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Steady nonlinear diffusion-driven flow
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An imposed normal temperature gradient on a sloping surface in a viscous stratified
fluid can generate a slow steady flow along a thin ‘buoyancy layer’ against that
surface, and in a contained fluid the associated mass flux leads to a broader-scale
‘outer flow’. Previous analysis for small values of the Wunsch–Phillips parameter R
is extended to the nonlinear case in a contained fluid, when the imposed temperature
gradient is comparable with the background temperature gradient. As for the linear
case, a compatibility condition relates the buoyancy-layer mass flux along each sloping
boundary to the outer-flow temperature gradient. This condition allows the leading-
order flow to be determined throughout the container for a variety of configurations.

1. Introduction
In concurrent and closely related studies, Wunsch (1970) and Phillips (1970)

demonstrated that flow is generated if a boundary surface is sloping in an otherwise
quiescent linearly stratified fluid. More recently, Page & Johnson (2008) extended that
analysis to the case of a contained fluid when the imposed temperature gradient at the
boundary is small relative to the background temperature gradient. Their governing
equations are linear, which assists in the analysis of the flow structure, but they are
not applicable to many practical situations. This paper extends their analysis to where
the background temperature gradient is significantly affected by the motion so that
the results can be compared directly with those in Woods (1991) and Quon (1989)
and provide a foundation for determining the corresponding unsteady flow, as in the
experiments of Peacock, Stocker & Aristoff (2004).

Wunsch (1970) and Phillips (1970) show that the key parameter for these flows is
R =

√
ν∗κ∗/N∗L∗2, in terms of the kinematic viscosity ν∗, thermal diffusivity κ∗, the

buoyancy frequency N∗ and a typical length scale L∗. As in most previous studies, it
is assumed here that R � 1, and under those conditions there are three main regions
of the flow: the so-called buoyancy layer, originally described by Wunsch (1970)
and Phillips (1970); an ‘outer flow’ which occupies the bulk of the container; and
horizontal ‘R1/3 layers’ which connect the mass flux between those two regions in
some circumstances. (Here the direction opposite to the gravitational force is referred
to as ‘vertical’.)

The scaling and governing equations for this problem are outlined in § 2. The three
key regions of the flow are described in § 3, leading to an ordinary differential equation
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300 M. A. Page and E. R. Johnson

which governs the ‘outer flow’. The analysis is illustrated in § 4 for the flow in a tilted
square container, in § 5 for a circular container and in § 6 for a semi-infinite fluid.

2. Configuration and governing equations
The steady two-dimensional flow of a viscous stratified fluid is considered in a closed

container of typical length scale L∗. A steady temperature variation is maintained in
the fluid by specifying the normal temperature gradient T ∗

n on the container walls with
a zero overall total heat transfer, and the resulting temperature gradient variations
within the container drive a steady broadscale interior motion (called the ‘outer flow’
here). In this paper the temperature is not assumed to be dominated by a constant
vertical gradient, and so the governing equations differ from those of Wunsch (1970)
and Phillips (1970).

A Cartesian coordinate system (x∗, z∗) is defined with gravitational acceleration
g∗ in the negative z∗-direction and corresponding velocity components denoted as
(u∗, w∗). The temperature is denoted by T ∗(x∗, z∗), and the Boussinesq approximation
is used, based upon a constant background density ρ∗

00. The coefficient of thermal
expansion α∗, thermal diffusivity and kinematic viscosity are all taken to be constant.

To obtain the non-dimensional governing equations, lengths are scaled using L∗, so
(x, z) = (x∗, z∗)/L∗, and an appropriate temperature scale �T ∗ is chosen, for example,
L∗ times the magnitude of variations in the imposed temperature gradient around the
boundary. A non-dimensional temperature T (x, z) is then defined through

T ∗(x∗, z∗) = T ∗
00 + (�T ∗)T (x, z), (2.1)

where T ∗
00 is the ‘average’ background temperature. (In contrast, Page & Johnson

(2008) used the constant background temperature gradient dT ∗
0 /dz∗ to determine

the temperature scale, so their scaled linearized temperature, written as T̃ here, is
equivalent to T =4z + 2ε

√
σ T̃ .)

