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ABSTRACT

Unlike the mortality risk on which actuaries have been working for more than
a century, the long-term care (LTC) risk is relatively new and as of today hardly
mastered. Semi-Markov processes have been identified as an adequate tool to
study this risk. Nevertheless, access to data is limited and the associated liter-
ature still scarce. Insurers mainly use discrete time methods directly inspired
from the study of mortality in order to build experience tables. Those methods
however are not perfectly suited for the study of competing risk situations. This
article provides a theoretical framework to estimate biometric laws associated
with a LTC insurance portfolio. The presented method relies on a continuous-
time semi-Markov model with three states: autonomy, disability and death. The
process describing the state of disability is defined through its transition inten-
sities. We provide a formula to infer the mortality of autonomous people from
the mortality of the whole portfolio, on which we have more reliable knowl-
edge. We then propose a parametric expression for the remaining intensities of
the model. In particular, incidence in LTC is described by a logistic formula.
Under the assumption that the disabled population is a mixture of two latent
populations with respect to the category of pathology that caused LTC, we show
that the resulting intensity of mortality in LTC takes a very peculiar form and
depends on time spent in the LTC state. Estimation of parameters relies on the
maximum likelihood method. Our parametric approach, while inducing model
uncertainty, eliminates issues related to segmentation in age categories, smooth-
ing or extrapolation at higher ages and thus proves very convenient for the prac-
titioner. Finally, we provide an application using data from a real LTC insurance
portfolio.
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1. INTRODUCTION

Disability among elderly people can be defined as a permanent state of inabil-
ity to autonomously perform activities of daily living. It is mostly caused by
diseases linked to ageing, such as dementia, neurological diseases, cardiovascu-
lar diseases and cancer. Disabled elderly people require regular care whose fre-
quency increases with the severity of their status. While some people can rely at
least partially on their family or their friends for help, others have to hire profes-
sional caregivers or join a nursing home, whose average cost exceeds 3,000¢ per
month. Despite public aids, this cost proves overwhelming for most pensioners.
Therefore, to long-term care (LTC) is associated a financial risk to which most
people are exposed. In France, part of this risk is transferred through private
insurance contracts.

The LTC risk is complex. Its study requires to take into account incidence
in LTC as well as probabilities of death for both autonomous and disabled peo-
ple, which are very different from another. This risk is directly related to ageing
through pathologies, and longevity gains in the second half of the 20th cen-
tury made it paramount. The very first LTC insurance products appeared in
the United States during the 1980s and shortly after in France. Average age at
subscribing for those products is close to 60, whereas the average age at which
LTC occurs is near to 85. Therefore, even on older portfolios, the number of
claims remains limited. Moreover, in France, insurers and public aids use dif-
ferent definitions to assess the level of required care. Those definitions as well
as insurers underwriting and claims policies often change over time. All those
elements make data aggregation from several sources very difficult, which may
explain the difficulty of getting a better knowledge of the risk.

Markov processes are such that their transition probabilities only depend
on the current state of the process. A semi-Markov process is a generalization
for which transition probabilities depend on both the current state and the time
spent in the current state. One can find more details about those processes in
Cinlar (1969). Multi-state models based on Markov and semi-Markov processes
have led to many applications in the field of epidemiology. As the LTC state is
mainly caused by pathologies, those processes appear as natural candidates to
study the LTC risk. This framework has already been described for example in
Haberman and Pitacco (1998) or Christiansen (2012). Several studies based on
U.S. national data have also been performed. One can refer to Robinson (1996),
Pritchard (2006) or more recently Fong et al. (2015). On the other hand, studies
based on portfolio data (Guibert and Planchet, 2014) are very rare. Practition-
ers nevertheless played a key role in the knowledge of the LTC risk. One of the
very first models on the French market was presented by SCOR (1995). Relying
on a parametric approach, it highlights the exponential increase in the proba-
bilities of incidence in LTC, and defines mortality in LTC (resp. autonomous
mortality) as a linear function of the general population mortality, computed
via an exogenous mortality table. With only five parameters required to model
the whole process, it is remarkably simple. It is however based on the Markov

https://doi.org/10.1017/asb.2016.41 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2016.41

CONTINUOUS-TIME SEMI-MARKOV INFERENCE OF BIOMETRIC LAWS 529

assumption that mortality in LTC only depends on the age of the disabled life,
and not on the time since the entry in LTC. The Markov assumption is still used
today by many insurers as well as in recent academic papers like Pitacco (2015)
or Fong et al. (2015), because it allows for simpler models. However, it does not
reflect the reality of the LTC process, for which mortality is much higher during
the first year in LTC than for the subsequent year. For an insurance company,
ignoring this feature of the risk can be very damaging. Indeed, it leads to greatly
overestimating mortality in LTC based on the first-year mortality experience
and therefore underestimating the required amount of reserve, which results in
heavy losses in the future.

Semi-Markov processes have already been used for disability insurance, es-
pecially through the illness-death model as described in Pitacco (2014). How-
ever, one has to keep in mind that on one hand disability insurance only lasts
until retirement age with a limited period for benefits. On the other hand, indi-
vidual LTC insurance relies on lifetime annuities with no expiry date. There-
fore, although a similar model may be used for both risks, issues related to
extrapolation of biometric laws at higher ages and higher duration in the dis-
abled state arise in the study of the LTC risk. For the same reason, non-
parametric methods based on Nelson—-Aalen estimator (Klein, 1991) that have
also been used to study the LTC risk, for example in Guibert and Planchet
(2015) still need to be associated with parametric methods for the extrapolation
step.

In this article, we present a parametric approach relying on a continuous-
time semi-Markov process, which is defined using its transition intensities. Com-
pared to a discrete-time approach, it allows to get a more straightforward mod-
elling of the process, while correctly taking into account the competing risks
(disability and death). Section 2 introduces the model and derives an equation to
express the autonomous mortality using general mortality and other intensities
of the model. Benefits to use general mortality instead of autonomous mortal-
ity are discussed with more details. We then introduce the intensity for general
mortality of the portfolio using a simple relational model as in Brass (1971). We
propose a parametric expression for the intensity of incidence in LTC, based on
the logistic form introduced by Perks (1932) for the study of mortality. We use a
complex parametric model for the intensity of mortality in LTC, corresponding
to a latent mixture model where we consider two homogeneous populations of
disabled people, with two different levels of mortality. Estimation of parame-
ters relies on the maximum likelihood method. We also introduce formulas for
pricing and reserving based directly on the transition intensities. Section 3 pro-
vides an application of the model based on data from a real insurance portfolio.
For each transition intensity, several models of increasing complexity are com-
pared using the Bayesian Information Criterion (BIC). Comparison with empir-
ical transition rates is also provided. Robustness of estimation is then assessed
using a non-parametric quantile bootstrap method. Finally, Section 4 summa-
rizes the results obtained and discusses limits and potential improvements of the
model.
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2. MODEL

2.1. Notations

For xp > 0, let us consider a continuous-time process (Zy).>y, With values in
the three-state set £ = {4, I, D} of autonomy, LTC (or “illness”), death, re-
spectively. Let us assume that Zis cad-lag and that Z,) = A. The index variable
of the process Zis called age of the process. Therefore, x; is an initial age where
all individuals are assumed to be autonomous. For x > x; let us denote by 4,
(resp. I, D,) the probability for the process to be in the state of autonomy (resp.
LTC, death) at age x or more formally

Ay =P(Z, = Al Z, = A),
I, =P(Z, = 1|Z, = A),

Hence, Ay, = 1 and for all x > x, 4+ I, + D, = 1.

