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Transport efficiency of metachronal waves in 3D
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This work reports the formation and characterization of antipleptic and symplectic
metachronal waves in 3D cilium arrays immersed in a two-fluid environment, with
a viscosity ratio of 20. A coupled lattice Boltzmann–immersed-boundary solver is
used. The periciliary layer is confined between the epithelial surface and the mucus.
Its thickness is chosen such that the tips of the cilia can penetrate the mucus. A
purely hydrodynamical feedback of the fluid is taken into account and a coupling
parameter α is introduced, which allows tuning of both the direction of the wave
propagation and the strength of the fluid feedback. A comparative study of both
antipleptic and symplectic waves, mapping a cilium interspacing ranging from 1.67
up to 5 cilium lengths, is performed by imposing metachrony. Antipleptic waves
are found to systematically outperform symplectic waves. They are shown to be
more efficient for transporting and mixing the fluids, while spending less energy than
symplectic, random or synchronized motions.
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1. Introduction
Cilia and flagella are contractile hair-like structures, put into motion by biochemical

energy, and protruding on the free surfaces of eukaryotic or prokaryotic cells.
While prokaryotes are single-celled organisms, eukaryote cells have membrane-
bound organelles and are found in every mammal. Many living organisms, going
from prokaryotic bacteria to mammals, use ciliary and/or flagellar propulsion
as a swimming mechanism. Usually, flagella are external appendices used by
microswimmers such as the alga Chlamydomonas reinhardtii for locomotion purposes,
while cilia are generally internal appendices, shorter and more numerous, used for
moving materials such as nutrients, dust or proteins into living organisms. Ciliary
propulsion is a universal phenomenon, and many examples could be cited. For the
particular case of the human body, cilia are responsible for the left–right asymmetry
of the heart in early embryonic development, for the transport of nutrients in the
brain and for the transport of mucus in the mucociliary clearance process, which is
the background of the present work (see Satir & Christensen (2007) for a review
about the structure and function of mammalian cilia).
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During the breathing process, a large number of foreign particles (bacteria,
dust, pollutants or allergens) can penetrate the organism. The human body has
then developed three mechanisms to protect itself from these particles: coughing,
alveolar clearance and mucociliary clearance, which occurs on the epithelial surface
of the respiratory system. In order to trap the particles, a layer of fluid called
the airways surface liquid (ASL) covers the epithelial surface. Due to differences
in the concentration of mucins inside the ASL, it is generally assumed to be the
superposition of two different layers: the periciliary layer (PCL) and mucus. The
PCL, of 7 µm depth, is located between the epithelial surface from where the cilia
protrude and the mucus phase just above it. Mainly composed of water and a few
mucins of low molecular weight, this phase, often considered as being a Newtonian
fluid similar to water, is a kind of lubricant allowing the mucus to slip on it and the
cilia to beat without too much viscous resistance.

Mucus is a highly non-Newtonian fluid, with a strong viscoelastic behaviour.
Additionally, the inner structure of the macromolecules composing it confers to
the mucus a clear thixotropic behaviour, which is currently being studied and
characterized to understand its inner rheological properties which exhibit a large
variability (Lafforgue et al. 2016). Mucus is indeed composed of 95 % water, but
also contains macromolecules called the mucins (Lai et al. 2009). It serves as a
physical barrier against infectious agents and dust, but also to humidify the air
flowing into the respiratory system and to catch particles. Its height varies between 5
and 100 µm depending on many factors, including the position in the respiratory
system (Widdicombe & Widdicombe 1995), the pathology for a particular person
and the quality of the air inhaled. Its viscosity can also vary by several orders of
magnitude within the same day (Kirkham et al. 2002).

Cilia are the other protagonists of the mucociliary process. They are organized as
tufts (around 200–300 cilia per tuft) at the epithelium surface. Formed by nine pairs
of microtubules placed regularly in a circle and one pair of microtubules at the centre
(which form the so-called axoneme), their purpose is to propel the surrounding fluid
layers. Their diameter varies from 0.2 to 0.3 µm and their length from 6 to 7 µm
(Sleigh, Blake & Liron 1988).

The cilium motion can be decomposed into two steps: a stroke phase and a recovery
phase. The stroke phase is characterized by almost straight cilia orthogonal to the
flow in order to maximize the pushing effect, while the cilia are bending during the
recovery phase in a more inclined plane to get closer to the epithelial surface in
order to minimize the viscous resistance and therefore to reduce their impact on the
flow. During the stroke phase, which takes around 1/3 of the total beating period,
the tips of the cilia enter the mucus phase (Widdicombe & Widdicombe 1995). Their
beating frequency is estimated to vary between 10 and 20 Hz. It should be noted
that the spatial asymmetry is essential for the cilia to generate propulsion in creeping
flows, while the temporal asymmetry (recovery phase longer than stroke phase) is not
necessary to induce a mucus motion (Khaderi et al. 2010).

It has been experimentally observed that cilia usually do not beat randomly (Sleigh
1962), but instead adapt their beating according to their neighbours, giving birth to the
so-called metachronal waves (MCWs) observed at the tips of cilia. Metachronal waves
occur when adjacent cilia beat with a constant phase lag 1Φ between one another. For
0<1Φ <π, the MCWs move in the opposite direction to the fluid propelled and are
called antipleptic MCWs. On the contrary, for −π < 1Φ < 0, the MCWs move in
the same direction as the flow and are called symplectic MCWs. When the phase lag
1Φ is null, all cilia beat in a synchronized way. Finally, when the phase lag between
neighbouring cilia is 1Φ =±π, a standing wave appears.
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The universality of ciliary propulsion has intrigued scientists for decades, and
several studies have been conducted in order to understand it. One actual objective
is to be able to mimic this process in order to, for instance, create cilium-based
actuators for mixing, and use them as flow regulators in microscopic biosensors or
as micropumps for drug-delivery systems (Li, Tan & Zhang 2009; Chen et al. 2013).
Moreover, diseases such as asthma and chronic obstructive pulmonary disease (COPD)
are related to the mucociliary clearance process (Gardiner 2005). The objectives are
to understand the underlying mechanism that allows hundreds of cilia to act as a
whole for the transport of mucus and how it affects the flow generated. The results
could bring a deeper understanding to such pulmonary diseases.

Numerically, Gueron and co-authors (Gueron et al. 1997; Gueron & Levit-Gurevich
1999) showed in the 1990s that two neighbouring cilia beating randomly will quickly
synchronize within a few beating cycles due to hydrodynamic interactions and form
antipleptic MCWs. This has been recently confirmed by Elgeti & Gompper (2013),
who observed the formation of MCWs in a 3D single-phase environment. A certain
degree of freedom in the beating pattern is required, as shown in the theoretical work
of Niedermayer, Eckhardt & Lenz (2008). They modelled the beating pattern of cilia
by circular trajectories. By allowing some flexibility in the radii, they managed to
introduce the coupling leading to MCW formation. Among the different models used
for the study of ciliary propulsion, the envelope model (Taylor 1951; Reynolds 1965;
Tuck 1968; Blake 1971a,b; Brennen & Winet 1977) assumes that cilia are so densely
packed that it is possible to consider their tips as an oscillating surface. Nevertheless,
such a configuration has only been observed in nature for symplectic metachrony.
Moreover, this technique is limited to small-amplitude oscillations and imposes no-slip
and impermeability conditions at the oscillating surface. In the sublayer (or stokeslets)
model (Keller & Brennen 1968; Blake 1972; Lighthill 1976; Phan-Thien, Tran-Cong
& Ramia 1987; Gueron et al. 1997; Gueron & Levit-Gurevich 1999; Smith, Gaffney
& Blake 2007; Niedermayer et al. 2008; Gauger, Downton & Stark 2009; Ding et al.
2014) the cilia are modelled by a distribution of stokeslets, which impose a force on
the surrounding fluid. A proper mirror image of the stokeslets is required to impose
the no-slip condition on the surface from where the cilia protrude. However, the
presence of a wall is known to alter the nature of the far field of the stokeslets, and
it is thought that this can have important consequences on the hydromechanics of the
cilia near the wall (Blake & Chwang 1974). Moreover, stokeslets can only be used for
fluids with constant viscosities. Results using this method tend to show that symplectic
metachrony would be more efficient for mucus transport than synchronously beating
cilia, and that antipleptic metachrony would induce a lower flow rate. The opposite
result was nevertheless obtained by Gauger et al. (2009), who found that antipleptic
metachrony was more efficient than symplectic metachrony for a particular cilium
spacing. For a distance between two cilia of 1.5L, L being the length of the cilia,
they obtained an increase in the pumping performance of 40 % relative to a single
cilium. However, while the beating pattern used in (Gauger et al. 2009) was realistic,
they considered a slow stroke phase and a quick recovery phase, which is the
opposite of what is observed in nature. Some authors (Gueron et al. 1997; Gueron
& Levit-Gurevich 1999; Kim & Netz 2006) showed that the energy spent by a
cilium would decrease in the presence of metachronal motion. Others tried to model
the internal axoneme of a cilium. Among them, Mitran (2007) used an overlapping
fixed–moving grid formulation, coupling the finite volume and the finite element
methods, to study the emergence of MCWs. His model was very detailed and had a
lot of advantages (two-layer flow, viscoelastic mucus) but required many experimental
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parameters, and the impact of the MCWs on the flow has not been considered so
far. Niedermayer et al. (2008) observed MCW formation in 1D cilium arrays. Those
waves were stable only if the wavelength was four times higher than the cilium
spacing. For the interested reader, a clear review of these computational modellings
of the internal axoneme can be found in Fauci & Dillon (2006). A different approach
is to let the cilia adapt their motion in order to find the most energetically efficient
ciliary beating pattern. In that context, Eloy & Lauga (2012) and Lauga & Eloy
(2013) computed the shape and energy-optimal kinematics of cilia from an energetic
point of view. They found that the optimal kinematics strongly depends on the cilium
bending rigidity, and closely resembles the two-stroke ciliary beating pattern observed
in natural cilia. Similarly, Osterman & Vilfan (2011) computed the ciliary beating
pattern with optimal pumping efficiency of isolated cilia and arrays. Recently, new
methods have been introduced, such as the immersed-boundary (IB) method used
by Dauptain, Favier & Bottaro (2008) to model the swimming of pleurobrachia.
Lukens, Yang & Fauci (2010) used an IB method to study the mixing produced by
a carpet of cilia in the context of the mucociliary clearance process. A coupled IB
lattice Boltzmann method (LBM) was also used by Sedaghat et al. (2016) to study
several parameters in a 2D configuration using an Oldroyd-B model for the mucus
rheology. They found that the transport of mucus was maximized when considering
the mucus as a Newtonian fluid. While many studies regarding the emergence of
MCWs have been conducted, only a few have addressed 3D configurations of the
mucociliary clearance process. Among them, Elgeti & Gompper (2013) managed to
observe symplectic and laeoplectic (perpendicular to the power-stroke direction) MCW
formations. Ding et al. (2014) did not study the emergence of MCWs but performed
a comparative study of antipleptic metachrony versus symplectic metachrony in terms
of transport efficiency and mixing. Their results showed that both antipleptic and
symplectic MCWs enhanced the fluid transport and the mixing, with the antipleptic
waves being the most efficient ones. However, the two aforementioned studies only
considered a single fluid layer.