The velocity components of the flow are non-dimensionalized with L∗ and the
buoyancy frequency N∗ = (g∗α∗�T ∗/L∗)1/2, so (u, w) = (u∗, w∗)/N∗L∗, without the
factor of ε used in Page & Johnson (2008). The pressure in the fluid is predominantly
hydrostatic, and variations are quantified by a scaled pressure p that is non-
dimensionalized with ρ∗

00(N
∗L∗)2.

As noted by Wunsch (1970), the key dynamical parameter in this problem is
R =

√
ν∗κ∗/N∗L∗2. The governing equations for steady flow can then be written as

uux + wuz = −px + R
√

σ ∇2u, (2.2)

uwx + wwz = −pz + T + R
√

σ ∇2w, (2.3)

uTx + wTz = (R/
√

σ )∇2T , (2.4)

where σ = ν∗/κ∗ is the Prandtl number. The continuity equation ux + wz =0 allows a
streamfunction ψ to be defined with

u = ∂ψ/∂z and w = −∂ψ/∂x. (2.5)

Taking into account the different scaling of the pressure and temperature here, without
the factors of

√
σ used in Page & Johnson (2008) and Wunsch (1970), the nonlinear

equations (2.2)–(2.4) are equivalent to (1)–(3) in Wunsch (1970) when his ε =1. It is
assumed that R � 1, with σ taken to be O(1) with respect to R, and under those
conditions it will be seen that p and T are dominantly functions of z over most of
the container. The only significant term on the left-hand sides of (2.2)–(2.4) turns out
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Steady nonlinear diffusion-driven flow 301

to be wTz, and the z-variation of the coefficient of w in that term provides the key
difference from the linear analysis in Page & Johnson (2008).

As in Page & Johnson (2008), the value of Tn = ∂T /∂n is specified around the
boundary, where n is the outward normal, in order to provide the ‘driving force’ for
the steady flow. Non-slip boundary conditions are used, so both components of the
velocity (u, w) vanish at the container walls. The (arbitrary) zero for the temperature
is chosen so that the integral around the boundary of T is zero, and the constancy of
the total heat in the container requires that the integral of Tn around the boundary
must vanish.

3. Flow regions
As in Page & Johnson (2008), there are three key flow regions for steady ‘diffusion-

driven flow’ in a closed container: on vertical or sloping surfaces there are ‘buoyancy
layers’; on some horizontal lines there can be thin ‘R1/3 layers’; while the remainder
is the ‘outer flow’. Modifications to each of these regions in the nonlinear case are
described below.

3.1. The buoyancy layer

This is arguably the most important region, as it provides the driving force behind
the flow, via the specified value of Tn on a sloping boundary. It has thickness O(R1/2)
and can form on any surface that is not horizontal. In the nonlinear case its thickness
can vary along the surface.

The flow above a sloping plane surface at angle α anticlockwise from horizontal
is considered initially, although the results can be extended to surfaces with varying
slope. In a rotated coordinate system (x̂, ẑ), with x̂ = x cosα + z sinα, ẑ = −x sinα +
z cos α and velocity components (û, ŵ), the steady equations of motion (2.2)–(2.4)
become

ûûx̂ + ŵûẑ = −px̂ + T sinα + R
√

σ ∇̂2û, (3.1)

ûŵx̂ + ŵŵẑ = −pẑ + T cos α + R
√

σ ∇̂2ŵ, (3.2)

ûTx̂ + ŵTẑ = (R/
√

σ )∇̂2T , (3.3)

with ûx̂ + ŵẑ = 0. At ẑ =0 the boundary conditions û= ŵ = 0 are applied, with a
specified value of ∂T /∂ẑ(x̂, 0) = −Tn(x̂) for a given function Tn.

