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Abstract

The representation of a temporal problem in answer set programming (ASP) usually boils down
to using copies of variables and constraints, one for each time stamp, no matter whether it is
directly encoded or expressed via an action or temporal language. The multiplication of variables
and constraints is commonly done during grounding, and the solver is completely ignorant about
the temporal relationship among the different instances. On the other hand, a key factor in
the performance of today’s ASP solvers is conflict-driven constraint learning. Our question in
this paper is whether a constraint learned for particular time steps can be generalized and
reused at other time steps, and ultimately whether this enhances the overall solver performance
on temporal problems. Knowing well the domain of time, we study conditions under which
learned dynamic constraints can be generalized. Notably, we identify a property of temporal
representations that enables the generalization of learned constraints across all time steps. It
turns out that most ASP planning encodings either satisfy this property or can be easily adapted
to do so. In addition, we propose a general translation that transforms programs to fulfill this
property. Finally, we empirically evaluate the impact of adding the generalized constraints to
an ASP solver.

Keywords: answer set programming, answer set solving, temporal reasoning

1 Introduction

Although answer set programming (ASP; (Gelfond and Lifschitz 1988)) experiences

increasing popularity in academia and industry, a closer look reveals that this concerns

mostly static domains. There is still quite a chasm between ASP’s level of development

for addressing static and dynamic domains. This is because its modeling language as well

as its solving machinery aim so far primarily at static knowledge, while dynamic knowl-

edge is mostly dealt with indirectly via reductions to the static case. This also applies to

dedicated dynamic formalisms like action and temporal languages (Gelfond and Lifschitz

1998; Aguado et al . 2013). In fact, their reduction to ASP or boolean satisfiability usu-

ally relies on translations that introduce a copy of each variable for each time step. The

actual dynamics of the problem is thus compiled out and a solver treats the result as any

other static problem.

https://doi.org/10.1017/S1471068424000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000462
https://orcid.org/0000-0001-5546-9939
https://orcid.org/0000-0002-7456-041X
https://orcid.org/0000-0002-3288-8978
mailto:javier@cs.uni-potsdam.de
mailto:torsten@cs.uni-potsdam.de
mailto:kstrauch@uni-potsdam.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000462&domain=pdf
https://doi.org/10.1017/S1471068424000462


J. Romero et al.2

We address this by proposing a way to (partly) break the opaqueness of the actual

dynamic problem and equip an ASP solver with means for exploiting its temporal nature.

More precisely, we introduce a method to strengthen the conflict-driven constraint learn-

ing (CDCL) framework of ASP solvers so that dynamic constraints learned for specific

time points can be generalized to other points in time. These additional constraints can

in principle reduce the search space and improve the performance of the ASP solvers.

We start in Section 2 showing our approach through an example. In Section 3, we review

some background material. In Section 4, we introduce a simple but general language to

reason about time in ASP. We define temporal problems, and characterize their solutions

in terms of completion and loop nogoods, paralleling the approach to regular ASP solving

(Gebser et al. 2012). In Section 5, using this language, we study conditions under which

learned constraints can be generalized to other time steps. In Section 6, we identify

a sufficient condition for the generalization of all learned constraints. In Section 7, we

present a translation from temporal programs that generates programs satisfying that

condition. In Section 8, we empirically evaluate the impact of adding the generalized

constraints to the ASP solver clingo. We conclude in Section 9.

Our work can be seen as a continuation of the approach of ginkgo (Gebser et al.

2016), which also aimed at generalizing temporal constraints but resorted to an external

inductive proof method (in ASP) for warranting correctness. More generally, a lot of

work has been conducted over recent years on lazy ASP solving (Lefèvre et al. 2017;

Palù et al. 2009; Weinzierl et al. 2020). Notably, conflict generalization was studied from

a general perspective in (Comploi-Taupe et al. 2020), dealing with several variables over

heterogeneous domains. Lazy grounding via propagators was investigated in (Cuteri et al.

2020; Mazzotta et al. 2022; Dodaro et al. 2023). Finally, it is worth mentioning that the

usage of automata, as done in (Cabalar et al. 2021), completely abolishes the use of

time points. A detailed formal and empirical comparative study of these approaches is

interesting for future work.

This is an extended version of the conference paper (Romero et al. 2022) presented

at RuleML+RR 2022. The main new contribution is the identification in Section 6 of

a property of temporal problems that enables the generalization of learned constraints

across all time points without the need of any translation. This significantly improves the

applicability of our approach. In fact, this property is satisfied by the planning domains

that we considered in our empirical evaluation of (Romero et al. 2022). Given this, we ran

those experiments again, but this time using the original encodings, only slightly modified

to satisfy the mentioned property. In Section 7 we also introduce a new translation to

programs that satisfy that property. This translation is both more general and easier

to understand than the one presented in our previous conference paper (Romero et al.

2022), which can be found in the supplementary material along with the proofs of the

theoretical results.

2 An example

Our running example in this section is the Blocks World problem, represented in the

STRIPS subset of the planning domain definition language (PDDL) planning language

(McDermott 1998). We follow the approach of the plasp system (Dimopoulos et al. 2017),
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which translates a PDDL description into a set of facts, combines these facts with a meta-

encoding implementing the PDDL semantics, and solves the resulting program using the

ASP solver clingo.

Our instance consists of three blocks, a, b, and c. Initially, a is on top of b, that is on

top of c, that is on the table. The goal is to rearrange the blocks in reverse order. This

is represented by the following set of facts:

block(a;b;c). init(clear(a)). init( handempty).

init(on(a,b)). init( on(b,c)). init(ontable(c)).

goal(on(b,a)). goal( on(c,b)). goal(ontable(a)).

There are four actions in the domain: pick up(X) picks up a block X that is on the

table, put down(X) puts down a block X on the table, stack(X,Y) stacks the block X on

top of block Y, and unstack(X,Y) undoes that operation. The following lines specify the

action stack(X,Y) in terms of its preconditions, delete (or negative) effects and additive

(or positive) effects – where ‘B’ is a shorthand for the body ‘block(X), block(Y)’:

action(stack(X,Y)) :- B. pre(stack(X,Y),holding(X)) :- B.

add(stack(X,Y), clear(X)) :- B. pre(stack(X,Y), clear(Y)) :- B.

add(stack(X,Y),handempty) :- B. del(stack(X,Y),holding(X)) :- B.

add(stack(X,Y), on(X,Y)) :- B. del(stack(X,Y), clear(Y)) :- B.

The specification of the rest of the actions is available in the supplementary material.

The following meta-encoding gives meaning to the previous rules:

1 holds(F,0) :- init(F).

2 { occ(A,T) : action(A) } = 1 :- T= 1..n.

3 :- occ(A,T), pre(A,F), not holds(F,T-1).

4 holds(F,T) :- occ(A,T), add(A,F).

5 holds(F,T) :- holds(F,T-1), T= 1..n,

6 not occ(A,T) : del(A,F).

7 :- goal(F), not holds(F,n).

Line 1 specifies which fluents F hold at time step 0, Line 2 generates one action A per

time step T between 1 and some constant n, Line 3 forbids the occurrence of an action

A if some of its preconditions do not hold, Line 4 defines the positive effects of an action

A, Lines 5-6 define inertia for all fluents F, and Line 7 enforces that every goal fluent F

holds at the last time point n.

The shortest plan for this problem requires six actions, one to pick-up or unstack

every block, and another to put it down or stack it. Accordingly, when the con-

stant n has the value 6, our program has a unique stable model that includes

the atoms occ(unstack(a,b),1), occ(put down(a),2), occ(unstack(b,c),3),

occ(stack(b,a),4), occ(pick up(c),5), and occ(stack(c,b),6).

Such a stable model can be computed by the ASP solver clingo, that is based in

the ground-and-solve approach to ASP solving. In the first step, clingo grounds the

logic program by replacing the rules with variables with their ground (variable-free)

instantiations. The goal of this step is to generate a ground program that is as compact
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as possible, while preserving the stable models of the original program. As an example,

consider the precondition rule in Line 3 of the meta-encoding for action stack(b,a).

At time point 2, clingo generates two ground instances, one for each precondition of the

action:

:- occ(stack(b,a),2), not holds( clear(a),1).

:- occ(stack(b,a),2), not holds(holding(b),1).

At time point 1, however, the corresponding first instance is not generated, as clingo

infers that holds(clear(a),0) must be true due to the fact init(clear(a)) and the

rule in Line 1. In turn, the corresponding second instance is simplified to

:- occ(stack(b,a),1).

since clingo deduces that holds(holding(b),0) cannot be true, as no rule in the

program can derive it.

In the second step, clingo uses a Conflict-Driven Nogood Learning (CDNL) algorithm

to search for stable models of the ground program generated before. Whenever the algo-

rithm backtracks, it learns a new constraint, also called a nogood , that is satisfied by all

stable models. These learned constraints are crucial for the performance of the solver,

as they prevent it from making the same mistakes more than once. We explain this in

more detail in Section 3. As an example, while solving our program, clingo could learn

the constraint

:- holds(on(a,b),2), holds(on(b,c),2), not holds(on(b,c),4). (1)

representing that if at time point 2 block a is on top of block b, and b is on top of block c,

then at time point 4 block b must remain on top of c. Note that although the constraint

is specific to time points 2 and 4, the solver learned it using rules that are replicated at

every time point. Then, the main question of this paper is:

Can we generalize such learned constraints to other time points?

