data sets has
described a relationship between schizophrenia
and bipolar disorder, but clearly distances them
both from the core group of common, complex
genetic disorders known to share an
autoimmune component [e.g. rheumatoid
arthritis (RA), Crohn disease (CD), MS and
type I or II diabetes (T1D/T2D)] (Ref. 25).
Nevertheless, the association between
schizophrenia and the MHC region on
chromosome 6 suggests that a link might exist.
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A recent analysis of GWAS overlaps among the
autoimmune disorders (Ref. 174) identified
genes with considerable relevance to
schizophrenia. For example, NRXN1 (a shared
risk factor for RA, CD and MS), TRIM27 (RA,
CD and T1D), and, with less statistical
significance for overlap, ZNF804A (RA, T1D),
CSMD1 (RA, MS) and ZDHHC8 (RA, T2D) have
also been identified in the schizophrenia GWAS
and CNV literature.
Immunostimulation of mice with compounds

such as lipopolysaccharide or polyI:C has
recently been used in an attempt to model such
gene–environment interactions. Both postnatal
and in utero treatments of polyI:C have been
used in mice overexpressing a dominant-
negative mutant form of the human DISC1
protein (Refs 175, 176, 177). For both time
points, combining immunostimulation and
overexpression of mutant DISC1 resulted in
significantly greater phenotypic consequences
than treatment or overexpression alone. The
effects were diverse, ranging from increased
anxiety or depression, altered social interaction,

behavioural paradigm performance changes,
memory deficits, altered interleukin production
(IL-1β up, IL-5 down), reduced HPA axis
activation in stressful conditions, reduction
in DISC1-specific enlargement of lateral
ventricles, reduction in parvalbumin-expressing
interneuron number and reduced dendritic
spine density. These are important hypothesis-
driven experiments that expose the breadth
of responses to gene–environment interaction
but, as yet, do not fully reveal whether these
effects are independent (additive risk) or
mechanistically synergistic (a role for DISC1 in
immunomodulation). In terms of linking DISC1
to immune response, it is intriguing to note that
one of its protein interactors, ZNF365 (DBZ/
KIAA0844), is also a key candidate for CD
(Ref. 178) and breast cancer (Ref. 179), both of
which have immune components to their
aetiologies.

In addition to proinflammatory pathways, new
interest in the actions of the innate and adaptive
immune systems in the central nervous system
has been sparked by the realisation of the extent
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Figure 2. Convergent locations and actions of genes or proteins implicated in risk of schizophrenia from
multiple discovery approaches. Neuron adapted from a Wikimedia Commons image (http://commons.
wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg).
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to which both MHCI and complement cascade
proteins such as C3 contribute to synapse
pruning during development (e.g. the visual
system in the dorsolateral geniculate nucleus)
and in neurodegenerative disorders (Ref. 180).
This is particularly intriguing when it is
considered that excessive synaptic pruning
within the adolescent prefrontal cortex might
directly precede and contribute to the onset of
schizophrenia (Refs 181, 182, 183). The protein
CSMD1, discussed above, appears to have a role
in complement pathway regulation.

Adult neurogenesis
Structural brain-imaging studies support a
neurodevelopmental model of schizophrenia
(Ref. 3). This model is physically manifest at the
levels of proliferation, differentiation and
migration of neurons during the embryonic
formation of the cortex and, later, recapitulated
as the addition of new granule cells to the
dentate gyrus region of the hippocampus in
adulthood (Refs 184, 185). At the molecular
level, protein interactors such as DISC1, NDE1
and PAFAH1B1, for example, are known to be
vital participants in both the embryonic and
adult processes. Moreover, both processes
involve a defined layer of stem cells located
within the subventricular zone or subgranular
zone that generate a neuronal progenitor
population, which divide to produce daughter
cells committed to a neural fate. The process
does not begin and end with this proliferation:
in adult neurogenesis, only a proportion of the
new neurons successfully differentiate, migrate
and integrate permanently into the existing
neuronal architecture; the remainder apoptose.
Post-mortem studies showing that adult

neurogenesis is attenuated in schizophrenia
(Ref. 186), together with evidence that it is
improved by antipsychotic treatment, have
sparked enormous interest as a potential
pathology that might also reflect defects in
embryonic neurodevelopment (Ref. 185).
Dentate gyrus granule cells form one of the
component synaptic junctions, mossy fibre
synapses, in the hippocampal trisynaptic
circuitry that contribute to the long-term
activity-dependent synaptic plasticity changes
(long-term potentiation, LTP) thought to
underlie learning and memory. Therefore,
neurogenesis, by effects on LTP, has the
potential to contribute to some of the cognitive

aspects of schizophrenia, although evidence to
support this is currently incomplete (Ref. 187).

