
Euro. Jnl of Applied Mathematics (2014), vol. 25, pp. 655–680. c© Cambridge University Press 2014

doi:10.1017/S0956792514000217
655

Unsteady flow over a submerged source with low
Froude number

CHRISTOPHER J. LUSTRI 1 and S. JONATHAN CHAPMAN 2

1 School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia

E-mail: christopher.lustri@sydney.edu.au
2 Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford

OX1 3LB, UK

(Received 18 October 2013; revised 4 July 2014; accepted 8 July 2014; first published online 4 August 2014)

In the low-Froude number limit, free-surface gravity waves caused by flow past a submerged

obstacle have amplitude that is exponentially small. Consequently, these cannot be represented

using an asymptotic series expansion. Previous studies have considered linearized steady flow

past a submerged source in infinite-depth fluids, in which exponential asymptotics were used

to determine the behaviour of downstream longitudinal and transverse free-surface gravity

waves. Here, unsteady flow past a submerged source in an infinite-depth fluid is investigated,

with the free surface taken to be initially waveless. The source is taken to be weak, and

the flow is linearized about the undisturbed solution. Exponential asymptotics are applied to

determine the wave behaviour on the free surface in terms of the two-dimensional plan-view,

in order to show how the free surface waves evolve over time and eventually tend to the

steady solution.
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1 Introduction

1.1 Background

There have been many studies of water waves on unsteady flows, and a detailed historical

summary of water wave theory is given by Craik (2004). Important early results include

that of Havelock (1949), who examined the behaviour of surface waves caused by flow

past a submerged cylinder starting from rest, formulating the wave resistance in terms

of an integral equation. This investigation also noted that the formulation derived in

Havelock (1917) could be applied to unsteady flows with an obstacle represented as a

combination of sources and sinks. John (1953) used a Lagrangian formulation to find

steady deep water waves; however, this method (later extended to more general flow

configurations by Longuet-Higgins, 1980) could also be applied to unsteady free-surface

flows.

More recently, Cole (1985) considered unsteady flow past a small bump, finding an

integral expression for the behaviour of the surface for the linearized problem and solving

the full non-linear KdV equation numerically. These two regimes were then connected

by deriving a quasi-linear theory. Abou-Dina (2001) investigated unsteady gravity waves
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over a base topography caused by an initial prescribed free-surface position, using both

the linearized theory and computing solutions to the full non-linear formulation. Xue &

Yue (1998) computed the unsteady free-surface behaviour for flow due to an impulsively

started point sink over a range of Froude numbers. Zhu & Zhang (1997) also computed

non-linear flows over a submerged obstacle for a range of Froude numbers. Importantly,

this investigation found that for sub-critical flows, a submerged obstacle moving with

uniform velocity (equivalent to a stationary obstacle in a uniform flow field) produced a

steady wavetrain that spreads over time.

Analytical studies of unsteady gravity waves have been performed in several asymptotic

limits. Liu & Tao (2001) formulated an integral expression for the far-field wave behaviour

caused by an impulsively-started submerged body, while Lu (2009) determined the far-

field unsteady wave behaviour caused by an oscillating Stokeslet. Shen (1969) found an

asymptotic expression for unsteady long waves in a three-dimensional shallow channel

with arbitrary base topography and small lateral velocity. Ockendon & Wilmott (1986),

and Wilmott (1987) used matched asymptotic expansions to determine the behaviour

of a free-surface flow past a small spheroid and arbitrary two-dimensional obstruction

respectively, both in the case of arbitrary motion.

A number of asymptotic analyses have been performed in the small-time limit, such as

the problem of flow due to an impulsively-started submerged cylinder (Tyvand & Miloh,

1995a,b), a line source (Tyvand, 1992) or sink (Stokes et al., 2003), and a point sink

(Tyvand, 1993). In addition to the small-time limit, Forbes et al. (2008) also considered

the large-time asymptotic limit for an impulsively-started point sink submerged in a

fluid.

None of these investigations, however, considered unsteady waves in the low-Froude

number limit, where the Froude number represents the ratio of inertial to gravitational

force, defined in (2.4). This limit has been explored in several previous studies, particularly

in the context of ship hydrodynamics, using asymptotic power series methods. Ogilvie

(1968) considered the problem of a submerged two-dimensional object, noting that the

asymptotic series in powers of the Froude number failed to produce wave behaviour on

the calculated free surface. Dagan & Tulin (1972) considered the wave resistance of a

blunt bow, also obtaining waveless solutions up to second order in the Froude number.

Vanden-Broeck et al. (1978) investigated several free-surface flow problems in this limit,

using Padé approximant representations of the solutions in order to obtain discontinuous

free-surface profiles. In more general problems from fluid dynamics, Peregrine (1972)

considered the low-Froude number problem of flow due to a line source or sink, finding

the solution to be waveless up to fourth order. The wavelessness of the free surface in

these expansions is now known as the low-speed paradox.

It is well-known that the free-surface gravity waves present on potential flow over a

submerged obstacle are exponentially small in this limit (Ogilvie, 1968), and hence cannot

be seen using classical asymptotic power series. However, numerous studies have applied

exponential asymptotic techniques in order to determine the behaviour of gravity waves

in the low-Froude number limit. These studies considered flow past obstacles in both two

(Chapman & Vanden-Broeck, 2006; Trinh & Chapman, 2010; Trinh et al., 2011; Lustri

et al., 2012, 2013) and three dimensions (Lustri & Chapman, 2013). Importantly, each of

these studies considered the problem to be steady. For example, in Lustri & Chapman
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(2013), the authors determined the behaviour of gravity waves in three dimensions caused

by steady, infinite-depth flow over a submerged source.

Here, we consider free-surface gravity waves caused by unsteady, infinite-depth flow

over a point source in three dimensions. This is the unsteady version of the steady problem

considered by Lustri & Chapman (2013). As in the analysis of the steady problem, we

consider the strength of the source to be weak, and linearize the problem in this parameter,

fixing the position of the boundary. Additionally, we prescribe a waveless initial state for

the flow. We subsequently apply exponential asymptotic techniques directly to the flow

equations in order to determine the unsteady surface behaviour, and hence how the waves

evolve in time and tend to the steady state behaviour obtained by Lustri & Chapman

(2013).