We now assume that (Z,)>y, is @ non-homogeneous semi-Markov process
and introduce the transition intensities, also called instantaneous transition
probabilities. Transition intensities allow us to fully describe the behaviour of
the process

1

a =lim — P (Zy, = D|Z, = A),

Ma(X) Jim. (Zxth I )
1

A =lim —P(Zyy=11Z, = A,

(x) Jim, (Zi | Z, )
o1

wi(x, t) :/%1_1;1’(1) ZP(ZX—Q—H-h =D Z- =42, =12, =1).

Those intensities are called respectively intensity of entry in LTC, intensity
of autonomous mortality and intensity of mortality in LTC, with the latter in-
tensity depending on both the age at onset of LTC and time spent in LTC. We
consider that death is an absorbing state and that there is no transition allowed
from LTC to autonomy. To understand this last assumption, one has to keep in
mind that on the French LTC insurance market, the LTC benetfit is only granted
when the disabled state is expected to be permanent. Therefore, cases of return
to the autonomy state are quite rare, compared to other markets where this is
not the case. Furthermore, once the benefit is granted, the annuitant is not re-
quired to provide any proof that they are still disabled. Hence, ignoring cases of
return to the autonomy state does not introduce any inconsistency with the way
the insurance products are priced, and it allows for simpler models. Given the
limited amount of available data this proves very convenient. A representation
of the model can be found in Figure 1.
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FIGURE 1: The three states continuous-time semi-Markov model and the associated transition intensities.
(Color online)

Lemma 1. Let x > xy. The probability A, (resp. I.) to be in the autonomous
(resp. disabled) state at age x may be expressed directly from the transition inten-
sities of the model and we have

A =exp | - [ B + ol M)
X0
I, :/k(u)Au exp —/ui(u, v—u)dv | du. 2)
Xo u

Proof. For x > xy, h > 0, we have

P(Zosy = A =1 = P(Zeyy = 112y = A) — P(Zyyy = DI Z: = A)]
x P(Z, = A),

and therefore
d
aP(Zx = A) = — [na(X) + A(0)] P(Z = A).

As A,, = 1, this equation has a unique solution

a=ap—/ww+mwwu. 3)
X0
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For x > xp, t, h > 0, we can write

P(Zyyron =112~ = A, Z,=1) =P(Zyyi1n = 1124 = A Z, =1, Ly =1)
X P(Zey =112 = A, Ze = D),

which gives us

d
EP(Z)H% =lZ=A42,=)=—ux, ) P(Zey, =11Z- = A, Z, = 1).
As
PZ.=11Z =42, =1) =1,
we obtain

t
P Zyy,=11Z-=A,Z,=1) =exp —/Mf(x, u)du
0
Then, as we have the following decomposition:

X

I, =/P(a = DP(Z = 1Z = NP(Zi=11Z = A, Z, = D),

Xo
we get an expression of the probability to be disabled at age x > x

X X

I, = /A(u)AM exp —/,u,-(u, v—u)dv | . “)

Xo u

2.2. Link with general mortality
Let us consider the intensity of mortality for the aggregated population of au-
tonomous and disabled (hereafter general mortality) defined by

1
Mg(x) = I{ln(l) ;_IP(Zx+h = D|Z, € {A9 I}) .

Figure 2 represents the fourth transition in our model, a transition between life
and death for the general population.

Lemma 2. For x > xy and t > 0, let us denote by A(x, t) the difference between
the intensity of mortality in LTC and the intensity of autonomous mortality for
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FIGURE 2: Intensity of mortality for the general population. (Color online)

the same current age, so that A(x,t) = w;(x,t) — ua(x + t). Then the intensity
of autonomous mortality is solution of the following equation:

j)»(u)A(u, X —u)exp (—j [Aw, v —u) — 1(V)] dv) du
Ha(X) = pg(x) = F—— —
1+ [A(u) exp (—f [Au, v —u) — A(v)] dv> du
Xo u

(5

Proof. Differentiating (1) and (2) gives us Equations (6) and (7) below which
describe the evolution of the probabilities 4, and I,. Similarly, from the def-
inition of u,, we get Equation (8). We obtain a system of three differential

equations:
d
d_Ax = —[A(x) + na(X)] A4y, (6)
X
d X X
alx = Ax) Ay — /k(u)Au exp _/Mi(“’ v—u)dv | wi(u, x—wdu, (7)
Xo u
d
d_(Ax + 1) = —pg(X)(Ax + Ly). (®)
X
Summing the evolution Equations (6) and (7), and then identifying with Equa-
tion (8) yields
pg () (Ax+1) = a(X) Ax+/)"(u)Au exp —/m (u,v—uw)dv | u;(u, x—u)du.
Xo u

With simple algebra we get

LY [, A |
Ha(X) = pg(X) (1 + I)—/A(u); exp —/ui(u, v—u)dv | pu;(u, x—u)du.

Xo u
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Using (2) and (1), we obtain after a few simplifications

Ma(X) = pg(x) — /X(u) exp —/ (i (u, v —u) — A (v) — pa(v)]dv
Xo u

x [iCu, x —u) — pg(x)] du.
Now, we replace the intensity of mortality in LTC using the formula:
wi(x, 1) = pa(x +1) + A(x, 1),

which gives us

Pa(X) = pg(X) — //\(u) exp —/ [A(u, v —u) — A(v)]dv
X0 u
X [,ua(x) — Ug(X) + A(u, x — u)] du.
This finally leads to the result. ]

Equation (5) allows us to use the general mortality instead of the au-
tonomous mortality in the model, at the cost of the introduction of A, the differ-
ence between autonomous mortality and mortality in LTC. On one hand, mor-
tality of autonomous people is complex to predict, because people can leave the
state of autonomy either by becoming disabled or dying. Furthermore, the scope
of autonomous people depends directly on the definition used for LTC. There-
fore, predicting the autonomous mortality requires to have intensive knowledge
of the LTC process beforehand. On the other hand, general mortality has been
studied for a long time by actuaries, demographers, biologists and is very well
documented. One can therefore rely on reference mortality tables for ages where
no portfolio data is available.

