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MEASURING DEPENDENCE INMETRIC ABSTRACT
ELEMENTARY CLASSES WITH PERTURBATIONS

ÅSA HIRVONENAND TAPANI HYTTINEN

Abstract. We define and study a metric independence notion in a homogeneous metric abstract elemen-
tary class with perturbations that is dp-superstable (superstable wrt. the perturbation topology), weakly
simple and has complete type spaces and we give a new example of such a class based on B. Zilber’s
approximations of Weyl algebras. We introduce a way to measure the dependence of a tuple a from a set B
over another set A. We prove basic properties of the notion, e.g., that a is independent of B over A in the
usual sense of homogeneous model theory if and only if the measure of dependence is < ε for all ε > 0.
In well behaved situations, the measure corresponds to the distance to a free extension. As an example
of our measure of dependence we show a connection between the measure and entropy in models from
quantum mechanics in which the spectrum of the observable is discrete. As an application, we show that
weak simplicity implies a very strong form of simplicity and study the question of when the dependence
inside a set of all realisations of some type can be seen to arise from a pregeometry in cases when the type
is not regular. In the end of the paper, we demonstrate our notions and results in one more example: a class
built from the p-adic integers.

§1. Introduction. Studying metric structures from a stability theoretic point of
view offers two basic new features. The first is to be expected: the natural notion
of size has to switch from cardinality to density. The second was noted by Iovino
[13] and developed further by Ben Yaacov [2]: studying stable classes of metric
structures, the cardinalities at which stability occurs depends on the metric (or
more generally, topology) chosen for the type space. Ben Yaacov’s approach built
on the idea of allowing perturbations to the structures, launching the term �-stable
up to perturbation. Examples of structures which are �-stable up to perturbation
(but not as nonperturbed) were studied in [5] and [3].
To be able to use the improvement in stability, we introduced the framework of
metric abstract elementary classes with perturbations in [7]. The idea is to work in
a syntax-free framework and add the perturbation mappings as graded classes of
generalised isomorphisms. As the main motivation for the approach is to enable a
natural use of perturbationmappings, but not to work in as general a setting as con-
ceivable (as opposed to the general framework of abstract elementary classes), we
have worked in a homogeneous context. So, were it not for the perturbations, the
setting would roughly correspond to a metric variant of Shelah’s finite diagrams,
and the reader may think of the types as the syntactic types of a homogeneous
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monster. However, the topology on the type space need not be given by any lan-
guage. A first development of basic independence and isolation notions under
�-dp-stability (�-stability up to perturbations) in this context was presented in [7].
This paper continues the study of homogeneous metric structures with pertur-
bations. Stability requirements are now reduced to dp-superstability (together with
some other requirements, specified below), but the main novelty is not just this
loosening of stability requirements considered, but the way the independence notion
developed offers a measure of the dependence.
We define dp-superstability as ‘stable with respect to the dp-topology from some
� onward’ and show that it is equivalent to other natural characterisations. As far as
generalising stability assumptions is concerned, assuming dp-superstability is as far
as is reasonable to go, as perturbations do not bring stability to unstable classes, but
only bring down the stability spectrum. So assuming only dp-stability, one would
be tied to the effort of dealing with perturbations, without gaining access to better
methods than what could already be used by studying the class, say, as a discrete
homogeneous AEC. In the context of AEC’s, the main point of looking at a class as
a metric class is that this may bring the class down in the stability hierarchy allowing
for better theory.
We also assume completeness of type spaces. This is a weakening of the compact-
ness property one has in continuous first order logic, so the assumption is satisfied if
the class consists of all the models of some complete theory in continuous logic and
the perturbations are either trivial or can be captured by approximating formulas
(a case, which the reader may use as a first mental picture). But there are more gen-
eral classes satisfying the assumptions, e.g., the class of real valued atomic Nakano
spaces (treated in [7]).
We aim to create a theory for measuring dependencies. Already in [4] something
like this was done but here our approach is a bit different and we aim to go further.
The main difficulty in developing the theory is that independence is closely linked
with properties of Lascar (strong) types. So to develop the theory one should be
able to measure the distances between Lascar types. It is not clear how this could
be done in general. However, if the class is simple there is a way. Here by simple
we mean that all Galois-types over any set have a free extension to any other set.
Since our independence notion will be defined with built-in free extensions, this is
the same as saying that for all a andA, a |�A

A (a is free fromA overA). And since
we assume that the class is dp-superstable, it turns out that it is enough to assume
this just for finite A, i.e., that the class is weakly simple.
In Section 2 we give a short summary of the key properties of our context.
In Section 3 we illustrate one use of perturbations as a viewpoint to structural
approximation. Section 4 is a short summary of results from homogeneous model
theory that we make use of throughout the paper.
In Section 5 we introduce the main notion of the paper. This is the metric
independence notion a |�

ε

A
B, ε > 0, which intuitively means that the amount

of the dependence of a from B over A is at most ε. We start by proving some basic
properties for this notion, e.g., that for all ε > 0, a, and B there is a finite A ⊆ B
such that a |�

ε

A
B. As a corollary we see that for all a and B there is a countable

A ⊆ B such that a |�A
B. In particular, the class is simple. This is in line with

many (discrete) superstable nonelementary classes in which it also holds that weak

https://doi.org/10.1017/jsl.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.37


MEASURING DEPENDENCE INMAECSWITH PERTURBATIONS 1201

simplicity implies simplicity, see e.g., [10]. However, this is not true if instead of
dp-superstability one assumes mere stability, and we give an example of this.
In Section 6 we define Lascar ε-splitting and study the connection of it with |�

ε .
Using a Lascar-splitting characterisation we are able to prove a form of monotonic-
ity for |�

ε which finally lets us prove that a |�A
B holds if and only if for all ε > 0,

a |�
ε

A
B holds.

In Section 7 we investigate a property of the perturbation system which we
call almost summability and which improves the behaviour of |�

ε over infinite
parameter sets. After this we turn our attention to ranks. In Section 8 we illustrate
how the notion of entropy arises naturally in our context. The way it measures
forking chains can be seen as a variant of U-rank. In Section 9 we observe that a
certain behaviour of |�

ε in the collection of extensions of a type, gives a pregeometry
in Meq (the version used in homogeneous model theory). Here we define another
rank function that plays a role in the characterisation.
In the final Section 10 we give a worked-through example of the theory created
in this paper. The example is a subclass of Abelian groups equipped with p-adic
metric. It also serves as an example of finding a pregeometry inMeq although the
type we investigate need not be regular.

§2. Assumptions and prerequisites. Throughout this paper we will assume K is
a homogeneous metric abstract elementary class with perturbations and complete
type spaces, that is weakly simple and dp-superstable. We will briefly describe the
framework, for full definitions, the reader is referred to [7].
The structures studied aremany-sorted structures, each sort ofwhich is a complete
metric space. One of the sorts is a copy of the ordered field of real numbers. We do
not assume the metric spaces to be bounded, nor do we assume uniform continuity
of the functions, but the requirements of the class will put some implicit demands
on the behaviour of the functions.
We write a, b etc. for finite tuples. As a shorthand ab will denote the concatenated
tuple of a and b. For sets A and B, AB will denote their union. We do not specify
the sort, but a ∈Mwill mean that a is a finite tuple of elements of appropriate sorts
ofM. The distance of two tuples a and b (of the same length) is the maximum of
the coordinatewise distances. When considering distances of (finite) sets, we regard
them as tuples.
Ametric abstract elementary class, MAEC, is just a metric adaptation of Shelah’s
abstract elementary classes, i.e., it consists of a class K of metric structures and a
strong submodel relation� refining the submodel relation and partially orderingK,
such that it satisfies the coherence axiom, the class is closed under (completions) of
unions of chains andhas a (metric)Löwenheim-Skolemnumber (i.e., a Löwenheim–
Skolem number where size is measured by density character).
To a given MAEC (K,�) we add classes Fε of ε-isomorphisms. The
ε-isomorphisms are uniformly continuous bijections between members ofK satisfy-
ing natural properties of composition and inversion, with ε being a measure for the
amount of error the functions in Fε make. A natural example of an ε-isomorphism
is a linear isomorphism T of a Banach space with ‖T‖, ‖T−1‖ ≤ eε .
We further assume that the class has arbitrarily largemodels, satisfies joint embed-
ding (JEP), amalgamation wrt. the ε-isomorphisms (AP) and is homogeneous.
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This allows us, for any given cardinal �, to construct a �-universal, strongly
�-homogeneous monster model M with the additional property, that any
ε-isomorphism between strong submodels of M extends to an ε-automorphism
of M. The notion of type used is Galois-type, tg(a/A), which corresponds to the
orbit of a under automorphisms ofM fixing A pointwise.
To define a metric on the type space we define the relation dp:

Definition 2.1. For tuples a, b ∈M and ε > 0 we write
dp(tg (a/∅), tg(b/∅)) ≤ ε

if there are ε-automorphisms f and g of M such that d(f(a), b) ≤ ε and
d(g(b), a) ≤ ε.
For types over parameter sets A, we define

dp(tg(a/A), tg (b/A)) = sup{dp(tg(ac/∅), tg(bc/∅)) : c ∈ A finite}.
To get a metric, we assume the following perturbation property: whenever

a, b ∈M are tuples such that dp(tg (a/∅), tg(b/∅)) = 0 (i.e., dp(tg (a/∅), tg(b/∅)) ≤ ε
for all positive ε) then tg(a/∅) = tg(b/∅).
Strictly speaking, dp is not ametric (the triangle inequality needs some rescaling),
but it defines a metrisable uniformity, so it makes sense to talk about Cauchy
sequences, limits and completeness with respect to dp.
Finally, the assumption of complete type-spaces states, that all dp-Cauchy
sequences over ∅ have a limit. A fact that was not pointed out in [7] is:
Fact 2.2. If K is homogeneous, satisfies the perturbation property and has
complete type spaces then dp-Cauchy sequences over any parameter set converge.

Stability is then defined in the natural way: K is �-dp-stable if for any set A with
|A| ≤ �, the set of types over A has density ≤ � with respect to dp.
Note that a type space of density � (wrt. dp) has cardinality ≤ �� , so the
notion of stability is the same regardless of whether we consider the class as a
(perturbed) metric class or as a discrete AEC, although the cardinalities where
stability occurs vary.

§3. An example of the use of perturbations. This section describes an example of
the use of ε-isomorphisms in model theory. It arises from the sheaf of rational Weyl
algebras studied in [19] by B. Zilber. In the end of the example we show how one
can get a natural sheaf topology from the perturbations of the class. In this example
we leave the details to the reader to check. In our final example in the end of this
paper, all the details are given.
Weyl algebras are algebras generated by P and Q (representing momentum
and position in quantum mechanics), with the canonical commutation relation
QP − PQ = i�. This cannot be represented by bounded operators in a Hilbert
space, so instead operators Ut = exp(itQ) and V v = exp(ivP) are studied. Zilber
studies the algebras arising from letting the commutator of U and V be a root of
unity, choosing t and v to be rational and by these approximating the full Weyl
algebra. We show how perturbations give a viewpoint to this idea of structural
approximation.
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The idea is to build a largeHilbert space over an indexing setR. To each a ∈ Rwe
attach an orthonormal sequence of eigenvectors of U such that V acts as a shifting
operator on (all or part of) this sequence.
We let K be the class of structures A each of which consists of the following two
parts:
(a) A set R with discrete metric (distance between any two points is 1).
(b) A complex Hilbert spaceH with the usual metric that comes from the inner
product.