Finally, we note that exponential asymptotic methods have been used to consider

steady free-surface fluid flow problems in other limits. Chapman & Vanden-Broeck (2002)

applied exponential asymptotic methods to determine the behaviour of upstream capillary

waves for flow over a submerged obstacle in the low-Bond number limit, while the more

complicated case of gravity-capillary waves on two-dimensional flow with low-Froude

number and Bond number has been considered in both linear (Trinh & Chapman, 2013a)

and non-linear (Trinh & Chapman, 2013b) regimes. The behaviour of weakly non-local

solitary waves was investigated by Grimshaw & Joshi (1995) and Grimshaw (2011), as well

as by Trinh (2011) using methods similar to those presented here. Keller & Ward (1996)

considered slow flow past a cylinder with small Reynolds number, using exponential

asymptotics to determine the drag on the cylinder, and local asymmetry of the flow.

1.2 Methodology

It was Stokes (1864) who first observed that a function containing multiple exponentials

in the complex plane can contain curves along which the behaviour of the sub-dominant

exponential changes rapidly. These curves are known as Stokes lines. This investigation

will apply the exponential asymptotic technique developed by Olde Daalhuis et al. (1995)

and extended by Chapman et al. (1998) for investigating the smooth, rapid switching

of exponentially small asymptotic contributions across Stokes lines. The methodology is

described at length in Lustri & Chapman (2013), and we will therefore simply outline the

details here.

The first step in this technique is to express the solution as an asymptotic power series,

such as

f(x; ε) ∼
∞∑
n=0

εnan(x) as ε → 0.

Because we are considering a singular perturbation problem, the series will be divergent.

The approximation error can be minimized by truncating the series optimally. Chapman

et al. (1998) observed that the optimal truncation point tends to become large in the

asymptotic limit, and hence the form of the late-order terms of the series (that is, the form

of an in the limit that n → ∞) is sufficient to truncate the asymptotic series optimally.
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They propose that the late-order terms are given by a sum of expressions with the form

an ∼ AΓ (n + γ)

χn+γ
as n → ∞, (1.1)

where Γ is the gamma function (see Abramowitz & Stegun 1972), and A, γ and χ are

functions that do not depend on n. Each of these factorial-over-power expressions is

associated with a particular singularity in the early-order terms, and χ will be zero at the

singularity. In the current study, different expressions for χ correspond to different classes

of wave behaviour.

Furthermore, they note that the late-order term behaviour given in (1.1) is related to

applying a WKB ansatz of the form Ae−χ/ε to the equation for f linearized about the

truncated expansion. Dingle (1973) notes that Stokes switching takes place on curves

where the singulant χ is purely real and positive, known as Stokes lines. In the problem

considered here, these Stokes lines correspond to curves along which water wave behaviour

is switched on or off.

Once the form of the late-order terms is established, we may find the smallest term in

the series, and hence truncate the series optimally. This gives

f(x; ε) =

N−1∑
n=0

εnan(x) + RN,

where N(x; ε) is the optimal truncation point, and RN is the now exponentially small

remainder term, which describes the behaviour of exponentially-small water waves. We

now follow the method of Olde Daalhuis et al. (1995) and use the resultant expression to

determine the switching behaviour of RN across Stokes lines.

We make one final remark before we proceed to apply these techniques to our free-

surface problem. The exponential asymptotic methodology of Olde Daalhuis et al. (1995)

and Chapman et al. (1998) was developed for investigating ordinary differential equations.

Because our free surface is two-dimensional, we will require the extension of these

techniques to partial differential equations which was developed by Chapman & Mortimer

(2005) and used in Lustri & Chapman (2013).

Initially, the method is identical, however in some partial differential equations (and

indeed, in higher-order differential equations), further Stokes switching may occur in the

remainder itself, such that

RN = e−χ/ε

M−1∑
n=0

εnR
(n)
N + SM,

where SM is the new (doubly) exponentially sub-dominant remainder term. The relative

size of these exponentials may change depending on where we are on the free surface. This

behaviour allows for switching to occur between different classes of exponentially-small

wave behaviour.

There is, however, a second variety of switching behaviour that is relevant to the

current investigation and was not discussed in Lustri & Chapman (2013), known as the

higher-order Stokes phenomenon. This behaviour was observed by Aoki et al. (2002), and

explained in detail by Howls et al. (2004) and Chapman & Mortimer (2005). These studies
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noted that higher-order Stokes switching behaviour may be present when there are three

or more exponential contributions present in the solution. Higher-order Stokes switching

was not present in the steady solution considered in Lustri & Chapman (2013), but it will

play a role in the unsteady problem.

When an ordinary Stokes line is crossed, an exponentially small contribution is switched

on, the size of which is governed by a Stokes switching parameter. When a higher-order

Stokes line is crossed, this switching parameter itself is switched on or off. The effect of this

higher-order switching is that ordinary Stokes lines are switched on or off as higher-order

Stokes lines are crossed. Higher-order Stokes lines originate at the intersection of multiple

Stokes lines in the complex plane, known as Stokes crossing points.

Howls et al. (2004) showed that when a problem contains three or more singulant

contributions, associated with χ1, χ2 and χ3, the higher-order Stokes lines must follow

curves satisfying the criterion

Im

[
χ3 − χ2

χ3 − χ1

]
= 0.

Unlike the steady problem (Lustri & Chapman, 2013), unsteady free-surface flow does

contain three interacting exponentially-small asymptotic contributions, and hence higher-

order Stokes lines play a role in the solution. Consequently, it is not sufficient to simply

find the ordinary Stokes lines in the problem, but instead we must also determine the

higher-order Stokes line behaviour, and therefore where the ordinary Stokes lines are

switched on and off. This will permit us to determine the full asymptotic free-surface

wave behaviour.