In this work, by using the solver developed by Li et al. (2016) and already
validated in similar configurations, the focus is placed on the emergence of MCWs
in a 3D two-phase flow configuration with a viscosity ratio of 20 and a large number
of cilia. In particular, it is shown that a simple hydrodynamical feedback based on
mechanical concepts can trigger the emergence of both symplectic and antipleptic
MCWs, while usually only a single layer of fluid is considered and only antipleptic
MCWs are seen to emerge. From a numerical point of view, the main advantage of
the present method is its ease of implementation. Additionally, the local character
of the collisions in the LBM allows an easy and straightforward parallelization of
the code, making the simulation of a large number of cilia possible. The numerical
method also possesses the following advantages: (i) viscosity ratios up to O(102)

can be achieved (Porter et al. 2012) and (ii) the mucus–PCL interface emerges
intrinsically from the model. To the best of the authors’ knowledge, this solver is the
only one that combines all of these capabilities. The main contribution of this work
is the thorough analysis of the advantages of the antipleptic and symplectic MCWs
over synchronized beating by computing appropriate transport and efficiency ratios,
mapping an inter-cilium spacing from 1.67 to 5 cilium lengths. Finally, and for the
first time, both the PCL and the mucus layer have been taken into account in the
present study. The inherent advantages of the MCWs for flow transport are studied
by (i) considering the efficiency of the waves in transporting the flow, (ii) comparing
the flow generated and the volume transported by the different kinds of metachrony,
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FIGURE 1. (Colour online) (a) Schematic view of the computational domain. The present
case corresponds to an antipleptic MCW. The domain is filled with PCL (in blue) and
mucus (in red). (b) Beating pattern of a cilium with the parametric equation used. Steps 1–
6 correspond to the recovery phase and steps 7–9 to the stroke phase.

(iii) comparing the energetic cost of the MCWs and (iv) analysing the capacity of the
waves to transport particles from an energetic point of view. The following analysis
shows that antipleptic MCWs are always the most efficient in transporting mucus.

The remainder of this paper is organized as follows. In § 2, details about the
numerical method are given, and the different quantities used are introduced. In § 3,
the results are presented, starting from the emergence of MCWs by considering the
fluid feedback onto the cilia; then, a parametric study is carried out to quantify the
impact of both the MCWs and the cilium spacing on the transport of mucus. A
summary of the results and the future perspectives concludes this paper in § 4.

2. Numerical method

From the numerical point of view, modelling of the complete problem under
realistic conditions remains a huge challenge, and several assumptions need to be
made to simplify the problem, while keeping the essential ingredients of the physical
mechanisms in the model. In particular, it is assumed that there is no mass transfer
at the wall, that both fluids are Newtonian and that the cilia are equally spaced
filament-like structures. More assumptions are detailed in this section, together with
the numerical set-up and geometry.

2.1. Geometrical modelling and beating pattern
The computational domain is a box with a regular mesh composed of Nx × Ny × Nz

points. The cilia are equally spaced along the bottom (x–y) wall, such that their base
points are located at z= 0 (see figure 1a for a schematic view of the geometry). Their
motion is imposed to be in the x-direction only. The spacing between two adjacent
cilia is denoted a in the x- and y-directions. The wavelength λ of the MCW is set such
that λ=Nx when the metachrony is forced. For the case of synchronously beating cilia,
Nx is chosen to be 8a. The length of the cilia L is set to 15 lattice units (lu), except
when stated differently, and 200 snapshots in time per beating cycle are uniformly
distributed to model their motion. The ratio h/H between the PCL thickness and the
height of the domain is fixed to 0.27 for all simulations.

The equations of motion for the cilia are inspired from Chatelin (2013) and
reproduce the beating pattern by resolving a 1D transport equation along a
parametric curve. Let P(ζ , t) be the position of the curve at time t and at a normalized
distance ζ from the base point of a cilium. With appropriate boundary conditions, a
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realistic beating pattern can be obtained using the following transport equation:

∂P′

∂t
+ ν(t)

∂P′

∂ζ
= 0, BC:

{
P(0, t)= (0, 0, 0),
P′(0, t)= (2 cos(2πt/T), 0, cos(2πt/T)),

(2.1a,b)

where ν(t)= [1+ 8 cos2(π(t+ 0.25T)/T)]/T is the viscosity of the surrounding fluid,
T is the beating period and P′ = ∂ζP. The resulting angular amplitude between
the beginning and the end of a stroke phase is θ = 2π/3, which agrees well
with experimental data (Sleigh et al. 1988). It should be noted that a 3D beating
pattern would allow more realistic simulations to be achieved while being more
computationally expensive. Hence, the choice has been made to use this 2D beating
pattern. It captures the essential ingredients of the beating, and as cilia have a
diameter smaller than a lattice unit, the difference in the induced flow between two
cilia overlapping in 2D or slipping onto each other in 3D is very small. Figure 1(b)
gives a view of the beating pattern obtained by resolving (2.1a,b). It should be noted
that with the present model, both phases take the same amount of time while moving
in the same (x, y) plane. This choice has been made in order to only study spatially
asymmetric motions, which are the only mechanisms effective at low Reynolds
numbers. The temporal asymmetry is indeed a mechanism that can enhance the flow
only when inertial forces are no longer negligible (Khaderi et al. 2010). Nevertheless,
when the feedback of the fluid is taken into account (as in § 3.1), a non-symmetrical
motion will develop, with a stroke phase slower than the recovery phase. More details
regarding this temporal asymmetry are given in § 2.3.

The PCL is set such that it fills the region going from the bottom of the domain
(z= 0) up to an altitude of h. In all of the simulations, the value of h= 0.9L has been
used in order to allow the tips of the cilia to emerge into the mucus layer during their
stroke phase, as observed in real epithelium configurations.

Both the PCL and the mucus are considered to be Newtonian fluids. The kinematic
viscosity of the mucus is νm = 10−3 m2 s−1 and the viscosity ratio rν = νm/νPCL
between the mucus and the PCL is set to 20. It has indeed been recently shown
(Chatelin & Poncet 2016) that mucus transport is maximized for viscosity ratios
ranging from 10 to 20 with a stiff transition between the two fluid layers. The
beating period of the cilia is equal to Nit × dt (with dt = 1 using the classical LBM
normalization), Nit being the number of iterations for a cilium to perform a complete
beating cycle. An oscillatory Reynolds number Reosc, based on the velocity of the
cilium tips, Ucil = 2θL/Tosc, can now be defined:

Reosc
=

UcilL
νmucus

=

4π/3
Tosc

L2

νmucus
=
ωL2

νmucus
, (2.2)

where ω is the angular frequency of the cilium beating. With realistic physical
quantities corresponding to the ciliated epithelium surface, the value of Reosc is of
the order of 10−5 (using L≈ 10−5 m, νmucus ≈ 10−3 m2 s−1 and Ucil ≈ 10−3 m s−1).