R works as an indexing set. In order to put these into the many-sorted form
demanded, we actually include four sorts: R,H,C, and R.
In addition to these, inA, there are interpretations for the unary function symbols:
U , V , and Bz , for all rational numbers z: The functions Bz are from R to H and
the requirement is that {Bz(a)| a ∈ R, z ∈ Q} forms an orthonormal basis of H .
The functionsU andV are unitary operators onH but to give the requirements we
attach numbers to the elements ofR. The numbers are not part of the structure but
in the end they can be read out from it. So to each a ∈ R we attach four numbers:
Na , which is a positive natural number such that for all a ∈ R, Na = n! for some
positive natural number n (the latter requirement is just to make fractions easier).
We also have a complex number qa of absolute value 1. Finally we have natural
numbers na andma . If qa is not a root of unity or is 1, then na = ma = 0. Otherwise
qa = ei2�m/n for some natural numbers 0 < m < n and then ma/na = m/N 2a n and
gcd (ma, na) = 1. To simplify the notation, for q = ei2�r , 0 ≤ r < 1, and integer
numbers n �= 0 and m, we write qm/n for ei2�rm/n .
Now we are ready to state the requirements for the operators U and V . If

na = 0, then for all integers z, U (Bz/N 2a (a)) = q
z/N 2a
a Bz/N 2a (a) and V (Bz/N 2a (a)) =

B(z−1)/N 2a (a), and for all other rational numbers r, U (Br(a)) = V (Br(a)) = Br(a).
If na �= 0, let za and z′a be integers such that za + z′a ∈ {0, 1} and z′a − za + 1 = na .
Then if za ≤ z ≤ z′a , U (Bz/N 2a (a)) = q

z/N 2a
a Bz/N 2a (a) and for all other rational

numbers r, U (Br(a)) = Br(a). For za ≤ z ≤ z′a , V acts by cyclic permuta-
tion on the basis elements Bz/N 2a (a), i.e., if za < z ≤ z′a , then V (Bz/N 2a (a)) =
B(z−1)/N 2a (a), and V (Bza/N 2a (a)) = Bz′a/N 2a (a). For all other rational numbers
r, V (Br(a)) = Br(a).
If as a strong submodel relation we use the submodel relation, K is easily seen to
be a homogeneous MAEC with AP and JEP, the first-order theory of the monster
model is unstable and as a MAEC the class is superstable but not �-stable. Notice
that if we writeHa for the subspace ofH generated by {Br(a)| r ∈ Q, V (Br(a)) �=
Br(a)}, then U and V restricted to this space satisfy the Weyl commutator law
V zUz

′
= qzz

′/N 2a
a U z

′
V z for all integers z and z′ (so as a representation of a

Weyl algebra, U and V restricted to Ha should really be understood as U 1/Na

and V 1/Na ).
Let us then define the sets Fε of generalised isomorphisms: We put f : A → B
in Fε if f is an isomorphism after we remove the interpretations of U and V from
the structures and in addition the following holds: For all a ∈ RA and b ∈ RB,
if b = f(a), then

(∗) |1/Na − 1/Nb |+ |qa − qb |+ |1/na − 1/nb| ≤ ε,

https://doi.org/10.1017/jsl.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.37
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where 1/0 is considered to be 0. It is easy to see that (K,⊆,Fε)ε≥0 is a homogeneous
MAEC with perturbations, it has JEP and AP (for the perturbations) and the
perturbation property. With these perturbations, the class is �-stable.
However, K does not have a complete type space: Let M be the monster model
of this class and choose ai ∈ R, i < �, so that for all i < j < �, qai = qaj and
Nai = (i+1)!. Let pi = t

g(ai/∅). Then the typespi formaCauchy sequence without
a limit. Of course, we can get a complete type space by replacing (∗) above by

(∗∗) |Na −Nb |+ |qa − qb|+ |1/na − 1/nb| ≤ ε.
We did not do it this way because now we can discuss the limit problem: Another
natural way of fixing this problem of complete type space would be by adding
the limits to the structure. In his sheafs, Zilber studies limits of this kind (Zilber
looks only at the cases in which the commutator is a root of unity and �= 1).
We choose not to add any such limits here because we see problems in choosing
these limits from the point of view of physics. One way of seeing these problems is
considering the emergence of eigenvectors in the limiting process. In [8] we study
ways of calculating the Feynman propagator via finite-dimensional approximations
(replacing the operatorsU and V with the operatorsU 1/n and V 1/n for all positive
natural numbers n). It turns out that if one considers eigenvectors of the limit
structure, there will be multiple options. Any straightforward choice will actually
give the wrong answer, as the value one intends to calculate corresponds to an
average of these. So instead of calculating propagators via eigenvectors one needs
to consider kernels (calculating the average in the approximations, as one cannot
do it in the limit).
Now suppose a, ai ∈ R are such that for all i < �, there is fi ∈ F1/(i+1) mapping
ai to a and for all i < j < �, qai �= qaj . Notice that then na = 0 and Nai = Na
for all large enough i . Also if we write H ∗

a for the subspace of H generated by
{Br(a)| r ∈ Q} and Ua and Va for the restrictions of U and V to H ∗

a , then
fiUaif

−1
i converges to Ua and fiVaif

−1
i converges to Va in the weak topology

(not in the operator norm). If one defines the time evolution operators on these
spaces so that the same happens with the time evolution operator, this convergence
is strong enough to allow one to calculate e.g., propagators in the case the Weyl
commutator is not a root of unity by calculating them in the root of unity cases,
i.e., in finite dimensional cases in which number theory can be used to do the
calculations and in which we have ‘all’ eigenvectors. Notice that if qa is not a root
of unity, then V � Ha does not have any eigenvectors, and thus neither does the
time evolution operator (at least in most cases), which makes the direct calculations
very hard.
Wefinish thisexamplebyshowinghowtogetanatural sheaf fromtheperturbations
of our class. So we work inside e.g., themonster modelM of the classK.
As the basis of the sheaf, we choose R and as a topology on R we use the one
we get from the pseudometric d , where d (a, b) is the infimum of all ε ≥ 0 such
that there is an ε-automorphism f ofM such that f(a) = b. The set of elements
of the sheaf is E =

⋃
a∈R H

∗
a and the topology on E is given by the pseudometric

d∗ where d∗(x, y) = 10 if there is no ε-automorphism f such that f(x) = y for
any ε ≥ 0, and otherwise d∗(x, y) is the infimum of all ε ≥ 0 such that there is an
ε-automorphism f such that f(x) = y. The projection p : E → R is the obvious
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one: p(x) = a if x ∈ H ∗
a . Clearly p is a local homeomorphism. In [15], model

theory for sheafs of metric structures is studied and our sheaf E seems to fit into
their framework.

§4. Using discrete homogeneous model theory results. In this section we note
that by Morleyisation (introducing predicates for the types) we may turn M into
a homogeneous first order structure, preserving stability, and thus use results
from [12].
By �(K) we mean the least cardinal � such that as a homogeneous AEC, K is
�-stable (i.e., �-stable in the sense of [12]). By κ(K) we denote the least cardinal κ
such that there is no strongly splitting sequence of length κ.
We say that a and b have the same Lascar strong types over A, Lstp(a/A) =
Lstp(b/A), ifE(a, b) holds for anyA-invariant equivalence relation with a bounded
number of equivalence classes.

Fact 4.1. LetM be strongly �-homogeneous. For every κ < � there is a cardinal
H (κ) such that if A is a set of size ≤ κ and (ai)i<H (κ) ⊂ M then there exists
an A-indiscernible sequence (bi)i<� ∈ M such that for every n < � there exist
i0 < · · · < in < H (κ) such that

tg (b0, . . . , bn/A) = tg(ai0 , . . . , ain /A).

Note that the fact ensures that over any set A there are less than H (|A|) Lascar
strong types over A.
In a stable homogeneous class we can define an independence notion based on
strong splitting as done in [12]:
We write a |�A

B if there is C ⊆ A of power< κ(K) such that for allD ⊇ A∪B
there is b which satisfies tg(b/AB) = tg(a/AB) such that tg(b/D) does not split
strongly overC . For an arbitrary setC ,C |�A

B means a |�A
B for all finite tuples

a ∈ C .
Fact 4.2 (Hyttinen-Shelah [12]). In a stable homogeneous class |� satisfies:
(i) (monotonicity). If A ⊆ A′ ⊆ B ′ ⊆ B and a |�A

B then a |�A′ B
′.

(ii) (extension of free types). If A ⊆ B, a |�A
A and tg(a/A) is unbounded, then

there is b such that b |�A
B and Lstp(b/A) = Lstp(a/A).

(iii) (finite character). IfA ⊆ B, a � |�A
B and a |�A

A and tg(a/A) is unbounded
then there is some finite B ′ ⊆ B such that a � |�A

B ′.
(iv) (symmetry for free types). For all a, b and A, b |�A

A and a |�A
b implies

b |�A
a. By finite character this generalises to: if A |�B

C andC |�B
B then

C |�B
A.

(v) (pair). If b |�A
D and c |�Ab

D then bc |�A
D.

(vi) (stationarity). If a |�A
c, b |�A

c and Lstp(a/A) = Lstp(b/A) then
tg(a/Ac) = tg(b/Ac).

Lemma 4.3. If C |�A
B andD |�AC

B then CD |�A
B.

Proof. By strong extension and stationarity of Lascar strong types we may
assume B is �(K)-saturated. We may also assume A and C are of power < κ(K).
Now if CD � |�A

B there are finite c ∈ C and d ∈ D such that cd � |�A
B.
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So there is an A-indiscernible sequence I = (ai)i<� ⊂ B such that tg(cda0/A) �=
tg(cda1/A). If I is AC -indiscernible, this contradicts D |�AC

B. So I cannot
be indiscernible over AC but then (by re-enumerating) for some n and c ∈ C
tg(c, a0, . . . , an−1/A) �= tg (c, an, . . . , a2n−1/A) giving an A-indiscernible sequence
contradicting C |�A

B. �
Corollary 4.4. If A ⊆ B, a |�A

B, a |�B
C , C |�B

B and B |�A
A then

a |�A
C .

Proof. By symmetry B |�A
a and C |�B

a and thus by Lemma 4.3 BC |�A
a.

By symmetry we then have a |�A
BC . �

In this context we define weak simplicity as a |�A
A for all a and finite A. Thus

if K is stable and weakly simple then |� satisfies monotonicity and stationarity
of strong types, and over finite sets in addition transitivity, symmetry and strong
extension.
As in [9], we write Lstpw(a/A) = Lstpw(b/A) if for all finiteB ⊆ A,Lstp(a/B) =
Lstp(b/B). Following [10], the typesLstpw are called Lascar types. By homogeneity,
if Lstpw(a/A) = Lstpw(b/A) then tg(a/A) = tg(b/A).
The following lemma is needed because the dp-distance of Galois-types we use
need not be a metric, see [7]. If there are no perturbations, i.e., Fε = F0 for all ε > 0,
then it is, and we can choose e(n, ε) = ε/n and 	n = 2−n.
Lemma 4.5. (i) For all n > 1 and ε > 0, there is e(n, ε) > 0 such that
for all ai , i ≤ n, if for all i < n dp(tg(ai/∅), tg(ai+1/∅)) ≤ e(n, ε), then
dp(tg(a0/∅), tg(an/∅)) ≤ ε.

(ii) There are 	n > 0 such that if dp(tg(an/∅), tg(an+1/∅)) ≤ 	n for all n < � then
(tg(ai/A)) is a Cauchy sequence (wrt. dp).

Proof. Immediate by the definitions, see [7]. �
When iterating the e-operation above, we will use the shorthand e(m, n, ε) =
e(m, e(n, ε)), etc.

§5. Measuring independence. In this section we define a distance-like relation dpa
on the space of Lascar types. As for dp in [7] it is not exactly a metric but defines
a metrisable topology. Using dpa we define ε-independence (Definition 5.4) and
explore its properties.
Recall that throughout the paper we assume K is a homogeneous MAEC with
perturbations with complete type spaces that is weakly simple and dp-superstable
(except in Corollary 5.8 where we give a characterisation of superstability, and thus
only assume stability). Note, however, that completeness of type-spaces is used only
to prove extension in Lemma 5.13, so we could omit the assumption if we instead
choose to assume extension.
The aim is to show that |�

0 and |� agree and that the class actually is simple, but
to get there we need many intermediate results. Many of the classical properties of
independence (monotonicity, transitivity), do not hold for ε-independence, but for
0-independence, and to show this we look at the interplay between ε-independence
and ordinary independence (as defined for homogeneous discrete classes). Until we
prove simplicity (in Corollary 5.17) we often have to work over finite sets, as these
are the only ones over which weak simplicity guarantees that |� is well behaved.
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Definition 5.1. (i) For a finite set A we define

dpa (Lstp(a/A),Lstp(b/A)) = sup{dp(tg(a/B), tg(b/B)) : A ⊆ B finite, B |�
A

ab}.

(ii) For any set B we then define

dpa (Lstp
w(a/B),Lstpw(b/B)) = sup{dpa (Lstp(a/A),Lstp(b/A)) : A ⊆ B, A finite}.

We first show that this definition makes sense:

Lemma 5.2. (i) If A is finite, then the definitions (i) and (ii) of 5.1 give the
same result.

(ii) If Lstpw(a/B) = Lstpw(a′/B) and Lstpw(b/B) = Lstpw(b′/B), then

dpa (Lstp
w(a/B),Lstpw(b/B)) = dpa (Lstp

w(a′/B),Lstpw(b′/B)).

(iii) If A is finite and ab |�A
B then

dpa (Lstp
w(a/B),Lstpw(b/B)) = dpa (Lstp(a/A),Lstp(b/A)).