For R � 1 and α �= 0 an expansion of the solution is sought of the form

p = p̂0(x̂, ζ ) + R1/2p̂1(x̂, ζ ) + . . . , û = R1/2û1(x̂, ζ ) + Rû2(x̂, ζ ) + . . . , (3.4a)

T = T̂0(x̂, ζ ) + R1/2T̂1(x̂, ζ ) + . . . , ŵ = Rŵ2(x̂, ζ ) + R3/2ŵ3(x̂, ζ ) + . . . , (3.4b)

using the boundary-layer coordinate ζ = ẑ/R1/2. A scaled streamfunction ψ̂ is
introduced such that û = ∂ψ̂/∂ẑ, with ψ̂ = 0 at ẑ = 0, and expanded in the form
ψ̂ = Rψ̂2(x̂, ζ ) + O(R3/2) so that, for example, û1 = ∂ψ̂2/∂ζ .

The leading-order terms in the equations imply that both p̂0 and T̂0 are functions
of x̂ only and are determined by matching with the outer flow for large ζ . Integration
of the O(1) terms in (3.2) implies that p̂1(x̂, ζ ) = ζ T̂0(x̂) cosα + p̂10(x̂), where p̂10(x̂)
is determined by matching, while the O(R1/2) terms in (3.1) and (3.3) give that

0 = −∂p̂1

∂x̂
+ T̂1 sinα +

√
σ

∂2û1

∂ζ 2
and û1T̂

′
0(x̂) =

1√
σ

∂2T̂1

∂ζ 2
. (3.5)
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302 M. A. Page and E. R. Johnson

Note that the nonlinear term on the left-hand side of (3.1) is O(R), so it does not
affect the expansion at this order, but the O(R1/2) term on the left-hand side of (3.3)
introduces a parametric x̂-dependence through T̂ ′

0 .
Solutions of (3.5) are sought such that û1 = 0 on ζ =0, with no exponentially

growing terms for large ζ , and these have the form

û1(x̂, ζ ) = Û1(x̂) exp(−βζ ) sin(βζ ), (3.6)

T̂1(x̂, ζ ) = 2cosecα
√

σ β2Û1(x̂) exp(−βζ ) cos(βζ ) + cosecα
∂p̂1

∂x̂
(x̂, ζ ), (3.7)

where β = [(1/4) sin α T̂ ′
0(x̂)]1/4 > 0. The key difference between these solutions and

those in (3.5) and (3.6) of Page & Johnson (2008) is the x̂-dependence of the layer
thickness R1/2/β , as β depends on the temperature gradient in the outer flow. In
(3.6), Û1(x̂) can be determined from the boundary condition on the temperature
∂T̂1/∂ζ (x̂, 0) = −Tn(x̂), and hence the scaled O(R) mass flux ψ̂2(x̂, ∞) = (1/2)Û1(x̂)/β
satisfies

[
√

σ ψ̂2(x̂, ∞) − cotα] T̂ ′
0(x̂) = Tn(x̂). (3.8)

This is the nonlinear version of the compatibility condition (3.7) in Page & Johnson
(2008), connecting the scaled mass flux and temperature gradient at the outer edge
of the buoyancy layer to the imposed value of Tn without explicitly determining the
flow in that layer.

Section 3.2 shows that the temperature T in the outer flow is independent of x to
leading order, and so T̂ ′

0(x̂) = sinαT ′
0(z), where T0(z) is the leading-order outer-flow

temperature at height z. In terms of the original variables (x, z), it follows from (3.8)
that ψ and T at the outer edge of the buoyancy layer are related through

ψ =
R√

σ sinα

[
cosα +

Tn

∂T /∂z

]
+ O

(
R3/2

)
. (3.9)

On parts of the boundary where Tn = 0 (the insulating condition of zero heat flux),
(3.9) gives ψ = R cot α/

√
σ , as noted by Wunsch (1970) and Phillips (1970) (and used

by Woods 1991). Also, when (3.8) and (3.9) are applied to T = 4z+2ε
√

σ T̃ for ε � 1
and linearized about the background temperature gradient, they yield the equivalent
compatibility relations (3.7) and (3.8) in Page & Johnson (2008) in terms of their
linearized variables T̃ and ψ̃ = ψ/ε.