To avoid running simulations at such a low Reynolds number, which would require
a very high number of iterations using a lattice Boltzmann (LB) scheme, a higher
Reynolds number was chosen: Re = 20. Indeed, the achievement of simulations at
Re< 1 using an LB scheme, while still describing the cilia well (L= 15 lu at least),
requires a large amount of CPU resources. Thus, inertial effects are introduced in
the model, but it has been carefully checked that the results remain the same for
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creeping flows (Re=O(10−2)) by comparing them with the results obtained with the
LBM formulation designed for Stokes flows (Zou et al. 1995; Guo & Shu 2013).
The differences are found to be less than 7 % of the transported velocity for all
phase lags 1Φ 6= 0. The corresponding beating patterns of the cilia shown in the
following are similar also in terms of vorticity generation, and the same qualitative
coordination concerning the antipleptic/symplectic behaviour is observed. However,
for the particular case of synchronously beating cilia (i.e. 1Φ= 0), the inertial effects
will play a non-negligible role in the flow dynamics. Despite being weak, they will
indeed cancel the reversal of the flow that should occur when the cilia are in the
recovery phase. More details regarding the inertial effects will be given in § 3.2.7.

Finally, it is worth noticing that the lattice has been chosen such that the numerical
diffuse diameter of the cilia due to the IB method corresponds to the diameter of real
cilia (≈0.3 µm). Hence, a realistic drag is taken into account in the present study.

2.2. Algorithm
The numerical model is described in Li et al. (2016), and validated on several
configurations involving flexible and moving boundaries in multiphase flows, with a
second-order accuracy. Briefly, the idea is to add a forcing term Fσ

i = FSC
σ + FIB

σ to
the discrete LB equation for each σ fluid component. The term FSC

σ is an interparticle
potential force that takes into account the fluid–fluid cohesion forces (Shan & Chen
1994), and FIB

σ is an IB-related force to ensure the no-slip condition at the fluid–solid
interface.

The fluid part is first solved on a Cartesian grid with the LBM using the
Bhatnagar–Gross–Krook (BGK) operator and a D3Q19 scheme. The collision and
streaming steps proper to the LBM are first performed. The model of Porter et al.
(2012) is used to model the two-phase flow as it allows minimization of the magnitude
of spurious currents near the fluid–fluid interface. More importantly, it also allows
the consideration of higher density or viscosity ratios. Then, values for the fluid
velocity are interpolated at the Lagrangian points. This allows the computation of an
IB force to be spread onto the neighbouring Eulerian fluid nodes in order to ensure
the no-slip condition along the cilia. The macroscopic fluid velocity is then updated.
The motion of each cilium is decomposed into a finite number of steps (snapshots)
during a period. If necessary, an interpolation can be carried out in order to have
the velocity values along the cilia in between two steps. It should be noted that the
geometric shape of the beating is fixed in all simulations and is not impacted by the
feedback law introduced in § 2.3, which only affects the duration of the recovery and
stroke phases.

Since the model of Porter et al. (2012) uses a Shan–Chen (SC) repulsive force
(Shan & Chen 1993, 1994), surface tension effects emerge intrinsically at the PCL–
mucus interface. Hence, a sharp interface between the mucus and the PCL can be
maintained at any time. However, small diffusion effects might occur on the lattices
bordering the interface. Additionally, the cilia that enter the PCL–mucus interface may
temporarily induce a small mixing. This is, however, corrected by the SC force which
‘unmixes’ the two fluids.

Periodic boundary conditions are used in the x- and y-directions, while no-slip
and free-slip boundary conditions are used at the bottom and top walls respectively.
The size of the computational domain ranges from 50 lu to 400 lu depending on the
configuration considered, except for the size along the z-direction which is always set
to 50 lu.
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FIGURE 2. (Colour online) Schematic view of a cilium with the corresponding forces
exerted on the fluids.

Taking advantage of the local character of the LBM algorithm, the code is
parallelized using MPI (message passing interface) libraries by splitting the full
computational domain into nine subdomains of size (Nx/3,Ny/3,Nz). More details on
the numerical model can be found in Li et al. (2016).

2.3. Feedback of the fluids onto the cilia
The basic idea is to modulate the beating motion of the cilia as a function of the
fluid motion. To do so, it is assumed that all cilia follow the same beating pattern;
meanwhile, a feedback of the fluids, which consists of accelerating or slowing down
the motion of the cilia, is introduced.

Each cilium is discretized with Ns = 20 Lagrangian points. Let s be the subscript
corresponding to the sth Lagrangian point, starting from the base tip at s= 1, and Vs

i
the velocity on the sth Lagrangian point of the ith cilium. For each cilium, we define
the average velocity over all Lagrangian points Vi, which is linked to the number of
steps (snapshots) this cilium will skip during one iteration of the fluid solver. The
fluid feedback onto the cilia thus consists of modifying the norm of the velocity vector
‖Vi‖, while its direction remains unchanged.

The feedback is computed in three steps. First, the IB forces corresponding to
mucus and PCL are projected onto the corresponding velocity vectors for each
Lagrangian point. Then, an estimate of the feedback is computed based on the
torques of the forces for each Lagrangian point. Finally, the beating pattern of
the cilia is adjusted at the beginning of the next time step. The different forces and
geometrical variables used are illustrated in figure 2, and the three steps are explained
below.

(i) The interpolated IB forces applied by the ith cilium onto the fluids – respectively
Fi

m for the force imposed on the mucus phase and Fi
PCL for the force imposed

on the PCL phase – are projected on Vs
i :

Fi,proj
∗
=

Fi
∗
·Vs

i

‖Vs
i‖

2
Vs

i , (2.3)
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where ∗ stands for ‘m’ or ‘PCL’ depending on the position of the Lagrangian
node. In order to take into account the difference of viscosity between the
two layers, the forces Fi,proj

m and Fi,proj
PCL are weighted by a term of the form

τ∗/(τm + τPCL). The total projected force of the fluids onto the sth segments of
the ith cilium Fi

fluids→cilia is written as

Fi
fluids→cilia =−

(τmFi
m + τPCLFi

PCL) ·V
s
i

(τm + τPCL)‖Vs
i‖

2
Vs

i . (2.4)

(ii) For each Lagrangian point s, the norm of the torque of Fi
fluids→cilia with respect

to the base point O of the ith cilium is computed by

‖Mi
O(F

i
fluids→cilia)‖ = ‖F

i
fluids→cilia‖Lp, (2.5)

where Lp = ‖Xp ⊗Vs
i‖/‖V

s
i‖ is the lever arm. The total fluid feedback onto the

ith cilium considered is then computed by summing the computed quantities over
all Lagrangian points:

T i
=

Nsegments∑
s=2

‖Fi
fluids→cilia‖Lp. (2.6)

The velocity of each cilium is finally modified as follows:

‖Vi‖ = ‖V0‖ + αT i, (2.7)

where V0 is the initial speed of the cilia and α is a coupling parameter that allows
tuning of the feedback strength.

(iii) Then, at the beginning of the next iteration, the beating pattern of the ith cilium
is adjusted:

N t
i =mod (N t−1

i + ‖Vi‖,N total
i ), (2.8)

where N total
i is the total number of snapshots defining the beating pattern of the

cilia, N t−1
i is the previous snapshot and N t

i is the new position of the ith cilium
(in terms of number of snapshots) at the current iteration.

2.4. Injection of passive tracers
In the context of real epithelial systems in the human body, mucus acts as a barrier
against particles and pollutants. To gain insight into how particles are dispersed and
advected in the mucus and PCL, passive tracers are injected into the domain on a
(y, z) plane, when the flow has reached an established regime (see figure 3 for a view
of a domain filled with tracers). In figure 3, the tracers initially seeded into the PCL
are coloured in green, and the ones initially seeded into the mucus are coloured in
grey. Their displacements are then computed and averaged over several cilium beating
cycles. Their equations of motion are solved by a second-order Runge–Kutta (RK2)
scheme, using the interpolated fluid velocity at each time step and the same procedure
as in the IB method.

By taking a closer look at figure 3, one can observe that the particles initially
seeded into the PCL are greatly mixed while staying mostly in the PCL. On the
contrary, the particles initially seeded into the mucus layer stay in the mucus layer
and are not mixed. This is mainly due to the surface tension effects present at the
mucus–PCL interface which prevent too strong a mixing at the interface. This shows
how wetting particles that are deposited to the air–mucus interface might enter the
mucus layer but never reach the PCL.
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Norm of the dimensionless fluid velocity
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FIGURE 3. (Colour online) Domain filled with passive tracers. The tracers initially seeded
into the PCL are coloured in green and the ones initially seeded into the mucus are
coloured in grey. The present case corresponds to an antipleptic MCW with 1Φ = π/4.
An array of eight cilia with a cilium spacing a/L= 1.67 is considered on a computational
domain of size (Nx = 201, Ny = 26, Nz = 50). The mucus phase (in red) is located above
the PCL phase (in blue), and the ratio of viscosity is set as rν = 10. The colour bar
represents the dimensionless velocity magnitude of the fluids on the periodic boundary
in the x-direction.