The formula does not give an analytic expression for the intensity of au-
tonomous mortality in the most general case. Numerical methods can however
be used to compute it. As will be seen in Section 2.4.3, choosing an ad hoc model,
the inner integrals in the formula take an analytic expression and numerical
approximation is only required for the outer integrals. Intensity of general mor-
tality appears directly in the equation, which is very convenient if we want to
use an external reference for this intensity.

2.3. Data structure

Data issued from insurance portfolios generally consists of two databases. The
first database gathers information on contributors and the second on annui-
tants. We also define the database of insured lives obtained by merging the two
previous bases which will be used for the estimation of general mortality. From
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TABLE 1

EXAMPLE OF A DATABASE OF CONTRIBUTORS.

DoB DoS DoE CoE

12/23/1941 11/10/1992 09/277/2006
06/14/1926 03/28/1997 12/31/2014
04/17/1937 04/27/1995 04/08/2003

=2 ]

one portfolio to another, data quality and available information may vary a lot.
In what follows, we assume both databases contain at least the variables of Ta-
ble 1, listed as follows:

e DoB: date of birth of the individual,

e DoS: date of start. For contributors, it is the date of subscribing. For annui-
tants, the date of entry in LTC,

e DoE and CoE: the date of end and cause of end for the individuals, respec-
tively. In the case where the observation ends because of death, we use code 1
for the cause, in the case of exit because of entry in LTC, we use code 2.
For individuals still autonomous when the observation stops, trajectories are
right-censored. We use code 0 and the date of exit is the date at which obser-
vation ends.

Other covariates such as gender, type of residence (home or facility), marital
status, cause of disability, amount of annuity bought or premium for substan-
dard risk may be available and bring additional information. In what follows,
we assume that only gender is available and we estimate a separate model for
male and female.

The observation period must often be limited in some way:

e By removing the last year of individual exposure. With each database is asso-
ciated a date of extraction, which is the date of the latest entry in the database.
In practice, most claims are reported up to 1 year after their occurrence, which
may result in some missing information during the last year of observation.
It may therefore be a good idea to set a date for the end of the observation 1
year prior to the date of extraction, in order not to underestimate the num-
ber of events. For events that occurred during the last year of observation,
the associated code must then be set to 0.

e By removing the first 3 years of individual exposure. On the French individ-
ual LTC insurance market, there is usually an elimination period of 3 years
for dementia and neurological pathologies that results in fewer claims during
those 3 years. In order not to underestimate the incidence rate, we therefore
remove the exposure for the first 3 years of observation for each individual.

e By shortening the observation period. When we study the behaviour of a
population for a specific risk, it may change over time. There are several fac-
tors involved, such as changes in the definition of LTC, underwriting and
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claim management policy in addition to underlying changes of biometric
laws. Shortening the observation period is therefore required in order to min-
imize those effects and set a good compromise between large volume and
stability of the underlying risk over the period.

Once the data has been processed, we may easily compute quantities of in-
terest which will be used in the estimation procedure:

e The age of entry x = DoS — DoB,
e The age of exit y = DoE — DoB,
e The cause of exit ¢ = CoE.

2.4. Parametric modelling of the intensities

In this section, we propose to rely on a parametric expression for each of the
transition intensities in the model.

2.4.1. Intensity of general mortality. We want to assess the general mortality
of our portfolio, which is seen as a specific population inside the French popula-
tion. To do so, we rely on the database of insured lives as well as on an external
mortality reference, using the Brass relational model as described in Brass (1971,
1974) or Hannerz (2001).

Let F be the cumulative distribution function associated with an intensity
of mortality p such that

X

F(x)=1-—exp —/u(u)du

X0
Then, we define the cumulative distribution odds (CDO) by

CDO() = 9 _
1 — F(x)

In his model, Brass relies on the assumption that the logarithm of the CDO asso-
ciated with the mortality of a reference population and the mortality of a specific
population are parallel curves. We denote by u, and F, (resp. ugef and Féf‘*f) the
intensity of mortality and cumulative distribution function associated with the
mortality of the specific (resp. reference) population. Under this assumption,
the Brass estimator for the intensity of mortality of the specific population is

B! (x)
1= (= B)Fef(x)

g (x) =
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where B is the solution of the equation

_ ref '/B\N\
; D=2 0 Nef(1 = (1= B Ff ()

RY

and D,, N, (resp. fof , N;ef) are the total number of deaths observed and the
number of years lived between ages x and x+ 1 by the specific population (resp.
by the reference population). The Brass model only requires the estimation of
a single parameter 8. It gives an estimator for the intensity of mortality that
converges smoothly towards the mortality reference at higher ages while pre-
dicting the same number of deaths as in the empirical data, given the empirical

exXposure.

2.4.2. Intensity of incidence in LTC. For the intensity of incidence in LTC, we
consider the logistic model introduced in Beard (1959, 1971) and Perks (1932)

AGY) = exp(a,x + b;)

= + ds, 9
1 + exp(ayx + ¢y) g ©)

with a, > 0, b;, ¢, € RU{—oc}and d, > 0.

Experience from insurers shows that the intensity of incidence in LTC in-
creases exponentially with respect to age (SCOR, 1995). At higher ages, data
becomes scarcer. As LTC is linked to ageing, it is reasonable to expect that the
behaviours of mortality and morbidity are quite similar and that an exponen-
tial or logistic form is suited to model incidence in LTC. The logistic model has
already been used to this extent, e.g., in Rickayzen and Walsh (2002). Let us no-
tice that the exponential models introduced in Gompertz (1825) and Makeham
(1867) may be seen as limit cases of the logistic model, for which ¢;, = —oo.

For an individual p defined by their age of entry in the portfolio x, > 0, their
age of exit y, > x, and the associated exit cause ¢, € {0, 1, 2} the log-likelihood
has the following expression:

Yp
[,(1) = log | exp —/A(u)du )L(y,,)‘s‘z‘r
Yp
= 57 1og(h () — / Mu)du
— 5 o [ exp(aryp + by) d,\}
’ 1 4 exp(ay, + c))

_exp(b. — ) o |:1 +exp(ay, + ¢n)

—d(yy — X)),
a; 1 + exp(a;.x, + ck)] (7 = %)
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1 ifk=1,

where for k, / eN,S,’C= {O therwi
otherwise.