2 Formulation

We consider the problem of unsteady mean flow past a submerged point source in three

dimensions, beginning in a prescribed initial flow configuration. We suppose that the

strength of the source is small so that the problem may be linearized.

2.1 Full problem

We consider a three-dimensional incompressible, irrotational, inviscid free-surface flow

of infinite depth with a submerged point source at depth H and upstream flow velocity

U. The steady version of this problem was considered in Lustri & Chapman (2013). We

normalise the fluid velocity with U and distance with an unspecified length L, giving

non-dimensionalised source depth h = H/L, shown schematically in Figure 1. The natural

choice for L is H , but we prefer to separate H and L to allow for direct comparison with

the results from Lustri & Chapman (2013).

Denoting the (non-dimensional) position of the free surface by z = ξ(x, y, t), the (non-

dimensional) velocity potential satisfies

∇2φ = 0, −∞ < z < ξ(x, y, t), (2.1)
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x

z
y

z = ξ(x, y, t)

Flow direction (0, 0,−h, t)
Source

Downstream

wavetrain

Figure 1. Prescribed fluid configuration for three-dimensional flow over a source. The shaded

region represents the position of the free surface ξ(x, y, t), and the cross represents the position

of the source. The flow region lies below the free surface, and the mean flow is moving from left

to right, with flow velocity U in the unscaled problem. A possible downstream wave region is

illustrated in darker grey.

with kinematic and dynamic boundary conditions

ξxφx + ξyφy + ξt = φz, z = ξ(x, y, t), (2.2)

1

2
ε(φt + |∇φ|2 − 1) + ξ = 0, z = ξ(x, y, t), (2.3)

where we have written ε = F2, where

F =
U√
gL

(2.4)

is the Froude number, and g is the acceleration due to gravity. We will be concerned with

the limit 0 < ε � 1. Since the flow is uniform in the far field, φx → 1 there, while at the

source

φ ∼ δ

4π
√
x2 + y2 + (z + h)2

as (x, y, z, t) → (0, 0,−h, t). (2.5)

We will be concerned with the limit 0 < δ � ε, so that the disturbance to the free stream

is weak and the equations may be linearized in δ. Specifically, if δ = o(ε2), higher-order

powers of δ can be discarded, as they will not appear in any of the subsequent analysis.

We denote the initial flow conditions, prescribed at t = 0, as φ = φ0 and ξ = ξ0. For

convenience, we set the initial condition to be the leading-order solution to the linearized

steady-state problem, found by solving the steady version of (2.7)–(2.10) with ε = 0, giving

φ0 =
δ

4π
√
x2 + y2 + (z + h)2

+
δ

4π
√
x2 + y2 + (z − h)2

, ξ0 = 0. (2.6)

This will ensure that in subsequent analysis, the flow is steady at leading order in the

low-Froude number limit. Finally, we note that the initial flow state is waveless, and hence

prescribe that free surface is always waveless in the far field.
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2.2 Linearization

We linearize about uniform flow by setting

φ = x + δφ, ξ = δξ,

to give, at leading order in δ

∇2φ = 0, −∞ < z < 0. (2.7)

φz − (ξx + ξt) = 0, z = 0, (2.8)

ε(φx + φt) + ξ = 0, z = 0, (2.9)

where the boundary conditions are now applied on the fixed surface z = 0. The far-field

conditions imply that φ → 0 as x2 + y2 + z2 → ∞, while near the source

φ ∼ 1

4π
√
x2 + y2 + (z + h)2

as (x, y, z, t) → (0, 0,−h, t). (2.10)

The initial conditions given in (2.6) become

φ0 =
1

4π
√
x2 + y2 + (z + h)2

+
1

4π
√
x2 + y2 + (z − h)2

, ξ0 = 0. (2.11)

Finally, we analytically continue the free surface such that x, y ∈ �, with the free surface

still defined as the surface satisfying z = 0. This does not change the form of equations

(2.7)–(2.10), but it does mean that the two-dimensional physical free surface is a subset

of a four-dimensional complexified free surface.

2.3 Series expression

Following the approach of Chapman & Vanden-Broeck (2006), we first expand the fluid

potential and free-surface position as a power series in ε,

φ ∼
∞∑
n=0

εnφ(n), ξ ∼
∞∑
n=0

εnξ(n) (2.12)

to give for n � 0

∇2φ(n) = 0, −∞ < z < 0, (2.13)

φ(n)
z −

[
ξ(n)
x + ξ

(n)
t

]
= 0, z = 0, (2.14)[

φ(n−1)
x + φ

(n−1)
t

]
+ ξ(n) = 0, z = 0, (2.15)

with the convention that φ(−1) = 0. The far-field behaviour tends to zero at all orders of

n and the singularity condition (2.10) is applied to the leading-order expression, giving

φ(0) ∼ 1

4π
√
x2 + y2 + (z + h)2

as (x, y, z, t) → (0, 0,−h, t).
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As the initial condition (2.11) is the leading-order steady state solution, the leading-order

behaviour remains steady and is given by

φ(0) =
1

4π
√
x2 + y2 + (z + h)2

+
1

4π
√
x2 + y2 + (z − h)2

, ξ(0) = 0.

This formulation illustrates clearly why the small ε limit is singular in this problem. We

see from (2.14) and (2.15) that the time derivative of ξ(n) is used to determine φ(n), and

the time derivative from φ(n) is subsequently used to determine ξ(n+1). As these derivatives

of ξ(n) and φ(n) are calculated only once the terms themselves have been determined,

this expansion removes the time-evolutionary behaviour of the unsteady problem. The

removal of this behaviour in the small ε limit produces the singular nature of the limit,

and hence the unsteady exponentially-small terms identified in Section 3.1.