3. Results and Discussion
3.1. Emergence of MCWs

Using the feedback force introduced in § 2.3, randomly beating cilia are observed to
synchronize with their immediate neighbours, giving birth to symplectic or antipleptic
metachrony. The time for the synchronization to occur depends on the set of
parameters used. Both local and global synchronizations can be observed.

The empirical parameter α plays a role in the emergence of the waves. When α
is set to too low a value (|α| < 0.5), the cilia will beat randomly, while if set to a
too high value (|α| > 7 for the case a/L = 1.67, for example), the cilia will fully
synchronize with each other without any phase lag. Additionally, higher absolute
values of α usually decrease the times needed for MCWs to emerge.

Figure 4 shows a symplectic MCW emerging from an initially random state (every
cilium was initially beating at a random step of its beat cycle). In the present case,
three rows of eight cilia on a computational domain of size (Nx = 361, Ny = 136,
Nz= 50) are considered. The PCL is set such that h= 0.9L and the ratio of viscosity
between the PCL and the mucus phase is 15. The feedback coefficient α used is
α = −3.5. The spacing between two neighbouring cilia is a/L = 3 in the x- and
y-directions, with L = 15 lu. Hence, cilia never collide and overlapping of kernels
from neighbouring cilia never occurs. One can clearly see the symplectic MCW that
emerged from the initially random state of the cilia, with a wavelength λ = 180 lu
and a phase lag 1Φ ≈−π/2, confirming that hydrodynamic interactions only suffice
to account for the emergence of MCWs.

Figure 5 shows a similar configuration (h = 0.60L, rν = 15, α = −3.5), where
1024 cilia arranged in a 32 × 32 square are considered on a computational domain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.352


Transport efficiency of metachronal waves 941

0 80 160 240
Phase

320 360

FIGURE 4. (Colour online) Symplectic MCW emerging from an initially random state of
the cilia. Here, 24 cilia arranged in an 8× 3 rectangle are considered on a computational
domain of size (Nx=361, Ny=136, Nz=50) with a cilium spacing of a/L=3. The mucus
phase is in red and the PCL phase is in blue. The colour bar indicates the phase of a
particular cilium within one beating period, which is represented by a circle at its base.
(a) Three-dimensional view of the system. (b) Two-dimensional view of the same system
in an (x, y) plane to highlight the 3D modulation in the z-direction.

of size (Nx = 161, Ny = 161, Nz = 32). One can clearly see the formation of an
antipleptic MCW with a wavelength of λ= 80 lu and a phase lag of 1Φ ≈ π/8. It
should be noticed that, in the simulation presented in figure 5, the cilium spacing
has been reduced (a/L = 0.23 and L = 22 lu), to take into account a larger number
of cilia. Thus, neighbouring cilia may overlap, which can cause spurious numerical
effects, due to the 2D beating pattern of the cilia, when two Lagrangian points
with opposite velocities occupy the same mesh point. However, it has been verified
in some simulations that these effects do not play any role in the emergence of
the MCW by setting to zero the IB force contribution of these Lagrangian points,
therefore cancelling the spurious effects that may occur at the overlapping points of
neighbouring cilia. In other words, the fluid velocity at the Eulerian node surrounding
these particular Lagrangian points was not modified by the IB method, proving that it
is not the source of the cilium synchronization. As shown in figures 4 and 5, weakly
3D effects may be observed but do not play a key role in the physics of emerging
waves. In all of the simulations presented, the synchronization along the x-direction
is quite strong. In some simulations, particular cilia may lose synchronization over
time, but quickly readjust their beating according to the others. It also appears that
once an equilibrium is reached, the synchronization along the y-direction is stable
too. A remarkable fact is that for particular configurations (like the one displayed in
figure 5), the interface between the mucus and the PCL also forms a wave travelling
in the same direction as the MCW. If the mucus viscosity is increased, the torques felt
by the cilia become stronger. Hence, the cilia are either more accelerated (α > 0) or
decelerated (α < 0), and the mucus will adapt its displacement accordingly. However,
when the stationary regime is reached, the clearance velocity should not be strongly
modified, as shown by Chatelin & Poncet (2016). According to these authors, the
mucus velocity is decreased by only 50 % when the viscosity ratio is increased by a
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0 80 160
Phase

240 320 360

FIGURE 5. (Colour online) Antipleptic MCW emerging from an initially random state of
the cilia. Here, 1024 cilia arranged in a 32× 32 square are considered on a computational
domain of size (Nx = 161, Ny = 161, Nz = 32) with a cilium spacing of a/L= 0.23. The
mucus phase is in red and the PCL phase is in blue. The colour bar indicates the phase
of a particular cilium within one beating period, which is represented by a circle at its
base. (a) Three-dimensional view of the system. (b) Two-dimensional view of the same
system in an (x, y) plane to highlight the 3D modulation in the z-direction.

factor of 100 000. Preliminary results (not shown) seem to indicate that, assuming a
least-effort behaviour of the cilia (meaning that α < 0), antipleptic waves are obtained
for small cilium spacings (a/L 6 1.5) while symplectic waves are seen to emerge
for larger cilium spacings (a/L > 1.5). Since, in nature, antipleptic waves are often
observed for densely packed cilia, this implies that natural cilia adopt a least-effort
behaviour. It also suggests the existence of a critical value for the cilium density,
ρc = ρ(αc), where αc is the corresponding critical value of the coupling parameter,
from which the kind of waves emerging can be controlled. On the contrary, with
the present model, assuming that the cilia beat faster when encountering a resistance
(meaning that α > 0), symplectic waves are seen to emerge for small cilium spacings
(a/L 6 1.5) while antipleptic waves emerge for larger cilium spacings (a/L > 1.5),
which is not observed in nature. Movies of the MCWs are provided as online
supplementary movies available at https://doi.org/10.1017/jfm.2017.352.

As already explained in § 2.1, when the feedback is taken into account, a
non-symmetrical motion develops, with a stroke phase slower than the recovery
phase for both antipleptic and symplectic MCWs. For the antipleptic case, ‖Vi‖ is
smaller during the stroke phase, and since α is negative and the torques T i are always
positive, this means that the values of T i computed during the stroke phase are larger
than the values computed during the recovery phase. This results in a weaker velocity
for the cilia which cover fewer snapshots during the stroke phase. It is the opposite
for the symplectic case where α is positive: T i takes larger values during the recovery
phase as ‖Vi‖. In other words, the feedback depends on the clustering character of
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the motion: when cilia are clustered, the torque exerted by the fluids onto the cilia is
weaker, and when they are far from each other (during the stroke phase for antipleptic
motion and during the recovery phase for symplectic motion), the torques are stronger.
This makes sense since the cilia encounter more viscous resistance when they are
not clustered, as will be discussed later in § 3.2.4. The resulting motion of the cilia
then differs from what is observed in nature, but it indicates that cilia experience
stronger stresses during the stroke phase of antipleptic motion and during the recovery
phase of symplectic motion. This supposes that the beating kinematics of real cilia is
not dictated only by hydrodynamical interactions and suggests that other biological
parameters or functions (such as sensing) may play a role. This is in agreement
with Guo et al. (2014), who compared the performance of pumping-specialized cilia
and swimming-specialized cilia as a function of metachronal coordination, and found
that the latter almost always outperform the pumping-specialized cilia. As will be
further detailed in § 3.2.5, their results are also in accordance with the outcome of
the present paper: antipleptic waves are the most efficient ones for the transport of
fluids. Finally, it is worth noticing that the degree of asymmetry is much higher for
antipleptic MCWs compared with symplectic MCWs.

3.2. Quantitative study of MCWs
This section presents the results obtained, once the flow is well established, for the
three configurations studied: (i) synchronized case (all cilia beat together with no
phase lag); (ii) symplectic MCW where two neighbouring cilia beat with a negative
phase lag, i.e −π < 1Φ < 0; and (iii) antipleptic MCW where two neighbouring
cilia beat with a positive phase lag, i.e 0 < 1Φ < π. It should be noted that in
all of the following results, contrary to § 3.1, the metachrony is imposed in order
to study specific phase lags 1Φ. Hence, the size of the domains must be changed
accordingly, since different phase lags 1Φ imply different wavelengths, and hence
more or fewer cilia. However, the quantities presented here have been averaged over
the domain, and there are no effects in changing the size of the box. In order to
study only spatially asymmetric motions, the recovery and stroke phases now take
the same amount of time in all of the following results. It should also be noted that
the standard deviations are not displayed in any of the figures that will be presented
as they are extremely small (less than 0.01 %) for all considered quantities. Hence,
they do not give additional information. Schematic views of synchronized beating and
metachronal motions are displayed in figure 6. Another configuration, corresponding
to randomly beating cilia, is also represented in figure 6. One can observe that the
synchronized motion of cilia creates vorticity only in the periciliary zone, whereas
metachronal motions also induce vorticity into the mucus layer. It is worth noticing
that for symplectic motion (case (b)), vortex trails emerge from the cilium tips
performing their stroke phase. The same phenomenon is observed in the antipleptic
case during the recovery motion of cilia. The presence of coherent vortices is clearly
visible in both cases.