(iv) If dpa (Lstpw(a/B),Lstpw(b/B)) = 0, then Lstpw(a/B) = Lstpw(b/B).

Proof. (i)–(iii): Immediate by the definitions.
(iv): It suffices to show that for any finite A, if dpa (Lstp(a/A),Lstp(b/A)) = 0,
then Lstp(a/A) = Lstp(b/A). For this choose c so thatLstp(c/A) = Lstp(a/A) and
c |�A

ab. Then by the assumption, dp(tg (a/Ac), tg(b/Ac)) = 0 and thus by the
perturbation property, tg(a/Ac) = tg (b/Ac) and thus Lstp(a/A) = Lstp(b/A). �
Although dpa may not satisfy the triangle inequality, as in [7] for dp, it gives rise
to a metrisable topology on the set of all Lascar types over any fixed set B. In fact
we have the following analogue of Lemma 4.5(i):

Lemma 5.3. For all n > 1 and ε > 0, for all ai , i ≤ n, and all A if for all i < n
dpa (Lstpw(ai/A),Lstpw(ai+1/A)) ≤ e(n, ε), where e(n, ε) is as in Lemma 4.5(i), then
dpa (Lstpw(a0/A),Lstpw(an/A)) ≤ ε.
Proof. It suffices to prove this when A is finite. For this assume that
dpa (Lstp(ai/A),Lstp(ai+1/A)) ≤ e(n, ε) and let D ⊇ A be finite and such that
D |�A

a0an. Choose D′ ⊇ A satisfying Lstp(D′/Aa0an) = Lstp(D/Aa0an) and
D′ |�A

⋃
i≤n ai . Then by assumption d

p(tg(ai/D′), tg (ai+1/D′)) ≤ e(n, ε) and
thus byLemma 4.5(i), dp(tg(a0/D′), tg (an/D′)) = dp(tg (a0D′/∅), tg(anD′/∅)) ≤ ε.
As tg(D′/Aa0an) = tg(D/Aa0an) we are done. �
We are ready to define the main notion of this paper:

Definition 5.4. For ε > 0, we write a |�
ε

A
B if for all finiteC ⊆ A, there is some

finiteD with C ⊆ D ⊆ A and b such that Lstp(b/D) = Lstp(a/D), b |�D
AB and

dpa (Lstpw(b/AB),Lstpw(a/AB)) ≤ ε. By a |�
0
A
B we mean that a |�

ε

A
B holds for

all ε > 0.

This independence notion has some immediate properties. Note, however, that
we only have partial monotonicity.
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Lemma 5.5. Suppose ε > 0.

(i) If A ⊆ C ⊆ D and a |�
ε

A
D, then a |�

ε

A
C .

(ii) If ab |�
ε

A
B, then a |�

ε

A
B.

(iii) If a |�
ε

A
B, A′ ⊆A is finite, then there is some finite A′′ such that

A′ ⊆ A′′ ⊆ A and a |�
ε

A′′ B.
(iv) If A is finite and a � |�

ε

A
B, then there is a finite C ⊆ B such that a � |�

ε

A
C .

(v) If ε > 	 > 0, then a |�
	

A
B implies a |�

ε

A
B.

(vi) If A is finite and a |�A
B, then a |�

0
A
B.

(vii) If A is finite, a |�A
B and a |�

ε

AB
C then a |�

ε

A
BC .

(viii) If A is finite, a |�A
B and a |�

ε

A
BC then a |�

ε

AB
C .

Proof. Immediate by the definitions. �
Now dp-superstability ensures that |�

ε has local character:

Lemma 5.6. (i) For all ε > 0, a and A there is a finite B ⊆ A such that
a |�

ε

B
A.

(ii) For all a and A, a |�
0
A
A.

Proof. (i): By Lemma 5.5, it is enough to show that there are no a and finite Ai ,
i < �, such that for all i < �, Ai ⊆ Ai+1 and a � |�

ε

Ai
Ai+1. For a contradiction,

suppose such a and Ai , i < �, exist.
Let κ > �(K) be a cardinal of cofinality � and such that K is κ-dp-stable.
We define a new increasing sequence of finite setsA′

i such that every b |= tg(a/A′
i)

with b |�A′
i

A′
i+1 satisfies d

p(tg (b/A′
i+1), t

g(a/A′
i+1)) > ε:

First let c0 |= Lstp(a/A0) with c0 |�A0
a
⋃
j<� Aj , and let A

′
0 = A0c0. When

A′
i has been defined such that A

′
i |�Ai

a
⋃
j<� Aj holds and b |= tg(a/A′

i)

implies b |= Lstp(a/Ai), let ci+1 |= Lstp(a/Ai+1) with ci+1 |�Ai+1
a
⋃
j<� AjA

′
i .

Then let bi |= Lstp(a/Ai+1) with b |�Ai
Ai+1. As a � |�

ε

Ai
Ai+1, we have

dpa (Lstp(bi/Ai+1),Lstp(a/Ai+1)) > ε, i.e., there is some finite Bi ⊇ Ai+1
with Bi |�Ai+1

abi such that dp(tg (a/Bi), tg(bi/Bi)) > ε and we may assume

Bi |�Ai+1
abici+1A

′
i

⋃
j<� Aj . Then define A

′
i+1 = A

′
iBi ci+1. Clearly t

g (b/A′
i+1) |=

Lstp(a/Ai+1) and as A′
i |�Ai

a
⋃
j<� Aj , also A

′
i |�Ai+1

a
⋃
j<� Aj . Further

ci+1 |�Ai+1A′
i

a
⋃
j<� Aj and Bi |�Ai+1A′

i ci+1
a
⋃
j<� Aj , so A

′
i+1 |�Ai+1

a
⋃
j<� Aj .

Now if b |= tg(a/A′
i) and b |�A′

i

A′
i+1, these imply b |= Lstp(a/Ai) and b |�Ai

Bi .

So b |= tg(bi/Bi) and thus dp(tg (a/Bi), tg(b/Bi)) > ε.
Then we can proceed with the usual construction from [17]: For all 
 ∈ κ� and
all n < �, choose A
�n and a
 so that

(a) for all 
 ∈ κ� there is an automorphism F
 of the monster model such that
F
(a
) = a, for all i < �, F
(A
�i) = A′

i and if � ∈ κ� and 
 � i = � � i ,
then F
 � A
�i = F� � A
�i ,

(b) for all 
 ∈ κ� and i < �,
a
 |�
A
�i

∪{A� | � ∈ κ<�, 
 � i + 1 �⊆ �}.
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LetD = ∪
∈κ<�A
 . Now clearly dp(tg(a
/D), tg(a�/D)) > ε for distinct 
, � ∈ κ� .
This contradicts the choice of κ.
(ii): Note that if a � |�

ε

A
A then there is a finite A′ ⊆ A such that a � |�

ε

B
A for all

finite B with A′ ⊆ B ⊆ A. Then proceed as in (i). �
Corollary 5.7. For all A and a, there is a countable B ⊆ A such that a |�

0
B
A.

Proof. We define B by induction. Let B0 = ∅. When a finite Bn ⊂ A has been
defined we define Bn+1 ⊇ Bn finite such that a |�

1/(n+1)
Bn+1

A: By Lemma 5.6(ii)

a |�
0
A
A and thus by Lemma 5.5(iii) there is some finite Bn+1 with Bn ⊆ Bn+1 ⊆ A

such that a |�
1/(n+1)
Bn+1

A. In the end let B =
⋃
n<� Bn . Then for any ε > 0 and finite

C ⊆ B there is n > 1/ε such thatC ⊆ Bn and Bn witnesses (asD in Definition 5.4)
a |�

ε

B
A. �

Now we can see that dp-superstability has natural characterisations in terms of
|�
ε-forking sequences:

Corollary 5.8. Suppose the classK is stable and weakly simple. Then T.F.A.E.

(i) K is dp-superstable.
(ii) For no ε > 0 is there an infinite |�

ε-forking sequence.
(iii) For all a, A and ε > 0, there is a finite B ⊆ A such that a |�

ε

B
A.

Proof. (i)⇒(ii)⇒(iii) follow by Lemmas 5.6 and 5.5 so we prove (iii)⇒(i).
Let H (ℵ0) be as in Fact 4.1. We claim that K is dp-stable in every κ ≥ H (ℵ0). In
fact, the density character of the set of Lascar types (Lstpw) over a set A (wrt. dpa )
is at most |A|+H (ℵ0).
So let |A| = κ ≥ H (ℵ0). If the density character of the set of Lascar types
over A is greater than κ there are some ε > 0 and tuples ai for i < κ+ such that
dpa (Lstpw(ai/A),Lstpw(aj/A)) > ε for all i �= j. Let 	 = e(2, ε) (fromLemma 5.3).
By (iii) there are finite sets Ai ⊂ A such that ai |�

	

Ai
A. Since there are only κ

finite subsets of A, κ+ many of the Ais are the same set A′. Further, since there
are less than H (ℵ0) Lascar types over A′, for κ+ many indices the Lascar strong
type Lstp(ai/A′) is the same. Let Lstp(a/A′) = Lstp(ai/A′) and a |�A′ A. Then
for κ+ many indices dpa (Lstpw(a/A),Lstpw(ai/A)) ≤ 	 and thus by Lemma 5.3
dpa (Lstpw(ai/A),Lstpw(aj/A)) ≤ ε for κ+ many i, j < κ+, a contradiction. �
Next we have a look at versions of transitivity.

Lemma 5.9. Suppose A and B are finite, ε > 0, a |�
ε

A
B and a |�AB

C . Then
a |�

ε

A
BC .

Proof. Clearly it is enough to prove this for such A, B, and C that A ⊆
B ⊆ C and C is finite. For this let b be such that Lstp(b/A) = Lstp(a/A) and
b |�A

C . We need to prove that dpa (Lstp(b/C ),Lstp(a/C )) ≤ ε. By Lemma 5.2(ii)
dpa (Lstp(c/C ),Lstp(a/C )) = dpa (Lstp(b/C ),Lstp(a/C )) for all c such that
Lstp(c/C ) = Lstp(b/C ) and thus we may assume that b |�A

Ca. Let D ⊇ C
be finite and such thatD |�C

ab. We need to show that dp(tg(a/D), tg (b/D)) ≤ ε.
But now a |�

ε

A
B and thus dpa (Lstp(b/B),Lstp(a/B)) ≤ ε. By transitivity

D |�B
ab, so by Lemma 5.2(iii) dp(tg (a/D), tg(b/D)) ≤ ε. �
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Corollary 5.10. If A and B are finite then for all ε > 0, if a |�
ε

A
B, then for all

C there is b such that b |�
ε

A
BC and Lstp(b/AB) = Lstp(a/AB).

Proof. Just choose b|=Lstp(a/AB) satisfying b |�AB
C and use Lemma 5.9. �

Lemma 5.11. For all ε > 0 there exists a 	 > 0 (namely 	 = e(2, ε)) such that
if A ⊆ B ⊆ C , a |�

	

A
B and a |�

	

B
C , then a |�

ε

A
C . In particular |�

0 satisfies
transitivity.

Proof. Let 	 = e(2, ε). By Lemma 5.5 we may assume A ⊆ B ⊆ C are finite.
Let c be such that Lstp(c/A) = Lstp(a/A) and c |�A

C . We wish to show that
dpa (Lstp(a/C ),Lstp(c/C )) ≤ ε.
Choose b such that Lstp(b/B) = Lstp(a/B) and b |�B

C . As a |�
	

B
C , we

must have dpa (Lstp(a/C ),Lstp(b/C )) ≤ 	. By Lemma 5.9, b |�
	

A
C , and thus

dpa (Lstp(b/C ),Lstp(c/C )) ≤ 	. But by Lemma 5.3, dpa (Lstp(a/C ),Lstp(c/C )) ≤ ε
proving a |�

ε

A
C . �

We can now prove stationarity for Lascar types.

Lemma 5.12. Suppose Lstpw(a/A) = Lstpw(b/A), a |�
0
A
B and b |�

0
A
B. Then

Lstpw(a/B) = Lstpw(b/B).