The rate of neurogenesis in transgenic mouse
models of schizophrenia (as measured by the
incorporation of nucleotide analogues into the
genomic DNA of dividing cells) provides an
attractive means to quantify effects of the single
genetic defect and correlate this with
behavioural and cognitive deficits. However,
adult neurogenesis does not measure up
perfectly as a causative pathology in
schizophrenia. First, neurogenesis declines
steeply with age in rodents and humans, which
is at odds with the course of schizophrenia.
Second, neurogenic proliferation is a highly
reactive phenomenon. Many stimuli seem able
to trigger it, including hypoxia, aerobic exercise,
environmental stimulation, sex hormones and
seizures. Third, it is somewhat disconcerting to
see it touted as an important pathology in
Alzheimer disease (Ref. 188) and other forms of
neurodegeneration (Refs 189, 190, 191, 192). In
the light of these conflicting properties, one
pragmatic stance might be that levels of adult
hippocampal neurogenesis provide a useful
barometer of neurodevelopmental competence,
general cognitive activity and ‘health status’ of
the brain, rather than a specific risk factor for
schizophrenia.

Transgenic mouse models of schizophrenia
have been vital in driving the association
between neurogenesis and schizophrenia.
Several strains with Disc1 dysfunction have
comprehensively dissected the gene’s role in
embryonic and adult neurogenesis, revealing
participation in both the proliferative and
migration or maturation stages (Refs 160, 161,
193, 194, 195, 196, 197, 198, 199, 200, 201).

Mice lacking the Npas3 gene also display
cognitive, behavioural and neurodevelopmental
phenotypes (including adult neurogenesis
deficiency) consistent with a model for human
psychiatric illness (Refs 202, 203, 204). A recent
paper (Ref. 205) described an in vivo screen for
small molecules that could reverse the
neurogenesis phenotype in Npas3 mutant mice.
One molecule that achieved this, P7C3, helped
determine that the Npas3 neurogenesis failure
was due to increased levels of apoptotic death
among newly formed neurons, rather
than defective proliferation. Because
electroconvulsive stimulation of Npas3-knockout
mice also restores neurogenesis, it might be
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speculated that Npas3 acts as a survival
checkpoint: determining whether new neurons
are registering ‘activity’ consistent with
appropriate integration into dentate gyrus
circuitry. Intriguingly, the Npas3-knockout
deficits appear to be a consequence of
mitochondrial fragility, in line with the
metabolic defects described earlier, making
this gene a point of convergence for glucose
metabolism and neurodevelopmental risk
mechanisms.

Outstanding issues in schizophrenia
biology

Recent progress in the study of schizophrenia is
beginning to place the disorder within a robust
framework of key biological processes.
However, three outstanding issues have
emerged, and tackling them might greatly
facilitate the practical application of this new-
found knowledge.

Personal schizophrenia
There is a need to quantify genetic risk at the level
of the individual. GWAS identifies common
genetic variants contributing to population risk
of psychiatric illness. It can be thought of as
using a ‘horizontal’ approach in which averaged
allele frequencies are compared between cohorts
of cases and healthy controls. This is in contrast
to ‘vertical’ studies such as CNV detection and
exome resequencing, which define the genetic
status of the individual. The consequence of this
distinction is that GWAS variants are not
studied in their genomic context, as an additive
(or even multiplicative) contribution to an
individual’s mutational load. The horizontal
approach benefits considerably from statistical
power, but the vertical approach comes closer to
the clinical goal of predictive testing for disease
status and effective treatment. With common
genetic variation predicted to act by
transcriptional regulation, there is now an
opportunity to combine genomic and
transcriptomic data sets to reveal those
‘expression quantitative trait loci’ with greatest
relevance to schizophrenia aetiology in the
individual (Refs 206, 207, 208, 209, 210). Such
studies, which have already been applied to
DISC1 pathway biology (Ref. 211) and are
supported by a very recent proof-of-concept
study (Ref. 212), will require the correlation of
CNS-relevant expression profiles from several

individuals diagnosed with schizophrenia with
their genome-wide SNP genotypes. The
generation and neuronal differentiation of
induced pluripotent stem (iPS) cell lines from
patients might provide the appropriate material
to make this approach feasible (Refs 213, 214, 215).