As noted in Page & Johnson (2008) and also for the particular case of insulating
(Tn = 0) boundaries by Woods (1991), this analysis remains valid when α varies on an
O(1) length scale, so it is not limited to containers with uniformly sloping boundaries.

3.2. The outer flow

For the linear case it was noted that an O(R) mass flux can be generated at the outer
edge of the buoyancy layer when the right-hand side of (3.9) varies with x̂. In the
‘outer-flow’ region, for which (x, z) is O(1), this induces O(R) velocities (u, w) and
O(1) temperature perturbations T . To leading order, (2.2)–(2.4) therefore become

0 = −px, 0 = −pz + T and uTx + wTz = (R/
√

σ )∇2T . (3.10)

As in Page & Johnson (2008), the solution can be expanded in powers of R1/2 as

p = p0(x, z) + R1/2p1(x, z) + . . . , T = T0(x, z) + R1/2T1(x, z) + . . . , (3.11a)

w = Rw2(x, z) + R3/2w3(x, z) + . . . , ψ = Rψ2(x, z) + R3/2ψ3(x, z) + . . . , (3.11b)
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where ψ is given by (2.5). From the first two equations of (3.10), both p0 and T0 are
independent of x, and so the leading-order solution can be written in terms of two
functions f (z) and g(z) with

T0 = f (z), w2 =
f ′′(z)

f ′(z)
√

σ
and ψ2 = − xf ′′(z)

f ′(z)
√

σ
+ g(z). (3.12)

For a flow in a closed container, constraints are imposed on the functions f and g

by the conditions (3.9) at the two boundaries in x, and, as for the linear case, this
determines both f ′ and g to within an arbitrary constant.

Applying the analysis above to a region x− < x < x+ which has boundaries at x±
with slope α±, where cotα± = x ′

±(z), gives the O(R) mass flux at each boundary as

ψ2(x±, z) =
cot α±√

σ
+ cosecα±

Tn±√
σ f ′(z)

(3.13)

from (3.9). In terms of the container width L(z) = [x+(z) − x−(z)], it follows that

w2 = −[ψ2(x+, z) − ψ2(x−, z)]/L(z) = − L′(z)√
σ L(z)

− [cosecα Tn]
+
−√

σ L(z)f ′(z)
, (3.14)

and equating this with the second equation in (3.12) requires that f ′ must satisfy the
differential equation

(Lf ′)′ + [cosecα Tn]
+
− = 0, (3.15)

in terms of the given boundary condition Tn and slope α± at x±. Once f ′ has been
determined, g can be found by using the third equation in (3.12) at either x− or x+

with (3.13). The unique specification of f , and hence the ‘outer flow’, is completed
by noting that the two unknown constants in the solution of (3.15) must satisfy the
requirement that the average values of both T and ∂T /∂n around the boundary are
zero (see § 2).

When Tn = 0 at both boundaries (3.15) implies that Lf ′ is independent of z,
equivalent to the observation by Woods (1991) that Aρz is constant for a region of
width A(z).

A significant feature of the outer-flow solution (3.12) is that the strength of the
recirculation, as measured by max |ψ2| say, is proportional to f ′′/f ′ rather than
the absolute magnitude of the outer-flow temperature gradient, max |f ′| say. This is
because the outer-flow motion is driven by the mass flux along the buoyancy layers,
which does not depend explicitly on the temperature gradient. For example, where
Tn = 0 on a boundary the induced mass flux is proportional to κ∗ cotα in dimensional
terms (Woods 1991) which is independent of �T ∗/L∗, provided that the variation of
the temperature gradient around the boundary is much larger than ν∗κ∗/g∗α∗L∗4. It is
the relative variation of the temperature gradient that determines the strength of the
recirculation rather than its absolute size or indeed the proportion of the boundary
over which it is non-zero.