3 Late-order terms

In order to optimally truncate the asymptotic series prescribed in (2.12), we must determine

the form of the late-order terms. We therefore make the factorial-over-power ansatz

(Chapman et al. (1998))

φ(n) ∼ Φ(x, y, z, t)Γ (n + γ)

χ(x, y, z, t)n+γ
, ξ(n) ∼ Ξ(x, y, t)Γ (n + γ)

χ(x, y, 0, t)n+γ
, as n → ∞, (3.1)

where γ is constant.

Each late-order contribution is associated with a singularity in the early terms of the

asymptotic expansions (2.12) on the analytically-continued free surface at which χ = 0.

The position of these singularities will be discussed in Sections 3.1.1 and 3.1.2.

It is important to note that the expression for ξ(n) is restricted to z = 0, as it describes

the free-surface position. This does not pose a problem for the subsequent analysis, but

does ensure that care must be taken at each stage to determine whether we are considering

the full flow region, or only the free surface.

3.1 Calculating the singulant

Applying the ansatz expressions in (3.1) to the governing equation (2.13) and taking the

first two orders as n → ∞ gives

χ2
x + χ2

y + χ2
z = 0, (3.2)

2Φxχx + 2Φyχy + 2Φzχz = −(χxx + χyy + χzz), (3.3)

while the boundary conditions (2.14) and (2.15) become at leading order

−(χx + χt)Φ + Ξ = 0, z = 0, (3.4)

−χzΦ + (χx + χt)Ξ = 0, z = 0. (3.5)

This system of equations has non-zero solutions when

(χx + χt)
2 = χz. (3.6)
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Combining this result with (3.2) gives the eikonal equation on the free surface as

(χx + χt)
4 + χ2

x + χ2
y = 0. (3.7)

In order to determine the form of the prefactors Φ and Ξ , we must solve (3.3). This

involves writing the equation in a way that it may be solved on the free surface, and

showing that the resultant behaviour contains identical characteristics to the eikonal

equation. This information about the ray structure may be used to obtain an integral

form for Φ, and hence Ξ . We omit the prefactor calculations here, however the procedure

is very similar to that described by Lustri & Chapman (2013).

3.1.1 Steady singularity

The leading-order solution (2.3) is singular (and hence χ = 0) at points satisfying

x2 + y2 + (z ± h)2 = 0,

where the sign chosen depends upon which of the two singularities is being considered. For

complex values of x, y and z, this defines a four-dimensional hyper-surface. Irrespective of

which singularity is under consideration, this hyper-surface intersects the four-dimensional

complexified free surface on the two-dimensional hyper-surface satisfying x2 +y2 +h2 = 0.

The eikonal equation may be solved using Charpit’s method (Ockendon et al., 1999).

In fact, comparing this Charpit system to the equivalent analysis for the steady problem

performed in Lustri & Chapman (2013), we see that the solution for χ is identical in both

cases, giving

χ =
2h4u

s4
, where u = ± h3(s − x)

s(2h2 + s2)
,

and s is one of the four solutions to

(
x2 + y2

)
s4 + 4xh2s3 +

(
h2x2 + 4h2y2 + 4h4

)
s2 + 4h4xs +

(
4y2h4 + 4h6

)
= 0.

Following Lustri & Chapman (2013), we may discard four of the eight solutions im-

mediately, as they would produce exponentially-large waves on the free surface. The

remaining four contributions are denoted as χL1,2 and χT1,2, associated with longitudinal

and transverse waves respectively, and are illustrated in Figure 2.

For more details on determining the behaviour and interaction between the longitudinal

and transverse wave contributions, see Lustri & Chapman (2013). This study demonstrated

that longitudinal waves are switched on by the leading-order behaviour across a Stokes

line following x= 0, while the transverse waves were subsequently switched on by the

longitudinal wave behaviour along wedge-like curves that tend to the Kelvin wedge Kelvin

(1887) in the limit that h → 0. This behaviour is illustrated in Figure 3.

3.1.2 Unsteady singularity

There is a second class of singularity present on the complexified free surface due to

the initial discontinuous disturbance in the system. In Appendix A we show that the
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(a) Behaviour of χL1
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(b) Behaviour of χT1

Figure 2. Singulants obtained by solving (3.7) with boundary data given by χ = 0 on the curve

described in (3.1.1). The behaviour of χL2 and χT2 are given by the complex conjugates of these

solutions.

series (2.12) contains terms which are singular when t = 0. These terms exist due to the

instantaneous change in the system that occurs at t = 0. Prior to this point in time, the

surface is held in a fixed position, while afterwards, it is permitted to vary freely.

In a similar analysis to that performed by Chapman & Mortimer (2005), we see that

simply applying the condition χ = 0 at t = 0 is not sufficient to uniquely determine χ, as

the rays never leave the boundary data. Instead, we specify that all of the singulant rays

must originate at the source or its reflection, located at (x, y, z) = (0, 0,±h), when t = 0.

In fact, this solution will be radially symmetric about the point x = t. Hence, for

simplicity, we rewrite (3.7) in terms of time and the radial distance from this point,
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0

y
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x
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h = 3

h → 0
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−10

No waves

Longitudinal waves

Longitudinal and
transverse waves

S0>L

SL>T

Figure 3. Stokes lines associated with steady-state flow behaviour, obtained in Lustri & Chapman

(2013) and also present in the unsteady problem. The bold curve represents the Stokes line across

which downstream longitudinal waves associated with χL1,2 are switched on. The narrow curves

represent the Stokes lines across which downstream transverse waves associated with χT1,2 are

switched on, for a range of values of h. For more details, see Lustri & Chapman (2013).

ρ =
√

(x − t)2 + y2. This gives the eikonal equation as

χ4
t + χ2

ρ = 0,

with the condition that χ = 0 at ρ = −h2.

Again using Charpit’s method to solve this equation, we find the solutions

χU1 =
t2

4 (h − iρ)
, χU2 =

t2

4 (h + iρ)
. (3.8)

As with the steady singularity, there exist other solutions to this system (specifically −χU1

and −χU2); however, these contributions would produce exponentially large free-surface

behaviour, as Re(χ) < 0 on the entire physical free surface. Consequently, on physical

grounds we may conclude that these remaining singulant contributions are inactive. We

also note that χU2 is the complex conjugate of χU1.