2.4.3. Intensity of mortality in LTC. Disability may be caused by a wide range
of underlying pathologies. Unfortunately most of the time those pathologies are
not available in the data. This results in heterogeneity among disabled people.
In this section, we provide a simple parametric model which accounts for the
heterogeneity caused by pathologies. In order to do this, we must rely on several
strong assumptions. First of all, we assume that underlying pathologies can be
divided into two main groups. On the one hand, we have pathologies associ-
ated with very high mortality such as terminal cancer mainly or more rarely
respiratory diseases. For such diseases, life expectancy at the onset of LTC is
within a few months. On the other hand, dementia, neurological or cardiovas-
cular diseases have an associated life expectancy which is closer to 5 years. We
further assume that among each group the population can be considered as ho-
mogeneous. We could consider three or more groups of pathologies but then
inference of parameters would prove extremely difficult and this would be at the
expense of robustness in the estimation procedure.

We then consider an additive model for the intensity of mortality in LTC,
so that the mortality within each group is the sum of a common term (which
may be for example the autonomous mortality at the current age) plus a term
that only depends on the pathology group and the age at onset of LTC. The
underlying assumption to this additive model of mortality is that people who
become disabled have increased mortality from the pathology that caused dis-
ability but are still exposed to other causes of death. Also, considering that the
additional mortality depends on the age at onset of LTC rather than on the cur-
rent age may seem very restrictive and the model may not be accurate for very
high duration in the disabled state. However, due to the very high mortality in
the disabled state, cases of exceptional longevity should remain rare enough and
the resulting impact quite limited. Under those assumptions, the resulting inten-
sity of mortality in LTC takes a very peculiar form as we show in the following
lemma.

Lemma 3. Let us consider a model with two distinct states of disability I, and b,
such that the respective transition intensities from autonomy to those states are
A1 and Ay respectively and no transition is allowed between those states or back to
autonomy (see Figure 3). Let us further assume that the intensity of mortality in
state I can be written as

Mi,k(xv Z) = /-’LO(X’ [) + Ak(x)y

with x > xo, t > 0 where uy(x, t) is a common mortality term and A (x) a state-
specific mortality term, for k € {1, 2}.
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FIGURE 3: Model with two completely separate states of LTC. (Color online)

Then, to ensure the embedding of the 3-states model in this model, the following
relations must be satisfied for all x > xp, t > 0 :

AX) = A (x) + A2(x)

ot A _ MW=A1W) i A 0
po(x, 1) + Ar(x) + T exp0)— A1 O if A (x) #

wo(x, 1) + A (x) otherwise.

Mi (X, t) =

Proof. The first relation on the incidences in LTC is obvious, as well as the
case where A,(x) = 0. For the second relation, let us denote by ni(x, t) the
proportion of disabled people in state [, among the population of people who
became disabled at age x > xy and then survived for a time # > 0.

Let us define for x > xp, t >0, ke {1,2}and 2 > 0

nk(X [) _ P(Zx—H = Ik|Zx’ = A’ Zx c {Ilv 12})
) P(Zx+t € {I], 12}|ZX_ = A’ ZX c {Il, Iz})’

and

P(Zyi =Ll Zy= A, Z. € {1, 1))
P(Zyy €, LY\ Z—py = A, Zy € (I}, b))’

ni(x, t,h) =

On the one hand, we have

ni(x, t, h) o ni(x, 1),

https://doi.org/10.1017/asb.2016.41 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2016.41

540 GUILLAUME BIESSY

and on the other hand

PZyi=1, Zoy= A, Z, € {1, b})
P(Zx+t € {117 12}’ foh = A7 Zx € {Ila 12})
PZyi =1, Zy =1, Zi = A)

ni(x, t, h) =

2
ZP(Zx+t = Il, Zx = Il’ Zx—h = A)
/=1

_PEy=ADP L= 2= AP Lo =Lkl Zi =1, Zey = A)

2
ZP(Zx—h = A)P(Zx: Il|Zx—h = A)P(Zx+t = Illzx: Il, Zx—h = A)
=1

. P(Zx = Ik|Zx—h = A)P(Zx+t = Ik|Zx = Ik’ Zx—h = A)

2
ZP(ZX = Il|Zx—h = A)P(Zx+t = Il|Zx =10,Z. = A
=1

t
Lic(x) exp (—f Wi e (X, u)du)
0

—
h—0 2

ZZ/\z(x) exp (—f i (X, u)du>
=1 0

Ar(x) exp (—},uo(x, u)du) x exp[—Ar(x) x ]
0

=1

2 ¢
> a(x) exp (—fuo(x, u)du) x exp[—A;(x) x 1]
0

_ M(x)exp [—Ax(x) x 1]

2
12;)»1(36) exp[—A(x) x 1]

By uniqueness of the limit we obtain

M) exp[—Ar(x) x 1]
Y M(x)exp[—A(x) x {]
=
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Now, the intensity of mortality for the population of disabled people is

2
i (x, 1) =y (X, D i p(x, 1)

k=1
& Ak(X) exp(=Ap(x)1)
_Z 2 H

k=1 IZM(X) exp(—A;(x)1)
=0

ik(X, 1)

2. k() exp(—Ax(x)1) A
2

k=l IZM(X) exp(=A(x)?7)
=0

=po(x, 1) + Ar(x)
n Ao (x) exp(—Aa(x)7)
A1(x) exp(—A1(x)1) + A2(x) exp(—Ax(x)1)
Ar(x) — Ar(X)

I+ 20 exp ([Ar(x) — A1(0] 1)

=po(x, 1) + k(x)

[Ar(x) — A1(X)]

=po(x, 1) + Ar(x) +

which proves the lemma. [ |

In what follows, we assume that the assumptions of the lemma are satis-
fied and that the common mortality term is the intensity of mortality for au-
tonomous people i, at the same current age x + 7. Let us denote, for x > xj

We now have

6(x) [Az(x) — A1(x)]
0(x) +[1 — 0()]exp {[A2(x) — A(0)] 2}

wi(x, 1) = pa(x+ 1) + Ar(x) +

and thus

6(x) [Ar2(x) — A1(x)]

A = M) + g [1—6Co]exp {[A2(x) — Ar(0] 7}

(10)

The log-likelihood associated with survival in LTC for an individual p with
an age of entry in LTC x,, > 0, an age of exit y, > x, and the associated cause
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of exit ¢, € {0, 1} then takes the following expression:

Ly(ia, A1, Az, 0)
Y
= log | exp —/ui(xp, u— xp)du | pni(xp, yp — xp)sfl‘z’
xp
Yp
= 8; log(1i (xp, yp — %)) — / i (xp, 1t — x,)du

Xp

= 8[1[} log (Ma (vp)

+ Al(xp) + Q(Xp) [Az(xp) — Al(xp)] )

0Cp) 1 11— 600G ] exp([2205) — At D — 3]
Yp
- /ﬂa(u)du - A2()‘:11) [.Vp - Xp]

+ log {e(x,,) + 1= 0] exp([Aa(x) — A ()] [y — x,,])}.