3.2.1. Transport and mixing zone
The displacement field is calculated as d(x)=

∫ T
0 u(x(t), t) dt, where x is the position

vector and u is the fluid velocity. Its component in the x-direction as a function of
the axial position is averaged over several beating cycles and displayed in figure 7.
The transport and mixing zones defined in Ding et al. (2014) are clearly visible. This
shows that the antipleptic MCWs perform better than the other kind of coordination
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FIGURE 6. (Colour online) Different kinds of collective coordination for the beating cilia.
Here, 32 cilia arranged in an 8 × 4 square are considered on a computational domain
of size (Nx = 241, Ny = 121, Nz = 50) in each case, with a cilium spacing of a/L = 2.
(a) Synchronized motion; (b) symplectic metachronal motion; (c) antipleptic metachronal
motion; (d) no synchronization (random state of cilia). The figure shows contours of the
magnitude of the dimensionless vorticity ‖ω‖ using a logarithmic scale. The black lines
show the frontier between the PCL at the bottom and the mucus layer above.

in transporting the particles. It should be noted that, in figure 7(b), the two curves
with 1Φ = ±π/4 have a similar shape, whereas in figure 7(a), symplectic MCWs
induce a negative transport (i.e. a counter-flow) in the mixing zone for the same
phase lag. For a given value of the phase lag, the transport depends on the density of
cilia. One can also notice the importance of the phase lag by looking at figure 7(a):
for a phase lag 1Φ = −π/9, the symplectic MCWs induce no counter-flow in
the mixing zone, while the opposite happens for 1Φ = −π/4. Finally, it is worth
noticing that, as the cilium spacing increases, the influence of the kind of metachrony
decreases. Eventually, for very large cilium spacings, one would expect that the three
curves displayed in figure 7(b) would merge into a single one corresponding to the
displacement generated by an isolated cilium. Additionally, even with a larger cilium
spacing, the particles are better transported in case (b). As in Ding et al. (2014), the
displacement reaches a plateau for an axial position of 1.4L in both cases (a) and (b).
The beating pattern used in Ding et al. (2014) is different, but similar trends are
observed. Nevertheless, a major difference must be pointed out: for 1Φ =−π/4 and
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FIGURE 7. Normalized average displacement in the x-direction as a function of z/L for
(a) 1Φ=±π/9 and 1Φ=±π/4 with a/L=0.8, and (b) 1Φ=±π/4 and a/L=1.67. As
in Ding et al. (2014), the mixing zone extends from 0 to 1L and the transport zone from
1L to 1.4L. In both cases (a) and (b), the mucus–PCL interface is located at z/L = 0.9
and is indicated by a dashed horizontal line.

a/L= 1.67 (figure 7b), the present results show that the displacement induced by the
symplectic wave has the same shape as the synchronized and antipleptic cases, i.e.
it induces transport in the mucus phase even if it is smaller. On the contrary, Ding
et al. (2014) obtained no transport at all for the symplectic wave in the mucus phase,
but instead a peak of transport under the cilium tips in the PCL at z= 0.7L due to
the presence of a vortex-like structure both below and above the cilium tips for this
particular value of the phase lag 1Φ. Since the main difference between the two
studies is the beating pattern of the cilia (same phase lag and cilium spacing), this
highlights the sensitivity of the system to the beating pattern.

The displacement in the z- and y-directions has also been analysed. The results show
that the y-component of the displacement can be neglected and that the z-component
of the displacement is almost null above the cilium tips, but not zero under them. As
will be discussed later, the z-component of the displacement reaches its maximal value
in regions where the shear rate is maximal too. This agrees with the existence of a
mixing zone under the cilium tips.

By making an analogy with the strain-rate tensor classically used in solid mechanics,
the gradient of the displacement field ∇d can be computed by considering each
Eulerian node of the Cartesian grid as a passive tracer. Since the displacement in
the transverse direction is very small, the y-component of the displacement field
can be neglected. Henceforth, the gradient is computed over every (x, z) plane,
and an average is then performed over the y-direction. Following the methodology
described in Ding et al. (2014), ∇d is decomposed into an antisymmetric component
R = (∇d − (∇d)T)/2 corresponding to rotation and a symmetric component
S = (∇d + (∇d)T)/2 corresponding to shear deformation. The two eigenvalues of
S are of the form ±γ and indicate the rates of stretching (+γ ) and compression
(−γ ). The unit eigenvector eγ corresponding to the positive eigenvalue indicates the
direction of stretching and the other eigenvalue the direction of compression. Because
of the incompressibility condition, both eigenvectors are orthogonal, and so plotting
only one of them is sufficient to have the complete set of information. In figure 8,
the stretching rate and its direction are presented in an (x, z) plane for the three cases
studied. The stretching rate is maximal near the upper part, and at small distance
above the cilium tips in all three cases. For the synchronized motion (case (a)), there
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is almost no stretching away from the cilia during the recovery phase, whereas for
cases (b) and (c), corresponding respectively to symplectic and antipleptic motion, a
weak stretching can always be observed (see the right-hand side of cases (b) and (c)
in figure 8). A complex shape of the stretching rate is observed at the cilium tips
during the stroke phase in antipleptic motion (see cilium 3 for instance), during the
stroke phase in symplectic motion (see cilia 6 and 7) and during the stroke phase in
synchronized motion (results not shown). From their orientations, one can expect an
enhancement in the mixing in this region. As in Ding et al. (2014), the stretching
direction is a nonlinear function of space. Except for zones where the shear rate is
maximal, the γ eγ field is then oriented at 45◦ compared with the x-direction, and
almost uniform. This is reminiscent of a linear shear profile dx = cz, where c is a
constant. The nonuniform aspect of the stretching orientation indicates the presence
of ‘folding’ in the displacement field d, which also plays a role in the mixing,
as explained by Kelley & Ouellette (2011). Ding et al. (2014) obtained that the
stretching rate was maximal for the antipleptic case for 1Φ = π/4, which is exactly
what is obtained here, even if the beating patterns used are different. One can then
expect that this value of the phase lag 1Φ is the most efficient in mixing fluids by
enhancing the stretching near the upper part of the cilia.

In order to assess the reliability and robustness of the solver, a comparison with
experimental data is also performed. The average clearance velocity was computed
on the plane (x, y, 3.2L) for all simulations. The highest clearance velocity is reached
for the case a/L = 1.67 with 1Φ = π/4 and equals 33.47 µm s−1. This is in
good agreement with the experimental results of Matsui et al. (1998), who observed
a clearance velocity of 39.8 ± 4.2 µm s−1 for mucus. Matsui et al. (1998) also
observed that the PCL flows in the same direction as the mucus, which is the case
in the present study. Finally, the PCL–mucus interface remains approximately flat in
most of the simulations presented, as is the case in the micrographs performed by
Sanderson & Sleigh (1981) on rabbit tracheal epithelium.

3.2.2. Directional pushing efficiency
Inspired by the works of Kim & Netz (2006), Gauger et al. (2009) and Khaderi,

Den-Toonder & Onck (2011), a positive flux Qp and a negative flux Qn are defined
as follows. The x-component of the velocity field is considered over the (Nx, y, z)
plane and, at each time step of a full beating cycle, the negative and positive velocity
values are separated. The instantaneous negative and positive fluxes are then computed
over a sufficiently large number of cycles. The difference (Qp − Qn) gives the net
instantaneous flux, and the directional pushing efficiency εPN is defined as εPN = (Qp−

Qn)/(Qp +Qn). It should be noted that here, in contrast to the previous works of the
aforementioned authors, the domain is not restricted to the transport area but covers
the whole flow region instead. Such a choice is justified by the fact that it has been
experimentally observed, using confocal microscopy and fluorescent markers, that the
PCL and mucus are in reality transported at approximately the same rate (Matsui
et al. 1998). As a matter of fact, PCL transport seems to depend on the presence
of a mucus layer above it, and ciliary mixing is thought to be responsible for the
diffusion of momentum from mucus to PCL. Taking into account the transport zone
and the mixing zone in the computation of εPN then allows one to collect information
about how transport and mixing work together during a beating cycle.

The variation of εPN over one beating cycle for five different phase lags 1Φ, all for
an antipleptic MCW with a cilium spacing of a/L= 2, is illustrated in figure 9. Let
us recall that, although the quantities considered here are the results of the motion
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FIGURE 8. (Colour online) Stretching rate and direction for (a) synchronized motion
(1Φ = 0), (b) symplectic MCW (1Φ = −π/4) and (c) antipleptic MCW (1Φ = π/4).
In each case, the cilium spacing is a/L= 1.67 and the size of the computational domain
is (Nx = 201, Ny = 26, Nz = 50).

of all cilia, the calculations have been made through the beating cycle of a single
cilium of reference. Therefore, the fact that the corresponding curves have a huge
decrease around t = π is related to the choice of this particular cilium. Indeed, the
plane used to compute the positive and negative fluxes is located close to a particular
cilium. This cilium is in the recovery phase at t=π, inducing a small value of εPN at
this particular time. The choice of another cilium or another plane would horizontally
shift the drop observed around t=π.