And if so:

What impact does this have on the performance of ASP solvers?

We can generalize (1) to all time steps in the interval 0..n with the following constraint:

:- holds(on(a,b),T-2), holds(on(b,c),T-2), (2)

not holds(on(b,c),T), T=2..n.

This constraint can be safely added to our program, since it does not eliminate any

of its stable models. Ideally, the solver could detect this automatically and learn this

generalized constraint directly instead of (1). This could help it to prune the search

space and find solutions faster. However, such generalization is not always easy, for two

main reasons.
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The first reason is that, as we have seen, clingo does not replicate exactly the same

ground rules at every time point. Since the constraints learned by the solver depend on

these ground rules, a constraint learned at one time step may not apply to others. For

example, the solver can learn

:- not holds(on(b,c),2). (3)

which corresponds to constraint (1) for step 2, without the atoms holds(on(a,b),0)

and holds(on(b,c),0). During grounding, clingo infers that these atoms are true and

simplifies the ground rules where they appear accordingly. As a result, the constraints

learned from these simplified rules are also simpler – compare (3) with (1). Since these

simplifications are not correct for all time points, the generalization of (3) to all time

points

:- not holds(on(b,c),T), T= 0..n.

is also not correct. In fact, it would eliminate all stable models.

We address this issue manually, modifying the meta-encoding in such a way that the

ground rules are truly the same for all time steps. We achieve this by replacing the rule

in Line 1 by the choice rules

{ holds(F,0) } :- init(F).

{ holds(F,0) } :- add(A,F).

that generate all possible initial states, and by eliminating the integrity constraint of Line

8. Once this is done, the ground instantiations at all time steps become the same. For

example, the ground instantiation of the rule in Line 3 for action stack(b,a) at time

point 1 becomes

:- occ(stack(b,a),1), not holds( clear(a),0).

:- occ(stack(b,a),1), not holds(holding(b),0).

and instead of learning (3), clingo would learn the constraint

:- holds(on(a,b),0), holds(on(b,c),0), not holds(on(b,c),2). (4)

that can be safely generalized to (2). Observe that the modified program no longer

determines the values of the fluents at the initial and final situations. Instead, these values

are specified by passing to clingo an additional set of so-called assumptions . Notably,

these assumptions preserve the stable models of the original program but do not interfere

with the grounding process. Hence, the ground rules remain the same across all time steps.

We formalize this approach in Section 4 using temporal logic problems, which consist of

temporal logic programs defining the ground rules that are replicated at each time step,

and partial assignments representing the initial and final states. Additionally, we study

the temporal nogoods associated with temporal logic programs. Solving with assumptions

is introduced in Section 3, while its application to temporal logic problems is described

in Section 5.
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To illustrate the second issue, let us extend our example by introducing a counter that

is incremented with each action. We modify Line 4 of the meta-encoding to represent

conditional effects of actions as follows:

holds(F,T) :- occ(A,T), add(A,F), holds(G,T-1) : cond(A,F,G).

The atom cond(A,F,G) expresses that for action A to produce effect F, the fluent G

must have been true in the previous state. The counter can be represented as a conditional

effect of all actions:

add(A,counter(1)) :- action(A).

cond(A,counter(T),counter(T-1)) :- action(A), T= 2..m.

Actions make counter(1) true, and for T between 2 and m, they also make counter(T)

true if counter(T-1) was true in the previous state. Given this extension, clingo can

learn the constraint

:- not holds(counter(2),2). (5)

as counter(2) always holds at time point 2 in all stable models. However, the

generalization to all time points

:- not holds(counter(2),T), T=0..n. (6)

would be incorrect, as counter(2) does not have to hold at time points 0 or 1. This

example shows that, even when all rules are replicated across all time steps, we cannot

always generalize learned constraints to all time steps. This raises the question: when

can we generalize learned constraints to other – or all – time steps?

We provide a first answer in Section 5, after formalizing the problem of generalizing

learned constraints. Assume that the time steps of the rules used to learn a constraint

are known. This information allows us to to determine the time steps to which a learned

constraint can we generalized. For instance, if constraint (5) — about fluent counter(2)

at step 2 — was learned using rules from time steps 1 and 2, we could generalize it to

the interval T= 2..n, because the rules used at 1 and 2 have corresponding copies at T-1

and T:

:- not holds(counter(2),T), T=2..n. (7)

However, we could not generalize the constraint to T= 1, as no copies of the rules exist

for time step 0. As another example, if (5) was learned using rules of steps 2 and 3, then

the generalized constraint would apply to the interval T= 1..n-1, as the rules at 2 and

3 would have their corresponding copies at T and T+ 1, and there are no copies at n+ 1.

Clearly, a drawback of this approach is that it requires tracking the time steps of the

rules used to learn each constraint. Consequently, its implementation would require the

modification of the inner machinery of clingo.

To avoid this, in Section 6 we investigate under which conditions can we generalize

learned constraints to all time steps. In our previous examples, we could not generalize

(5) to (6) because there were no copies of the rules at step 0 or step n+ 1. But what would

happen if the program behaved as if those copies existed? It turns out that in such a

case we could generalize the learned nogoods to all time steps. How can we capture these
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cases? We define for each temporal program a transition graph whose edges correspond to

the transitions between states. If every initial state has a predecessor in that graph, it is

as if the rule copies applied also to those initial states. Likewise, if every state reachable

from an initial state has a successor, it is as if the rule copies applied to those final states

as well. In Section 6 we define temporal programs as internal if their transition graph

satisfies these properties, and we show that for internal programs all learned nogoods

can be generalized to all time steps.

In practice, most planning representations that we have encountered are either internal

or can be easily adapted to become internal. For instance, to adapt our meta-encoding,

it is sufficient to modify Line 2 by replacing the comparison operator = by <=, allowing

the non-execution of actions at any time step. The inertia rule in Lines 5-6 ensures that

fluents persist whenever no action occurs. Thus, initial states, where no action occurs,

have themselves as predecessors. Similarly, reachable states have a successor state where

no action occurs and all fluents persist. This small adjustment makes the representation

internal. Once it is applied, constraint (5) can no longer be learned, as it does not hold

in all stable models, that is there are stable models where no action occurs at time steps

1 or 2, and counter(2) does not hold at 2. Instead, the solver can learn the following

constraint:

:- not holds(counter(2),2), occ(unstack(a,b),1),

occ(putdown(a),2).

which can be safely generalized to

:- not holds(counter(2),T), occ(unstack(a,b),T-1),

occ(putdown(a),T), T= 1..n.

We consider this constraint, with T= 1..n, a generalization across all time steps because

its ground instances include atoms over all steps. In this case, extending the generalization

to additional steps would be pointless. For other constraints, it could even be incorrect

due to the semantics of negation.

To handle cases where a temporal representation is not internal, in Section 7 we intro-

duce a translation that transforms any temporal program into an internal one. In our

example, the translation adds the following rules:

{ lambda(T) } :- T= 1..n.

{ holds(F,T) } :- init(F), T= 1..n, not lambda(T).

{ holds(F,T) } :- add(A,F), T= 1..n, not lambda(T).

{ occ(A,T) } :- action(A), T= 1..n, not lambda(T).

Additionally, the translation inserts the atom lambda(T) into the body of each rule

in the meta-encoding, and assumes that lambda is false at time step 0. This translation

ensures that initial states – where lambda is false – have themselves as predecessors,

and reachable states have themselves – after erasing lambda -- as successors. Once this

translation is applied, clingo, instead of learning constraint (5), could learn

:- not holds(counter(2),2), lambda(2), lambda(1).
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that could be generalized to

:- not holds(counter(2),T), lambda(T), lambda(T-1), T=1..n. (8)

Furthermore, the constraints learned using the translation can be applied to the original

program, after simplifying away the atoms over lambda and adapting the interval of T

to T= 2..n. In our example, (8) can be simplified to (7), that can be safely added to our

original program.

3 Background

We review the material from (Gebser et al. 2007) about solving normal logic programs

and adapt it for our purposes to cover normal logic programs with choice rules and

integrity constraints over some set A of atoms.

A rule r has the form H←B where B is a set of literals over A, and H is either

an atom a∈A, and we call r a normal rule, or {a} for some atom a∈A, making r a

choice rule, or ⊥, so that r is an integrity constraint . We usually drop braces from rule

bodies B and drop the arrow ← when B is empty. We use the extended choice rule

{a1; . . . ; an}←B as a shorthand for the choice rules {a1}←B, . . ., {an}←B, and for

some set of atoms X ⊆A we denote by Choice(X) the set of choice rules {{a}←| a∈X}.
A program Π is a set of rules. By Πn, Πc, and Πi we denote its normal rules, choice rules

and integrity constraints, respectively. Semantically, a logic program induces a collection

of stable models, which are distinguished models of the program determined by the stable

models semantics (see Gebser et al. 2012 and Gelfond and Lifschitz 1988 for details).