3.3. The R1/3 layer

Page & Johnson (2008) showed that thin horizontal R1/3 layers, equivalent to
Stewartson E1/3 layers, occur in the flow under some circumstances. For example,
when there is a fluid source (or sink) at a point z0 on a sloping (or vertical) boundary
an R1/3 layer centred on z = z0 redistributes fluid across the container. Page & Johnson
(2008) also noted that an analysis similar to Moore & Saffman (1969) implies that

both T and ∂T /∂z must be continuous across any R1/3 layer, (3.16)
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so that both f and f ′ are continuous at z = z0 (but that w ∝ f ′′ may be
discontinuous). This conclusion remains valid for the nonlinear case examined here,
although the scale thickness of the layer is (RL/

√
f ′(z0))

1/3, where L is the length of
the container, so that the layer broadens as the local temperature gradient decreases
(personal observation).

In combination with the analysis in § 3.2, the condition (3.16) determines unique
solutions for f and g, and hence the overall outer flow, when R1/3 layers are present.

4. Flow in a tilted square container
To compare the nonlinear results directly with the linear theory, the flow in a square

container that has been tilted by 45◦ is considered. The square is taken to have sides
of length

√
2 so that the boundaries are at z = 1 ± (1 − |x|) for |x| � 1.

As in Page & Johnson (2008), a non-zero steady flow is forced by using a piecewise
constant boundary condition ∂T /∂n= Tn around the container, with discontinuities
at z = 1/2, 1 and 3/2. These conditions ensure antisymmetry of T and ψ about z = 1
with Tn = −2

√
2 for z < 1/2, Tn = −2

√
2 + 2ε

√
σ for 1/2 < z < 1, Tn = 2

√
2 − 2ε

√
σ

for 1 <z < 3/2 and Tn = 2
√

2 for z > 3/2. For ε � 1 this problem corresponds to that
considered by Page & Johnson (2008), while for ε =

√
2/σ it gives that Tn = 0 for

1/2 <z < 3/2, as assumed by Woods (1991). Only the solution for z < 1 is described
below, as that for z > 1 follows by replacing z with (2 − z) and changing the signs of
T and ψ .

Using the notation of § 3.2, for z < 1 this configuration has x± = ± z, α± = ± (1/4)π

and L =2z. For z < 1/2, where Tn = −2
√

2, (3.15) gives that

(2zf ′)′ + [
√

2 − (−
√

2)](−2
√

2) = 0 so that f ′(z) = 4 + c1/z, (4.1)

where c1 must be zero to avoid a singularity at z = 0 (as in Page & Johnson (2008)),
and so f ′(z) = 4. Since g(z) = 0, from symmetry about x = 0, it follows that ψ2 = 0 for
z < 1/2, and there is no outer flow. Hence T0(z) = 4(z − 1/2) + T0(1/2), where T0(1/2)
is determined below.

For 1/2 < z < 1 a similar analysis gives that f ′(z) = 4 − 2ε
√

2σ + c2/z, and this
satisfies the condition (3.16) across the R1/3 layer at z = 1/2 when c2 = ε

√
2σ . Since

T0(1) = 0 by symmetry, it follows that T0(z) = (4−2ε
√

2σ )(z −1)+ ε
√

2σ ln z and that

ψ2(x, z) =
ε
√

2 (x/z)

4z + ε
√

2σ (1 − 2z)
for 1

2
< z < 1. (4.2)

For ε � 1 the O(ε) term in (4.2) matches (4.7) of Page & Johnson (2008), noting that
T = 4z + 2ε

√
σ T̃ and ψ = εψ̃ here. This implies that w2 ∝ 1/z2 for 1/2 < z < 1, and

there is a varying detrainment from the buoyancy layer over that range (inadvertently
described as entrainment in Page & Johnson (2008)). The outer-flow streamlines are
shown in figure 1(c) of Page & Johnson (2008).