For a given u,, the previous log-likelihood may then be computed analyt-
ically, which allows for the estimation of A, Aj, 6 and then A by plugging in
Equation (10) using maximum likelihood.

2.4.4. Intensity of autonomous mortality. The maximum likelihood method in
the previous section requires to know the autonomous mortality beforehand.
We therefore need to compute an intermediary estimate of the autonomous
mortality whose sole purpose is the estimation of A. Indeed, the ultimate au-
tonomous mortality is then computed thanks to Lemma 2.

Once again we rely on the logistic model introduced in Beard (1959, 1971)
and Perks (1932)

exp(ayx + b,) rd (11)

Ha0) = 1 + exp(a,x + ¢,) “

witha, > 0, b,, c, € RU{—o0}and d, > 0.

For an individual p defined by their age of entry in the portfolio x, > 0, their
age of exit y, > x, and the associated exit cause ¢, € {0, 1, 2} the log-likelihood
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has the following expression similar to Section 2.4.2:

y[)
Ip(,ua):log eXp _/Ma(“)du Ma(yp)S}”
W T,
1 + exp(aqy, + cq)

_ exp(by — ca) lo 1+ eXp(aqu + ¢a)
a, I +exp(aqx, + ¢4)

i| - da(yp = Xp).

2.5. Parameters estimation procedure

To estimate the parameters, we use the following procedure

1. We estimate the parameters for the intensity of general mortality [z, by us-
ing the individuals of both databases and the Brass relational model (as in
Brass, 1971) in order to get a robust estimate of the intensity of general
mortality with convergence towards a reference mortality table at higher
ages (see Section 2.4.1).

2. We estimate the parameters for the intensity of incidence in LTC A (resp.
a first-step estimate of the autonomous mortality jz,;"), using the con-
tributors database and the Perks logistic model (as in Perks, 1932). More
precisely x (resp. ,ua(l)) is the maximum likelihood estimator (MLE) con-
structed by summing over the individuals the log-likelihoods given in Sec-
tion 2.4.2 (resp. Section 2.4.4).

3. We estimate the parameters for the additional mortality in LTC A from
oV and the annuitant database, using the MLE constructed by summing
over the individuals the log-likelihoods given in Section 2.4.3. Several para-
metric forms for A will be tested in the next section.

4. Thanks to Equation (5), we compute the value of a second-step _estima-
tor for the intensity for autonomous mortality 72,?, relying on A, A, g
and using numerical methods to approximate the outer integrals in (5) Th1s
second-step estimator should give more reliable results at higher ages where
no data is available.

A summary of the procedure is provided in Figure 4.

Furthermore when we deal with complex models, it can be very interesting
to compare them to some of their sub-models to see if the use of many pa-
rameters is justified. To this extent, we can rely on the Bayesian Information
Criterion (BIC). For a model m; characterized by a number of parameters k;
and a log-likelihood function /; maximized at 0;, the expression of the criterion
is as follows:

BIC; = =2/;(6;) + ki log(n),
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the Perks model .
F
{ #a( ) )

the Perks model

A4
_ Parametric mixture model ‘ Equation (3) ‘
Mortality reference

FIGURE 4: Procedure for the estimation of biometric laws. Dashed (resp. plain) circles represent intermediary
(resp. final) estimates of biometric laws. Database of insured lives is obtained by merging the contributors and
annuitants databases. (Color online)

P
4 \

4 [—
the Brass relational model \\\Mg/l

where n represents the number of observed transitions in the expression of the
likelihood. The choice of the coefficient in front of the number of parameters
log(n) differs from the one made in the original Akaike’s Information Criterion
(AIC) where this coefficient is 1. Also, let us note that in the version of the crite-
rion, n is the number of observed transitions and not the number of individuals
as in the original criterion. The interest in introducing this modification in the
case of censored data is discussed in Volinsky and Raftery (2000). Using the BIC,
we are able to compare models, the model with the lower BIC being the “best”
model. In the next section, we use the BIC to challenge the use of more complex
parametric models introduced in this section and lower the overall number of
parameters.

2.6. Pricing and reserving

We consider a product where the autonomous insured lives pay a fixed amount
of premium while they are autonomous. Should they become disabled, the pre-
mium is no longer due and they are entitled to an annuity instead. On the French
LTC insurance market most products rely on monthly premium and monthly
benefit. For the sake of simplicity, we consider continuous-time premiums and
annuities instead, the difference with monthly quantities being extremely low.
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We denote by 7 the continuous-time actuarial interest rate used to compute dis-
counted cash flows.
Let us introduce additional notation

4, y
Ax, y) =P(Z, = A|Z, = A) = <= exp —/ [a () + 2(u)]du |,

X
S
L(t,5) =P(Zoyy =11 Ze = A, Ze =1, Zyy = D =exp | — / i (x, u)du

t

and
¥y

Alx, ) =e TV A(x, y) = exp | — / [wa @) + A(u) +t]du |,

X
1.(t,s) =e "I (1, 5) = exp —/ (i (x, u) + 7] du
t

for xp < x < yand 0 < ¢ < s such that A4 (resp. I) is the survival probability in
the state of autonomy (resp. in the disabled state) and A (resp. /) the discounted
survival probability in the aforementioned state.

We define the following quantities that are required for the pricing of the
product:

e P(x), the expected value of insured liabilities for an autonomous insured life
with current age x for a le yearly premium

oo

P(x) =/ A(x, u)du.

X

e RFC(x, 1), the expected value of insurer liabilities for a disabled insured life
with an age x at the onset of LTC and a time ¢ spent in the disabled state and
a le yearly annuity, also called reserve for claim

RFC(x, 1) = / 1.(t,u)du.

t

e TII(x), the expected value of insurer liabilities for an autonomous insured life
with current age x, associated with a le yearly annuity

I(x) = / A(u) A(x, u)RFC(u, 0)du.

X
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e The stability premium p*(x). It is the value of premium that matches insurer
and insured liabilities at the time of subscribing. For an age x at subscribing,
we have
I (x)

pr(x) = m

e The reserve for premium (RFP), which is constituted for autonomous peo-
ple. Its amount is equal to the expected value of future liabilities minus the
expected value of premium. For an insured of age at subscribing x;, current
age x, the associated amount of reserve is

RFP(x;, x) = P(x) [p*(x) — p"(x,)].