Proof. Let ε > 0. W.l.o.g. we may assume A ⊆ B. We show that
dpa (Lstpw(a/B),Lstp(b/B)) ≤ ε. Let 	 ≤ e(2, ε) and 	′ ≤ e(2, 	). By Lemma 5.6
let C ⊆ A be finite such that ab |�

	′

C
A. Then a |�

	′

C
A and a |�

0
A
B so by

Lemma 5.11, a |�
	

C
B. Similarly b |�

	

C
B. By assumptionLstp(a/C ) = Lstp(b/C )

and if we choose c such that Lstp(c/C ) = Lstp(a/C ) and c |�C
B, we have

dpa (Lstpw(a/B),Lstpw(c/B)) ≤ 	 and dpa (Lstpw(b/B),Lstpw(c/B)) ≤ 	. By
Lemma 5.3, dpa (Lstpw(a/B),Lstpw(b/B)) ≤ ε. �
Next we show extension over countable sets. This lemma is the only place where
we use completeness of type spaces, so if we instead wish to assume countable
extension we could omit that assumption.

Lemma 5.13. For any a and B and any countable A ⊆ B there exists some a′
satisfying Lstpw(a′/A) = Lstpw(a/A) and a′ |�

0
A
B. (Note: here we need complete

type-spaces.)

Proof. We may assume B is �(K)-saturated. For each i < �, let 	i be as in
Lemma 4.5(ii). By Lemmas 5.6 and 5.5 we can find an increasing sequence of
finite sets Ai such that a |�

	i
Ai
A and

⋃
i<� Ai = A. Further choose ai such that

Lstp(ai/Ai) = Lstp(a/Ai) and ai |�Ai
B. By Lemma 5.9, ai+1 |�

	i
Ai
B and thus

dpa (Lstp(ai+1/B),Lstp(ai/B)) ≤ 	i which implies dp(tg(ai+1/B), tg (ai/B)) ≤ 	i .
Now the types tg(ai/B) form a dp-Cauchy sequence and thus have a limit a′, i.e.,
for any ε > 0 there is i < � such that dp(tg(ai/B), tg (a′/B)) < ε and, as B was
�(K)-saturated, dpa (Lstpw(ai/B),Lstpw(a′/B)) < ε. If A′ ⊂ A is finite and ε > 0
there is n < � such that A′ ⊆ An and dpa (Lstpw(a′/B),Lstpw(an/B)) < ε and
as an |= Lstp(a/An), dpa (Lstp(a′/A′),Lstp(a/A′)) < ε. As ε > 0 was arbitrary we
must have dp(Lstp(a′/A′) = Lstp(a/A′)) and this must hold for all finite A′ ⊂ A.
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So Lstpw(a′/A) = Lstpw(a/A). Finally a′ |�
0
A
B is witnessed by the pairs

(an,An). �
Corollary 5.14. If Lstpw(a/A) = Lstpw(b/A), then Lstp(a/A) = Lstp(b/A).
Proof. For finite A the claim is trivial, so let A be infinite. By Corollary 5.7
there is a countable B ⊆ A such that ab |�

0
B
A. Let A ⊃ A be �(K)-saturated.

By Lemma 5.13 choose a′ and b′ such that Lstpw(a′b′/B) = Lstpw(ab/B) and
a′b′ |�

0
B
A. By Lemma 5.12, Lstpw(a′b′/A) = Lstpw(ab/A) and thus, by homo-

geneity, they have the same Galois-type. So there exists an automorphism F such
that F � A = id and F (a′b′) = ab. Then ab |�

0
B
F (A) so by Lemma 5.12,

Lstpw(a/F (A)) = Lstpw(b/F (A)). As F (A) ⊇ A and F (A) is �(K)-saturated,
Lstp(a/A) = Lstp(b/A). �
Lemma 5.15. Let A be finite or countable. Then a |�

0
A
B if and only if a |�A

B.
Proof. First assume A is finite. Then the direction from right to left is
Lemma 5.5(vi). To prove the claim from left to right, let a |�

0
A
B and b be such that

Lstp(b/A) = Lstp(a/A) and b |�A
B. ByLemma5.5(vi) b |�

0
A
B so byLemma5.12

and Corollary 5.14, Lstp(a/B) = Lstp(b/B) and thus a |�A
B.

Then assume A is countable and a |�
0
A
B. By Lemmas 5.13 and 5.12 we may

assume B is �(K)-saturated and B ⊃ A. Now if a � |�A
B, tg(a/B) splits strongly

over A. So there are b, c ∈ B, some ε > 0 and finite A′ ⊂ A satisfying Lstp(b/A) =
Lstp(c/A) but dp(tg (b/A′a), tg (c/A′a)) > ε. We claim that then a � |�

e(2,ε)
A

B,
namely for any finite A′′ with A′ ⊆ A′′ ⊂ A if Lstp(a′/A′′) = Lstp(a/A′′) and
a′ |�A′′ B we must have d

p
a (Lstpw(a′/B),Lstpw(a/B))>e(2, ε). Otherwise we

would have dp(tg(bA′a/∅), tg(bA′a′/∅))≤ e(2, ε) and dp(tg (cA′a/∅), tg(cA′a′)) ≤
e(2, ε) and by stationarity tg(bA′a′/∅) = tg(cA′a′/∅), adding up to
dp(tg (bA′a/∅), tg(cA′a/∅)) ≤ ε, a contradiction.
For the other direction assume a |�A

B. By Lemma 5.13 and Corollary 5.14 let

Lstp(a′/A) = Lstp(a/A), a′ |�
0
A
B. By the previous direction a′ |�A

B and thus

by stationarity, tg(a′/B) = tg(a/B), i.e., a |�
0
A
B. �

Now combining Corollary 5.7 and Lemma 5.15 we get:

Corollary 5.16. For all A and a, there is a countable B ⊆ A such that a |�B
A.

This should be compared to what one gets from mere stability. In [12] it is shown
that for stable homogeneous AEC’s there is κ(K) < �(2LS(K))+ such that for all a and
�(K)-saturated A there is A ⊆ A of power < κ(K) such that a |�A

A. Even in the
first-order case κ(K) cannot be chosen to be smaller than LS(K)+.
We finally have the ingredients for simplicity, which will guarantee transitivity,
symmetry, and strong extension for |� over any set.
Corollary 5.17. K is simple, i.e., a |�A

A holds for any a and A.

Proof. Follows from Corollary 5.16 and monotonicity of |� . �
Note that weak simplicity does not in general imply simplicity. An example of
a class that that is homogeneous, stable and weakly simple but not simple can be
constructed by modifying an example by Shelah in [11] showing that �-stability
does not imply simplicity in the setting of homogeneous models.
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Example 5.18. Let the vocabulary contain a binary relation symbol Ei for each
i < � + �. We let our monster modelM consist of functions f : � + � → κ such
that for some i < � + � for all j > i f(j) = 0. On this model we let Ei be an
equivalence relation such that (f, g) ∈ Ei if
(a) i < � and f � i + 1 = g � i + 1 or
(b) i ≥ �, f � � = g � � and for all j > i f(j) = g(j).
Then the class consisting of elementary submodels ofM is homogeneous and stable.
It is not simple: let, for n < �, fn be such that fn(i) = 1 if i ≤ n and fn(i) = 0
otherwise and define A = {fn : n < �}. Further let f be such that f(i) = 1 if
i < � and f(i) = 0 otherwise. Then tg(f/A) has no free extension so f � |�A

A.
However, this is the only way we do not get free extensions, so the class is weakly
simple.

Lemma 5.19. For every ε > 0 there exists some 	 > 0 such that
if dpa (Lstpw(a/A),Lstpw(b/A)) ≤ 	 and ab |�

0
A
B, then dpa (Lstpw(a/B),

Lstpw(b/B)) ≤ ε.
Proof. Let 	 = e(3, ε). First note that by transitivity of |�

0 we may assume
A to be countable. Let B ′ ⊂ B be finite. We need to show dpa (Lstp(a/B ′),
Lstp(b/B ′)) ≤ ε. For this let D ⊃ B ′ be finite and such that D |�B′ ab. We may

assume D |�B′ abA and thus ab |�B′A
D. Now by Lemma 5.15 ab |�

0
B′A
D and

thus by Lemma 5.11 ab |�
0
A
B ′D. Now letA′ ⊂ A be finite and such that ab |�

	

A′ D

and choose a′b′ satisfying Lstp(a′b′/A′) = Lstp(ab/A′) and a′b′ |�A′ D.
Then dpa (Lstp(a/D),Lstp(a′/D)) ≤ 	 and dpa (Lstp(b′/D),Lstp(b/D)) ≤ 	
and by Lemma 5.2(iii), dpa (Lstp(a′/D),Lstp(b′/D)) ≤ 	. This sums up to
dp(tg(a/D), tg(b/D)) ≤ ε. �
Lemma 5.20. For every ε > 0 there is a 	 > 0 such that if a |�

	

A
B and a |�AB

C

then a |�
ε

A
C .

Proof. Let 	 be given by Lemma 5.19 and assume a |�
	

A
B and a |�AB

C . Note
that we may assume A ⊆ B ⊆ C and by Corollary 5.16 and transitivity of |� we
may assume B is countable. Now if a � |�

ε

A
C , then there is some finite A′ ⊆ A such

that a � |�
ε

A+
C for all finite A+ with A′ ⊆ A+ ⊆ A. As a |�

	

A
B, by Lemma 5.5,

there is some finite A′′ with A′ ⊆ A′′ ⊆ A such that a |�
	

A′′ B and we still have
a � |�

ε

A′′ C . So if there is a counterexample to the claim, we may find one with A
finite, B at most countable and A ⊆ B ⊆ C so it is enough to prove the lemma for
such sets.
To prove a |�

ε

A
C , let b be such that Lstp(b/A) = Lstp(a/A) and b |�A

C . We

may assume that b |�A
Ca.Asa |�

	

A
B, wehavedpa (Lstpw(a/B),Lstpw(b/B)) ≤ 	.

Also now ab |�B
C so by Lemma 5.15 ab |�

0
B
C and thus by Lemma 5.19

dpa (Lstpw(a/C ),Lstpw(b/C )) ≤ ε. �
Corollary 5.21. For every ε > 0 there is a 	 > 0 such that if a |�

	

A
B then for all

C there is b satisfying Lstp(b/AB) = Lstp(a/AB) and b |�
ε

A
BC .
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Proof. Follows from Lemma 5.20 by taking b |= Lstp(a/AB) satisfying
b |�AB

C . �
We have seen that dp-superstability and weak simplicity imply simplicity. We
have also seen that |� and |�

0 agree over finite and countable sets, and that

|�
0 satisfies many of the properties of a well-behaved independence notion (left

and right monotonocity, local character, transitivity, extension and stationarity of
Lascar types). We still lack base monotonicity and symmetry and to prove them we
look at a characterisation of |�

ε using Lascar splitting.

§6. Lascar ε-splitting. In this section we define and study Lascar ε-splitting. Via
a characterisation of |�

ε using Lascar splitting we can finally prove monotonicity

of |�
0 and show that |� and |�

0 are equal over all sets.
The notion of Lascar ε–splitting over finite sets is a straightforward strengthening
of the notion of ε-splitting defined in [7] by looking at the distance of the Lascar
strong types of the parameters instead of their Galois-types.

Definition 6.1. (i) If A is finite and A ⊆ B, we say that tg(a/B)
Lascar ε-splits over A if for all 	 > 0, there are tuples b, c ∈ B such that
dpa (Lstp(b/A),Lstp(c/A)) < 	 but dp(tg (ab/A), tg(ac/A)) > ε.

(ii) We say that tg(a/B) locally Lascar ε-splits over A ⊆ B if it Lascar ε-splits
over every finite A′ ⊆ A. (Note that for finite A this is equivalent to (i).)

Lemma 6.2. For all ε > 0, there is 	 > 0 such that if a |�
	

A
B, A ⊆ B, then

tg(a/B) does not locally Lascar ε-split over A.

Proof. Let 	 = e(3, ε), let A′ ⊆ A be finite such that a |�
	

A′ B, and
let a′ be such that Lstp(a′/A′) = Lstp(a/A′) and a′ |�A′ B. Now let
b, c ∈ B be such that dpa (Lstp(b/A′),Lstp(c/A′)) < 	. It suffices to show that
dp(tg (ab/A′), tg(ac/A′)) ≤ ε. Sincea |�

	

A′ B ,wehaved
p(tg(ab/A′), tg (a′b/A′)) ≤ 	

and dp(tg (ac/A′), tg(a′c/A′)) ≤ 	. By the choice of b and c, and by
Lemma 5.2(iii), dp(tg (a′b/A′), tg (a′c/A′)) < 	. By Lemma 4.5 this gives the
required distance. �
Theorem 6.3. For A ⊆ B the following are equivalent:
(i) a |�A

B,
(ii) for all ε > 0, there is a finiteC ⊆ A with the following property: for all B ′ ⊇ B
there is b such that tg(b/B) = tg(a/B) and tg(b/B ′) does not Lascar ε-split
over C .