For a rule r of the form H←B, let h(r) = a be the head of r if H has the form a or

{a} for some atom a∈A, and let h(r) =⊥ otherwise. Let Bd(r) =B be the body of r,

Bd(r)
+
= {a | a∈A, a∈B} be the positive body of r, and Bd(r)

−
= {a | a∈A,¬a∈B}

be the negative body of r. The set of atoms occurring in a rule r and in a logic program

Π are denoted by Atr and AtΠ, respectively. The set of bodies in Π is Bd(Π) = {Bd(r) |
r ∈Π}. For regrouping rule bodies sharing the same head a, we define Bd(a) = {Bd(r) |
r ∈Π, h(r) = a}, and by Bdn(a) we denote the restriction of that set to bodies of normal

rules, that is {Bd(r) | r ∈Πn, h(r) = a}.
A Boolean assignment S over a set D, called the domain of S, is a set {σ1, . . . , σn} of

signed literals σi of the form Ta or Fa for some a∈D and 1≤ i≤ n; Ta expresses that a is

true and Fa that it is false. We omit the attribute signed for literals whenever clear from

the context. We denote the complement of a literal σ by σ, that is, Ta=Fa and Fa=Ta.

Given this, we access true and false propositions in S via ST = {a∈D |Ta∈ S} and

SF = {a∈D |Fa∈ S}. We say that a set of atoms X is consistent with an assignment S

if ST ⊆X and SF ∩X = ∅. In our setting, a nogood is a set {σ1, . . . , σn} of signed literals,

expressing a constraint violated by any assignment containing σ1, . . . , σn. Accordingly,

the nogood for a body B, denoted by ng(B), is {Ta | a∈B+} ∪ {Fa | a∈B−}. We say

that an assignment S over D is total if ST ∪ SF =D and ST ∩ SF = ∅. A total assignment

S over D is a solution for a set Δ of nogoods, if δ 
⊆ S for all δ ∈Δ. A set Δ of nogoods

entails a nogood δ if δ 
⊆ S for all solutions S over D for Δ, and it entails a set of nogoods

∇ if it entails every nogood δ ∈∇ in the set.
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We say that a nogood δ is a resolvent of a set of nogoods Δ if there is a sequence of

nogoods δ1, . . . , δn with n≥ 1 such that δn = δ, and for all i such that 1≤ i≤ n, either

δi ∈Δ, or there are some δj , δk with 1≤ j < k < i such that δi = (δj \ {σ})∪ (δk \ {σ})
for some signed literal σ. In this case, we say that the sequence δ1, . . . , δn is a proof of

δn. We say that a signed literal σ is unit resulting for a nogood δ and an assignment S

if δ \ S = {σ} and σ /∈ S. For a set of nogoods Δ and an assignment S, unit propagation

is the process of extending S with unit-resulting literals until no further literal is unit

resulting for any nogood in Δ.

Inferences in ASP can be expressed in terms of atoms and rule bodies. We begin

with nogoods capturing inferences from the Clark completion. For a body B =

{a1, . . . , am,¬am+1, . . . ,¬an}, we have that δ(B)={FB,Ta1, . . . ,Tam,Fam+1, . . . ,

Fan} and Δ(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB, Tan} }. For
an atom a such that Bdn(a) = {B1, . . . , Bk}, we have that Δ(a) = { {Fa,TB1}, . . . ,
{Fa,TBk} }, and if Bd(a) = {B1, . . . , Bk} then δ(a) = {Ta,FB1, . . . ,FBk}. Given this,

the completion nogoods of a logic program Π are defined as follows:

ΔΠ ={δ(B) |B ∈Bd(Π \Πi)} ∪ {δ ∈Δ(B) |B ∈Bd(Π \Πi)}
∪{δ(a) | a∈AtΠ} ∪ {δ ∈Δ(a) | a∈AtΠ}
∪{ng(B) |B ∈Bd(Πi)}

Choice rules of the form {a}←B are considered by not adding the corresponding nogood

{Fa,TB} to Δ(a), and integrity constraints from Πi of the form ⊥←B are considered

by adding directly their corresponding nogood ng(B). The definition of the loop nogoods

ΛΠ, capturing the inferences from loop formulas, is the same as in (Gebser et al. 2007).

We do not specify them here since they do not pose any special challenge to our approach,

and they are not needed in our (tight) examples.

To simplify the presentation, we slightly deviate from (Gebser et al. 2007) and consider

a version of the nogoods of a logic program where the occurrences of the empty body are

simplified. Note that δ(∅) = {F∅} and Δ(∅) = ∅. Hence, if ∅ ∈Bd(Π) then any solution

to the completion and loop nogoods of Π must contain T∅. Based on this, we can delete

from ΔΠ ∪ΛΠ the nogoods that contain F∅ and eliminate the occurrences of T∅ from

the others. Formally, we define the set of (simplified) nogoods for Π as:

ΣΠ = {δ \ {T∅} | δ ∈ΔΠ ∪ΛΠ,F∅ /∈ δ}.
To accommodate this change, for a program Π, we fix the domain D of the assignments

to the set AtΠ∪ (Bd(Π) \ ∅). Given this, the stable models of a logic program Π can be

characterized by the nogoods ΣΠ for that program. This is made precise by the following

theorem, which is an adaptation of Theorem 3.4 from (Gebser et al. 2007) to our setting.

Theorem 1.

Let Π be a logic program. Then, X⊆AtΠ is a stable model of Π iff X=ST ∩AtΠ for a

(unique) solution S for ΣΠ.

To compute the stable models of a logic program Π, we apply the algorithm

CDNL-ASP(Π) from (Gebser et al. 2007) implemented in the ASP solver clingo. The

algorithm searches for a solution S to the set of nogoods ΣΠ, and when it finds one

it returns the corresponding set of atoms ST ∩AtΠ. CDNL-ASP maintains a current
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assignment S and a current set of learned nogoods ∇, both initially empty. The main

loop of the algorithm starts by applying unit propagation to ΣΠ ∪∇, possibly extend-

ing S. Every derived literal is “implied” by some nogood δ ∈ΣΠ ∪∇, which is stored in

association with the derived literal. This derivation may lead to the violation of another

nogood. This situation is called conflict . If propagation finishes without conflict, then a

(heuristically chosen) literal can be added to S, provided that S is partial, while other-

wise S represents a solution and can be directly returned. On the other hand, if there

is a conflict, there are two possibilities. Either it is a top-level conflict, independent of

heuristically chosen literals, in which case the algorithm returns unsatisfiable. Or, if that

is not the case, the conflict is analyzed to calculate a conflict nogood δ, that is added

to ∇. More in detail, δ is a resolvent of the set of nogoods associated with the literals

derived after the last heuristic choice. Hence, every learned nogood δ added to ∇ is a

resolvent of ΣΠ ∪∇ and, by induction, it is also a resolvent of ΣΠ. After recording δ,

the algorithm backjumps to the earliest stage where the complement of some formerly

assigned literal is implied by δ, thus triggering propagation and starting the loop again.

This algorithm has been extended for solving under assumptions (Eén and Sörensson

2003). In this setting, the procedure CDNL-ASP(Π, S) receives additionally as input a

partial assignment S over AtΠ, the so-called assumptions, and returns some stable model

of Π that is consistent with S. To accommodate this extension, the algorithm simply

decides first on the literals from S, and returns unsatisfiable as soon as any of these

literals is undone by backjumping. No more changes are needed. Notably, the learned

nogoods are still resolvents of ΔΠ, that are independent of the set of assumptions S.

4 Temporal programs, problems and nogoods

We introduce a simple language of temporal logic programs to represent temporal prob-

lems. These programs represent the dynamics of a temporal domain by referring to two

time steps: the current step and the previous step. We refer to the former by atoms from

a given set A, and to the latter by atoms from the set A′ = {a′ | a∈A}, that we assume

to be disjoint from A. We define a state as a subset of A. Following the common-sense

flow of time, normal or choice rules define the atoms of the current step in terms of the

atoms of both the current and the previous step. Integrity constraints forbid some states,

possibly depending on their previous state. Syntactically, a temporal logic program Π

over A has the form of a (non-temporal) logic program over A∪A′ such that for every

rule r ∈Π, if r ∈Πn ∪Πc then h(r)∈A, and otherwise (Bd(r)
+ ∪Bd(r)−)∩A 
= ∅. Given

that temporal logic programs over A can also be seen as (non-temporal) logic programs

over A∪A′, in what follows we may apply the notation of the latter to the former.

This language is designed to capture the core of the translations to ASP of action and

temporal languages. For instance, in our introductory PDDL example (McDermott 1998),

a temporal logic program can represent the transition between T-1 and T defined by the

rules in Lines 2-6 of the meta-encoding. In essence, this temporal program corresponds

to the ground instantiation of those rules at a single time point. Temporal programs are

also closely related to the present-centered programs used in the implementation of the

temporal ASP solver telingo (Cabalar et al. 2019), or to the programs that define the

transitions in action languages (Lee et al. 2013).
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Example 1.

Our running example is the temporal logic program Π1 over A1 = {a, b, c, d} that consists
only of choice rules and integrity constraints:

{a; b; c; d} ← ⊥ ← a′,¬b
⊥ ← ¬b′, b ⊥ ← ¬c′, a
⊥ ← d′, b ⊥ ← c,¬d
⊥ ← ¬a′,¬c ⊥ ← ¬a′, c′,¬a

Temporal logic programs Π can be instantiated to specific time intervals. We introduce

some notation for that. Let m and n be integers such that 1≤m≤ n, and [m, n] denote

the set of integers {i |m≤ i≤ n}. For a∈A, the symbol a[m] denotes the atom am, and

for a′ ∈A′, the symbol a’[m] denotes the atom am−1. For a set of atoms X ⊆A∪A′,
X[m] denotes the set of atoms {a[m] | a∈X}, and X[m, n] denotes the set of atoms

{a[i] | p∈X, i∈ [m, n]}. For a rule r over A∪A′, the symbol r[m] denotes the rule that

results from replacing in r every atom a∈A∪A′ by a[m], and r[m, n] denotes the set

of rules {r[i] | i∈ [m, n]}. Finally, for a temporal program Π, Π[m] is {r[m] | r ∈Π}, and
Π[m, n] is {Π[i] | i∈ [m, n]}.
Example 2.