In Figure 4, we see that each of these singulants satisfies Im(χ) = 0 at the point x = t

only, and has Re(χ) > 0 everywhere. Hence they produce free-surface behaviour that is

either active everywhere or inactive everywhere on the free surface. Noting that these are

the only late-order contributions to contain any unsteady behaviour, we conclude that

these contributions must be present on the free surface for there to be any unsteady

free-surface wave behaviour. Furthermore, as the phase of the resultant free-surface wave
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Figure 4. Plots of the real and imaginary parts of χU1 with h = 1 over a range of x for y = 0

and various t values. Furthermore, we recall that χU1 is radially symmetric about the point x = t.

Hence, the singulant expression satisfies Im(χ) = 0 only at x = t, indicated by a black circle, while

Re(χ) > 0 on the entire free surface. Noting that χU2 is the complex conjugate of χU1, we determine

that the free-surface contributions associated with these two contributions are always exponentially

small on the free surface, and take the form of an expanding ripple centred on x = t.

is given by Im(χ), we see that the unsteady free-surface behaviour takes the form of an

expanding ripple centred on x = t, and hence propagates with the flow.

4 Complete Stokes structure

We recall from the analysis of the steady problem (Lustri & Chapman, 2013) that the

steady free-surface behaviour contains longitudinal waves (associated with χL1,2) that are

switched on by the leading-order behaviour along curves satisfying Im(χL1,2) = 0, and

transverse waves (associated with χT1,2) that are switched on by the longitudinal wave

behaviour along curves satisfying Im(χL1,2) = Im(χT1,2). We will concentrate only on χU1,

χL1 and χT1, noting that the interaction between the remaining contributions will be

identical, as they take appropriate complex conjugate values.

Figure 3 illustrates the regions in which the respective steady-state contributions are

active in the absence of unsteady free-surface behaviour. The Stokes lines indicated in

Figure 3 are denoted by SL>T and S0>T , with the inequality indicating which of the

two contributions is exponentially dominant, with L, T and 0 denoting the longitudinal

wave contribution, the transverse wave contribution and the leading-order behaviour

respectively. This convention will be used for the remainder of the current investigation,

where the letter U will be used to refer to the unsteady ripple contribution.

Thus far, we have considered the Stokes switching between the base flow and the

steady and unsteady waves separately. To complete the picture, we need to consider

Stokes interaction between the steady and unsteady wave contributions. This involves

determining the curves that satisfy Im(χU1) = Im(χL1) and Im(χU1) = Im(χT1), as well as

considering the effect of higher-order Stokes lines, as discussed in Chapman & Mortimer

(2005); Howls et al. (2004).
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Unsteady
waves

Unsteady
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Figure 5. This figure illustrates Stokes and anti-Stokes lines caused by interactions between the

late-order terms corresponding to χL1 and χU1 for t = 30 and h = 1. The thin unbroken curves

indicate Stokes lines across which Im(χL1) = Im(χU1), while the thick unbroken curve represents the

Stokes line across which Im(χL1) = 0. The dashed line indicates an anti-Stokes line across which

Re(χL1) = Re(χU1). The unsteady free-surface contribution associated with χU1 is always active. The

longitudinal waves are switched on across the line x = 0 by the leading-order behaviour. Here, we

find that this behaviour is switched off by the unsteady contribution as SU>L is crossed. SL>U must

be inactive, as the longitudinal contribution is absent in this region, and therefore cannot switch the

unsteady contribution. Hence, the longitudinal waves are present only in the shaded region of the

free surface. An identical figure would be obtained by considering interactions between χL2 and χU2

4.1 Longitudinal waves

We first consider the interaction between the unsteady surface ripple and the longitudinal

waves, as this behaviour may be investigated without considering the transverse wave

behaviour.

In Figure 5, we show the curves along which χL1 and χU1 have equal real or imaginary

parts, giving the location of anti-Stokes lines and Stokes lines respectively. From this

figure, we see that there are two potential Stokes lines on the free surface, separated by

an anti-Stokes line.

On the left-hand side of the anti-Stokes line, Re(χL1) > Re(χU1), implying that the

longitudinal wave behaviour is exponentially sub-dominant compared to the unsteady

behaviour. Recalling that sub-dominant effects are switched across a Stokes line, we find

that longitudinal waves are switched on across SU>L. However, on the right-hand side of

the anti-Stokes line, Re(χU1) > Re(χL1), and hence the longitudinal wave behaviour would

exponentially dominate the unsteady wave behaviour. However, as the longitudinal waves

are not present, no switching may occur across SL>U , and it is therefore inactive.

We therefore conclude that longitudinal waves are switched on across the Stokes line

along x = 0 as in Section 3.1.1, and switched off as SU>L is crossed from left to right.

Figure 6 illustrates the wave region for a range of values of t with h = 1. We see that

the wavefront tends to x → ∞ as t → ∞. In fact, by comparing the behaviour of χL1 and
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Figure 6. Position of the Stokes line associated with the longitudinal wavefront as t is varied,

shown as bold curves. The steady free-surface longitudinal waves, with amplitudes calculated in

Lustri & Chapman (2013), are shown; however, only those to the left of the wavefront at a given

time are present on the surface in the unsteady case. We also note that the waves are switched on

across the curve x = 0 for all time.

χU1 as x → ∞, it may be seen that the position of the wavefront along the curve y = 0

(denoted xf) is given by

xf ∼ t

2
− h as t → ∞.

It is also simple to show that xf → 0+ in the limit that y → ±∞ for fixed t.