3. RESULTS

In this section, we provide an example using aggregated data from several
French LTC insurance portfolios. The definition used for LTC is 3ADL4 which
means that an insured life is considered disabled if he/she has permanently lost
the ability to do on their own at least three out of the four activities of daily liv-
ing defined by the contract: functional mobility, dressing, bathing and eating.
The portfolio we consider contains a very large number of policies and covers
a relatively long period. The date of extraction is November 31, 2014 for both
contributors and annuitants. We remove the first 3 years spent by contributors in
the portfolio and then consider a 12-year observation period between January 1,
2002 and December 31, 2013 for contributors and a 20-year observation period
between January 1, 1994 and December 31, 2013 for annuitants. Database of
contributors contains over 1.5 million years of exposure with 69.8% of the lines
being right censored. Database of annuitants contains close to 45,000 years of
exposure and 29.4% of right censored lines. Women account for 65.4% of con-
tributors and 66.7% of annuitants. Separate models are estimated for men and
women.

3.1. General mortality

We use the Brass relational model with data for the French population over
the years 2010-2013 coming from the Human Mortality Database (University
of California, Berkeley (USA) and Max Planck Institute for Demographic Re-
search (Germany), 2015) that we choose as our mortality reference. At the same
time, we compute empirical probabilities of death, using the Hoem estimator
as described in Planchet and Thérond (2006), as well as 95% confidence inter-
vals under the normal approximation, over the age range where the Cochran
criterion is satisfied. Figure 5 displays the logarithm of the CDO for empirical
probabilities and the mortality reference and the difference between them. As
it is close to a straight line, the underlying assumption of the model is satisfied.
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FIGURE 5: Logarithm of cumulative distribution odds (CDO) for observed mortality (dotted), reference
mortality (dashed) and their difference (plain). (Color online)

TABLE 2

VALUE OF LOG-LIKELIHOOD / AND BIC OF PREVIOUSLY INTRODUCED MODELS FOR THE INCIDENCE IN LTC.

Model Intensity /(males) BIC(males)  I(females)  BIC(females)
Gompertz A(x) = eB XD —25,099.12  50,223.64  —52,380.25 104,788.21
Makeham  A(x) = e®**h 4d,  —25,099.12  50,232.11 —52,380.25 104,797.44
Beard Ax) = 1j’:g‘:'jA —25,094.61 50,223.09  —52,326.58 104,690.09
Perks Ax) = % +d, —25,093.74  50,229.81 —52,325.83 104,697.83

Figure 6 represents the observed and reference mortality, as well as the mortal-
ity fitted using the Brass relational model. The latter mortality is close to the
observed mortality for ages where enough data is available and then smoothly
converges towards the reference at higher ages, where no data is available.

3.2. Incidence in LTC

The results for the estimation of incidence in LTC can be found in Table 2. The
Gompertz (resp. the Beard) model performs better than the Makeham (resp.
the Perks) model according to the BIC, which means that the use of an extra
parameter which represents an initial level of incidence present at all ages is not
required. In addition, the Beard logistic model is a better fit to the data than
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Intensity of general mortality given by Brass model
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FIGURE 6: Intensity of mortality estimated from the data (dots) with 95% confidence intervals, from the
mortality reference (dashed) and given by the Brass relational model (plain). (Color online)

the Gompertz exponential model. One can come to this conclusion by looking
at Figure 7 that represents the empirical incidence as well as the inferred inci-
dence for the Gompertz and the Beard models. The empirical incidence in LTC
increases exponentially at first but at higher ages there is a slowing down in this
increase, more pronounced for females than for males, which makes the Beard
logistic model a better fit.

3.3. Mortality in LTC

We rely on the results from Section 2.4.3 and define the mortality in LTC by
providing a parametric model for A;, A, and 6. In this section, we only focus
on a handful of well-known models that in our opinion are the most obvious
candidates. Furthermore, for the sake of simplicity, we only consider models
where A and A, take the same parametric form. For A;(x) and A,(x), we con-
sider constant, the Gompertz and the Makeham exponential models as well as
the Beard and the Perks logistic models (so five different models in total). For
0 (x), we have the additional constraint that we should have 0 < 8(x) < 1 for all
ages. We consider a constant model and then four logistic models with increas-
ing degrees of freedom. Indeed, the full logistic law has four parameters and
therefore four degrees of freedom. By setting the ultimate values for x = —o0
and x = +o0 respectively to 0 and 1, we obtain a logistic model with only two
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Intensity of incidence in LTC
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FIGURE 7: Estimates of the incidence in LTC. Dots and ribbon represent empirical estimates with 95%
confidence intervals. Plain (resp. dashed) line represents the Gompertz (resp. the Beard) model fitted to the
data. (Color online)

parameters. We may relax either of those constraints by introducing additional
parameters 0 < o < 8 < 1 so that « (resp. 8) is the ultimate value of 6(x)
when x = —oo (resp. x = +00). Hence, we estimate 5 x 5 = 25 combinations
of models. Results are available in Table Al in the appendix.

Figure 8 represents each of the models on the angle of the number of param-
eters and maximum log-likelihood. As the BIC is a linear combination of the
two aforementioned components, contour curves of increasing BIC correspond
to parallel lines of increasing intercept in this representation. The model with the
best BIC is such that there is no other model in the upper half two-dimensional
space delimited by the associated contour curve. Distance from any model to
this contour curve is proportional to the difference in BIC between that model
and the best model. The criterion selects model 9 for males (models 7 and 10
being close contenders) and model 10 for females. All those models rely on the
Gompertz law for the specific mortality terms A; and A,. As regards 6, model
10 uses the full four parameters logistic model, whereas model 9 only uses three
parameters, the asymptotic value for the prevalence of high mortality (group 2)
pathologies at lower ages being set to 100%. From this point all results are based
on the parameters inferred for models 9 for males and model 10 for females.