The instantiation of Π1 at 1, denoted by Π1[1], is

{a1; b1; c1; d1} ← ⊥ ← a0,¬b1
⊥ ← ¬b0, b1 ⊥ ← ¬c0, a1
⊥ ← d0, b1 ⊥ ← c1,¬d1
⊥ ← ¬a0,¬c1 ⊥ ← ¬a0, c0,¬a1

The programs Π1[i] for i∈ {2, 3, 4} are the same, except that the subindex 1 is replaced

by i, and the subindex 0 is replaced by i− 1. The instantiation of Π1 at [1, 4], denoted

by Π1[1, 4], is Π1[1]∪Π1[2]∪Π1[3]∪Π1[4].

To represent temporal reasoning problems, temporal programs are complemented by

assignments I and F that partially or completely describe the initial and the final state

of a problem. Formally, a temporal logic problem over some set of atoms A is a tuple

(Π, I, F ) where Π is a temporal logic program over A, and I and F are assignments

over A. A solution to such a problem is a sequence of states that is consistent with the

dynamics described by Π and with the information provided by I and F . The possible

sequences of states of length n, for some integer n≥ 1, are represented by the generator

program for Π and n, denoted by gen(Π, n), that consists of the rules:

Choice(A)[0]∪Π[1, n].

A solution to a temporal problem (Π, I, F ) is defined as a pair (X, n), where n is an

integer such that n≥ 1 and X is a stable model of gen(Π, n) consistent with I[0]∪ F [n].

Temporal problems can be used to formalize planning problems, using a temporal logic

program Π of the form described above, a total assignment I that assigns a value to every

possible atom (action occurrences are made false initially), and a partial assignment F

to fix the goal. The solutions of the temporal problem correspond to the plans of the

planning problem.
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Example 3.

The temporal problem (Π1, ∅, ∅) has three solutions of length 4: (X, 4), (X ∪ {d2}, 4),
and (X ∪ {b3}, 4), where X is the set of atoms {a0, b0, c0, a1, b1, b2, c3, d3, a4, c4, d4}.
To pave the way to the nogood characterization of temporal logic problems, we define

the transition program trans(Π) of a temporal logic program Π as the (non-temporal)

logic program Choice(A′)∪Π over A∪A′. Each stable model of this program represents

a possible transition between a previous and a current step, where the former is selected

by the additional choice rules over atoms from A′, and the latter is determined by the

rules of Π, interpreted as non-temporal rules.

Example 4.

The transition program trans(Π1) is the (non-temporal) program Π1 ∪ {{a′; b′; c′; d′}←}
over A1 ∪A1

′. Some stable models of trans(Π1) are {a′, b′, c′, a, b} and {c′, d′, a, c, d},
that correspond to the transitions to step 1 and step 4 of the solution (X, 4), respectively.

Next, we introduce temporal nogoods and their instantiation. Given a temporal logic

program Π over A, a temporal nogood over A∪Bd(Π) has the form of a (non-temporal)

nogood over A∪A′ ∪Bd(Π). For a temporal nogood δ over A∪Bd(Π) and an integer

n≥ 1, the instantiation of δ at n, denoted by δ[n], is the nogood that results from replacing

in δ any signed literalTα (Fα) byTα[n] (by Fα[n], respectively). We extend this notation

to sets of nogoods and to intervals like we did above. For example, δ1 = {Fb′,Tb} is a

temporal nogood over A1 ∪Bd(Π1), and δ1[1, 2] is {{Fb0,Tb1}, {Fb1,Tb2}}. By step(δ)

we denote the steps of the literals occurring in δ, that is step(δ) = {i |Tpi ∈ δ or Fpi ∈ δ}.
For example, step({Fb0,Fb1,Tb2}) = {0, 1, 2}.

We are now ready to define the temporal nogoods for a temporal logic program Π

over A. Recall that trans(Π) is a (non-temporal) logic program over A∪A′, whose cor-

responding nogoods are denoted by Σtrans(Π). Then, the set of temporal nogoods for Π,

denoted by ΨΠ, has the form Σtrans(Π), interpreted as a set of temporal nogoods over

A∪Bd(Π), and not as a set of (non-temporal) nogoods over A∪A′ ∪Bd(Π).

Example 5.

The set ΨΠ1
of temporal nogoods for Π1 is {{Ta′,Fb}, {Fb′,Tb}, {Fc′, Ta}, {Td′,Tb},

{Tc,Fd}, {Fa′,Fc}, {Fa′,Tc′,Fa}}.
Temporal nogoods provide an alternative characterization of the nogoods of gen(Π, n).

Proposition 1.

If Π is a temporal logic program and n≥ 1 then Σgen(Π,n) =ΨΠ[1, n].

In words, the nogoods for gen(Π, n) are the same as the instantiation of the temporal

nogoods for Π, that are nothing else than the nogoods of the logic program trans(Π)

interpreted as temporal nogoods.

Example 6.

The set of nogoods Σgen(Π1,4) is equal to ΨΠ1
[1, 4] =

⋃
i∈[1,4] {{Tai−1,Fbi}, {Fbi−1,Tbi},

{Fci−1,Tai}, {Tdi−1,Tbi}, {Tci,Fdi}, {Fai−1,Fci}, {Fai−1,Tci−1,Fai}}.
By Theorem 1, the temporal nogoods can be used to characterize the solutions of

temporal logic problems.
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Theorem 2.

Let (Π, I, F ) be a temporal logic problem over A. The pair (X, n) is a solution to (Π, I, F )

for n≥ 1 and X ⊆A[0, n] iff X = ST ∩A[0, n] for a (unique) solution S for ΨΠ[1, n] such

that I[0]∪ F [n]⊆ S.

5 Generalization of learned constraints

A common software architecture to solve a temporal problem (Π, I, F ) combines a sched-

uler that assigns resources to different values of n, with one or many solvers that look for

solutions of the assigned lengths n (see (Rintanen et al. 2006). The standard approach

for the solvers is to extend the program gen(Π, n) with facts and integrity constraints

to adequately represent I and F and call the procedure CDNL-ASP with this extended

program without assumptions. However, as we have seen in our introductory example,

this method does not work well for our purposes, because it leads to a nogood represen-

tation of the initial and the final steps that is different from the nogood representation

of the other steps. Hence, the constraints learned using nogoods specific to the initial

and final steps may not be generalizable to the other steps. To overcome this issue, in

our approach the solvers apply the procedure CDNL-ASP(gen(Π, n), I[0]∪ F [n]) to the

generator program for Π and n, using assumptions to fix the assignments about the ini-

tial and final situations. Observe that in this case, by Proposition 1, the solver initially

contains exactly the nogoods ΨΠ[1, n], and all the nogoods that it learns afterward are

resolvents of ΨΠ[1, n].

Once this is settled, we ask ourselves:

What generalizations of the nogoods learned by CDNL-ASP can be applied to the

same or other problems?

We make the question more precise step by step. First, instead of talking about “the

nogoods learned by the algorithm”, we refer to the resolvents of ΨΠ[1, n] for some tempo-

ral problem (Π, I, F ). Or more precisely, we refer to the resolvents of ΨΠ[i, j] for some i

and j such that 1≤ i≤ j ≤ n, since the learned nogoods are always the result of resolving

nogoods belonging to some interval [i, j] that may be smaller than [1, n].

To formalize the notion of the “generalizations of nogoods”, we introduce some notation

for shifting a non-temporal nogood an amount of t time steps. For integers n≥ 1 and

t, and a non-temporal nogood δ over (A∪A′ ∪Bd(Π))[1, n], the symbol δ〈t〉 denotes
the nogood that results from replacing in δ any signed literal Tαm (Fαm) by Tαm+t

(by Fαm+t, respectively). For example, δ〈0〉= δ, and if δ= {Ta2,Fb3}, then δ〈1〉 is

{Ta3,Fb4}, and δ〈−1〉 is {Ta1,Fb2}. We say that δ〈t〉 is a shifted version of the nogood

δ, and that a generalization of a nogood is a set of some of its shifted versions. For

example, {{Ta2,Fb3}} and {{Ta1,Fb2}, {Ta2,Fb3}, {Ta3,Fb4}} are generalizations of

{Ta2,Fb3} and of {Ta3,Fb4}.
Next, by the “other problems” mentioned in the question, we refer to variations m of

the length of the solution and to variations (Π, I ′, F ′) of the original problem where the

initial and final situation may change, but the temporal program remains the same. Then,

a generalization of a nogood “can be applied” to such problems if it can be added to the
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Fig. 1. Representation of different shifted versions of the nogood δ= {Ta3}. The surrounding
rectangles cover the interval of the nogoods needed to prove them. For example, the rectangle

of {Ta2} covers the interval [1, 3] because {Ta2} is a resolvent of ΨΠ1 [1, 3].

set of nogoods used by the algorithm CDNL-ASP without changing the solutions to the

problem. For any variation (Π, I ′, F ′), those nogoods are ΨΠ[1, m], and a generalization

can be added to them if the generalization is entailed by them. Hence, a generalization

of a nogood “can be applied” to “some problem” (Π, I ′, F ′), searching for a solution

of length m, if the generalization is entailed by ΨΠ[1, m]. Putting all together, we can

rephrase our question as follows:

Given some temporal logic problem (Π, I, F ), what generalizations of a resolvent

δ of ΨΠ[i, j] are entailed by ΨΠ[1, m]?