For 0 <ε <
√

2/σ , Tn < 0 for 1/2 < z < 1, and there is also a mass flux out of
the buoyancy layer, as given by (3.9). The vertical velocity of the outer flow is
w2(z) = −ε

√
2/(4z2 + ε

√
2σ z(1 − 2z)), which is negative and increases in magnitude

as z decreases. This is due to the combined effect of the buoyancy-layer efflux and
the narrowing container width. Streamlines of the outer flow for the typical case
ε = (1/2)

√
2/σ are shown in figure 1(a), and numerical solutions of the full equations

(2.2)–(2.4) for R =0.0001 and σ = 1 are shown in figure 1(c), obtained by using a finite-
difference method on a uniform 300 × 300 grid. As in Page & Johnson (2008), these
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(a)
2

z

0

2

z

0

2

0

2

0
–1 1

–1 1 –1 1

x –1 1x

ψ2/ε

ψ/εR ψ/εR

ψ2/ε
(b)

(c) (d)

Figure 1. Streamlines in a tilted square container based on the outer-flow solution ψ2/ε for the
boundary conditions in § 4 when (a) ε = (1/2)

√
2/σ and (b) ε =

√
2/σ , using �ψ2 = 0.05/

√
σ .

Also shown are equivalent numerical solutions ψ/εR of the full equations for R = 0.0001 and

σ = 1 when (c) ε = (1/2)
√

2 and (d ) ε =
√

2.

plots show similar features, affirming the applicability of the asymptotic solutions
for the outer flow when R � 1. Although not shown, the outer-flow temperature
perturbations from the linear background gradient 4(z − 1) are similar in character
to those of T̃ when ε � 1 (see figure 1b of Page & Johnson (2008)).

For ε =
√

2/σ , which corresponds to applying Tn = 0 for 1/2 < z < 1, the
denominator of (4.2) is equal to 2 and ψ2(x, z) = x/(

√
σ z). This is the same

form of steady solution proposed by Woods (1991) for the Tn = 0 case, and it
implies that w2 ∝ 1/z, as in his (2.3). Figure 1(b) shows that the outer-flow
streamlines immediately outside the boundary layer are parallel to the container
boundaries, in contrast to those in figure 1(a). Numerical solutions for R = 0.0001
are also shown in figure 1(d ), and their features are broadly consistent with those
properties.

As noted above, the buoyancy layers start with non-zero mass flux from the R1/3

layer at z =1/2 and (for ε <
√

2/σ at least) lose fluid as they move up the sloping
surfaces. Antisymmetry requires that ψ = 0 at z = 1, and so the remaining fluid is
expelled over a short distance as z → 1 and recirculated along another R1/3 layer
near z = 1. There are also adjustment regions of size R1/2 × R1/2 in the corners, where
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the two buoyancy layers meet, but they are localized. These features are apparent in
the R =0.0001 numerical solutions in figure 1(c, d ), and as R is decreased the layers
reduce in thickness, and the features of the outer flow are resolved more accurately,
including the correspondence between T and f .

Despite its benign features, with no flow and a constant temperature gradient, the
solution for 0 <z < 1/2 provides the driving force for the steady recirculating motion
within the container, as it supplies a source of energy to the flow for 1/2 < z < 1
through a steady vertical temperature gradient.

5. Flow in a circular container
The effect of boundaries with varying slope can be examined by considering a

circular container x2 + (z − 1)2 < 1, similar to that considered by Quon (1989). The
temperature gradient boundary conditions considered here are that Tn = 0 on r = 1 for
a < z < (2 − a) for a > 0 with Tn = sin θ otherwise, where (r, θ) are polar coordinates
about (x, z) = (0, 1). In effect, this extends the tilted-square problem to a circular
container for the case ε =

√
2/σ , so some of the features of that solution should be

similar to those described in § 4 – including the antisymmetry about z = 1, the driven
flow over a < z < (2 − a) and the R1/3 layers centred on z = a and z = (2 − a).