To interpret the evolution of εPN in figure 9, it is necessary to examine the
topology of the flow during this beating cycle, shown in figure 10. As cilium 1
begins its recovery phase (case (a) of figure 10), there is no reversal flow at the
periodic boundary frontier. Hence, εPN = 1, as is visible in figure 9 at the point (a).
Then, when cilium 1 carries on its recovery phase (case (b) of figure 10), no reversal
flow can be observed since cilium 1 is still at the beginning of its recovery phase and
cilium 8 is finishing its stroke phase. At t=π/2 (case (c) of figure 10), both cilia 1
and 8 are in their early recovery phase and the directional pushing efficiency begins
to decrease (see points (b) and (c) on figure 9). At t= 3π/4 (case (d) of figure 10),
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FIGURE 9. (Colour online) Directional pushing efficiency εPN over one beating cycle for
three different phase lags 1Φ. The results are obtained for an antipleptic MCW and
a/L= 2.

cilium 1 is reaching the maximal speed of its recovery phase. The negative flow
generated is important, and the efficiency quickly drops: see point (d) on figure 9.
Between t = 3π/4 and t = π, the directional pushing efficiency weakly increases.
This is due to the positive velocity near the base of cilium 1 which is performing a
‘whip-like’ motion: while its free end is still going to the left, its base starts moving
to the right. Case (e) of figure 10 corresponds to the end of the recovery phase of
the first cilium, and at the same moment, cilium 8 is at its maximal negative velocity:
henceforth the directional pushing efficiency is still decreasing. At t= 5π/4 (case ( f )
of figure 10), cilium 8 has finished its recovery phase and cilium 1 is in the middle
of its stroke phase. It counteracts the reverse flow created earlier, and εPN finally
increases. At t = 3π/2 and t = 7π/4 (cases (g) and (h) of figure 10), both cilia 1
and 8 are in their stroke phases, and the flow generated is purely in the positive
x-direction: see points (g) and (h) on figure 9.

It is now interesting to compare the average directional pushing efficiency 〈εPN〉

for the different kinds of synchronization over a full beating cycle (see figure 11a,b).
Before going further into detail, let us recall the fact that the current efficiency 〈εPN〉

is a criterion qualifying the non-isotropy of the transport. Thus, it only gives an
insight into the capacity of the cilia to transport the flow in a unidirectional way
and does not give any quantitative information on the volume of fluid flow that is
effectively displaced. Figure 11(a,b) shows an interesting phenomenon: systems with
larger cilium spacing have a better capacity to transport the flow in the same direction.
Another intriguing fact is that, for the smallest cilium spacing (a/L= 1.67, figure 11),
antipleptic MCWs seem to have a better ability to create a unidirectional flow
compared with synchronized or symplectic motion, with a peak for the average
efficiency around π/2. This agrees particularly well with the results of Gauger et al.
(2009), who reported that antipleptic MCWs are more efficient than the synchronized
motion of cilia, which itself is more efficient that the symplectic case. This also
partially agrees with the results of Ding et al. (2014), who obtained peaks of
efficiency for phase lags around ±π/2, with a stronger one for the antipleptic
case. In the present study, the minimal efficiency for metachronal motion is reached
for a symplectic MCW with a phase lag of approximately −π/2.
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FIGURE 10. (Colour online) Snapshots of the fluid velocity taken at eight different
instants during the beating cycle of the cilium located at the left of the images. The cilia
are beating in an antipleptic motion with a phase lag 1Φ=π/4 and a spacing of a/L= 2.
In (a), t = 0, and the recovery phase of the first cilium begins; (b–e) recovery phase;
( f –h) stroke phase. Once (h) is completed, a new cycle begins: (h) → (a). The figure
shows contours of the norm of the normalized fluid velocity ‖Vf‖ such that Vf =Vdim

f /V ref
f ,

where V ref
= λ/T is the reference speed of the present system.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.352


950 S. Chateau, J. Favier, U. D’Ortona and S. Poncet

0

0.2

0.4

0.6

0.8

1.0

0.6

0.7

0.8

3.0

0.9

1.0

2.5
2.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

00

(a) (b)

FIGURE 11. (Colour online) Mean directional pushing efficiency 〈εPN〉 over a beating
cycle as a function of the phase lag 1Φ for different values of the cilium spacing a/L.

When the cilium spacing is increased to a/L= 2 (figure 11), a peak of efficiency
appears for the antipleptic MCW for 1Φ = 2π/3, and the lowest values are reached
in the symplectic case for 1Φ ≈−π/2 and 1Φ ≈−π/3. These trends will be found
again in the results shown in § 3.2.3.

Then, if the cilium spacing is increased above a limit value (a/L= 3.33, figure 11),
the directional pushing efficiency becomes equal to 1 for all cases (antipleptic,
symplectic and synchronized). This agrees well with the results obtained by Khaderi
et al. (2011), who concluded that ‘the amount of flow enhancement depends on
the inter-cilia spacing [but] the efficiency is not significantly influenced’. Indeed, as
the cilia are set away from each other, the influence of their neighbours becomes
negligible. Nevertheless, the authors reported a very low efficiency for synchronized
cilia, whereas the present results always show a positive flow in the mucus phase
for synchronized motion. As mentioned in § 2.1, this is a direct consequence of the
inertial effects (Re> 1) in the present simulations. It is recalled that they only affect
the synchronized case. It has been carefully checked that all other conclusions drawn
for antipleptic and symplectic metachrony remain the same for Re < 1 and Re = 20.
For a detailed study of the inertial effects at Re= 20, see § 3.2.7. The present results
are different from the results of Gueron et al. (1997), as it appears that even when
the cilium spacing is higher than 2 cilium lengths, the influence of neighbouring cilia
cannot be neglected (see the case a/L= 2.53, for example).

It is important to remember that this efficiency does not take into account the actual
net flow volume transported.

3.2.3. Comparison of hydrodynamic efficiency
After having investigated the capacity to transport the flow in the desired direction,

it is now interesting to look at the actual flow volume displaced to see whether a better
efficiency to transport the flow directionally corresponds to a better flow transport. To
do so, the global volumetric flow rate Qv over a unit volume of size (1× 1× Nz) is
introduced,

Qv =Nz
U∗ dx2

L2
, (3.1)

where dx= 1 using the classical LBM normalization, and U∗=Uav/Uref , where Uref
=

(λ/Ncil)/T is the reference velocity and Uav
= (1/ninjnk)

∑
i,j,k Uijk is the average fluid

velocity inside the whole domain.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.352


Transport efficiency of metachronal waves 951

0

0.05

 0.10

0.15

 0.20

0.25

t

FIGURE 12. (Colour online) Normalized volumetric flow rate Qv as a function of time
over a beating cycle for different phase lags 1Φ and different cilium spacings a/L. The
recovery phase occurs for t ∈ [0,π] and the stroke phase for t ∈ [π, 2π].

In figure 12, the dimensionless volumetric flow rate Qv is plotted over one beating
cycle for arrays of cilia with different phase lags (1Φ = 0, 1Φ =−π/4 and 1Φ =
π/4) and different cilium spacings. For cilium spacings equal to a/L=1.67 and a/L=
2, the antipleptic MCW is the most efficient for transporting fluids. However, it should
be noted that as the cilium spacing is increased, the ability of the antipleptic wave to
transport fluids exhibits a huge decrease compared with the symplectic wave. For a
larger cilium spacing (a/L = 3.33), the fluid transport is not impacted any more by
metachrony. Finally, no flow reversal occurs for the synchronized cases; this is the
consequence of working at Re= 20.

The total volume of fluid displaced during a beating cycle for the different phase
lags is compared in figure 13(a,b). For a small cilium spacing (a/L = 1.67), the
efficiency of the antipleptic metachrony is obvious. This agrees well with the results
of Khaderi et al. (2011), who observed a larger net flow produced by antipleptic
metachrony for this value of cilium spacing. Symplectic waves appear to be less
efficient than or at best equally efficient to antipleptic motion, except for 1Φ=−7π/8
for a/L= 1.67, where there is a peak in the total displaced volume of flow. On the
contrary, negative peaks are found for a/L = 1.67 and a/L = 2 for 1Φ = −π/3.
There are two neighbouring maxima at 1Φ = π/4 and 1Φ = π/2 for a/L = 1.67
and a/L= 2 respectively, indicating that specific phase lags are more able to generate
a strong flow. At this point, it is worth remembering that in the present model, the
recovery and stroke phases occur in the same plane, which is not the case in real
configurations. According to Downton & Stark (2009), who studied both 2D and
3D beating patterns, it is expected that in the presence of 3D beating patterns, both
the directional pushing efficiency εPN and the total displaced volume of flow would
increase. It is also expected that a small flow might occur in the y-direction.

3.2.4. Energetic cost of the MCWs
The previous sections have been dedicated to the study of the directional transport

and the volume displacements of fluids. An energetic perspective is now introduced,
to characterize the potential benefits of metachrony completely.

The average power spent by the cilia during a beating cycle is given by

Pcil =

∑
s,i

Vs
i · (F

i
m +Fi

PCL)

Ncilia
, (3.2)
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FIGURE 13. (Colour online) Total dimensionless displaced flow volume generated by an
array of cilia over a beating cycle for different phase lags and cilia spacings: +, a/L=
1.67;E, a/L= 2; ∗, a/L= 2.53;@, a/L= 3.33.

using the forces illustrated in figure 2. The power spent is averaged over several
beating cycles. To have a dimensionless power P∗, the power P∞ spent by an isolated
cilium (a/L= 10) is computed such that P∗ = Pcil/P∞.