Figure 9 displays the value of 6(x) that represents the prevalence of high
mortality pathologies among newly disabled people inferred by the model. This
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FIGURE 8: Representation of the models (dots) in the plan of log-likelihood and number of parameters. The
plain line represents the contour curve for the model with the highest BIC. (Color online)

Prevalence of high mortality trajectories at onset of LTC
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FIGURE 9: Prevalence of high mortality trajectories in the population of newly disabled inferred by the
model. (Color online)
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Intensities associated with the model
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FIGURE 10: Specific mortality terms for both populations in the mixture (dotted and dashed lines), and
resulting mortality at the onset of LTC (plain line). (Color online)

prevalence decreases with age and is much higher for males (70% at age 60 and
17% at age 90) than for females (40% at age 60 and 6% at age 90). Figure 10 rep-
resents the specific mortality terms A (x) and A;(x) and the resulting mortality
term for the newly disabled A(x, 0), which is the weighted mean of A;(x) and
A (x) with weights 1 —0(x) and 6 (x) respectively. We observe that A;(x) is way
higher than A;(x). Besides, the initial mortality A(x, 0) decreases with age un-
til 85 and then remains stable. Let us remind that for higher durations, A(x, 1)
converges towards the lower value between A;(x) and A,(x) as the weight of
the population with higher mortality in the mixture decreases to 0. Those results
seem compatible with our interpretation in terms of cancer for the group of high
mortality pathologies and dementia as well as cardiovascular and neurological
diseases for the other group. However, one should keep in mind that pathologies
are not actually observed in the data, and Figures 9 and 10 only represent the
underlying distribution inferred by the model.

Figure 11 represents annual death probabilities associated with the empiri-
cal data on the one hand and given by the model on the other hand. We com-
pute empirical annual probabilities by grouping disabled people, according to
their age of entry in LTC with 5-year age bands between 65 and 90. For each
age band, we then compute annual death probabilities by duration under the
assumption that the intensity of mortality is constant over intervals of 1 year
for the duration. We represent 95% confidence intervals for those probabilities
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Annual death probabilities for disabled people
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FIGURE 11: Consecutive death probabilities for disabled people according to the model (triangles) with

empirical probabilities (circles) and associated 95% confidence intervals. The y-scale has been re-normalized
to preserve confidentiality of results. (Color online)
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FIGURE 12: Intensity of autonomous mortality. Dots: empirical rates; dashed line: direct fit of the Perks
model; plain line: refined intensity from Equation (5). (Color online)

under the normal approximation (as in Planchet and Thérond, 2006). We also
compute annual death probabilities given by the model for individuals of ages
67.5,72.5,...,87.5at onset of LTC. Confidence intervals are still very wide, espe-
cially for men as well as at lower/higher age at onset of LTC and/or high duration
in LTC. Nonetheless, the annual probabilities computed using the model appear
to match the empirical probabilities very well for both males and females when
data is available. It appears that by taking into account a mixture component in
the model, we were able to reproduce the evolution of death probabilities with
respect to time spent in LTC. Nevertheless, in each component of the mixture,
time spent in LTC only appears in the autonomous mortality term, through the
current age x + ¢.

3.4. Autonomous mortality

Figure 12 represents the initial intensity of autonomous mortality we get from
the first-step estimator jz," and the refined intensity from the second-step es-
timator jz,®. The refined intensity remains close to the empirical intensity for
females but for males there are some divergences which can be explained by the
lower volume of data.
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Intensities inferred by the model
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FIGURE 13: Intensities of general mortality (plain), autonomous mortality (dotted) and incidence in LTC
(dashed), with 95% confidence intervals obtained by bootstrap. (Color online)

3.5. Summary of intensities and prevalence of LTC

In order to assess the robustness of the estimation performed, we use a non-
parametric quantile bootstrap method. From the initial database of insured
lives, we build 200 new samples by drawing, with replacement, as many indi-
viduals as in the initial observation database. For each sample, we then run all
the steps of the estimation procedure, including the choice of the best model
according to the BIC. We then use the inferred parameters to compute the final
intensities of transition as well as the prevalence of LTC. Finally, for each age,
we select the 2.5% and 97.5% quantiles of the empirical distribution of those
quantities in order to get bootstrap confidence interval.

Figure 13 represents the intensity of mortality for the general population, the
intensity of mortality for autonomous people as well as the incidence in LTC.
Confidence intervals are very tight for autonomous and general mortality. For
the incidence in LTC they are larger, especially at lower or higher ages, and for
males as the data is scarcer. Figure 14 represents the prevalence of LTC among
the general population inferred by the model. The prevalence increases almost
exponentially with respect to age at first, with a slowing down at higher ages.
Prevalence is initially close for males and females, but from the age of 80 it be-
comes much higher for females. Overall, the confidence intervals are very large
especially for males at higher ages where the number of survivors is limited.
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Prevalence of LTC inferred by the model
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FIGURE 14: Prevalence of LTC by age in the general population (plain line), with 95% confidence intervals
obtained by bootstrap. (Color online)

3.6. Results of pricing and reserving

We consider a LTC insurance product where autonomous policyholders pay a
monthly level premium, whose amount is set based on their age of subscription.
Should they become disabled, they would stop paying the premium and instead
receive a monthly annuity of 1,000¢ until they die. We use an actuarial interest
rate of 1% for the pricing of the product. Figure 15 shows the required level
of premium according to the model for ages at subscribing from 50 and 80,
as well as confidence intervals obtained by bootstrap, using the methodology
described in the previous section. The premium increases exponentially with
age and is twice as expensive for women than for men. Confidence intervals
are relatively tight given the uncertainty on the underlying biometric laws. The
method therefore proves quite robust.

We also compute the average reserve of premium in Figure 16. We define
it as the product between the probability A(x;, x) for the individual to remain
autonomous between the age of subscription x; and the current age x and the
associated amount of reserve for premium RFP(x;, x) at that age. The reserve
for premium reaches a maximum between ages 78 and 88, depending on the
age of subscription and then decreases when the cost associated with the claims
starts to outweigh the amount of premium. We also compute the average re-
serve for claim in Figure 17. We define it as the product between the survival
probability in LTC I,(0, 7) at the age of claim x for the given duration ¢ and
the associated amount of reserve for claim RFC(x, ¢). This reserve decreases by
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FIGURE 15: Amount of monthly premium required according to the model, with 95% confidence intervals
obtained by bootstrap. The y-scale has been re-normalized to preserve confidentiality of results. (Color online)

duration as the number of survivors does. The initial amount of reserve for claim
reaches its maximum for claim inception under 60 for women and between 70
and 80 for men. Indeed, for males, the incidence of cancer is very high for ages
under 70. Therefore, men under 70 have very high death probabilities for the
first year following the onset of LTC, whereas men over 80 have very high death
probabilities for the subsequent years, because mortality from other causes of
death get higher with ages. For women, this second phenomenon carries more
weight, and the most expensive claims are made before age 60.