Proof. (i)⇒(ii): Let ε > 0 be given. Let 	 be as in Lemma 6.2 for ε and let 	′ be
as in Lemma 5.20 for 	. Then choose a finite C ⊆ A so that a |�

	′

C
A. Now for any

B ′ ⊇ B there is b such that tg (b/B) = tg(a/B) and b |�B
B ′. Then b |�A

B ′ and

by Lemma 5.20, b |�
	

C
B ′. By Lemma 6.2 we are done.

(ii)⇒(i): Let D ⊇ B be a saturated (and thus �(K)-saturated) model of power
> |B|. For all n > 0, choose bn and Cn as in (ii) for ε = 1/n and B ′ = D. We can
choose these so that in addition, for all n > 0, Lstp(bn/B) = Lstp(a/B): By the
choice of bn there is an automorphismF such thatF � B = id andF (bn) = a. Then
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choose b′ ∈ F (D) and b′′ ∈ D so that Lstp(b′′/B) = Lstp(b′/B) = Lstp(a/B).
Since D and F (D) are saturated, there is an automorphism G such that
G(F (D)) = D, G � B = id and G(b′) = b′′. Now G(a) is as wanted.
Let c be such that Lstp(c/A) = Lstp(a/A) and c |�A

D and let d ∈ B.
It is enough to show that tg(cd/∅) = tg(ad/∅). Let ε > 0. It is enough to
show that dp(tg (cd/∅), tg(ad/∅)) < ε. Let n > 0 be such that 1/n < ε. Since
d ∈ B, it is enough to show that dp(tg(cd/∅), tg(bnd/∅)) < ε. Choose d ′ ∈ D
so that Lstp(d ′/A) = Lstp(d/A) and d ′ |�A

bnc. Then tg(cd/∅) = tg(cd ′/∅) =
tg(bnd ′/∅). Thus it is enough to show that dp(tg(bnd/∅), tg(bnd ′/∅)) < ε. But since
tg(bn/D) does notLascar ε-split overCn ⊆ A, even dp(tg(bnd/Cn), tg (bnd ′/Cn)) ≤
1/n < ε. �
Definition 6.4. We say that A is approximately strongly �-saturated if for all
finite B ⊆ A, ε > 0 and a there is b ∈ A such that dpa (Lstp(b/B),Lstp(a/B)) < ε.
Corollary 6.5. Galois-types over approximately strongly �-saturated sets are
stationary.

Proof. LetAbe approximately strongly�-saturated,A⊆ B, tg (a/A) = tg(b/A),
a |�A

B, and b |�A
B. Now if tg(a/B) �= tg(b/B) there is ε > 0 and some finite

B ′ ⊂ B such that dp(tg(a/B ′), tg (b/B ′)) > ε. Let 	 < e(2, ε). By Theorem 6.3
there is some finiteA′ ⊂ A such that tg (a/B) and tg(b/B) do not Lascar 	-split over
A′, so for some 	′ > 0whenever c1, c2 ∈ B satisfy dpa (Lstp(c1/A′),Lstp(c2/A′)) < 	′

we have dp(tg(ac1/A′), tg(ac2/A′)) ≤ 	 and dp(tg(bc1/A′), tg (bc2/A′)) ≤ 	.
Now let B	

′ ⊂ A satisfy dpa (Lstp(B	
′
/A′),Lstp(B ′/A′)) < 	′. Then

dp(tg(aB	
′
/A′), tg(aB ′/A′)) ≤ 	 and dp(tg (bB	

′
/A′), tg (bB ′/A′)) ≤ 	. As

tg(a/B	
′
) = tg(b/B	

′
) this gives dp(tg(a/B ′), tg(b/B ′)) ≤ ε, a contradiction. �

By taking a closer look at the proof of (ii)⇒(i) from Theorem 6.3, we get the
following:

Theorem 6.6. For all ε > 0 there is 	 > 0 such that if B ⊇ A then for all a, (∗)
below implies that a |�

ε

A
B.

(∗) For all D ⊇ B there is b such that tg (b/B) = tg(a/B) and tg(b/D) does not
locally Lascar 	-split over A.

Proof. We first prove that (∗) implies the following:
(∗’) There is a finite A′ ⊂ A such that for all D ⊇ B there is b such that
tg(b/B) = tg(a/B) and tg(b/D) does not Lascar 	-split over A′.
For this assume (∗) and let D ⊃ B be a saturated model of power > |B|. By (∗)
there is b such that tg(b/B) = tg (a/B) and tg (b/D) does not Lascar 	-split over
some finiteA′ ⊂ A. Then letD′ ⊃ B be any set and choose b′ such that tg(b′/B) =
tg(a/B) and b′ |�B

D′. We claim that tg(b′/D′) does not Lascar 	-split over A′.
Otherwise for any 	′ > 0 there are c, d ∈ D′ such thatdpa (Lstp(c/A′),Lstp(d/A′)) < 	′

but dp(tg(b′c/A′), tg(b′d/A′)) > 	. Then there is an automorphism F such that
F � B = id and F (b′) = b. Denote c′ = F (c), d ′ = F (d ). As b′ |�B

D′,
we have b |�B

c′d ′ and we may assume c′d ′ |�B
bD. By saturation of D we can

find c+, d+ ∈ D such that Lstp(c+d+/B) = Lstp(c′d ′/B) and c+d+ |�B
b. Thus

tg(c+d+/Bb) = tg(c′d ′/Bb) and tg(c+d+b/B) = tg(c′d ′b/B) = tg(cdb′/B). In
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particular dpa (Lstp(c+/A′),Lstp(d+/A′)) < 	′ and dp(tg(bc+/A′), tg(bd+/A′)) > 	,
a contradiction.
Now for the theorem, let 	 = e(2, ε). To prove a |�

ε

A
B, let C ⊆ A be finite.

Let A′ ⊆ A be finite as given by (*’) and define A+ = A′ ∪ C . Then let b sat-
isfy Lstp(b/A+) = Lstp(a/A+) and b |�A+

B. Let D ⊇ B be a large saturated
model such that D |�B

ab (in particular b |�A+
D). Clearly it is enough to show

that dp(tg(b/D), tg(a/D)) ≤ ε. For this, let d ∈ D. It is enough to show that
dp(tg (bd/∅), tg(ad/∅)) ≤ ε. Let b′ be such that tg (b′/B) = tg (a/B) and tg(b′/D)
does not Lascar 	-split over A′ (and thus not over A+). As in the proof of (ii)⇒(i)
in Theorem 6.3, we can choose b′ so that in addition Lstp(b′/B) = Lstp(a/B).
By Lemma 4.5, it is enough to show that dp(tg(bd/∅), tg(b′d/∅)) ≤ 	 and
dp(tg (b′d/∅), tg(ad/∅)) ≤ 	.
For the first one choose d ′ ∈ D such that Lstp(d ′/A+) = Lstp(d/A+) and
d ′ |�A+

bb′. Then tg(bd/∅) = tg(bd ′/∅) = tg(b′d ′/∅) and as tg(b′/D) does not
Lascar 	-split over A+, dp(tg (b′d/∅), tg(b′d ′/∅)) ≤ 	.
For the second, choose d ′ ∈ D so that Lstp(d ′/B) = Lstp(d/B) and d ′ |�B

ab′.
Then tg(ad/∅) = tg(ad ′/∅) = tg(b′d ′/∅) and since tg(b′/D) does not Lascar 	-split
over A+ ⊂ B, dp(tg(b′d ′/∅), tg(b′d/∅)) ≤ 	. �
Corollary 6.7. For all ε > 0 there is 	 > 0 such that for all A ⊆ B ⊆ C and a,
if a |�

	

A
C , then a |�

ε

B
C .

Proof. Let 	 = e(3, 3, 2, ε))) and assume a |�
	

A
C . To use Theorem 6.6, let

D ⊇ C and choose b such that tg(b/C ) = tg(a/C ) and b |�C
D. Then by

Lemma 5.20, b |�
e(3,2,ε))
A

D. By Lemma 6.2, tg (b/D) does not locally Lascar
e(2, ε)-split over A and thus not over B. By Theorem 6.6, a |�

ε

B
C . �

Corollary 6.8. For all ε > 0, there is 	 > 0 for which there are no a and bn, cn,
n > 0, such that for all n > 0, the following holds:
(i) dpa (Lstp(bn/An),Lstp(cn/An)) < 	, where An =

⋃
i<n bici ,

(ii) dp(tg(abn/An), tg (acn/An)) > ε.
Proof. Let 	 = e(3, 3, 2, 3, ε)))). For a contradiction, suppose that a, bn, cn
for n < � exist such that (i) and (ii) hold. We can find a finite A ⊆ ⋃

n<� An

such that a |�
	

A

⋃
n<� An . Choose n < � so that A ⊆ An. By the proof

of Corollary 6.7, a |�
e(3,ε)
An

bncn. Let b satisfy Lstp(b/An) = Lstp(a/An) and

b |�An
bncn. Then d

p
a (Lstp(b/Anbncn),Lstp(a/Anbncn)) ≤ e(3, ε). Further since

dpa (Lstp(bn/An),Lstp(cn/An)) < 	 ≤ e(3, ε), by Lemma 5.2(iii) we also have that
dpa (Lstp(bn/Anb),Lstp(cn/Anb)) ≤ e(3, ε). Then finally by Lemma 5.3 this sums
up to dpa (Lstp(abn/An),Lstp(acn/An)) ≤ ε, a contradiction. �
Corollary 6.7 ensures full monotonicity for |�

0, giving us the following
generalisations of Lemmas 5.15 and 5.13:
Corollary 6.9. a |�

0
A
B if and only if a |�A

B.

Proof. Assume a |�
0
A
B. By Corollary 5.7 let A0 ⊆ A be countable and such

that a |�
0
A0
A. By Lemma 5.11, a |�

0
A0
B and by Lemma 5.15, a |�A0

B, and thus
a |�A

B.
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For the other direction suppose a |�A
B. Again let A0 ⊆ A be countable and

such that a |�
0
A0
A. By Lemma 5.20, a |�

0
A0
B and by Corollary 6.7, a |�

0
A
B. �

Corollary 6.10. For any a and A ⊆ B there exists some a′ satisfying
Lstp(a′/A) = Lstp(a/A) and a′ |�

0
A
B.

§7. Almost summability and |�
>ε . In this section we study a property which we

call almost summability. It allows us to add small distances to a given distance in
the type space without the combined distance growing too big. We also study a
weakening of |�

ε , which under the assumption of almost summability is very well
behaved.

Definition 7.1. We say that the perturbation system (Fε)ε≥0 is almost summable
if for all ε > 	 > 0 there exists some m(ε, 	) > 0 such that for all ai ,
i ≤ 2, if dp(tg (a0/∅), tg(a1/∅)) ≤ 	 and dp(tg(a1/∅), tg(a2/∅)) ≤ m(ε, 	) then
dp(tg(a0/∅), tg(a2/∅)) ≤ ε.
Remark 7.2. (i) As in Lemma 5.3 one can show that if the perturbation
system is almost summable then with ε > 	 > 0 and m(ε, 	) as in the
definition, also dpa -distances of 	 and m(ε, 	) add up to ε.

(ii) Almost summability holds e.g., for the perturbation system of Hilbert spaces
with an automorphism [5] or linear isomorphisms of Banach spaces. Below
we give an example where almost summability fails.