Example 7.

Consider a call of CDNL-ASP(gen(Π1, 4), ∅) to search for a solution of length 4 to the

temporal problem (Π1, ∅, ∅). Initially, the solver may choose to make a3 true by adding

Ta3 to the initial assignment. Then, by unit propagation, it could derive the literal

Tc2 by {Fc2,Ta3}, the literal Td2 by {Tc2,Fd2}, the literal Fb3 by {Td2,Tb3}, and
the literal Fb4 by {Fb3,Tb4}, leading to a conflict due to the violation of the nogood

{Ta3,Fb4}. At this stage, the solver would learn the nogood δ= {Ta3} by resolving itera-

tively {Ta3,Fb4} with the nogoods {Fb3,Tb4}, {Td2,Tb3}, {Tc2,Fd2}, and {Fc2,Ta3}
used for propagation. Hence, δ is a resolvent of the set of those nogoods. Moreover, given

that those nogoods are instantiations of some temporal nogoods of ΨΠ1
at the inter-

val [2, 4], δ is also a resolvent of ΨΠ1
[2, 4] and of ΨΠ1

[1, 4]. Observe that, by shifting

the nogoods 1 time point backward, we obtain that δ〈−1〉= {Ta2} is a resolvent of

ΨΠ1
[1, 3], and therefore also of ΨΠ1

[1, 4]. Then, by the correctness of resolution, we have

that the generalization {{Ta2}, {Ta3}} of δ is entailed by ΨΠ1
[1, 4]. On the other hand,

δ〈−2〉= {Ta1} is a resolvent of ΨΠ1
[0, 2], but not of ΨΠ1

[1, 4], since the instantiations

at 0 do not belong to ΨΠ1
[1, 4]. Similarly, δ〈1〉= {Ta4} is a resolvent of ΨΠ1

[3, 5], but

not of ΨΠ1
[1, 4], since the instantations at 5 do not belong to ΨΠ1

[1, 4] (see Figure 1).

This example suggests a sufficient condition for the generalization of a nogood δ learned

from ΨΠ[i, j]: a shifted version δ〈t〉 of some generalization of δ is entailed by ΨΠ[1, n]

if the nogoods that result from shifting ΨΠ[i, j] an amount of t time points belong to

ΨΠ[1, n].
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Theorem 3.

Let Π be a temporal logic program, and δ be a resolvent of ΨΠ[i, j] for some i and j such

that 1≤ i≤ j. Then, for any n≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{δ〈t〉 | [i+ t, j + t]⊆ [1, n]}.
This theorem is based on the fact that the resolution proof that derived δ from ΨΠ[i, j]

can be used to derive every δ〈t〉 from ΨΠ[i+ t, j + t], simply by shifting the nogoods t

time steps. This means that δ〈t〉 is a resolvent of ΨΠ[i+ t, j + t]. Given that [i+ t, j + t]⊆
[1, n], the nogood δ〈t〉 is also a resolvent of ΨΠ[1, n]. Then, the theorem follows from the

correctness of resolution.

This result allows us to generalize the learned nogoods to different lengths and differ-

ent initial and final situations. Following our example, if we were now searching for a

solution of length 9 to the temporal problem (Π1, {Tc}, {Tb}), we could add the gen-

eralization {{Tai} | i∈ [2, 8]} to CDNL-ASP(gen(Π1, 9), {Tc0,Tb9}). Observe that this

method requires knowing the specific interval [i, j] of the nogoods used to derive a learned

constraint. To obtain this information in clingo, we would have to modify the implemen-

tation of the solving algorithm. We leave that option for future work, and in the next

section we follow another approach that does not require to modify the solver.

6 When can we generalize all learned nogoods to all time steps?

Given any temporal problem, Theorem 3 gives us a sufficient condition for the generaliza-

tion of the nogoods learned while solving that problem. In this section, we investigate for

what kind of temporal problems can we generalize all learned nogoods to all time steps.

In other words, we would like to know when can we add the generalization:

{δ〈t〉 | step(δ〈t〉)⊆ [0, n]}
of a learned nogood δ to the set of nogoods used by algorithm CDNL-ASP .

Example 8.

In Example 7, we saw that the nogood δ= {Ta3} is a resolvent of ΨΠ1
[2, 4]. By

Theorem 3, it follows that the generalization {{Ta2}, {Ta3}} of δ is entailed by ΨΠ1
[1, n],

but that theorem does not allow us to infer that δ〈−2〉= {Ta1} is entailed by ΨΠ1
[1, n].

In fact, this would be incorrect since all the solutions to ΨΠ1
[1, n] contain the literal Ta1.

But why is {Ta1} not entailed by ΨΠ1
[1, n]? One reason for this is that ΨΠ1

[1, n] does not

entail the nogood {Tc0,Fd0}, that would be necessary to derive {Ta1}. In fact, since the

initial state of all solutions of length 4 to (Π1, ∅, ∅) is {a, b, c}, all solutions to ΨΠ1
[1, 4]

contain the literals Tc0 and Fd0, violating the nogood {Tc0,Fd0}. But this implies that

the initial state {a, b, c} cannot have some previous state. This is obvious looking at Π1,

since {a, b, c} violates the integrity constraint ⊥← c,¬d. On the other hand, if {a, b, c}
had some previous state, then it would not violate that integrity constraint, and therefore

ΨΠ1
[1, n] would entail {Tc0,Fd0} and then {Ta1}.

This analysis suggests that we can always add a learned nogood, shifted backward in

time, if the initial states occur in some path with sufficient states before them. A similar

analysis in the other direction – for instance, for nogood δ〈1〉 in the previous example –
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Fig. 2. Transition G(Π1) of temporal program Π1. The nodes that belong to some solution of
length 4 have a gray background. The transitions of those solutions are represented by normal

arrows, while the other arrows are dashed.

suggests that we can add a learned nogood, shifted forward in time, if the final states

occur in some path with sufficient states after them. These observations lead us to this

informal answer: we can generalize all learned nogoods to all time steps if the initial

states have enough preceding states and the final states have enough following states.

We make this claim precise in the following.

In Section 4 we introduced transition programs and used them to characterize the

solutions of a given temporal problem. Transition programs trans(Π) define transitions

between the states of some temporal program Π. In turn, these transitions implicitly

define a transition graph G(Π). Formally, given a temporal logic program Π over A, the
transition graph G(Π) is the graph (N, E) where E is the set of edges

{({a | a′ ∈X ∩A′}, X ∩A) |X is a stable model of trans(Π)}
and N is the set of nodes occurring in some edge of E, that is, N =

⋃
(X,Y )∈E{X, Y }.

Every node in N is also a state of Π, so we may use both names interchangeably. A path

of a transition graph (N, E) is a sequence of states (X0, . . . , Xn) such that for every

i∈ [1, n] the pair (Xi−1, Xi) is an edge from E. We say that the length of such a path is

n. We usually denote the states occurring in a path by symbols of the form Xi, where

the subindex i represents the position of the state in the path, and does not represent

the instantiation of some set X to time step i, which would be represented by X[i].

We can characterize the solutions to a temporal problem (Π, I, F ) as the finite paths

of G(Π) whose first and final nodes are consistent with I and F , respectively. We state

this formally in the next theorem, that extends Theorem 2.

Theorem 4.

Let (Π, I, F ) be a temporal logic problem over A, n≥ 1, and X be a set of atoms over

A[0, n]. Then, the following statements are equivalent:

• The pair (X, n) is a solution to (Π, I, F ).

• X = ST ∩A[0, n] for a solution S for ΨΠ[1, n] such that I[0]∪ F [n]⊆ S.

• There is a path (X0, . . . , Xn) in G(Π) such that X =
⋃

i∈[0,n] Xi[i], the state X0 is

consistent with I, and the state Xn is consistent with F .

Figure 2 represents the transition G(Π1) of temporal program Π1. There are only three

paths in G(Π) of length 4:
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• ({a, b, c}, {a, b}, {b, d}, {c, d}, {a, c, d}),
• ({a, b, c}, {a, b}, {b}, {c, d}, {a, c, d}), and
• ({a, b, c}, {a, b}, {b}, {b, c, d}, {a, c, d}).

By Theorem 4, each of them corresponds to one of the solutions to (Π1, ∅, ∅) of length 4.

Theorem 4 establishes a relation between the solutions to the set of nogoods ΨΠ[1, n]

and the paths of G(Π). This leads naturally to a relation between the nogoods entailed

by ΨΠ[1, n] and the paths of G(Π).

Example 9.