4.2 Transverse waves

Determining the unsteady behaviour of the free-surface transverse waves is more complic-

ated, as they may interact with both the unsteady free-surface behaviour and the steady

longitudinal free-surface waves. We expect that as t → ∞, the behaviour of the transverse
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Re(χT1) > Re(χU1)
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SU>T
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SU>L ST>U

SU>TSCP

SCP

Figure 7. Possible Stokes lines on the free surface for unsteady flow over a source of depth h = 1

at t = 35. The solid curves represent Stokes lines, while the dashed curve represents a relevant

anti-Stokes line, along which Re(χT1) = Re(χU1). Stokes crossing points (where all three Stokes lines

intersect) are denoted by circles. The steady free-surface transverse-wave contribution associated

with χT1 can only be switched on by the unsteady free-surface contribution associated with χU1

when Re(χT1) > Re(χU1), and hence ST>U cannot be active. The Stokes line indicated by SL>U in

Figure 5 has been omitted, as well as any related Stokes crossing points, as it does not contribute

to the surface behaviour.

waves will tend to the steady-state behaviour described in Lustri & Chapman (2013) and

illustrated in Figure 3.

In Figure 7, we illustrate all of the potential Stokes lines involving the transverse

wave contribution for t= 35 and h= 1, as well as relevant anti-Stokes lines. We recall

that the unsteady contribution is present everywhere on the free surface, while the

longitudinal wave contribution is present only to the left of the Stokes line caused by the

interaction between the two. The Stokes line across which transverse waves are switched

by longitudinal waves is identical to that obtained in the steady case found in Lustri &

Chapman (2013). There are two possible Stokes lines across which transverse waves may

be switched by the unsteady behaviour. However, as in the longitudinal case, these two

possible Stokes lines are separated by an anti-Stokes line. By comparing the real parts

of the singulants in each of these regions, we see that the unsteady behaviour may only

switch the transverse wave behaviour on the left-hand side of the anti-Stokes line, where

it is exponentially sub-dominant compared to the unsteady ripple.

In Figure 7, there are two Stokes crossing points, at which all three Stokes lines intersect.

There is a higher-order Stokes line passing through these points, satisfying

Im

[
χU1 − χL1

χU1 − χT1

]
= 0. (4.1)

In order for the transverse waves to be switched in such a fashion that they do not
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Figure 8. The region of the free surface in Figure 7 containing transverse waves must be either (a)

Case 1 or (b) Case 2. These are the only possibilities that restrict the transverse waves to a finite

region of the free surface and tend to the steady behaviour obtained in Lustri & Chapman (2013)

as t → ∞. In each case, active Stokes lines are represented as solid curves, while relevant inactive

Stokes lines are shown as dashed curves. The higher-order Stokes line satisfying (4.1) is illustrated

as a dotted curve.

produce exponentially small free-surface waves, occupy a finite region of the free surface,

and tend to the steady solution as t → ∞, some of the Stokes lines in the problem must

switch off across the higher-order Stokes line (Howls et al., 2004; Chapman & Mortimer,

2005). Hence, the region of the free-surface containing transverse waves must be either

that shown in Figure 8(a) or (b), where the position of the higher-order Stokes line is also

indicated.

To determine which of these cases is correct, we set Re(y) = 3 and examine the Stokes

behaviour when y is permitted to take complex values, shown in Figure 9. We see that

if the second case is true, the Stokes line in Figure 10 on the right-hand side of the

anti-Stokes line must be active, which is not possible as it leads to exponentially large

waves on the free surface, as discussed in Figure 7. Hence, transverse waves are restricted

to the region illustrated in Figure 8(a).

Finally, in Figure 10 we illustrate the behaviour of this region as t increases. The

transverse wave region clearly expands over time, and does tend to the steady state

behaviour obtained in Lustri & Chapman (2013).

5 Numerical comparison

A number of sample surface profiles along y = 0 may be seen in Figure 11. These were

computed by formulating the solution to the linearized problem described in (2.7)–(2.11)

in terms of an integral which was subsequently evaluated numerically. Details of the

numerical procedure are given in Appendix B.

In Figure 11, we compare the position of the longitudinal wavetrain with the behaviour

predicted by the asymptotic solution. In Section 4.1, we predicted that the longitudinal

waves would switch off across a Stokes line that intersects the free surface, in an inner
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SCP
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Figure 9. Stokes structure on the complexified free surface associated with Figure 7, along the

curve y = 3. Solid curves represent active Stokes lines, whereas dashed curves represent inactive

Stokes lines. The dotted curve represents an anti-Stokes line along which Re(χU1) = Re(χT1). Black

circles represent the Stokes crossing points at which Stokes lines are switched off. The two Stokes

lines indicated in Figure 7 as SU>T and ST>U are shown to be connected, and hence must either

both be active, or both be inactive. If they are both active, then the Stokes line labelled ST>U in

Figure 7, which is not possible. Hence, we conclude that SU>T is active only on the left of the

Stokes crossing points. This corresponds to Case 1 in Figure 8. Finally, the Stokes lines following

SL>T intersect at a caustic, from which an inactive Stokes line originates.
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Transverse waves

(b) t = 45

Figure 10. The region of the free-surface containing an exponentially small transverse wave

contribution as t is varied. Transverse waves are present in the shaded regions only.
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Figure 11. Comparison between the numerically-obtained free surface for flow over a source of

depth h = 1 with ε = 0.15 and the position of the wavefront predicted using exponential asymptotic

analysis. The dashed line indicates the point at which the Stokes line intersects the free surface

along y = 0. The asymptotic analysis predicts that the longitudinal waves are switched off smoothly

in a region of width O(ε1/2) as this point is crossed. The computed wavefront agrees strongly with

the asymptotic results. Additionally, the unsteady wave behaviour, which takes the form of a ripple

centred on x = t, is clearly visible in (a)–(c).

region with width of O(ε1/2). The point at which this Stokes line intersects the free surface

is indicated in Figure 11 by a dashed line. We see that there is a strong agreement between

the asymptotic prediction for the position of the propagating wavefront and that obtained

in the numerical solution.

Additionally, in Figure 11(b) we have labelled the unsteady contribution, which takes

the form of an expanding ripple which is radially symmetric about x = t. As the ripple is

expanding at the same rate at which the centre is propagating downstream, we see that

the forward edge of the ripple moves downstream at twice the flow velocity, while the

backward edge remains above x = 0. It is this backward edge of the unsteady ripple that

produces the slight irregularities in the downstream wavetrain, however these irregularities

vanish as t → ∞.