For z < 1 the container has x± = ±
√

2z − z2 and α± = ± arccos(1 − z) so that

L =2
√

2z − z2. When a < z < 1 analysis similar to that in § 4 for Tn = 0 gives that
f ′(z)

√
2z − z2 is constant, and so f (z) = −d2 arcsin(1 − z) for some constant d2, using

that T0(1) = 0 by antisymmetry. This solution is equivalent to (2.15) in Woods (1991),
and for any d2 it corresponds to a streamfunction of the form

ψ2(x, z) =
x(1 − z)√
σ z(2 − z)

for a < z < 1. (5.1)

The flow has w2 < 0, and fluid is detrained from the buoyancy layer as z increases.
Unlike in § 4, however, the buoyancy layer has emptied once it reaches z = 1, and so
there is no forcing for an R1/3 layer centred on that level.

For z < a, where Tn = sin θ = (z − 1), (3.15) gives

(2
√

2z − z2f ′)′ + 2(z − 1)/
√

2z − z2 = 0, so f ′(z) = 1 + d1/
√

2z − z2, (5.2)

where d1 = 0 to avoid a singularity at z = 0. Therefore f ′(z) = 1 for 0 <z <a, and
also g(z) = 0 by symmetry about x = 0, so ψ2 = 0, and there is no outer flow in
this region (irrespective of the value of a > 0). The corresponding temperature is

T0(z) = z − a − d2 arcsin(1 − a), where d2 =
√

2a − a2 from applying (3.16) at z = a.
The streamlines for the outer flow (5.1) for this geometry are shown in figure 2(a) for

a =0.1. As noted earlier, the strength of this outer-flow recirculation is independent
of the temperature gradient and in particular the value of d2 over a < z < (2 − a). It is
also independent of a, so as a → 0 the strength of the recirculating flow is unaffected
until the assumptions are no longer valid, which occurs once the buoyancy layer has
the same thickness as the R1/3 layer or when a = O(sin2 α) = O(R2/3).

Quon (1989) considered this same problem with Tn = 0 on all of the boundary but
assumed that the temperature gradient was constant throughout the outer flow. He
deduced that ψ must be a function of z only – in contrast to the form of the third
equation in (3.12), which depends upon both x and z. This led to a recirculating flow
illustrated in his figure 4(a), with thin layers near x = 0, and he proposed that these
layers arise when a ‘forced axial flow [is] supplying heat at the top and draining off
heat at the bottom of the cylinder’ (Quon 1989, p. 202). However, no such layers were
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Figure 2. (a) Streamlines for the outer flow ψ2 in a circular container with the boundary
conditions specified in § 5 when a =0.1, using �ψ2 = 0.05/

√
σ . (b) The scaled streamfunction

ψ̌ in a wide container when x = O(R−1), using �ψ̌ = 0.05 cot α/
√

σ .

present for the similar type of forced steady flow in Page & Johnson (2008), nor are
they necessary for the equivalent nonlinear solution described in § 4 here.

In contrast, the outer-flow analysis above, along with a buoyancy layer near r =1
and R1/3 layers near z = a and z = (2 − a), presents a simple and self-consistent
asymptotic solution for the same problem. The corresponding temperature profile
T0(z) for a < z < (2 − a) is also in accord with the analysis by Woods (1991) that LTz

is constant when Tn =0, which in turn leads to his (2.15). As noted at the end of
§ 4, the recirculation (5.1) is generated by the imposed temperature gradient for the
‘quiescent’ region for z <a, where ψ2 = 0 and T0 is linear in z, and this represents the
same kind of ‘forced axial flow’ envisaged by Quon (1989) – especially when a � 1.

6. Flow in a wide container
The examples in § 4 and § 5 illustrate the form of the outer flow in a container

of width O(1), but it is the mass-flux variations in the z-direction, driven by the
buoyancy layer, which force the fluid to recirculate. Recirculation also occurs in a
semi-infinite fluid with only one sloping wall, provided Tn varies along the boundary.
As an example, consider a semi-infinite fluid to the right of a sloping plane at
z = x tan α, where α < 0 is O(1), similar to the configuration in Wunsch (1970) and
Phillips (1970) but with Tn = −cosα for |z| > 1 and Tn = 0 for |z| < 1. Fluid travels up
the buoyancy layer from z = −1 towards z =1 and recirculates in an ‘outer flow’ to
close the mass flux.