We have seen that the set of nogoods ΨΠ1
[2, 4] entails the nogood δ= {Ta3}. It fol-

lows that ΨΠ1
[1, 3] entails δ〈−1〉= {Ta2}. By Theorem 4 we have that the solutions to

ΨΠ1
[1, 3] correspond to the paths (X0, X1, X2, X3) in G(Π1). Then, if the solutions to

ΨΠ1
[1, 3] do not violate the nogood {Ta2}, it follows that the paths (X0, X1, X2, X3) in

G(Π1) do not violate this nogood either –we make precise this relation between nogoods

and paths below. Hence, the fact that ΨΠ1
[2, 4] entails {Ta3} means that, in every path

(X0, X1, X2, X3) in G(Π1), the state X2 cannot include the atom a. We can check this

in G(Π1), where the only states that appear in such a position are {b, d}, {c, d}, {b}
and {b, c, d}, and neither of them contains a. On the other hand, the states {a, b, c} and
{a, b} can contain a because they are not in the third position of any path, and the same

holds for the final state {a, c, d}, since it does not occur in the penultimate position of

any path.

We formalize the relation between nogoods and paths. For simplicity, we only discuss

the case where learned nogoods consist of normal atoms, but the extension to body atoms

does not pose any special challenge, since body atoms can be seen as a conjunction of

literals over normal atoms. Let Π be a temporal program over A, let (X0, . . . , Xn) be

some path in G(Π), and δ be some (non-temporal) nogood over A[0, n]. We say that the

path (X0, . . . , Xn) violates δ if

δ⊆
⋃

i∈[0,n]

({Tai | a∈Xi} ∪ {Fai | a∈A \Xi}).

The right-hand side of the equation represents the path as an assignment.

Proposition 2.

Let Π be a temporal logic program over A, n≥ 1, and let δ be a (non-temporal) nogood

over A[0, n]. Then, the following two statements are equivalent:

• The set of nogoods ΨΠ[1, n] entails δ.

• Every path (X0, . . . , Xn) of length n in G(Π) does not violate δ.

Our next theorem answers formally the question of this section. To introduce it, we

define a node in a given graph as a source if it has no incoming edges, as a sink if it

has no outgoing edges, and as an internal node otherwise. Then, we say that a temporal

program Π is internal if every node in G(Π) is internal. The theorem states that we can

generalize all learned nogoods to all time steps when the temporal program is internal .
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Observe that if Π is internal, then every path can be extended arbitrarily from both

ends. This means that every state has always “enough preceding states” and “enough

following states,” as we said earlier.

Proposition 3.

Let Π be a internal temporal program. If (X0, . . . , Xn) is a path of length n in G(Π),

then for any i, j ≥ 0 there is a path (Y0, . . . , Yn+i+j) of length n+ i+ j in G(Π) such

that (X0, . . . , Xn) = (Yi, . . . , Yn+i).

Example 10.

Program Π1 is not internal. For example, the node {a, b, c} has no incoming edge, and

the node {a, c, d} has no outgoing edge.

Example 11.

Let Π2 the program that results from replacing in Π1 the rules ⊥← c,¬d and ⊥←
¬a′, c′,¬a by ⊥← b, d and ⊥← c,¬b. One can check that program Π2 is cyclic, and

that the nogood {Fb1,Fa2} is a resolvent of ΨΠ2
[2, 3]. By Theorem 3, we can conclude

that {Fb0,Fa1} and {Fb1,Fa2} are entailed by ΨΠ2
[1, 3], but we cannot do the same

about {Fb2,Fa3}. On the other hand, by Proposition 2, the fact that ΨΠ2
[1, 3] entails

{Fb1,Fa2} implies that every path (X0, . . . , X3) of length 3 in G(Π2) does not vio-

late {Fb1,Fa2}. Given that Π is internal, it follows that every path (Y0, Y1) of length

1 in G(Π2) does not violate {Fb0,Fa1}. Otherwise, by Proposition 3 there would be

some path (X0, . . . , X3) of length 3 in G(Π) such that (Y0, Y1) = (X1, X2), and this

path would violate {Fb1,Fa2} – which would be a contradiction. Given that the paths

(Y0, Y1) in G(Π2) do not violate {Fb0,Fa1}, Proposition 2 implies that ΨΠ2
[1, 1] entails

{Fb0,Fa1}. Therefore, ΨΠ2
[i, i] entails {Fbi−1,Fai} for i∈ [1, 4], and ΨΠ2

[1, 4] entails all

those nogoods together. In other words, ΨΠ2
[1, 4] entails all shifted versions of {Fb1,Fa2}

that fit in the interval [0, 4].

Theorem 5.

Let Π be a temporal logic program, and δ be a resolvent of ΨΠ[i, j] for 1≤ i≤ j. If Π is

internal, for any n≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{δ〈t〉 | step(δ〈t〉)⊆ [0, n]}.
Theorem 5 allows the generalization of learned nogoods to all time steps when the

temporal program is internal. Unfortunately, internal temporal programs are not very

useful for representing planning problems. To see this, consider some planning problem

and any of its transitions, where an action a in state X results in state Y . If actions occur

at the same time point as their effects – as in our introductory example – the transition

graph must have an edge between X and Y ∪ {a}. Since actions at the previous step

can be chosen freely, for any action b there will also be an edge between X ∪ {b} and

Y ∪ {a}. But if the temporal program is internal, then X ∪ {b} must have an incoming

edge. Hence,X must result from executing action b in some state. Overall, this means that

every state X that leads to another state Y must be the result of every possible action

under some previous state, which clearly does not apply to many planning problems.

Something similar happens if action occurrences are placed before their effects.
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To address this issue, we extend our study by taking into account the initial states

associated with temporal logic problems. We refine the definition of being internal by

considering only the initial states and the states that are reachable from them. This

modification resolves the problem observed in our previous example: if the state X ∪ {b}
has no incoming edges, then it is not reachable from any initial state, and no condition

is imposed on it.

Let Π be a temporal logic program and I be a partial assignment. A state X of Π is

• initial wrt I if it is consistent with I and has some outgoing edge in G(Π);

• reachable wrt I if it can be reached from some initial state of Π wrt I, that is if

there is some path (Y, . . . , X) in G(Π) starting at some initial state Y of Π wrt I;

and

• loop-reachable if it can be reached from some loop in G(Π), that is if there is some

path of the form (Y, . . . , Y, . . . , X) in G(Π) for some state Y of Π.

The temporal program Π is internal wrt I if these conditions hold:

(i) Every initial state wrt I is loop-reachable.

(ii) Every reachable state wrt I is internal.

Condition (i) guarantees that initial states have “enough previous states”, and condition

(ii) guarantees that reachable states have “enough successor states”. Together, they imply

that any path starting at some initial or reachable state can be extended indefinitely in

both directions.

Proposition 4.

Let Π be a temporal logic program and I be a partial assignment such that Π is internal

wrt I. If (X0, . . . , Xn) is a path of length n in G(Π) and X0 is initial or reachable wrt

I, then for any i, j ≥ 0 there is a path (Y0, . . . , Yn+i+j) of length n+ i+ j in G(Π) such

that (X0, . . . , Xn) = (Yi, . . . , Yn+i).

Temporal programs that are internal with respect to a partial assignment generalize

the notion of internal temporal programs.

Proposition 5.

A temporal logic program Π is internal iff it is internal wrt the empty assignment.

If a temporal program is internal wrt an assignment I, we can generalize all learned

nogoods to all time steps provided that I holds initially . We enforce this condition

by adding the set of nogoods {{Fa0} |Ta∈ I} ∪ {{Ta0} |Fa∈ I} that we denote by

nogoods(I).

Theorem 6.

Let Π be a temporal logic program, I be a partial assignment, and δ be a resolvent

of ΨΠ[i, j] for 1≤ i≤ j. If Π is internal wrt I, then for any n≥ 1, the set of nogoods

ΨΠ[1, n]∪ nogoods(I) entails the generalization

{δ〈t〉 | step(δ〈t〉)⊆ [0, n]}.

https://doi.org/10.1017/S1471068424000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000462


J. Romero et al.20

In theory, the inclusion of nogoods(I) appears to conflict with our goal of applying the

learned nogoods to variations of the original problem with different initial states. But

in practice this need not pose a problem, since the assignment I may reflect a form of

representing problems in general – such as placing actions at the step where their effects

occur – and be independent of any specific instance. As a result, the learned nogoods

may remain applicable to all intended variations of the original problem.

This observation holds for most representations of planning problems that we have

encountered, which can be captured by temporal logic programs internal wrt a generic

assignment I. Such an assignment ensures that

(a) initial states have no action occurrences.

To achieve this, actions must occur at the same time step as their effects. In ASP, this

is usually a matter of convenience. To satisfy condition (i) of being internal wrt I, it

suffices if:

(b) whenever no action occurs in a state, that state remains unchanged.

Conditions (a) and (b) create a loop in all initial states, making them loop-reachable. To

meet condition (b), the representation should allow the non-execution of actions, and the

law of inertia should make all fluents persist. Most representations of planning problem

conform to this, or can be adapted with minor changes. Condition (ii) of being internal

wrt I can be satisfied directly if after the execution of each action, another action can

always be applied. An alternative and more generic condition is the following:

(c) from every state with an action occurrence, there is a transition to the same state

without action occurrences.

In addition to the representation of inertia, this condition only requires that the rep-

resentation always allows the non-execution of actions. Based on our experience, most

representations of planning problems satisfy conditions (a-c) or, as we have seen in our

introductory example, can be easily modified to do that. In fact, the encodings used in

our conference paper (Romero et al. 2022) required only minor changes to fit within this

approach.

In summary, our methodology represents a planning problem as a temporal logic

problem (Π, I, F ) such that the assignment I is divided into:

• A generic assignment I1 that ensures condition (a).

• A specific assignment I2 that describes the initial situation of the planning problem.