Example 7.3. We give an example of a class that is homogeneous with complete
type spaces but whose perturbation system is not almost summable. The vocabulary
is L = {Pn,E,<,Rq, d}n<�,q∈Q∩(0,2] where the Pn are unary predicates and E, <
and Rq are binary. E is an equivalence relation, the predicates Pn partition the
universe and each predicate is a union of E-equivalence classes. < is an order
on each equivalence class such that for each equivalence class there exists a real
1 ≤ r ≤ 10 such that ([a]E,<) is isomorphic to the ordered real interval [r, 2r]. The
metric d is defined as the one induced by the interval [r, 2r] within the equivalence
classes and d (a, b) = 10 if a and b are in different equivalence classes. d and <
together fix the r and a unique isomorphism l : [a]E → [r, 2r] for each element a.
Thus we can define ra as the real r given by the isomorphism above and the length
of a as l(a) ∈ [ra, 2ra ]. Now we can set Rq(a, b) to hold if and only if [a]E = [b]E
and l(b)b/l(a)a = q.
Wedefine the perturbation systemas follows:f ∈ Fε iff is aL\{d}-isomorphism
and if a ∈ Pn then also

e−nε ≤ l(f(a))
l(a)

≤ enε.
The above condition makes sure that F0 =

⋂
ε>0 Fε . As the Rq prevents

ε-isomorphisms from stretching the interval [r, 2r] the error in metric arises from
mapping equivalence classes onto each other and thus switching the r. As r
varies between 1 and 10 this can only increase distances to the 10-fold and thus
ε-isomorphisms are bi-Lipschitz with Lipschitz constant 10 (regardless of ε) so
they are uniformly continuous. The rest of the conditions of a perturbation system
are trivial.
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It is not hard to see that this gives a MAEC with perturbations that is homo-
geneous with JEP, AP, the perturbation property and complete type spaces. The
perturbation system, however, is not almost summable. If ε > 	 > 0 is such that
ε < 4	 and 	 < 2 we show that no 	′ > 0 can suffice as them(ε, 	) in Definition 7.1.
So let 	′ > 0 be given and choose n such that en	

′
> 10. Within Pn let a, b, c be

elements in an equivalence class corresponding to an interval [r, 2r] with r < 2 and
such thata < b < c andd (b, c) = 	. Then dp(tg(ab/∅), tg(ac/∅)) = d (ab, ac) = 	.
Now we can map a, b, c with a 	′-isomorphism to elements a′, b′, c′ in an equiva-
lence class, inside Pn , corresponding to an interval [r′, 2r′] with r′ > 9. This shows
that dp(tg (ac/∅), tg(a′c′/∅)) ≤ 	′. But as this is the only way we can map a, b, c to
that interval, we must have dp(tg(ab/∅), tg(a′c′/∅)) ≥ d (a′b′, a′c′) > 4	 > ε.
Definition 7.4. We define a |�

>ε

A
B if a |�

�

A
B for all � > ε. Note that with this

notation a |�
0
A
B if and only if a |�

>0
A
B.

Remark 7.5. Note that if a |�
ε

A
B then always a |�

>ε

A
B (by Lemma 5.5(v)).

IfA is finite then also the other direction holds. This is easily seen via the observation
that if A is finite then a |�

ε

A
B says that a is ε-dpa -close to the free extension

of Lstp(a/A) over B. With an almost summable perturbation system a similar
characterisation holds for any A:

Lemma 7.6. Assume the perturbation system is almost summable and A ⊆ B.
(i) If a |�

>ε

A
B, Lstpw(b/A) = Lstpw(a/A) and b |�A

B, then we have
dpa (Lstpw(a/B),Lstpw(b/B)) ≤ ε.

(ii) IfLstpw(b/A) = Lstpw(a/A), b |�A
B and dpa (Lstpw(a/B),Lstpw(b/B)) ≤ ε

then a |�
>ε

A
B.

Proof. (i) Assume a |�
>ε

A
B, b |= Lstpw(a/A) and b |�A

B. We prove that
dpa (Lstpw(a/B),Lstpw(b/B)) ≤ � for every � > ε. So let � > ε be given
and let � > ε′′ > ε′ > ε, 	+ = min{m(�, ε′′), m(ε′′, ε′)} and 	 = e(3, 	+).
By Lemma 5.6 find a finite A	 ⊆ A such that ab |�

	

A	
A. As in the proof of

Lemma 5.11 (since 	 ≤ m(ε′′, ε′)) we get a |�
ε′′

A	
B. Now let c |= Lstp(a/A	)

and c |�A	
Bb. Then dpa (Lstpw(a/B),Lstpw(c/B)) ≤ ε′′. Also, as c |�A	

A, we

have dpa (Lstpw(b/A),Lstpw(c/A)) ≤ 	. Further by Fact 4.2 and Corollary 6.9,
bc |�

0
A
B, so by Lemma 5.19 dpa (Lstpw(b/B),Lstpw(c/B)) ≤ 	+. But then

dpa (Lstpw(a/B),Lstpw(b/B)) ≤ �.
(ii) Assume b |= Lstpw(a/A), b |�A

B and dpa (Lstpw(a/B),Lstpw(b/B)) ≤ ε
and let � > ε. By Corollary 6.9 b |�

0
A
B so by Lemma 5.5 for every finite C ⊆ A

there is a finite A′ with C ⊆ A′ ⊆ A such that b |�
m(�,ε)
A′ B. Now if c |=

Lstp(a/A′) = Lstp(b/A′) and c |�A′ B, we have d
p
a (Lstpw(b/B),Lstpw(c/B)) ≤

m(�, ε). Together with the assumption this yields dpa (Lstpw(a/B),Lstpw(c/B)) ≤ �
proving a |�

�

A
B. �

Corollary 7.7. If the perturbation system is almost summable, a |�A
B and

a |�
>ε

AB
C then a |�

>ε

A
BC .

https://doi.org/10.1017/jsl.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.37
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Proof. Assume a |�A
B and a |�

>ε

AB
C and let b |= Lstpw(a/A),

b |�A
BC . By stationarity Lstpw(b/AB) = Lstpw(a/AB) so by a |�

>ε

AB
C and

Lemma 7.6(i) dpa (Lstpw(a/ABC ),Lstpw(b/ABC )) ≤ ε. But then by Lemma 7.6(ii)
a |�

>ε

A
BC . �

Lemma 7.8. If the perturbation system is almost summable then a |�
>ε

A
BC and

a |�A
B imply a |�

>ε

AB
C .

Proof. Let � > ε and some finiteB ′ ⊆ AB be given. Let � > ε′ > ε, 	 = m(�, ε′)
and 	′ = e(3, 3, 2, 	))) (from Corollary 6.7). DenoteA′ = B ′ ∩A. By a |�A

B there

is a finite A′′ ⊇ A′ such that a |�
	′

A′′ AB. By a |�
>ε

A
BC there is a finite A+ ⊇ A′′

such that a |�
ε′

A+
ABC . Define B+ = A+ ∪ B ′ and let b |= Lstp(a/B+) such that

b |�B+
ABC . We need to show that dpa (Lstpw(a/ABC ),Lstpw(b/ABC )) ≤ �.

Now by Corollary 6.7 and the choice of 	′ we have a |�
	

A+
AB and thus

b |�
	

A+
B+. By Lemma 5.9 we get b |�

	

A+
ABC . Let b′ |= Lstp(a/A+) =

Lstp(b/A+) such thatb′ |�A+
ABC . Thendpa (Lstpw(b/ABC ),Lstpw(b′/ABC )) ≤ 	.

By a |�
ε′

A+
ABC we also have dpa (Lstpw(a/ABC ),Lstpw(b′/ABC )) ≤ ε′. By almost

summability we are done. �
We will use the notion |�

>ε when studying pregeometries and a related rank in
Section 9. However, before that we have a look at another example, related to the
U-rank.

§8. Entropy. Our first example on the use of measures of dependence is entropy.
In [1], Berenstein andHenson showed a connection between entropy and ε-dividing
in the (continuous first-order) context of probability algebras. Below we do much
the same in our context but in order to avoid just repeating what was done in [1],
we change the point of view a bit.
In 1948, C. Shannon suggested that entropy can be seen as a measure of informa-
tion or uncertainty. He studied the question on how tomeasure the uncertainty if we
know just probabilities p1, . . . , pn of possible events. He suggested that this measure
should satisfy three very reasonable requirements and then went on to show that
the only functions that satisfy the requirements are of the form

H (p1, . . . , pn) = −K
n∑
i=1

pi log(pi),

where K ∈ R+, see [16]. From now on we will use K = 1 and the reader is
free to choose the logarithm. One of Shannon’s requirements was that for all 0 ≤
� ≤ 1, H (p1, . . . , pn−1, �pn, (1 − �)pn) = H (p1, . . . , pn) + pnH (�, (1 − �)). In
particular,H (p1, . . . , pn−1, �pn, (1 − �)pn) ≥ H (p1, . . . , pn), which is a useful fact
in calculations.
When Shannon was asked what he had thought about when he had confirmed
his measure, he had answered (see [18]): My greatest concern was what to call it.
I thought of calling it information, but the word was overly used, so I decided to
call it uncertainty. When I discussed with John von Neumann, he had a better idea.
“You should call it entropy, for two reasons. In the first place your uncertainty has
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been used in statistical mechanics under that name, so it already has a name. In the
second place, and more importantly, no one knows what entropy really is, so in a
debate you will always have the advantage.”
Since types are packages of information, it may make sense to define entropy for
them. This can be done as follows: Suppose A ⊆ B. By E(a,A,B) we denote the
supremum of all ε > 0 such that a � |�

ε

A
B. If there are no such ε, i.e., a |�A

B, we
let E(a,A,B) = 0. Since we are going to need scaling, for any strictly increasing
continuous function � from R+ onto R+, by E�(a,A,B) we denote �(E(a,A,B)).
The entropyH�(a/A) of the type t(a/A) is then defined as the supremum of

−
n∑
i=1

E�(a,Ai−1, Ai) log(E�(a,Ai−1, Ai))

over all 0 < n < � and Ai , i ≤ n, such that A0 = A and Ai ⊆ Ai+1, and here
0 log(0) is defined to be 0 (notice that lim x log(x) = 0 when x goes to zero).
Let us look at how this notion behaves in a verybasic setupof quantummechanics:
We let K be the class of all models of the form (H,B), where H is a Hilbert space
over the complex numbers and B ⊆ H is an orthonormal basis of H . We let � be
the submodel relation and we let the perturbations be trivial, i.e., Fε = F0 for all
ε > 0 (in which case the dp-metric is just the infimum metric given by the infimum
of distances of realisations of the types). Notice that this class is not axiomatisable
in the continuous first-order logic since it is not closed under ultraproducts (the
ultraproduct of B is not a basis for the ultraproduct of H ). Notice also that if
u ∈ H , w ∈ B and 〈u,w〉 �= 0, then w ∈ bcl({u}).
Now let (H,B) ∈ K be such that H is separable (not necessarily of infinite
dimension). We think of B = {vi | i < N}, N ≤ �, as a set of eigenvectors with
eigenvalues �i for some observable P such that �i �= �j for i �= j. For simplicity
we leave P out of the models, since the exact eigenvalues themselves do not play a
role in Shannon’s entropy. Now (e.g.,) let v =

∑n
i=0 aivi be a state, where n ≤ N

and n < N if N = �. Then the probability for the observable getting the value �i
in a measurement is pi = |ai |2 if i ≤ n and is 0 otherwise. Now letting our scaling
function � be such that �(x) = x2/2, then we can calculate as follows (easy, as
freeness corresponds to orthogonality and ε-freeness to distance to free extension,
we leave the details to the reader): If for all i ≤ n + 1, we let Ai = {vj| j < i}, then

H�(v/∅) = −
n+1∑
i=1

E�(a,Ai−1, Ai ) log(E�(a,Ai−1, Ai ))

= −
n+1∑
i=1

|ai−1|2 log(|ai−1|2) = H (p0, . . . , pn).

Note that by dp-superstability, we can define an ‘ε-U-rank’ counting the length
of ε-forking chains. The ordinary U-rank need not be defined, as this would require
discrete superstability (wemay have infinite forking chainswith decreasingmeasures
of dependence). Entropy, however, can be defined even with infinite forking chains
as long as the measure of dependence decreases fast enough, so it gives another
rank function.

https://doi.org/10.1017/jsl.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.37
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§9. Finding a pregeometry in Meq . In this section we study a closure operator
defined by � |� on the set of realisations of a Lascar type. We find conditions on
� |�
ε that guarantee that there is an equivalence relation on this set such that the

closure operator forms a pregeometry on the set of equivalence classes. The p-adic
integers, studied at the end of this paper, form an example of a class where this
happens, but where the type itself is not regular (which is what is usually needed to
find pregeometries).
Let D be the set of all realisations of some unbounded p = Lstpw(a/A). Let E
be an A-invariant equivalence relation. Denote by a∗ the E-equivalence class of
a. We define in D/E a closure operator by a∗ ∈ cl(b∗1 , . . . , b∗n ) if for all a′ ∈ a∗
and b′i ∈ b∗i , i = 1, . . . , n, a′ � |�A

b′1 · · · b′n. For an arbitrary B∗ ⊆ D/E we define
a∗ ∈ cl(B∗) if a∗ ∈ cl(B∗

0 ) for some finite B
∗
0 ⊆ B∗.