Following § 3.2 when L  1, (3.15) implies that f ′′ = 0 in the outer flow and that f ′ is
constant everywhere. For |z| > 1 the outer solution T ′

0 = 1, and ψ2 = 0 for all x > z cotα
satisfies the boundary condition Tn = −cosα without a buoyancy layer. When |z| < 1,
however, the outer flow has T ′

0 constant, so a buoyancy layer is required near
x = z cot α, and from (3.9) it must carry a mass flux of ψ2(z cotα, z) = cotα/

√
σ . From

the third equation in (3.12), it follows that ψ2(x, z) = g(z) = cotα/
√

σ everywhere
in the outer flow when |z| < 1. The fluid ejected from the buoyancy layer at z =1
therefore moves out along an R1/3 layer and then back along a similar layer centred
on z = −1. Both T0 and T ′

0 must be continuous across those layers, from (3.16), and so
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T0 = z everywhere in the outer flow. This remains valid under the conditions assumed
in § 3.2, where x = O(1), and on that scale the R1/3 layers both extend to infinity in x.

A sink flow with an R1/3 layer near z = 0 in a semi-infinite fluid is described by Koh
(1966) with the streamfunction expressed in terms of a similarity variable z/(Rx)1/3.
For x = O(1) the layer has width O(R1/3), but it broadens to order-one values of z and
thereby affects the outer-flow region, once x is O(R−1). This problem is also similar
to a body moving along the axis of an unbounded viscous rotating fluid, described
by Hocking, Moore & Walton (1979), who observed a similar long x-scale. In terms
of X = Rx and using scaled variables ψ = Rψ̌(X, z) and T = z + RŤ (X, z) it follows
from (2.2)–(2.4) that ψ̌X = −Ťzz/

√
σ and ŤX =

√
σ ψ̌zzzz. The relevant solution for

the case here is a linear superposition of the flow from a source at (X, z) = (0, 1) and
sink at (0, −1), with

ψ̌(X, z) = (cot α/
√

σ )
[
f0

(
(z − 1)/X1/3

)
− f0

(
(z + 1)/X1/3

)]
(6.1)

in terms of the similarity solution f0 described in § 1.4 of Koh (1966). The streamlines
for this flow are shown in figure 2(b), indicating how the mass recirculates over this
longer x =O(R−1) scale for R � 1.

The analysis above implicitly assumes that α =O(1). For small α the mass flux along
sloping boundary becomes large, and the buoyancy layer thickens to O(

√
R/ sinα).

In particular, for α = O(R1/3) the buoyancy layer and R1/3 layers merge near the mass
source and sink at z = ± 1, and the solution above no longer applies.

7. Conclusions
This paper extends the flow structure for the steady recirculation of a contained flow

in Page & Johnson (2008) to the nonlinear case, where the background temperature
gradient is significantly affected by the motion. This allows a more complete analysis of
the closed-container version of the problem considered by Wunsch (1970) and Phillips
(1970). The buoyancy layer has non-constant thickness, but the overall features of
the flow field remain similar to those for the linear case consider by Page & Johnson
(2008), including the derivation of a ‘compatibility condition’ which relates the outer
flow directly to the imposed normal temperature gradient on the boundary. Based
on that condition, the outer flow is determined by solving a second-order ordinary
differential equation (3.15). In particular, when the imposed normal temperature
gradient Tn is zero on both horizontal boundaries over some range of values of z,
LTz is constant throughout the outer flow (where L(z) is the container width), as also
noted by Woods (1991). This analysis also leads to an alternative form of asymptotic
solution from that proposed by Quon (1989) for flow in a circular container.

The approach used in this paper can be extended to the case of unsteady flow and
in particular to a typical experimental situation in which the fluid is initially stagnant
with a constant temperature gradient throughout. Three time scales can be identified
for that problem, with the buoyancy and R1/3 layers established, quickly followed by
a more gradual decay to a stagnant fluid at a constant temperature.
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