Moreover, the temporal program Π is construed to satisfy conditions (b) and (c), ensur-

ing that it is internal wrt I1. Given this, to solve (Π, I, F ) we run the procedure

CDNL-ASP(gen(Π, n), I1[0]∪ I2[0]∪ F [n]) for different lengths n. For each run, any

nogood δ learned by the solver is a resolvent of ΨΠ[1, n]. By Theorem 6, we can gen-

eralize δ across all time steps, also in other runs with different lengths, and in other

variations of the original problem. Such variations can be represented as temporal logic

problems (Π, I1 ∪ I ′2, F ′) where Π and I1 remain unchanged. As before, we can solve

them using CDNL-ASP(gen(Π, n), I1[0]∪ I2′[0]∪ F ′[n]) for different lengths n. Since the
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solutions computed by such calls are solutions of ΨΠ[1, n]∪ nogoods(I1), by Theorem 6

the generalization of δ to all time steps can also be added to them.

7 From non-internal to internal temporal programs

If we want to solve the temporal problem (Π1, ∅, ∅) and generalize the nogoods learned

during this process, the results from the previous section are not applicable because Π1 is

not internal, and the initial assignment is empty. To address this limitation, we introduce

a method to translate any temporal program into an internal one that preserves the same

solutions modulo the original atoms. We can solve the original problem using the new

program, and given that this program is internal, we can generalize all learned nogoods

to all time steps. Moreover, we can apply these nogoods to the original program, after

eliminating the auxiliary atoms introduced by the translation.

Let Π be a temporal logic program over A, and let λ be a fresh atom not included in

A. We define λ(Π) as the temporal logic program

{{λ}←} ∪ (9)

{h(r)←Bd(r)∪ {λ} | r ∈Π} ∪ (10)

{{a}←¬λ | a∈A}. (11)

This translation extends Π by introducing a choice rule for λ, tagging the rules of Π

with λ, and allowing the selection of any subset of A when λ does not hold.

To understand the translation, let us study the relationship between the transition

graphs defined by Π and λ(Π). These graphs are defined by the corresponding transition

programs:

• trans(Π) =Π∪Choice(A′), and
• trans(λ(Π)) = λ(Π)∪Choice(A′ ∪ {λ′}).

The behavior of trans(λ(Π)) depends on whether λ is chosen at (9) or not. If λ is chosen,

then trans(λ(Π)) has the same stable models as the program

{λ←}∪ trans(Π)∪ {{λ′}←}
as the rules in (10) can be simplified to the original rules from Π, and the rules in (11)

become irrelevant. Then, for every stable model X of trans(Π), the sets X ∪ {λ} and

X ∪ {λ, λ′} are stable models of trans(λ(Π)). In terms of transition graphs, this means

that for every edge (X, Y ) in G(Π) there are two corresponding edges (X, Y ∪ {λ}) and
(X ∪ {λ}, Y ∪ {λ}) in G(λ(Π)).

If λ is not chosen, then trans(λ(Π)) has the same stable models as the program

{{a}←| a∈A} ∪Choice(A′ ∪ {λ′})
as the rules in (10) have no effect, and the body of (11) becomes true. Then, for every

X, Y ⊆A, if X ′ denotes the set {a′ | a∈X}, the sets X ′ ∪ Y and X ′ ∪ Y ∪ {λ′} are stable
models of trans(λ(Π)). Accordingly,G(λ(Π)) contains the edges (X, Y ) and (X ∪ {λ}, Y ).
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Proposition 6.

Let Π be a temporal logic program, and let E be the set of edges in its transition graph

G(Π). The set of edges in G(λ(Π)) is the union of the following four sets:

• {(X, Y ∪ {λ}) | (X, Y )∈E}
• {(X ∪ {λ}, Y ∪ {λ}) | (X, Y )∈E}
• {(X, Y ) |X, Y ⊆A}
• {(X ∪ {λ}, Y ) |X, Y ⊆A}
Given these sets, particularly the second, there is a one-to-one correspondence between

the paths in G(Π) and the paths in G(λ(Π)) where λ belongs to all states. This corre-

spondence holds even if λ does not occur in the initial state of the path, since the first

edge can also be taken from the first set of the previous proposition. By Theorem 4, this

correspondence between paths induces a correspondence between the solutions to Π and

the solutions to λ(Π) where λ is true always after the initial step. To formalize this, we

say that a solution (X, n) to a given temporal problem is λ-normal if λ0 /∈X and λi ∈X
for all i∈ [1, n].
Proposition 7.

Let (Π, I, F ) be a temporal logic problem. There is a one-to-one correspondence between

the solutions to (Π, I, F ) and the λ-normal solutions to (λ(Π), I, F ).

Example 12.

The temporal problem (Π1, ∅, ∅) has three solutions of length 4: (X, 4), (X ∪ {d2}, 4),
and (X ∪ {b3}, 4), where X is defined as in Example 3. These solutions correspond one-

to-one to the three λ-normal solutions of the same length to (λ(Π1), ∅, ∅): (X ∪ Y, 4),
(X ∪ {d2} ∪ Y, 4), and (X ∪ {b3} ∪ Y, 4), where Y is {λ1, λ2, λ3, λ4}.
The call CDNL-ASP(gen(λ(Π), n), I[0]∪ F [n]∪ {Fλ0,Tλ1, . . . ,Tλn}) computes λ-

normal solutions to (λ(Π), I, F ), enforcing the correct value for λ at every time point

using assumptions. The solutions to the original problem (λ(Π), I, F ) can be obtained

from these λ-normal solutions by removing the atoms {λ1, . . . , λn}.
The following proposition establishes that the program λ(Π) is internal wrt {Fλ0}. To

see why, observe that the third and fourth sets of Proposition 6 show that, in G(λ(Π)),

every state X –whether it contains λ or not – is connected to the state X \ {λ}. This
implies that:

(a) every state without λ is connected to itself, and

(b) every state has a successor state.

Condition (a) provides condition (i) for Π being internal wrt {Fλ0}, since initial states

do not have λ; and condition (b) ensures the corresponding condition (ii).

Proposition 8.

For any temporal program Π, the program λ(Π) is internal wrt {Fλ0}.
Since λ(Π) is internal wrt {Fλ0}, by Theorem 6 we obtain the next result, that allows

us to generalize all nogoods learned using Ψλ(Π) to all time steps, as long as λ is initially

false.
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Theorem 7.

Let Π be a temporal logic program, and δ be a resolvent of Ψλ(Π)[i, j] for some i and j

such that 1≤ i≤ j. For any n≥ 1, the set of nogoods Ψλ(Π)[1, n]∪ {{Tλ0}} entails the

generalization

{δ〈t〉 | step(δ〈t〉)⊆ [0, n]}.
Example 13.

The set Ψλ(Π1) of temporal nogoods of λ(Π) is {δ ∪ {Tλ} | δ ∈ΨΠ1
} (ΨΠ1

is given in

Example 5). We showed in Example 7 that {Ta3} is a resolvent of ΨΠ1
[2, 4]. Similarly,

the nogood δ= {Ta3,Tλ2,Tλ3,Tλ4} is a resolvent of Ψλ(Π1)[2, 4], derived by iteratively

resolving {Ta3,Fb4,Tλ4} with {Fb3,Tb4,Tλ4}, {Td2,Tb3,Tλ3}, {Tc2,Fd2,Tλ2}, and
{Fc2,Ta3,Tλ3}. Note that the additional Tλi literals in δ indicate the time steps of the

nogoods used in the resolution proof. The nogood δ and its shifted versions δ〈−1〉=
{Ta2,Tλ1,Tλ2,Tλ3} and δ〈−2〉= {Ta1,Tλ0,Tλ1,Tλ2} fall within the interval [0, 4].

Hence, by Theorem 7, they are entailed by Ψλ(Π1)[1, 4]∪ {Tλ0}. In particular, δ〈−2〉 is
trivially entailed, since the solutions to Ψλ(Π1)[1, 4]∪ {Tλ0} cannot include Tλ0, which

belongs to δ〈−2〉.
The nogoods learned from the program λ(Π) can be applied to the original program Π

after removing all auxiliary atoms. We define the simplification of a nogood δ, denoted

by simp(δ), as the nogood obtained from δ after removing all literals of the form Fλi or

Tλi. for any integer i.

Theorem 8.

Let Π be a temporal logic program, and let δ be a resolvent of Ψλ(Π)[i, j] for some i and

j such that 1≤ i≤ j. For any n≥ 1, the set of nogoods ΨΠ[1, n] entails the generalization

{simp(δ〈t〉) | step(δ〈t〉)⊆ [0, n],Tλ0 /∈ δ〈t〉}.
Example 14.

The nogood δ= {Ta3,Tλ2,Tλ3,Tλ4} is a resolvent of Ψλ(Π1)[2, 4]. Both δ and its shifted

versions δ〈−1〉 and δ〈−2〉 fall within the interval [0, 4], but δ〈−2〉 includes Tλ0. Hence,

by Theorem 8, the set of nogoods ΨΠ1
[1, 4] entails simp(δ) = {Ta3} and simp(δ〈−1〉) =

{Ta2}. Note that the condition Tλ0 /∈ δ〈t〉 of Theorem 8 is necessary, as without it, we

would incorrectly infer that simp(δ〈−2〉) = {Ta1} is entailed by ΨΠ1
[1, 4]. In the end, we

arrive at the same conclusion as in Example 7, but in that case our reasoning relied on

prior knowledge – not available to the CDNL-ASP algorithm – about the time steps [2, 4]

of the nogoods used to derive {Ta3}, while in this case the information about the time

steps is encoded directly in δ through the Tλi literals, making this additional knowledge

unnecessary.