Lemma 9.1. cl as defined above satisfies Steinitz’ exchange property, i.e., if a∗ ∈
cl(b∗1 , . . . , b

∗
n , c

∗)\cl(b∗1 , . . . , b∗n ) then c∗ ∈ cl(b∗1 , . . . , b∗n , a∗).
Proof. Assumea∗ ∈ cl(b∗1 , . . . , b∗n , c∗)\cl(b∗1 , . . . , b∗n ). If there are c′ ∈ c∗, a′ ∈ a∗,
b′k ∈ b∗k , 1 ≤ k ≤ n, such that c′ |�A

b′1 · · · b′na′ thenwe can formaMorley sequence
ci , i < �(K) such that ci |= Lstp(c′/A) and ci |�A

a′b′1 · · · b′n
⋃
j<i cj . Now for each

i < �(K) there is an automorphismFi ∈ Aut(M/Ab′1, · · · b′na′) mapping ci to c′ and
since it fixes the b′k , 1 ≤ k ≤ n, and a′ it must fix their equivalence classes setwise.
Now as a∗ /∈ cl(b∗1 , . . . , b∗n ) there are a′′ ∈ a∗ and b′′k ∈ b∗k , for 1 ≤ k ≤ n,
such that a′′ |�A

b′′1 · · · b′′n . Now Fi(a′′) ∈ a∗, Fi(b′′k ) ∈ b∗ and Fi(ci) =
c′ ∈ c∗ and as a∗ ∈ cl(b∗1 , . . . , b∗n , c∗) we have Fi(a′′) � |�A

Fi(b′′1 ) · · ·Fi(b′′n )c′
so a′′ � |�A

b′′1 · · · b′′n ci for every i < �(K). As a′′ |�A
b′′1 · · · b′′n this implies

a′′ � |�Ab′′1 ···b′′n
ci . By symmetry ci � |�Ab′′1 ···b′′n

a′′ and further ci � |�A
b′′1 · · · b′′n a′′. But

as the ci form a Morley sequence this implies b′′1 · · · b′′n a′′ � |�A
⋃
j<i cj
ci for every

i < �(K) but this gives a strongly splitting chain of length �(K), a contradiction.
So we must have c′ � |�A

b′1 · · · b′na′ for all a′ ∈ a∗, b′k ∈ b∗k , 1 ≤ k ≤ n. �
Lemma 9.2. Assume A is finite or the perturbation system is almost summable.
If (∗) below holds, then (D/E, cl) is a pregeometry.
(∗) There is ε > 0 such that for all b ∈ D andB ⊆ D the following are equivalent:
(i) b � |�A

B,

(ii) b � |�
>ε

A
B,

(iii) for all c ∈ D there exists b′ ∈ b∗ such that c |�
>ε

AB
b′.

Proof. Monotonicity is clear, finite character was built into the definition and
exchange was proved in Lemma 9.1 so all that remains is cl(cl(B)) = cl(B). It is
enough to consider the case where c∗ ∈ cl(b∗1 , . . . , b∗n ) and a∗ ∈ cl(b∗1 , . . . , b∗n , c∗)
and show that a∗ ∈ cl(b∗1 , . . . , b∗n ). So let a′ ∈ a∗, b′i ∈ b∗i . We need to
show a′ � |�A

b′1 · · · b′n. As all c ∈ c∗ satisfy c � |�A
b′1 · · · b′n by (*) there exists

c′ ∈ c∗ such that a′ |�
>ε

Ab′1···b′n
c′. Now if a′ |�A

b′1 · · · b′n and A is finite then by
Lemma 5.5(vii) a′ |�

>ε

A
b′1 · · · b′nc′ and by (*) a′ |�A

b′1 · · · b′nc′, a contradiction.
If dp is almost summable then by Corollary 7.7 we again get a′ |�A

b′1 · · · b′nc′.
So a′ � |�A

b′1 · · · b′n. �
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Remark 9.3. Note that in the lemma above p itself need not be regular as we
will see in the p-adic example in Section 10.

Lemma 9.4. If E is an equivalence relation such that (∗) of Lemma 9.2 holds, then
aEb implies a � |�A

b.

Proof. We first show that if (∗) holds then E has more than one equivalence
class. Assume aEb and let B be such that a � |�A

B. Now by the equivalence of (i)
and (iii) in (∗) and since a∗ = b∗ we get b � |�A

B. Thus if c |�A
B, c is not in the

E-class of a, so E �= D2.
Now if aEb, a |�A

b and c ∈ D is arbitrary, choose d ∈ D with d |�A
bc then

tg(d/Ab) = tg(a/Ab) so dEb. Further tg(c/Ad ) = tg(b/Ad ) so cEb and E has D
as its only equivalence class, a contradiction. �
Corollary 9.5. If E is an equivalence relation such that (∗) of Lemma 9.2 holds
and either A is finite or the perturbation system is almost summable, then � |�A

is
transitive on D (and thus an equivalence relation) and (∗) holds for this equivalence
relation.

Proof. Assume towards a contradiction that a � |�A
b and b � |�A

c but a |�A
c.

As b � |�A
c there is b′ such that b′Eb and a |�

>ε

Ac
b′ and as a |�A

c we have
a |�

>ε

A
cb′ and thus a |�A

b′. Further, as b � |�A
a there is b′′ such that b′′Eb and

b′ |�
>ε

Aa
b′′. Now as b′ |�A

a we get b′ |�
>ε

A
ab′′ and thus b′ |�A

b′′, contradicting
Lemma 9.4.
Now � |�A

forms an equivalence relation on D such that each � |�A
-equivalence

class is a union of E-equivalence classes. Thus (iii) with respect to E implies (iii)
with respect to � |�A

.
Now if for all c ∈ D there is b′ such that b′ � |�A

b and c |�
>ε

AB
b′ then in particular

this holds for c = b. Then if b |�A
B we have b |�

>ε

A
Bb′ and by equivalence of (i)

and (ii) b |�A
b′, a contradiction. �

The relation |�
ε (or |�

>ε) measures distances to free extensions. Another view
is looking at how much a type can still fork.

Definition 9.6. We define a real-valued rank function

R(a/A) = sup{ε : a
ε

� |�
A

B for some B}

and R(a/A) = 0 if the above set is empty.

Remark 9.7. (i) R(a/A) = 0 if and only if tg(a/A) is bounded.
(ii) R is not in general monotone (i.e., it is not always the case that R(a/AB) ≤
R(a/A) as can be seen by considering functions � → X for some set X and
defining the following metric:

d (f, g) =
{
0, 9 if min{n : f(n) �= g(n)} = 0,
m−1 if m = min{n : f(n) �= g(n)} > 0.

Lemma 9.8. If eitherA is finite or the perturbation system is almost summable then
a |�A

C implies R(a/AC ) = R(a/A).
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Proof. Assume a |�A
C . If R(a/A) > ε then for some B a � |�

>ε

A
B and

thus by right monotonicity a � |�
>ε

A
BC . As a |�A

C this implies a � |�
>ε

AC
B (by

Lemma 5.5(vii) if A is finite and by Corollary 7.7 if the perturbation system is
almost summable) which shows that R(a/AC ) > ε.
If R(a/A) ≤ ε then for all B a |�

>ε

A
B, in particular a |�

>ε

A
BC . Then either by

Lemma 5.5(viii) or Lemma 7.8 and a |�A
C we get a |�

>ε

AC
B for all B, proving

R(a/AC ) ≤ ε. �
Lemma 9.9. LetD be as above and assume either thatA is finite or the perturbation
system is almost summable. Suppose there is ε > 0 such that for all B ⊂ D and all
b ∈ D the following are equivalent
(i) b � |�A

B,

(ii) b � |�
>ε

A
B,

(iii) R(b/AB) ≤ ε.
Then a � |�A

b is an equivalence relation on D.

Proof. Suppose a, b, c ∈ D, b � |�A
a and b � |�A

c. For a contradiction sup-
pose a |�A

c. Then b � |�Aa
c. Let b′ |= Lstpw(b/Aa) and b′ |�Aa

c. Since
R(b/Aa) ≤ ε, we have b |�

>ε

Aa
c so dpa (Lstpw(b′/Aac),Lstpw(b/Aac)) ≤ ε. In

particular, dpa (Lstpw(b′/Ac),Lstpw(b/Ac)) ≤ ε. On the other hand, b′ |�A
c and

so by (ii), dpa (Lstpw(b′/Ac),Lstpw(b/Ac)) > ε, a contradiction. �
Corollary 9.10. LetD be as above. Assume there is ε > 0 such that for all b ∈ D
and B ⊆ D the following are equivalent:
(i) b � |�A

B,

(ii) b � |�
>ε

A
B,

(iii) R(b/AB) ≤ ε,
(iv) for all c ∈ D there exists b′ ∈ D with b′ � |�A

b such that c |�
>ε

AB
b′.

Then a � |�A
b is an equivalence relation on D and (D/ � |�A

, cl) is a pregeometry.

Proof. This is clear by Lemmas 9.9 and 9.2. �

§10. Example: the p-adics. We finally demonstrate the properties studied in an
example class of ultrametric spaces. The class consists of models Z(κ)p for a fixed
prime p, where Zp is the set of p-adic integers (i.e., the completion of the integers
in the p-adic topology). Recall that the p-adic topology is given by the p-adic norm
‖a‖p = p−max{k:p

k |a}.
We briefly recall some group theoretic notions. An element a ∈ A is divisible by
n if there is a′ ∈ A such that na′ = a. A subgroup B ≤ A is pure if for every n ∈ Z
each b ∈ B which is divisible by n inA is divisible by n already in B. The p-height of
a is the largest k ∈ N such that a is divisible by pk . All p-adic integers are divisible
by all n ∈ N coprime to p, so in the p-adic integers height refers to p-height.
If A is a subset of a group B, 〈A〉 denotes the subgroup generated by A and 〈A〉P
denotes the pure subgroup in B generated byA, i.e., 〈A〉P = {b ∈ B : ∃n ∈ N∗ nb ∈
〈A〉}. When using this notation B will be clear from the context.
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We work in the vocabulary of Abelian groups L = {0,+,−}. The class Kp
consists of completions of direct sums of copies of the p-adic integers, Z(κ)p with κ
any cardinal. We let A �K B if A is a closed pure subgroup of B.
Although we work in the vocabulary of groups, we will use the fact that our
models, as completions in the p-adic topology of Z-modules, are p-adic modules
(modules over the ring of p-adic integers). Thus we can use structure theorems
of complete modules. By a pure submodule of a p-adic module A we mean a
submodule B such that pkB = B ∩pkA for all k ∈ N. Thus a pure closed subgroup
of a p-adic module is a pure submodule.
The facts below actually hold for complete modules over any complete discrete
valuation ring (complete principal ideal ring with exactly one prime element), but
we constrain our attention to p-adic modules.

Fact 10.1 ([14, Section 16]). (i) The completion, in the p-adic topology, of a
module with no elements of infinite height is again a module with no elements
of infinite height.

(ii) A module with no elements of infinite height is pure in its p-adic
completion.

(iii) If T is a pure submodule of a complete module M then the closure of T is
likewise pure.

(iv) A module with no elements of infinite height which is complete in its p-adic
topology is the completion of a direct sum of cyclic modules.

(v) If M is a Zp-module and S is a pure submodule of M with no elements
of infinite height which is complete in its p-adic topology then S is a direct
summand ofM .

Corollary 10.2. If A ∈ Kp then B ∈ Kp and B �K A if and only if B is a direct
summand of A.

Proof. IfA,B ∈ Kp andB �K A thenB is a direct summand by (v) of Fact 10.1.
On the other hand if B is a direct summand of A then B is a pure closed subgroup
of A and by (iv) of Fact 10.1 B ∈ Kp. �
Taking into account that a product of groupsAi is complete in thep-adic topology
if and only if every Ai is, we may write our models in the form Z(κ). The backbone
Z(κ) of the model is what Fuchs [6] calls a p-basic subgroup:

Definition 10.3. A p-basic subgroup B of A is a subgroup of A satisfying the
following three conditions:

(i) B is a direct sum of cyclic p-groups and infinite cyclic groups,
(ii) B is p-pure in A (pkB = B ∩ pkA for k ∈ N),
(iii) A/B is p-divisible (pkA/B = A/B for k ∈ N).

If B is a p-basic subgroup of A thenB has a basis which is said to be a p-basis of A.
This basis is p-independent, i.e., for every finite subsystem a1, . . . , am

n1a1 + · · ·+ nmam ∈ pA (niai �= 0, ni ∈ Z)

implies
p | ni (i = 1, . . . , m).
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Fact 10.4 ([6]). (i) A subgroup generated by a p-independent system in A is
p-pure in A.

(ii) Every p-independent system of A can be expanded to a p-basis of A.
(iii) For a given prime p all p-basic subgroups of a group are isomorphic.