Overlapping aetiologies
The estimate of a 50% genetic overlap between
schizophrenia and bipolar disorder, and its
further biological relationships with ASD,
epilepsy and mental retardation, requires
reassessment of both simple models of
neuropsychiatric disorder classification and
single-process aetiologies. It might also force a
categorisation of risk factors according to their
mode and site of action. If it is found that much
of the shared genetic variation is present in the
neurodevelopmental gene fraction, then a model
based on a ‘fragile-brain’ endophenotype might
be constructive. Such a model would be
consistent with the substantial genetic
heterogeneity observed because it would just
require an initial generalised deficiency in brain
function or connectivity. A secondary hit by
other genetic factors or the environment would
then produce diagnosis-specific pathologies
(Figure 3). Applying a crude computer analogy,
the neurodevelopmental failures might cause
relatively nonspecific defects in hardware,
whereas disease-specific processes target specific
routines in the software.

Cause and effect in schizophrenia
An important issue is how to define the point of
action of any biological process linked with
schizophrenia (Figure 3). Are we able to
distinguish those biological pathways that are
bona fide primary causes of schizophrenia from
those that are the downstream reaction to, or
homeostatic consequences of, schizophrenia or
environmental risk factors? This might be
pertinent for diagnosis and treatment. Genetic
or molecular factors identified through the
methods outlined above might reflect patient-
specific responses to a primary deficit just as
much as the primary deficit itself, and so an
early-life diagnostic test might be better aimed
at the latter. Similarly, therapeutic drugs might
be best targeted to the root causes or
downstream consequences of disease [or both
(Ref. 173)]. In such a model, where do current
antipsychotics act? As one moves up the
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biological hierarchy from gene to cell to organ and
then individual, reactive processes are likely to be
more prevalent (Fig. 3). The process of
inflammatory response would perhaps fall into
the reactive category, whereas cytoskeleton
function, for example, might be considered
causative. Embryonic neurogenesis would be
causative, adult neurogenesis potentially
reactive. This distinction would be mirrored in
the discovery arena too. Genomic strategies are
likely to reflect cause (although there will
clearly be a genetic component to reaction)
whereas other ‘-omics’ would be increasingly
influenced by environment and disease state.
The skewed distribution of evidence for

metabolic disturbance in the upper part of the
hierarchy, as detailed above, suggests that it
has more of a reactive or secondary role;
however, the Npas3 findings argue otherwise.
Perhaps the detection of cell-autonomous
defects, a possible corollary of causation, might
be ideally suited to resolve the cause–effect
dilemma. Again, the study of patient iPS cells
might be invaluable in this regard.

A biological definition of the causes of
schizophrenia is now a realistic, albeit
challenging, goal. Its potential to influence
therapeutic strategies, diagnostic methods and
social acceptance of those diagnosed would be
considerable, more than justifying the time,
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Figure 3. Models of schizophrenia biology and analysis. In this speculative representation, distinctions
between biological cause and effect are presented from left to right. These highlight primary deficits and
reactionary responses in schizophrenia, the specific stages of biological processes that might be involved,
the progression from general mental illness susceptibility to specific diagnoses, and the competence of
commonly employed investigative techniques to resolve these aspects. ‘G X E’ indicates the combined
effect of genes and environment on risk.
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effort, cost and frustration involved in its
formation.
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Further reading, resources and contacts

The Schizophrenia Research Forum contains up-to-date news and views on the progress of basic and clinical
research into schizophrenia:

http://www.schizophreniaforum.org/

A website much more directed towards informing those diagnosed with schizophrenia together with their
families and carers can be found at

http://www.schizophrenia.com/index.php

Features associated with this article

Figures
Figure 1. The function of DISC1 has been defined by its protein interactions and has generated deep insights

into the molecular basis of neurodevelopmental failures central to the aetiology of schizophrenia.
Figure 2. Convergent locations and actions of genes or proteins implicated in risk of schizophrenia frommultiple

discovery approaches.
Figure 3. Models of schizophrenia biology and analysis.
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