Before going any further, it is important to remember here that the only parameter
that differs between each value of the phase lag 1Φ for a given cilium spacing a/L
is the size of the domain Nx over the x-direction, and hence the number of cilia
acting in one wavelength. Moreover, between different cilium spacings a/L, the space
a between two cilia is modified in both the x- and y-directions, and the sizes Nx

and Ny of the domain must be changed accordingly. As a consequence, if the cilium
spacing is increased, the density of cilia in both the x- and y-directions is decreased. In
all of the simulations presented in § 3.2, all of the other parameters (ratio of viscosity
rν , beating frequency f , length of the cilia L, etc.) are fixed.

Figure 14(a,b) shows the average dimensionless power as a function of 1Φ. For
small values of the phase lag (|1Φ|6 π/2), the average power spent decreases to a
minimal value for 1Φ ≈π/4. For this particular value, the system spends less power
than the synchronized case: the antipleptic MCW allows the system composed of all
cilia to encounter a smaller resistance from the surrounding fluids.

Nevertheless, it is obvious, from a fluid mechanics point of view, that when cilia
beat together in a synchronized way, the viscous resistance felt by each cilium is
reduced.

In the case of metachrony, the behaviour is dual. Indeed, cilia in the stroke phase
of the antipleptic motion encounter a stronger viscous resistance from the flow due
to their added respective remoteness. Therefore, compared with the synchronized
motion, they will transfer more energy to the flow, and the energy transferred will be
entirely used to propel the fluids in the desired direction. The opposite is true during
the recovery stroke of the antipleptic motion: the clustered behaviour of the cilia
allows them to experience a lower viscous resistance from the flow, and therefore to
limit the amount of power transferred during this phase. However, globally, a system
with an antipleptic MCW and |1Φ| < π/2 encounters less viscous resistance than
the synchronized motion of cilia, as can be seen from figure 14(a,b). This results
in a better efficiency of the cilia with antipleptic metachronal motion in transferring
their momentum to the flow, while in the meantime requiring less power. For the
symplectic motion, a similar phenomenon occurss: cilia in their stroke phase are
clustered and therefore unable to fully exert their pushing action, while cilia in
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FIGURE 14. (Colour online) Power spent by the system for different phase lags 1Φ and
different cilium spacings: +, a/L= 1.67;E, a/L= 2;@, a/L= 3.33.

their recovery phase are away from each other and generate a stronger reversal
flow compared with the antipleptic motion. This results in a lower capacity of the
symplectic MCW to transport mucus, while still allowing the system to spend less
power than synchronously beating cilia for |1Φ| < π/2. An energetic ratio will be
introduced in § 3.2.5 to quantify, for this value of 1Φ, the capacity of cilia with
antipleptic or symplectic metachrony to transfer their momentum to the flow.

This is not true for large phase lags (|1Φ| > π/2): a system with antipleptic
or symplectic metachrony spends more power than the synchronous case. One
can suppose that this is a direct consequence of the reduced number of cilia in
a wavelength. Then, to explain the better efficiency of the antipleptic MCW over the
symplectic one for large phase lags, an investigation of the flow topology is necessary.
Figure 15 shows an antipleptic MCW (on the left) and a symplectic MCW (on the
right) at the same time for a phase lag of 1Φ = ±2π/3. For this value of 1Φ,
the antipleptic wave is more efficient in transporting the mucus (see figure 13a,b),
although the average amounts of power spent by both systems are relatively similar
(see figure 14a,b). One can easily see the main difference between the two cases. In
the symplectic case, the cilium in stroke phase encounters the reversal flow generated
by the other cilium in recovery phase. When these two secondary flows meet, vortices
are generated and the global transport of fluid is less efficient, as a fraction of the
energy transferred to the flow is used to cancel this reversal flow. On the contrary, in
the antipleptic case, the cilium in stroke phase does not immediately feel the influence
of the reversal flow created by the other cilium in recovery phase, which is behind
it. Hence, this cilium is able to fully exert its pushing effect on the mucus phase.
Moreover, for the antipleptic case, there is a suction effect due to the combined
motion of the cilia in the stroke and recovery phases, maximizing the propulsion
of mucus. One can then expect a weak blowing effect between the cilia in the stroke
and recovery phases of symplectic motion.

When the cilium spacing is large (see the case a/L = 3.33 of figure 14a,b, for
example), the power spent by the system is the same for all phase lags: the cilia are
too far from each other to be impacted by the phase difference of their immediate
neighbours. One can observe that for 1Φ = 0 (i.e. for synchronized beating), the
average power spent by a cilium, P∗, is equal to 1 in figure 14(a) for the cilium
spacings a/L = 1.67 and a/L = 3.33, meaning that synchronous systems spend the
same amount of power as an isolated cilium. This shows the beneficial cost of
antipleptic metachrony for small phase lags.
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FIGURE 15. (Colour online) Comparison of the flow generated by an antipleptic and a
symplectic wave for the cilium spacing a/L=1.67. (a) Antipleptic MCW with 1Φ=2π/3.
(b) Symplectic MCW with 1Φ = −2π/3. The plane is coloured with the magnitude of
the dimensionless fluid velocity.

3.2.5. Displacement ratio
Inspired by the work of Kim & Netz (2006), a displacement ratio, which can be

seen as the transport efficiency of the waves, is introduced to quantify the capacity
of a given system to transport particles, with respect to a given amount of power. In
this context, η1 is defined by the mean displacement in the x-direction during one
beating cycle, divided by the mean power that a cilium had to spend during this
beating cycle. Since the main purpose of mucociliary clearance is to transport mucus,
and since experimental data (Winters & Yeates 1997) report that the total thickness
in the vertical direction of the mucus layer is in the range [1.4L; 10L], values for
the displacement were taken on an arbitrary plane z/L = 3.2 near the extremity of
the domain. To obtain a value for the displacement, the instantaneous average fluid
velocity over the x-direction is computed, and the resulting value is then multiplied
by the period of a full beating cycle, giving the mean displacement 〈dx〉 over one
period on the (x, y, 3.2L) plane.

By dividing this mean displacement by appropriate quantities, a dimensionless
expression for the displacement ratio is obtained,

η1 =

〈dx〉
Ncil

λ
P∗

. (3.3)

In the synchronized case, i.e. 1Φ = 0, λ is infinite and thus the size of the domain
over the x-direction was used and divided by the number of cilia.

In figure 16(a,b), one can see, from an energetic point of view, the superiority of
the antipleptic wave in transporting mucus for small cilium spacings, which confirms
the previous findings. Moreover, for the smallest cilium spacing (a/L= 1.67), a clear
peak of efficiency can be seen for an antipleptic MCW with 1Φ =π/4. If the cilium
spacing is increased (a/L= 2), similar results are found. Nevertheless, for a/L= 2.53,
a different behaviour occurs: the displacement ratio is found to be worst for 1Φ =
±π/2. Then, for cilia far away from each other, the displacement ratio η1 remains
constant for all phase lags (the cilia do not feel the influence of the others any more).

Similar results regarding the efficiency of the antipleptic MCW are found in
Osterman & Vilfan (2011), where the optimal beating pattern is investigated. In their
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FIGURE 16. (Colour online) Displacement ratio η1 as a function of the phase lag 1Φ
for different cilium spacings a/L.

study, they observed that antipleptic MCWs were often the most efficient. They also
found, as is the case in the present study, that an increase in the density of cilia
results in an increase of the efficiency up to a critical point where clustering becomes
counterproductive.

3.2.6. Mixing
To investigate how the mixing can be enhanced by metachrony, the average

stretching rate over the transport and mixing areas during a beating period is
computed. Figure 17 shows the results obtained for all cilium spacings. Clearly,
the antipleptic MCW is the most efficient for stretching fluids, and hence for mixing
fluids. Clear peaks are visible for antipleptic waves with 1Φ = π/4 and a/L= 1.67,
with 1Φ ≈ π/3 and a/L= 2, and with 1Φ ≈ π/3 and a/L= 2.53. On the contrary,
symplectic MCWs are almost always less efficient for mixing than antipleptic MCWs,
except for 1Φ=−7π/8 and a/L=1.67, where there is an enhancement in the mixing.
This peak is also present for the opposite phase lag 1Φ = 7π/8, where it reaches
approximately the same value. This is perfectly coherent with all previous results,
and partially with the ones of Ding et al. (2014), who observed, for a unique layer
of fluid with a uniform viscosity and a cilium spacing of a/L= 1.67, the existence of
two peaks in the shear rate: a weak one for symplectic waves for 1Φ =−π/2 and
a stronger one for antipleptic waves for 1Φ =π/2. The main difference here is that,
in the present study, the symplectic MCWs with 1Φ ≈−π/2 seem to have the worst
capacity for mixing, while the antipleptic MCWs reach their full mixing capacity for
1Φ = π/4. The combined study of figures 14 and 17 gives a good insight into the
mixing efficiency of the system.