4. DISCUSSION

In this paper, we introduce a method to estimate biometric laws associated with a
LTC insurance portfolio. This method relies on a continuous-time semi-Markov
model, as opposed to discrete-time methods used by practitioners in most coun-
tries (with the notable exception of Denmark, see Ramlau-Hansen (1991)). This
model relies on three transition intensities: incidence in LTC, autonomous mor-
tality and mortality in LTC. We suggest parametric models for the transition
intensities. The Brass relational model is used for the intensity of general mor-
tality and the Perks logistic model is used for incidence in LTC, as well as for
the first-step estimate of autonomous mortality. As regards mortality in LTC
we introduce a mixture model. The aim is to model the underlying heterogene-
ity in the population caused by the very different pathologies that may lead to
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FIGURE 16: Expected value of reserve for premium by age at subscribing and current age, assessed at
subscribing. The z-scale has been re-normalized to preserve confidentiality of results. (Color online)
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FIGURE 17: Expected value of reserve for claim by age at entry in LTC and time spent in LTC, assessed at
claim inception. The z-scale has been re-normalized to preserve confidentiality of results. (Color online)
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LTC. Inference of parameters relies on the maximum likelihood method. We
then introduce a formula to include general mortality of the portfolio in the
model (on which we expect to have more reliable knowledge) and use it to get a
second-step estimator of the autonomous mortality, which should prove more
reliable at higher ages. We also provide adequate formulas for continuous-time
pricing and reserving based directly on the transition intensities. Let us remind
that there is only few data available at higher ages on for high duration in LTC.
Therefore, parametric methods are compulsory to extrapolate biometric laws
at higher ages. Using parametric models from the start is very convenient for
the practitioner as it allows to derive biometric laws in a single step, while non-
parametric methods requires to find adequate age bands to perform empirical
estimations, smooth the empirical probabilities and finally extrapolate the re-
sults for higher ages.

We then apply our methodology to data from a real LTC insurance port-
folio. Empirical probabilities demonstrates that mortality during the first year
following the onset of LTC is way higher than for the subsequent years. A
semi-Markov model which takes into account both the age at the onset of
LTC and the duration in the LTC state is therefore required in order to ex-
plain this phenomenon. By taking into account heterogeneity in the trajectories
through a mixture model, we obtain such a model for the mortality in LTC
which proves very close to empirical estimations. This may indicate that most of
the effect of duration on the mortality actually comes from the heterogeneity of
causes.

In this article, we take into account several potential sources of error. As
we use a parametric approach, there is a significant risk of modelling error that
we try to mitigate by comparing the results of the model with the empirical an-
nual probabilities obtained using a classic non-parametric approach. We also
consider several sub-models and remain parsimonious in the number of pa-
rameters we introduce by using the Bayesian Information Criterion to compare
models. Furthermore, the robustness of estimation is also assessed using a non-
parametric quantile bootstrap method.

The parametric form we introduce for mortality in LTC is based on the
assumption that pathologies can be sorted in two main groups of homoge-
neous mortality. This assumption may be tested by focusing on the study of
the pathologies causing LTC. Data containing information about pathologies
is however extremely scarce and kept private by most insurers. Another limit to
our estimation approach is that it is stationary and does not consider that bio-
metric laws are changing over time. The estimation of drifts would indeed prove
very difficult because of the limited observation period, and lack of consistency
in definition of LTC as well as changes in underwriting and claim management
policies over time. Also, most products in France allow the insurer to increase
the level of premium in order to account for drifts in the underlying risk. Al-
though this may justify not to consider any trend in the model, a sensitivity
approach would in any case prove very useful. We could consider several sce-
narios for the improvement of incidence and mortality rates and look at the
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impact on the insurer technical result. Nevertheless, to the best of our knowl-
edge, neither the data nor the theoretical framework associated with this issue
exist. Finally, the model only considers one level of LTC, when most individual
LTC products currently sold provide several levels of benefits according to the
severity of the disability state. Extending the model to consider several levels of
LTC asin Lepez et al. (2013) or Biessy (2015) would therefore prove very useful.
Once again, finding adequate data to perform estimation of parameters is very
challenging.
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APPENDIX

TABLE Al

561

VALUE OF LOG-LIKELIHOOD / AND BIC OF MODELS FOR MORTALITY IN LTC.

Model Ay, A3 0 k  I(males) BIC(males) I(females) BIC(females)
1 Constant Constant 3 —-8,423.49 16,872.43 —18,569.90 37,166.71
2 Constant  Logistic(0, 1) 4 —8,394.21 16,822.36 —18,522.60  37,081.07
3 Constant  Logistic(0, 8) 5 —8,394.21 16,830.84 —18,522.60  37,090.04
4 Constant  Logistic(e, 1) 5 —8,384.81 16,812.05 —18,505.70  37,056.24
5 Constant  Logistic(a, 8) 6 —8,382.20 16,815.30 —18,494.63  37,043.07
6 Gompertz Constant 5 —8,393.70 16,829.81 —18,543.44  37,131.71
7 Gompertz Logistic(0,1) 6 —8,356.27 16,763.44 —18,475.74  37,005.29
8 Gompertz Logistic(0, 8) 7 —8,356.27 16,771.93 —18,475.74 37,014.26
9 Gompertz Logistic(e, 1) 7 -8,350.55 16,760.50 —18,466.26  36,995.30

10 Gompertz Logistic(o, B) 8 —8,348.25 16,764.38 —18,456.02  36,983.79

11 Makeham Constant 7 —8,393.26 16,84591 —18,542.66  37,148.10

12 Makeham Logistic(0, 1) 8 —8,355.39 16,778.65 —18,473.17  37,018.08

13 Makeham Logistic(0,8) 9 -—8,355.39 16,787.14 —18,473.17  37,027.04

14 Makeham Logistic(e, 1) 9 —8,350.91 16,778.18 —18,465.94  37,012.60

15 Makeham Logistic(e, ) 10 —8,348.66 16,782.18 —18,456.04  37,001.75

16 Beard Constant 7 —8,393.62 16,846.64 —18,543.43  37,149.63

17 Beard Logistic(0,1) 8 —8,356.21 16,780.30 —18,475.74  37,023.23

18 Beard Logistic(0, 8) 9 —8,356.22 16,788.81 —18,475.74  37,032.20

19 Beard Logistic(er, 1) 9 —8,349.54 16,775.44 —18,463.98  37,008.67

20 Beard Logistic(e, 8) 10 —8,346.92 16,778.69 —18,455.87  37,001.41

21 Perks Constant 9 -8,391.68 16,859.73 —18,542.14  37,165.00

22 Perks Logistic(0, 1) 10 —8,355.79 16,796.42 —18,473.26  37,036.20

23 Perks Logistic(0, ) 11 —8,355.95 16,805.23 —18,473.30  37,045.24

24 Perks Logistic(e, 1) 11 —8,350.91 16,795.15 —18,466.62  37,031.88

25 Perks Logistic(er, 8) 12 —8,346.90 16,795.62 —18,455.96  37,019.53
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