8 Experiments

We experimentally evaluate the generalization of learned nogoods in ASP planning using

the solver clingo. The goal of the experiments is to study the performance of clingo when

the planning encodings are extended by the generalizations of some constraints learned by
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clingo itself. We are interested only in the solving time and not in the grounding time, but

in any case we have observed no differences between grounding times among the different

configurations. We did experiments in two different settings, single-shot and multi-shot,

that we detail below. Following the approach of (Gebser et al. 2016), in all experiments

we disregarded the learned nogoods of size greater than 50 and of degree greater than

10, where the degree of a nogood is defined as the difference between the maximum

and minimum step of the literals of the nogood.1 In all the experiments, the learned

nogoods are always sorted either by size or by literal block distance (lbd , (Audemard and

Simon, 2009)), a measure that is usually associated with the quality of a learned nogood.

We tried configurations adding the best 500, 1000, or 1500 nogoods, according to either

their nogood size or their lbd . The results ordering the nogoods by lbd were similar but

slightly better than those ordering by size, and here we focus on them. We used two

benchmark sets from (Dimopoulos et al. 2018). The first consists of PDDL benchmarks

from planning competitions, translated to ASP using the system plasp presented in that

paper. This set contains 120 instances of 6 different domains. The second set consists

of ASP planning benchmarks from ASP competitions. It contains 136 instances of 9

domains. We adapted the logic programs of these benchmarks to the format of temporal

logic programs as follows: we deleted the facts used to specify the initial situation, as well

as the integrity constraints used to specify the goal, we added some choice rules to open

the initial situation, and we fixed the initial situation and the goal using assumptions.

All benchmarks were run using the version 5.5.1 of clingo on an Intel Xeon E5-2650v4

under Debian GNU/Linux 10, with a memory limit of 8GB, and a timeout of 15 minutes

per instance.

The task in the single-shot experiment is to find a plan of a fixed length n that is

part of the input. For the PDDL benchmarks we consider plan lengths varying from 5 to

75 in steps of 5 units, for a total of 2040 instances. The ASP benchmarks already have

a plan length, and we use it. In a preliminary learning step, clingo is run with every

instance for 10 minutes or until 16000 nogoods are learned, whatever happens first. The

actual learning time is disregarded and not taken into account in the tables. Some PDDL

instances reach the memory limit in this phase2 We leave them aside and are left with

1663 instances of this type. We compare the performance of clingo running normally

(baseline), versus the (learning) configurations where we add the best 500, 1000, or 1500

learned nogoods according to their lbd value. In this case we apply Theorem 6 and learn

the nogoods using a slight variation of the original encoding, but use the original encoding

for the evaluation of all configurations.

Tables 1 and 2 show the results for the PDDL and the ASP benchmarks, respectively.

The first columns include the name and number of instances of every domain. The tables

show the average solving times and the number of timeouts, in parenthesis, for every

configuration and domain. We can observe that in general the learning configurations are

faster than the baseline and in some domains they solve more instances. The improvement

is not huge, but is persistent among the different settings. The only exception is the

elevator domain in PDDL, where the baseline is a bit faster than the other configurations.

1 These values are experimentally chosen. The higher the size and degree of the nogoods, the less useful
they are as they become more specific.

2 Since the initial state is left open, the grounding size increases and may exceed the memory limit.

https://doi.org/10.1017/S1471068424000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000462


On the Generalization of Learned Constraints for ASP 25

Table 1. Single-shot solving of PDDL benchmarks

baseline 500 1000 1500

blocks (300) 0.5(0) 0.6(0) 0.6(0) 0.6(0)
depots (270) 146.8(30) 140.2(30) 124.2(24) 135.5(28)
driverlog (135) 14.0(1) 13.5(1) 11.5(1) 10.8(1)
elevator (300) 3.0(0) 5.1(0) 4.3(0) 5.2(0)
grid (30) 11.4(0) 6.0(0) 4.4(0) 3.7(0)
gripper (255) 381.1(96) 380.9(90) 360.9(87) 367.7(90)
logistics (225) 0.5(0) 0.5(0) 0.5(0) 0.8(0)
mystery (130) 79.6(6) 71.1(3) 58.6(4) 64.6(6)

Total (1645) 91.5(133) 90.0(124) 83.0(116) 86.5(125)

Table 2. Single-shot solving of ASP benchmarks

baseline 500 1000 1500

HanoiTower (20) 160.5 (2) 139.5 (0) 137.9 (0) 143.9 (1)
Labyrinth (20) 246.6 (3) 348.3 (5) 284.8 (4) 296.2 (5)
Nomistery (20) 585.7 (12) 545.4 (11) 510.2 (9) 566.7 (12)
Ricochet robots (20) 464.5 (9) 320.3 (3) 410.8 (6) 404.9 (5)
Sokoban (20) 458.7 (9) 454.2 (9) 453.8 (9) 446.3 (9)
Visit-all (20) 559.1 (12) 562.5 (12) 560.7 (12) 561.5 (12)

Total (120) 412.5 (47) 395.0 (40) 393.0 (40) 403.3 (44)

We also analyzed the average number of conflicts per domain and configuration, and the

results follow the same trend as the solving times.

In the multi-shot solving experiment, the solver first looks for a plan of length 5. If

the solver finds no such plan, then it looks for a plan of length 10, and so on until it

finds a plan. At each of these solver calls, we collect the best learned nogoods. Then,

before the next solver call, we add the generalization of the best 500, 1000, or 1500 of

them, depending on the configuration. As before, we rely on Theorem 6, but this time

we use the same original encoding, slightly modified, for both learning and solving.3 The

results for PDDL and ASP are shown in Tables 3 and 4, respectively. In both of them,

the baseline and the different configurations perform similarly, and there is not a clear

trend. The analysis of the number of conflicts shows similar results.

We expected similar results in the single-shot and the multi-shot solving experiments,

but the learning configurations outperformed the baseline in the former, while they per-

formed similarly in the latter. We do not have a clear explanation for this, but we can

suggest some hypotheses. In the single-shot experiments we can select the best nogood

from a larger set than in the multi-shot experiments, which could influence the qual-

ity of the learned nogoods. In addition, having the learned constraints from the start

3 The results using the translations from our conference paper (Romero et al. 2022) are similar (see the
supplementary material).

https://doi.org/10.1017/S1471068424000462 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000462


J. Romero et al.26

Table 3. Multi-shot solving of PDDL benchmarks

baseline 500 1000 1500

blocks (20) 1.3 (0) 0.7 (0) 0.7 (0) 0.7 (0)
depots (18) 148.6 (2) 255.9 (3) 188.7 (3) 221.9 (3)
driverlog (9) 108.8 (1) 102.1 (1) 104.8 (1) 108.6 (1)
elevator (20) 280.4 (5) 285.6 (5) 293.8 (5) 304.6 (5)
freecell (16) 900.0 (16) 900.0 (16) 900.0 (16) 900.0 (16)
grid (2) 5.1 (0) 3.9 (0) 4.1 (0) 4.3 (0)
gripper (17) 848.6 (16) 847.5 (16) 849.0 (16) 847.9 (16)
logistics (20) 225.2 (5) 225.3 (5) 225.4 (5) 225.3 (5)
mystery (14) 321.8 (5) 321.9 (5) 321.9 (5) 321.9 (5)

Total (136) 346.6 (50) 360.9 (51) 353.6 (51) 359.7 (51)

Table 4. Multi-shot solving of ASP benchmarks

baseline 500 1000 1500

HanoiTower (20) 440.8 (8) 512.8 (9) 489.4 (9) 498.9 (9)
Labyrinth (20) 633.9 (14) 633.8 (14) 633.8 (14) 633.9 (14)
Nomistery (20) 380.7 (7) 363.1 (6) 381.0 (7) 384.7 (7)
Ricochet robots (20) 521.5 (11) 523.9 (11) 527.9 (11) 526.0 (11)
Sokoban (20) 721.5 (16) 721.5 (16) 721.9 (16) 722.1 (16)
Visit-all (20) 900.0 (20) 900.0 (20) 900.0 (20) 900.0 (20)

Total (120) 599.7 (76) 609.2 (76) 609.0 (77) 610.9 (77)

could positively influence the solver’s heuristic. Moreover, the fixed plan length in the

single-shot experiments could also improve the learning process.

9 Conclusion

CDCL is the key to the success of modern ASP solvers. So far, however, ASP solvers could

not exploit the temporal structure of dynamic problems. We addressed this by elaborating

upon the generalization of learned constraints in ASP solving for temporal domains. We

started with the definition of temporal logic programs and problems. We studied the

conditions under which learned constraints can be generalized, and we identified a class

of temporal programs for which every learned nogood can be generalized to all time

points. It turns out that many ASP planning encodings fall into this class, or can be

easily adapted to it. We complemented this with a translation from temporal programs

in general to temporal programs of that class. Our experimental evaluation show mixed

results. In some settings, the addition of the learned constraints results in a consistent

improvement of performance, while in others the performance is similar to the baseline.

We plan to continue this experimental investigation in the future. Another avenue of

future work is to continue the approach sketched at the end of Section 5 and develop a

dedicated implementation within an ASP solver based on Theorem 3.
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