Finally, in Figure 12, we illustrate the numerically-obtained free-surface behaviour for

flow over a source with depth h = 0.5 and ε = 0.15, at t = 20. Both longitudinal and

transverse waves are visible in this figure. While it is difficult to directly compare the trans-

verse wave behaviour to asymptotic calculations, due to their exponential sub-dominance

even to longitudinal wave effects, it is clear that they demonstrate the same propagating

wing-like structure seen in Figure 10. We see that the waves do not extend infinitely
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Figure 12. Example free-surface profile for ε = 0.15 and h = 0.5 at t = 20, calculated on increments

of Δx = Δy = 0.1. Both longitudinal and transverse wave effects are visible, as indicated on the

figure. The position of the wavefront is apparent, and this is consistent with the Stokes structure

and asymptotic behaviour calculated in Section 4.

downstream, but instead there is a visible wavefront beyond which no longitudinal or

transverse waves exist, which is consistent with the asymptotic behaviour determined in

Section 4.

6 Discussion and conclusions

In this investigation, we determined the behaviour of unsteady waves on the free surface

of flow over a point source in three dimensions in the low-Froude number limit, starting

from an initially waveless configuration. These results were compared with the equivalent

steady problem, studied in Lustri & Chapman (2013).

We set the initial condition to be waveless, allowing us to investigate the manner in

which the steady longitudinal and transverse waves spread along the free surface. In our

analysis, we considered the source to be weak, and therefore linearized the problem about

the undisturbed solution. We subsequently applied the exponential asymptotic techniques

of Chapman et al. (1998); Chapman & Mortimer (2005); Olde Daalhuis et al. (1995) in

order to determine the behaviour of the resultant gravity waves on the surface of the flow.

In the analysis of the steady problem, Lustri & Chapman (2013) found that longitudinal

waves were present in the entire right-half plane, while that transverse waves were located

within wedge-shaped regions on either side of the curve y = 0. In the unsteady problem,

we found that a third exponentially sub-dominant contribution was present on the free

surface, representing the transient ripple caused by the initial disturbance at t = 0.
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Figure 13. Regions on the free surface containing waves for a range of values of t, for flow past

a source of depth h = 1. Longitudinal waves are present in the light grey regions, while both

longitudinal and transverse waves are present in the darker grey regions.

By comparing the singulants of the unsteady, longitudinal and transverse wave be-

haviours, we were able to determine the region surface on which the longitudinal and

transverse waves were present at any point in time. Determining the region in which

longitudinal waves are present simply involved finding the Stokes line associated with the

interaction between the unsteady and longitudinal contributions. However, determining

the region in which transverse waves are present was more complicated, and required the

calculation of a higher-order Stokes line in order to determine which potential Stokes

lines are active in the free-surface behaviour. Importantly, we found that both the longit-

udinal and transverse wave regions tend to the expected steady-state behaviour as t → ∞.

Figure 13 illustrates these wave regions over a range of values for t.

Finally, we compared the position of the longitudinal wavefront along y = 0 predicted

by the asymptotics with numerical solutions to the unsteady flow problem. The numerical

solutions were obtained by formulating an integral expression for the surface behaviour

and computing the solution to the integrals, and showed good agreement between the

asymptotic and numerical results.

In the future, it would be interesting to investigate other linearized geometries, such as

flow past a finite line source or a narrow submerged obstruction, considering both the
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steady and unsteady problem in each case. Furthermore, there are other flow regimes to

which exponential asymptotic methods can be applied; studies have shown that exponen-

tial asymptotics may be used to determine the free-surface wave behaviour of capillary

waves with small Bond number (Chapman & Vanden-Broeck, 2002), as well as gravity-

capillary waves with small Bond and Froude numbers (Trinh & Chapman, 2013a,b). We

note that these studies considered only steady two-dimensional problems, and it would

interesting to consider the behaviour of these waves in unsteady or three-dimensional

regimes.

We also note that it is possible that an asymptotic study of the double integral

formulation of the problem, such as that given in the appendices, could reproduce the

asymptotic results found in this investigation. However, care must be taken when applying

techniques such as contour deformation in multiple integral settings, and the approach

followed in the main text has the advantage of being applicable to problems with no

convenient integral formulation.
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Appendix A Unsteady singularity

In order for the system to exhibit unsteady behaviour, we note that there must be another

singularity that is not immediately apparent in the leading-order behaviour. To find this

contribution, we consider a simpler problem; that of the equivalent homogeneous system

without a source condition, which we may solve using standard Fourier methods. This

allows us to isolate the effect of the initial disturbance on the flow, and specifically

to determine the associated singular behaviour. To emphasise this distinction, we will

formulate this problem in terms of φ̂ and ξ̂, where these are governed by the linearized

system

∇2φ̂ = 0, −∞ < z < 0. (A 1)

φ̂z − (ξ̂x + ξ̂t) = 0, z = 0, (A 2)

ε(φ̂x + φ̂t) + ξ̂ = 0, z = 0, (A 3)

and φ̂ decays in the far field of the domain. This is identical to the system presented in

(2.7)–(2.9). However, instead of prescribing a source condition such as (2.10), we set the

initial conditions on the free surface z = 0 by

φ0 =
1

2π
√
x2 + y2 + h2

, ξ0 = 0. (A 4)

We therefore have identical initial conditions to the system described in Section 2. Taking

the Fourier transform in x and y, where k and l are the corresponding Fourier variables,
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of the governing equation (A 1) gives

φz − ρ2φ = 0,

where ρ =
√
k2 + l2 and two bars denotes taking the double Fourier transform. Noting

that φ decays as z → −∞, we obtain φ = A(k, l, t)eρz . Hence, (A 2)–(A 3) become

εikA + εAt + ξ = 0, z = 0, (A 5)

ρA − ikξ − ξt = 0, z = 0. (A 6)

Taking the Fourier transform of the initial condition on the free surface (A 4), using the

appropriate integral identity from Gradshteyn & Ryzhik (1994), gives

φ0 = A(k, l, 0) = −e−ρh

ρ
, ξ0 = 0.