3.2.7. Quantification of inertial effects
In this section, the influence of the Reynolds number is considered. The present

objective is to compare the qualitative behaviour of the MCWs between Re< 1 and
Re> 1. To reach Reynolds numbers of the order of 10−2, the size of the cilia has been
reduced to half the size of real cilia. The geometry is then divided by a factor of 2 in
the three spatial directions. The main consequence of this choice is that the computed
quantities (fluxes, displaced volume of fluid, etc.) displayed here are approximately
eight times smaller compared with the results previously shown (as in figure 13).
However, the qualitative behaviour of the MCWs remains the same, as well as the
drag exerted by the cilia. Thus, a comparison of the MCW behaviour between Re< 1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

35
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.352


956 S. Chateau, J. Favier, U. D’Ortona and S. Poncet

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

A
ve

ra
ge

d 
sh

ea
r 

ra
te

(a) (b)

2.0
2.5

3.0

FIGURE 17. (Colour online) (a) Average stretching rate in the transport and mixing areas
as a function of the phase lag 1Φ for different cilium spacings: +, a/L = 1.67; E,
a/L= 2; ∗, a/L= 2.53;@, a/L= 3.33. (b) Three-dimensional view of the corresponding
plot.

and Re> 1 is possible. In Figure 18, one can see the total displaced volume of fluid
for Re= 0.02, Re= 1 and Re= 20, and a cilium spacing of a/L= 1.67. A transition
between Re< 1 and Re> 1 for the synchronous cases is expected, and can be seen
in figure 18. As mentioned in § 3.2.3, for Re 6 1, the synchronized cases are less
efficient than the symplectic cases. Except for 1Φ = 0, no other notable quantitative
differences are present between the cases Re< 1 and Re= 20. The general behaviour
of both the antipleptic and symplectic MCWs remains similar for all the other phase
lags 1Φ. In particular, a peak around 1Φ = π/4 is present for all of the Reynolds
numbers tested (Re= 0.047, 2, 5, 10, not shown). The similarity of the metachronal
cases (i.e. 1Φ 6= 0) for this range of Reynolds numbers is certainly due to the fact
that there are always cilia in the stroke phase. Hence, transport is observed during
the whole beat cycle, and the inertial effects thus remain minor. This is no longer the
case for fully synchronously beating cilia: despite being weak, inertial effects cancel
the reversal of the flow.

4. Conclusions
By using an LB solver coupled to an IB method, and considering a purely

hydrodynamical feedback from the fluid, symplectic and antipleptic MCWs can
emerge in a 3D two-phase flow configuration with a viscosity ratio of 20. It is known
that MCWs may emerge due to hydrodynamic interactions (Elgeti & Gompper 2013).
However, for the first time, both types of metachrony are observed to emerge in a
two-layer fluid with different viscosities, using a simple feedback law. This feedback
depends on a coupling parameter α that can be used to tune the strength and direction
of the waves. It is observed that cilia experience weaker torques when they are in a
clustered configuration, i.e. during the recovery phase of antipleptic motion, as well
as during the stroke phase of symplectic motion. The resulting beating pattern is
a slow stroke phase and a fast recovery phase for both cases, suggesting that even
if a simple hydrodynamic interaction is sufficient to let MCWs emerge, it is not
sufficient to reproduce all features of the beating patterns observed in real ciliated
surfaces, and other biological issues may play a role in the transport mechanism. The
study of Hussong, Breugem & Westerweel (2011) has shown that metachronal motion
can switch from symplectic to antipleptic with increasing inertial effects. Here, the
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FIGURE 18. (Colour online) Total displaced volume of fluid for Re = 0.02, Re = 1 and
Re= 20 as a function of the phase lag 1Φ. The results of these simulations are obtained
with L= 7 lu and a/L= 1.67.

influence of cilium density is highlighted: by assuming a least-effort behaviour for
the cilia, the present model shows that the metachrony can switch from antipleptic
to symplectic by lowering the cilium density. A more detailed study of the quality
of synchronization along the x- and y-directions is the next step towards a better
understanding of the emergence of MCWs.

A thorough comparative study of the antipleptic and symplectic MCWs has been
performed, and the results show that antipleptic MCWs are the most efficient ones
for transporting mucus. This is in accordance with most recent studies addressing
this point (Khaderi et al. 2011; Osterman & Vilfan 2011; Ding et al. 2014), and is
now confirmed in a two-layer environment. In the range of cilium spacing studied,
and especially for small phase lags (|1Φ| < π/2), the antipleptic MCWs have a
better ability to (i) transport the flow in the same direction compared with symplectic
MCWs with the same wavelength, (ii) generate a higher flow rate, (iii) advect particles
at a given power input and (iv) generate a higher stretching and, hence, are more
able to mix fluids. On the contrary, symplectic MCWs do not appear to have a great
impact on the flow and are often less efficient than antipleptic MCWs. This is not
in agreement with Elgeti & Gompper (2013), who reported that symplectic waves
are almost as efficient as antipleptic waves using an optimized-efficiency model. This
difference may be due to several factors, including the two-layer flow character of
the present work, the ratios of viscosity considered or even the cilium beat shape
used. However, these results are in accordance with Khaderi et al. (2011), who
explained this better transport efficiency as being due to vortices obstructing the flow
for symplectic motion.

Among the quantities introduced earlier, some are more decisive for the transport
of particles. The most important ones are the net volume of mucus displaced, the
transport efficiency η1 and the mixing capacity of the system. It has been shown
throughout this work that antipleptic MCWs with 1Φ = π/4 generate the largest
flow while in the meantime showing the highest value of the transport efficiency (the
power spent, P∗, for 1Φ =π/4 being minimal). A preliminary study of the mixing
also strongly indicates that they might be more suitable for mixing fluids. The better
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transport efficiency of the antipleptic MCW is certainly due to the clusterized aspect
of the cilia in recovery phase which minimizes their impact on the flow, while cilia
in stroke phase are able to fully exert their pushing action. While being more able
to advect particles than any other form of coordinated motion, antipleptic MCWs
with 1Φ <π/2 also require less power. It should be noted that the results presented
throughout this paper concern a viscosity ratio rν of 20. Chatelin & Poncet (2016)
have shown that mucus transport is maximized for viscosity ratios ranging from 10
to 20. With the present model, and within this interval of viscosity ratios, the same
trends are always observed (results not shown), and the best transport capacities are
always obtained for antipleptic MCWs with 1Φ = π/4. The transport properties
of the waves also remain similar and do not vary significantly. However, it is
worth noticing that the best transport capacity was obtained for rν = 20. Hence, the
optimum is probably outside the range of viscosity ratios studied. This also strongly
indicates that an increase in the mucus viscosity results in an increase of the transport
properties. As in previous studies (Norton, Robinson & Weinstein 2011; Chatelin &
Poncet 2016), an optimum viscosity for the transport of particles can certainly be
found. A more detailed study of how different mucus viscosities affect the transport
properties of the MCWs is the next step towards a better understanding of mucociliary
clearance.

While in the present study only one prescribed beating pattern was investigated, the
results can certainly be generalized to other beating patterns. An interesting path of
investigation would be to study how this beat shape is influenced by different mucus
viscosities, mucus rheologies or thicknesses of the PCL. It should be noted that
a Reynolds number of 20 was used for computational reasons. While this does not
affect the behaviour of either the antipleptic or symplectic MCW, weak inertial effects
are seen to change the dynamics of the flow in the particular case of synchronously
beating cilia. Finally, the mucus was considered as being a Newtonian fluid in the
present work, while it is in reality highly non-Newtonian. It is expected that the
clearance velocity of both the antipleptic and symplectic MCWs would be increased
by considering the mucus as being a viscoelastic fluid. One could also expect the
symplectic waves to become more efficient than the antipleptic MCWs for highly
viscous mucus. Indeed, the clusterized aspect of the cilia during the stroke phase
of symplectic motion could help them to overcome the viscous resistance of the
mucus more easily (Knight-Jones 1954). Nevertheless, it should be noted that studies
(Norton et al. 2011; Chatelin & Poncet 2016) all tend to show, however, that the
mucus cannot be too ‘solid’ or too ‘liquid’.

The numerical results obtained here constitute a useful basis of investigation to
progress in the understanding of respiratory diseases linked to cilium beating disorders,
such as COPD or severe asthma (Chanez 2005). They are also of interest for industrial
purposes, such as the design of cilium-based actuators for mixing (Chen et al. 2013)
or flow regulators in microscopic biosensors.

Future works include the implementation of a realistic rheological model (Lafforgue
et al. 2016) for the mucus in order to take into account its highly non-Newtonian
behaviour, and the study of the mass transfer occurring at the epithelial surface. A
long-term objective of this work is to build a numerical environment to predict the
transport and mixing of drugs inside both the mucus layer and the PCL. With this
tool, the effect of drugs could be tested virtually before proceeding to clinical trials.
For instance, drugs acting on microscopic parameters such as the beating frequency,
the viscosity of the mucus and the density of cilia could be tested and their effects
on macroscopic quantities such as the mucus flow rate and mixing could be explored,
in order to progress in the understanding and treatment of respiratory diseases.
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