Proposition 10.5. For a given prime p, Kp is a MAEC with Löwenheim-Skolem
number ℵ0.
Proof. Both Kp and �K are closed under isomorphism. If A �K B then A is a
substructure of B and �K is a partial order of K. For unions note that if (Ai ) is
an increasing chain of groups in Kp with Ai pure in Aj for i ≤ j, then

⋃
i Ai is a

torsion-free Zp-module with no nonzero elements of infinite height. By Fact 10.1
its completion is again a Zp-module with no elements of infinite height and thus

of the form Z(κ)p and is a model in Kp. Also, as each Ai is pure in
⋃
i Ai which in

turn by Fact 10.1 is pure in its completion, each Ai is pure in
⋃
i Ai , and if for all i

Ai �K B ∈ Kp then
⋃
i Ai is pure in B and by Fact 10.1 so is

⋃
i Ai .

For the coherence axiom note that if A �K C then A is a pure subgroup of any
subgroup of C that it is contained in. Thus if B �K C andA ⊂ B we haveA �K B.
The Löwenheim-Skolem number LSd (Kp) is ℵ0. To see this let C be a subset of
A ∈ Kp. Clearly 〈C 〉P is the smallest pure closed subgroup of A containing C , so
C ⊂ 〈C 〉P �K A and as 〈C 〉P has cardinality at most |C |+ ℵ0 we are done. �
In this examplewe only consider isometric isomorphisms so the dp-metric reduces
to the infimum-distance metric d (p, q) = inf{d (a, b) : a |= p, b |= q}. Also almost
summability trivially holds.

Proposition 10.6. The class Kp has the joint embedding and amalgamation
properties.

Proof. Since direct sums of (disjoint) models are models this is clear by
Corollary 10.2. �
Lemma 10.7. If A �K B with a p-base of strictly smaller cardinality and if
f : A → B is a K-embedding, i.e., an embedding such that f(A) �K B then f
can be extended to an automorphism of B.

Proof. Write B = A ⊕ B1 = f(A) ⊕ B2 and note that by cardinality
considerations B1 and B2 must be isomorphic. �
By the above lemma any large enough model acts as a monster model and below
we shall assume we work inside such a modelM ∈ Kp.
Lemma 10.8. IfA ⊂M is a set, a ∈M an element and a /∈ 〈A〉P then the Galois-
type of a over A, tg(a/A), is determined exactly by the distance of a to 〈A〉P and the
set Aa ⊂ 〈A〉P of closest elements, i.e., Aa = {b ∈ 〈A〉P : d (a, b) = d (a, 〈A〉P)}.
Proof. First note that 〈A〉P (and thus also its closure) is fixed pointwise by
any automorphism fixing A pointwise. This is because in a torsion-free group the
equation nx = a has at most one solution. Thus also distances to elements within
〈A〉P must be preserved.
Now if a and b have the same positive distance to 〈A〉P , say p−k , and the same set
of closest elements, choose one of these, say c and write a = pka′+c, b = pkb′+c,
where p � a′, b′. Let I be a p-basis for 〈A〉P . Then I ∪ {a′} is p-independent: Let
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a1, . . . , am ∈ I , n0, . . . , nm ∈ Z such that p | n0a′ + n1a1 + · · ·+ nmam. If for some
i ≤ m p � ni we are left with three scenarios:

(i) p | ni for 1 ≤ i ≤ m but p � n0. But then p | a′ contradicting the maximality
of k (in the distance of a to 〈A〉P).

(ii) p | n0 but for some 1 ≤ i ≤ m p � ni . This contradicts p-independence of I .
(iii) p � n0 and for some 1 ≤ i ≤ m p � ni . By removing terms we may assume

p � ni for all i ≤ m. As p � n0 and 〈A〉P is pure in the Zp-moduleM , there
is d ∈ 〈A〉P such that n0d = n1a1 + · · · + nmam. Thus p | a′ + d , i.e.,
pk+1 | a − c + pkd contradicting the maximality of k.

So I ∪ {a′} is p-independent and similarly I ∪ {b′}. Thus we can construct a
K-embedding of 〈Aa〉P into M by fixing I pointwise and mapping a′ to b′. By
Lemma 10.7 this extends to an automorphism ofM . �
Note that in the lemma the set of closest elements Aa = {b ∈ 〈A〉P : d (a, b) =
d (a, 〈A〉P)} is a closed ball of radius d (a, 〈A〉P) so to check that two elements with
the same distance to 〈A〉P have the same type it is enough to show that their sets of
closest elements intersect.

Proposition 10.9. The class Kp is homogeneous.

Proof. Let (ai)i<α and (bi)i<α be sequences of elements inM such that

tg((aik )k<n/∅) = tg((bik )k<n/∅) for each n < �.
Now define f by ai �→ bi . As finite tuples of (ai)i<α and (bi)i<α have the same
type, this induces a group isomorphism between 〈(ai)i<α〉P and 〈(bi)i<α〉P which
naturally extends to their closures. Thusf extends to a map 〈(ai)i<α〉P to 〈(bi)i<α〉P
and as these are models the map further extends to an automorphism of M by
Lemma 10.7. �
Proposition 10.10. The class Kp has the perturbation property, i.e., if
dp(tg (a/∅), tg(b/∅)) = 0 then tg(a/∅) = tg(b/∅).
Proof. Let (bi)i<� be a sequence of tuples in a large model M such that
tg(bi/∅) = tg(bj/∅) for all i, j < � and assume (bi)i<� converges to b. We show
that tg(b/∅) = tg(b0/∅). Denote Bi = 〈bi〉P . By assumption the mappings mapping
b0 to bi induce isomorphisms fi : B0 → Bi . Now consider B = 〈b〉P . Define a map
f : B0 → B by for c ∈ B0 lettingf(c) be the limit of (fi(c))i<� . As bi → b it is easy
to see that linear combinations of 〈bi〉 converge to the corresponding linear combi-
nation of 〈b〉. Also each fi must preserve divisibility and if (nc′i )i<� converges to
some c (inM ) then (c′i )i<� must be convergent and its limit c

′ must satisfy nc′ = c.
Thus f is a group isomorphism B0 → B and extends to the closures. These in turn
are models, so f extends to an automorphism ofM mapping b0 �→ b. �
Note that as we only consider isometric mappings and dp thus coincides with
the infimum-distance metric, completeness of type spaces (dp-Cauchy sequences of
types over ∅ have a limit) is just completeness of the model.
Proposition 10.11. The class Kp is �-dp-stable, i.e., the set of types over a
parameter set of cardinality (or density)ℵ0 has density characterℵ0 in thedp-topology.
Proof. Let A be a separable model of Kp and let B = A ⊕ Z(�)p . It is enough
to show that all types over A can be realised in B. Since all types over A can be
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realised in a separable strong extension C � A we need to show that such a C
can be embedded over A into B. Now as A �K C , A is a direct summand of C so
C = A⊕C ′ and C ′ is either empty or of the form Z(α)p . Then α is either finite or �
and thus C ′ can be embedded into the complement of A in B. Combining this with
the identity map on A we are done. �
Proposition 10.12. For elements a, a |�A

B if and only if d (a, 〈A〉P) =
d (a, 〈AB〉P).
Proof. Assume d (a, 〈AB〉P) < d (a, 〈A〉P) (which implies d (a, 〈A〉P) �= 0).
Choose an element b ∈ 〈AB〉P such that d (a, b) < d (a, 〈A〉P) (and if
d (a, 〈AB〉P) > 0 we can actually choose b such that d (a, b) = d (a, 〈AB〉P)).
Now let bA be a closest element to b in 〈A〉P . If JA is a p-basis for 〈A〉P and
d (b, 〈A〉P) = p−k we can write b = bA+pkb′0 where JA∪{b′0} is p-independent.We
can extend this to a p-basis JB for 〈AB〉P and further to a p-independent sequence
JB∪{b′i}0<i<� . Then define bi = bA+pkb′i . The bi formanA-indiscernible sequence,
b0 = b and for i �= j d (bi , bj) = d (b0, 〈A〉P) = d (b, bA). As d (a, b) < d (a, bA) we
must have d (a, bA) = d (b, bA). Now if a′ |= tg(a/AB) then d (a′, b) = d (a, b) and
we must have d (a′, b1) = d (b0, b1) > d (a′, b0). So tg (a′/AB ∪ {b′i}0<i<�) splits
strongly over A. This proves a � |�A

B.
For the other direction, assume d (a, 〈A〉P) = d (a, 〈AB〉P). If this distance is
0, then there is a countable A′ ⊂ A s.t. a ∈ 〈A′〉P . Then for any B ′ ⊇ AB,
tg(a/B ′) does not split strongly over A′ as any A′-indiscernible sequence must
be A′a-indiscernible. If the distance is positive, let A′ ⊂ A be finite such that
d (a, 〈A′〉P) = d (a, 〈A〉P). Let B ′ ⊇ AB. We need to find b |= tg (a/AB) such
that tg(b/B ′) does not split strongly over A′. As d (a, 〈A′〉P) = d (a, 〈AB〉P) we
can find aA′ ∈ 〈A′〉P such that it is a closest element to a in 〈AB〉P and write
a = aA′ + a′. Let b = aA′ + b′ where d (b′, 〈B ′〉P) = ‖a′‖p. Then b |= tg(a/AB)
and we prove that tg(b/B ′) does not split strongly overA′: Let {bi : i < �} ⊂ B ′ be
A′-indiscernible. Then 〈A′b0〉P is a model and the map generated by fixing A′ and
mapping b0 to b1 is K-elementary and by Lemma 10.7 extends to an automorphism
of 〈B ′〉P . Now looking at 〈B ′〉P inside any larger model containing b′ we see that
we can extend the mapping to one fixing b′. Then we have a map showing that
tg(bb0/A′) = tg(bb1/A′). �
Corollary 10.13. Kp is simple.
Proof. Let a be a finite tuple and A a set. If a is a single element then a |�A

A

by Proposition 10.12. If a = a1 · · · an, use induction on n and Fact 4.2(v). �
Lemma 10.14. For single elements a, R(a/A) = d (a, 〈A〉P).
Proof. If a′ |= tg (a/A) then d (a, a′) ≤ d (a, 〈A〉P) so a |�

d(a,〈A〉P)
A

B for any B.
On the other hand if a � |�A

B and a′ |�A
B then d (a, a′) = d (a, 〈A〉P) so a � |�

ε

A
B

for all ε < d (a, 〈A〉P). �
The last argument in the proof shows:
Corollary 10.15. For single elements a, if a |�

ε

A
B for some ε < d (a, 〈A〉P),

then a |�A
B.

Proposition 10.16. In Kp, for any set A any type of a single element satisfies the
assumptions of Corollary 9.10.
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Proof. Let p = Lstpw(a/A) where a is a single element. Define d = d (a, 〈A〉P)
and let d− be the largest distance smaller than d (recall that the positive values of
the metric are discrete). Choose any ε within d− < ε < d . Let b ∈ D and B ⊆ D.
(i)⇔(iii) is clear by Lemma 10.14 and Proposition 10.12.
(ii)⇒(i) is trivial.
(iv)⇒(ii): Assume (iv) holds for c = b, i.e., there exists b′ such that b′ � |�A

b and
b |�

>ε

AB
b′. Now if b |�

>ε

A
B, by Corollary 10.15 and the choice of ε b |�A

B. Then
by Corollary 7.7 b |�

>ε

A
Bb′ and again by Corollary 10.15 b |�A

b′, a contradiction.
(i)⇒(iv): Assume b � |�A

B. Then d (b, 〈AB〉P) ≤ d− so there is b′ ∈ 〈AB〉P
satisfying d (b, b′) ≤ d−. Then b′ � |�A

b and 〈ABb′〉P = 〈AB〉P so any element
c ∈ D must satisfy c |�AB

b′ and thus c |�
>e

AB
b′. �

Thus the � |�A
-equivalence classes of a type (over A) form a pregeometry. Note

that we really need to look at equivalence classes to get a pregeometry. If we define
the closure simply by cl(B) = {a : a � |�A

B} the property cl(cl(B)) = cl(B) fails.
This can be seen by considering p-independent elements bi and letting, e.g., A = ∅,
looking at the type of any element of length 1, and considering B = {b1 − pb2},
c = pb0 + b1 and a = b0 + b2. Then c ∈ cl(B), a ∈ cl(Bc) but a /∈ cl(B).
This reflects the way the structure theorem for (nice) Abelian groups looks at the
Ulm invariants, i.e., the dimensions of pαG/pα+1G , considered as vector spaces
over the integers mod p. Note that when A = ∅ and a, b ∈ G − pG , they are
in the same � |� -equivalence class if and only if, when G/pG is considered as a
vector space over Z/pZ, the cosets of a and b span the same linear subspace,
(Z/pZ)a/pG = (Z/pZ)b/pG .
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