Using these initial conditions on A and ξ, we solve (A 5) and (A 6) and take the inverse

Fourier transform to obtain

ξ̂ =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

iε1/2

4ρ1/2

[
eit

√
ρ/ε − e−it

√
ρ/ε

]
e−ρh−ikteikx+ily dk dl.

Setting (x, y) and (k, l) in terms of polar coordinates (r, θ) and (ρ, φ) respectively gives

ξ̂ =

∫ ∞

0

∫ 2π

0

i
√
ερ

16π2

[
eit

√
ρ/ε − e−it

√
ρ/ε

]
e−ρh−itρ cosφeiρr cos(θ−φ) dφ dρ.

Evaluating the inner integral gives

ξ̂ =

∫ ∞

0

i
√
ερ

8π

[
eit

√
ρ/ε − e−it

√
ρ/ε

]
J0

(
1
2
ρ
√
t2 + r2 − 2tr cos θ

)
e−ρh dρ,

where J0 is the Bessel function of the first kind. Approximating this integral using the

method of stationary phase (valid when t 
 ε1/2) gives

ξ̂ ∼ ε2

πt3
. (A 7)

Consequently, we find that the free-surface behaviour contains a term which is singular at

t = 0, and that only appears in terms that are O(ε2). This is the singularity that generates

unsteady variation on the free surface. We emphasise that this is not a full representation

of free-surface behaviour for the system under investigation in Section 2.2, but rather a

single contribution to this behaviour that contains the singularity due to the sudden initial

change.

Appendix B Numerical calculations

In order to verify the unsteady free-surface behaviour, we compare the position of the

longitudinal wavefront to a numerical solution for the free-surface behaviour. We obtain
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this free-surface behaviour by formulating the solution to (2.1)–(2.6) in terms of a double

integral which may be evaluated using standard numerical methods. Again, while we will

formulate the double integral expression here, we note that similar integral expressions

have been obtained in previous investigations, such as Havelock (1949).

To incorporate the behaviour of the source, we set

φ =
1

4π
√
x2 + y2 + (z − h)2

+
1

4π
√
x2 + y2 + (z + h)2

+ φ̂.

The linearized system (2.7)–(2.9) is given by

∇2φ̂ = 0, −∞ < z < 0, (B 1)

ε(φ̂x + φ̂t) + ξ = −ε

[
1

2π
√
x2 + y2 + h2

]
x

, z = 0, (B 2)

φ̂z − (ξx + ξt) = 0, z = 0. (B 3)

Finally, the far-field conditions determine that φ̂ → 0 far from the source, and the initial

condition is simply φ̂0 = 0, ξ̂0 = 0. Taking the Fourier transform of (B 1) with respect

to x and y (with the resultant expression given in terms of the Fourier variables k and l

respectively) gives

φzz − ρ2 φ = 0,

where ρ =
√
k2 + l2. Noting that the solution must decay in the limit that z → −∞, this

differential equation may be solved to give φ = A(k, l, t)eρz . Hence, (B 2) and (B 3) become

εikA + εAt + ξ = − ikεe−ρh

ρ
,

ρA − ik ξ − ξt = 0,

where the appropriate integral expression from Gradshteyn & Ryzhik (1994) is used to

compute the Fourier transform of the inhomogeneous term in (B 2). Applying the initial

conditions and solving this system gives

ξ =
ikεe−ρh

2ρ(ρ − εk2)

{[
(ρ + k

√
ερ)eit

√
p/ε + (ρ − k

√
ερ)e−it

√
p/ε

]
e−ikt − 2ρ

}
.

We formulate the inverse Fourier transform integral, representing (x, y) and (k, l) in terms

of polar coordinates (r, θ) and (ρ, φ), giving

ξ =
1

4π2

∫ 2π

0

∫ ∞

0

iερ cos(φ)e−ρh

2(1 − ερ cos2(φ))

{[
(1 + cos(φ)

√
ερ)eit

√
p/ε

+ (1 − cos(φ)
√
ερ)e−it

√
p/ε

]
e−itρ cos(φ) − 2ρ

}
eiρr cos(θ−φ) dρ dφ. (B 4)

This integral is singular along the curve satisfying 1 − ερ cos2(φ) = 0. To simplify the

numerical evaluation of this double integral, we set the singular curve to follow a straight
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line. In this case, we apply the transformation (u, v) = (ρ cos2(φ), φ), giving

ξ =
1

8π2

∫ 2π

0

∫ ∞

0

iεu2e−uh/ cos2(v)

cos3(v)(1 − εu)

{[(
1 + cos(v)

√
εu

cos2(v)

)
eit

√
u/ε cos2(v)

+

(
1 − cos(v)

√
εu

cos2(v)

)
e−it

√
u/ε cos2(v)

]
e−itu/ cos(v) − 2

}
eiur cos(θ−φ)/ cos2(v) du dv. (B 5)

This integral is substantially more complicated than the form given in (B 4). However, the

fact that the integrand is singular along a straight line allows the double integral to be

conveniently solved using standard numerical integration in two dimensions.

In order to evaluate (B 5) numerically for given values of h and ε, we again truncate

the integral domain in the u-direction and split it into two regions, given by

D1 = {(u, v) : u ∈ (0, 1/ε − Δ), v ∈ (0, 2π)},
D2 = {(u, v) : u ∈ (1/ε + Δ, u∞), v ∈ (0, 2π)},

where Δ is a small constant used to approximate the Cauchy principal value integral, and

u∞ is the truncation point. Typical values used in this investigation are Δ = 1 × 10−3 and

u∞ = 50. On each domain, we evaluate the two-dimensional integral numerically using

the in-built matlab integrator, which uses two-dimensional quadrature techniques.
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